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A B S T R A C T   

KnowSeq R/Bioc package is designed as a powerful, scalable and modular software focused on automatizing and 
assembling renowned bioinformatic tools with new features and functionalities. It comprises a unified envi
ronment to perform complex gene expression analyses, covering all the needed processing steps to identify a gene 
signature for a specific disease to gather understandable knowledge. This process may be initiated from raw files 
either available at well-known platforms or provided by the users themselves, and in either case coming from 
different information sources and different Transcriptomic technologies. The pipeline makes use of a set of 
advanced algorithms, including the adaptation of a novel procedure for the selection of the most representative 
genes in a given multiclass problem. Similarly, an intelligent system able to classify new patients, providing the 
user the opportunity to choose one among a number of well-known and widespread classification and feature 
selection methods in Bioinformatics, is embedded. Furthermore, KnowSeq is engineered to automatically develop 
a complete and detailed HTML report of the whole process which is also modular and scalable. Biclass breast 
cancer and multiclass lung cancer study cases were addressed to rigorously assess the usability and efficiency of 
KnowSeq. The models built by using the Differential Expressed Genes achieved from both experiments reach high 
classification rates. Furthermore, biological knowledge was extracted in terms of Gene Ontologies, Pathways and 
related diseases with the aim of helping the expert in the decision-making process. KnowSeq is available at 
Bioconductor (https://bioconductor.org/packages/KnowSeq), GitHub (https://github.com/CasedUgr/KnowSeq) 
and Docker (https://hub.docker.com/r/casedugr/knowseq).   

1. Background 

During the last decade, the importance of the DNA sequencing 
studies has risen significantly due to the emergence of Next Generation 
Sequencing (NGS) and the decrease in prices of this technology in 
comparison with its predecessors. As a result, the amount of available 
data, both public and controlled, has grown exponentially. Nowadays, 
the use of parallel architectures such as computer clusters or GPUs is 
highly recommended for an appropriate and efficient processing of the 
raw NGS data. 

Concretely, transcriptomic studies at gene expression level are 

fundamental to win the battle against genetic and multifactorial diseases 
such as cancer. This worrying disease is still the second cause of death 
worldwide, just behind cardiovascular disease. Nowadays, the main 
medical challenge lies in the development of early diagnosis and prog
nosis cancer detection mechanisms. Therefore, the search for bio
markers that allow for achieving an early diagnosis of cancer is essential 
when addressing this type of studies. 

In this sense, the design of powerful bioinformatic tools that allow 
processing and extracting transcriptomic information from raw data 
becomes a key goal in this research area. Currently, there is a number of 
tools that combine the different steps and technologies involved in this 
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scope, not only for R language but also disseminated along other lan
guages or platforms. Concretely, for the R language, there are tools such 
as GEO2RNAseq which propose a pipeline for processing RNA-seq data 
from FASTQ files to gene expression analysis [1]. Furthermore, this 
package allows for downloading data automatically from the Gene 
Expression Omnibus (GEO) public repository [2]. Alternatively, another 
tool, called RobiNA, addresses all the necessary steps to analyze 
RNA-seq and Microarray data (quality control, filtering, analysis of 
differential gene expression, and visualization of results). This software 
is available for both R and Java languages, including a user interface [3]. 
Finally, the RNAseqR package also proposes a pipeline to process 
RNA-seq data that implements all the steps mentioned in the previous 
references but also implements a functional enrichment within the steps 
(GO enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis) [4]. These well-known R tools are just a small set 
within a larger amount of currently available RNA-seq pipelines. With 
the aim of providing a more in-depth state of the art, a summary of the 
most important tools, including the previous mentioned R packages, is 
shown in Supplementary Table 1. Additionally, the RNA-Seq pipeline 
steps addressed by each tool are specified. 

Moreover, the utilization of intelligent system in bioinformatics is on 
the rise nowadays due to the possibility of extracting knowledge from a 
massive quantity of data. These help in the identification of optimal 
biomarker sets, allowing their assessment through the design of classi
fication models, which assist in the diagnostic process on unseen sam
ples. Analyzing the aforementioned most frequent tools for gene 
expression, the integration of predictive models within their method
ologies has not been exploited enough yet. 

As seen, most of the well-developed tools presented in the bibliog
raphy satisfactorily perform part of the standardized phases in the 
treatment of bioinformatic data. However, the accomplishment of a 
complete pipeline under a single tool, including Machine Learning (ML), 
has not yet been exploited. In order to bring light in this regard, this 
work presents a very powerful tool sustained by a complete and public 
Bioconductor R package to perform comprehensive and intelligent RNA- 
seq studies. In fact, the analysis can be initiated from different tran
scriptomic processed files (FASTQ, BAM, SAM, count) from which an 
automatic and precise extraction of the most representative Differen
tially Expressed Genes (DEGs) can be obtained. This process ends up 
with specific steps for ML assessment and DEGs knowledge enrichment. 
In particular, these functionalities and steps are focused on the assis
tance for the design of Clinical-Decision Support Systems (CDSS) [5]. In 
addition, KnowSeq has the possibility of performing an automatic com
plete HyperText Markup Language (HTML) report including the results 
and information of all the implemented steps, only requiring the 
expression matrix as input. Our tool is not exclusively thought to deal 
with the Homo sapiens cancer pathologies since it is also ready to support 
the analysis of any other genetic or multifactorial disease or species. 

Essentially, KnowSeq is focused on RNA-seq because it is nowadays 
the most powerful and widespread genetic characterization technology 
for transcriptome. KnowSeq comprises part of the tools used in our 
previous studies/publications using RNA-seq data. Several cancer types 
were addressed such as breast cancer, skin cancer, leukemia and lung 
cancer and in all them relevant results were achieved [6–8]. They widely 
confirm the validity of the tools connected through KnowSeq in order to 
carry out genetic disease analysis working at gene expression level with 
raw data from RNA-seq. 

This paper presents a real application of KnowSeq to two different 
study cases (Breast cancer and Lung cancer) with data coming from 
Genomic Data Commons (GDC) Portal [9]. On one hand, for the breast 
cancer study, 180 BAM files belonging to 90 breast cancer patients were 
used. For each patient, two samples were collected: a primary tumor 
sample from Ductal and Lobular Neoplasm and a solid tissue normal 
sample. Thanks to this, the experiment was designed with 
Tumor-Normal paired samples, which guarantees better experimental 
conditions in terms of sample availability. There is a number of previous 

breast cancer studies which extracted DEGs, without a posterior ML 
assessment [10,11]. Recently, following the increasingly-standardized 
ML step among the scientific community, Sun, D. et al. developed a 
Deep learning method based on SVM for the prognosis prediction of 
human breast cancer [12]. Furthermore, Wu, J. et al. gathered samples 
from TCGA to extract DEGs and assessed them by implementing 
different ML algorithms obtaining outstanding results [13]. Finally, our 
group has a previous study integrating microarray and RNA-seq data 
from NCBI/GEO to extract biomarkers and assess them through ML [6]. 

On the other hand, for the lung cancer study, samples coming from 
three different states were collected with the aim of carrying out a 
complete multiclass study in the search of relevant biomarkers. Those 
states are Adenocarcinomas (ACC), Squamous Cell Carcinomas (SCC) 
and Solid Tissue Normal (Control). Previous studies, focusing on the 
application of ML algorithms to the lung cancer DEGs assessment, Hu, F. 
et al., proposed an unsupervised classification system for different sub- 
types of lung adenocarcinoma [14]. Podolsky, M. D. et al. imple
mented ML algorithms to perform a binary classification between ma
lignant pleural mesothelioma and adenocarcinoma [15]. Tian, S. 
developed a classification and survival system to predict for early-stage 
lung adenocarcinoma and squamous cell carcinoma patients by applying 
different statistical metrics and SVM [16]. Within our group, we also 
designed and implemented a multiclass lung cancer classification pipe
line from microarray samples, to distinguish 4 sub-types of lung cancer 
[17]. For the presented experiment, 1100 count files were retrieved, 
starting the KnowSeq pipeline from the count files instead of the BAM 
files. Lung cancer was selected as it is the cancer with the largest number 
of available and balanced transcriptomic multiclass samples among the 
existing ones at GDC Portal, ensuring a relevant number of samples to 
carry out a rigorous assessment KnowSeq. 

The rest of the paper is structured as follow: Section 2 contains an in- 
depth explanation of KnowSeq and the different functions and modules 
included within it. Section 3 exposes the results for the two study cases 
developed to assess KnowSeq. Section 4 summarizes important features 
of KnowSeq, current limitations and future implementations of our tool. 
Finally, Section 5 presents the study conclusions which highlight the 
main contributions of this work. 

2. Methodology 

This section presents in depth the steps and functionalities imple
mented by the KnowSeq pipeline. In order to visually comprehend the 
pipeline functionalities, Fig. 1 represents the outline of the whole 
methodology, split in 4 different distinguished steps: 1) Transcriptomic 
Raw Data Processing, 2) Biomarker Identification and Assessment, 3) 
DEGs Functional Enrichment, and finally, 4) Automatic Report. On this 
basis, these steps are organized in subsections with the purpose of giving 
a deeper explanation for each of them. It should be noted that KnowSeq 
has been designed to achieve a high modularity. This means that each of 
the steps and sub-steps conforming this tool could be perfectly replaced, 
taking into account that the inputs and outputs, using the same data 
type. Due to this, KnowSeq can be easily adapted even for different 
species and biological data types not explicitly addressed in our tool. In 
order to enumerate and summarize the different functions available in 
the package, Table 1 summarizes the most important functions included 
in KnowSeq, together with the corresponding pipeline step and a brief 
description of its functionality. 

2.1. Transcriptomic Raw Data Processing 

Raw data treatment is one of the most crucial steps in Transcriptomic 
studies. In order to gather the samples, KnowSeq brings the opportunity 
to automatize the download of public and controlled samples from the 
most renowned web platform databases: Gene Expression Omnibus 
(GEO), ArrayExpress [18] and GDC Portal. Then, if the pipeline starts 
from SRA, FASTQ or BAM/SAM files, an alignment process will be 
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required by using the human reference genome in order to obtain the 
count files to perform the DEGs analysis. KnowSeq also allows for 
downloading the Human Reference Genome GRCh37 and GRCh38 from 
Ensembl, although whichever reference genome can be used by indi
cating the corresponding file path. This procedure is performed through 
the use of the rawAlignment KnowSeq function, for which our tool utilizes 
the samtools [19] and one of the most well-known aligners (hisat2 [20]), 
providing the academics with the most renowned choices. Furthermore, 
the Htseq-count tool extracts the count files for each sample. It is highly 
recommended to run the raw data alignment in a computer cluster as the 
aforementioned tasks may be severely computationally demanding.2 

When the raw files have been aligned, or in case the user starts the 
pipeline from the count files, the function countsToMatrix automatically 
combines all the count files into one aggregated matrix with edgeR [21]. 
Consequently, through the use of the function calcu
lateGeneExpressionValues, the equivalent gene expression values are 
calculated using the cqn R package [22]. Although KnowSeq allows 
RNA-seq data to be processed from raw to counts, quantified as equiv
alent expression values, also other biological data which have been 
previously preprocessed and are quantified as an expression data matrix 
(for example, microarray or miRNA) are entirely compatible with Bio
markers Extraction and ML KnowSeq processes. Specifically, this has 
been verified by the authors through experimentation using microarray 
data from previous works [17] and through an in-progress miRNA 
research. 

2.2. Biomarker Identification and Assessment 

DEGs extraction is a very delicate process because the samples must 
pass a strong quality analysis and restrictive batch effect removal steps. 

If these steps are performed incorrectly, the DEGs candidates could not 
be true DEGs due to possible intrinsic deviations on the corrected gene 
expression from the considered samples. To solve that, KnowSeq has its 
own quality analysis step implemented inside the function RNAseqQA. 
During this analysis, outliers are detected using three different methods: 
distance between samples, Kolmogorov-Smirnov and MA plots. 
Furthermore, the user can decide if the outliers are only shown or also 
automatically removed. In this sense, they will only be removed if they 
previously appeared at least in two of the three outlier evaluation 
methods. To perform the quality analysis in a rigorous manner, it is 
crucial to ensure the correct development within the rest of the study. 
Even though the quality analysis is well-performed, there is still the 
possibility of having batch effects among the chosen samples or series. 
The batch effect is a deviation effect in the gene expression values due to 
several external technical factors (origin, sequencing time, lab techni
cian, among others) and it is extremely hard to deal with [23]. KnowSeq 
allows for using two of the most relevant algorithms to remove batch 
effects such as ComBat for predefined batch groups, and Surrogate Var
iable Analysis (SVA) for unknown batch groups [24] through the func
tion batchEffectRemoval. In addition, the user can decide to treat the 
batch effect correction step for a custom implementation. 

With respect to the DEGs extraction, limma R package was included 
within KnowSeq as it is one of the most widespread methods in the 
literature [25]. KnowSeq allows limma DEGs extraction step to be 
replaced by other tools if the user wishes to do so [26]. It is important to 
note the difficulty to achieve true DEGs when there are more than two 
classes to be compared. For that, the Coverage (COV) parameter, which 
was introduced in our previous publication [8], has been included in the 
KnowSeq pipeline. COV allows for detecting DEGs that are differentially 
expressed in different classes, by counting the number of biclass com
parisons where this differential expression takes place, thus controlling 
and improving the multiclass DEGs detection and the posterior multi
class ML assessment. Then, KnowSeq automatically detects the number 
of classes or labels for a given problem, and consequently applies the 
standardized limma method for biclass studies, or limma along with the 
COV parameter for multiclass DEGs extraction. It is important to note 
that COV parameter takes values between 1 and COVmax where COVmax 
is defined in Equation (1): 

Fig. 1. Pipeline implemented by KnowSeq R/bioc package, considering the connection of the most standardized RNA-seq steps together with the novel steps 
introduced by our tool. 

2 With the aligner index previously computed, the complete human genome 
alignment for one RNA-seq sample took 65 min in a personal computer (MSI 
GP62VR 7RF Leopard Pro, i7-7820HK, 4 cores and 8 threads per core, 16 GB of 
RAM, 1 TB of SSD), while 18 min on average were required under a 4-node 
cluster use (with the following specification per node: 2 CPUs Intel Xeon Sil
ver 4110 8c with 8 cores and 16 threads per core, 32 GB of RAM, 35 TB of NAS). 
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COVmax =
N2 − N

2
, ​ where ​ N ​ is ​ the ​ number ​ of ​ classes. (1) 

However, a value of COV near to COVmax is usually too restrictive 
while a low value might introduce DEGs with a poor multiclass 
discernment potential. Typically, a problem in which the classes present 
clear differences at the gene expression level enables the use of a high 
COV value, retrieving a reduced number of DEGs with the capability of 

discerning among the classes. Otherwise, when the differences are less 
evident, a lower COV value should be used to retrieve a sufficient 
number of DEGs with enough information to distinguish between the 
states. This DEGs extraction is carried out by using the function DEG
sExtraction. Theoretically, the final DEGs candidates are genes with the 
capability to differentiate between the classes to be analyzed. In order to 
add a graphical assessment to the process, the function dataPlot includes 
the possibility of plotting all the required charts for that (e.g. boxplots by 
samples, boxplots by genes, heatmaps and others). Nevertheless, to 
really test and assess those hypothetical DEGs, a ML process is imple
mented in KnowSeq. This step is sub-divided in two substeps: a feature 
selection process and a supervised classification process. On the one 
hand, for a given number of candidate DEGs, the first substep applies a 
feature selection (FS) process which is highly recommended for preci
sion medicine. This allows for reducing the system complexity, dimin
ishing the number of genes, and helping to make clinical decisions [27]. 
For that, KnowSeq applies two different feature selection algorithms 
such as minimum Redundancy Maximum Relevance (mRMR) [28] and 
Random Forest as feature selector (RFfs), invoked by means of the 
function featureSelection. These algorithms create a ranking of DEGs in 
order to reduce the complexity of the classification models while 
keeping the intelligent classifier results by listing those DEGs with more 
discernment capability at the top. 

The second step is the supervised classification process in which 
KnowSeq allows using three of the most well-known classifiers for this 
type of analyses: Support Vector Machine (SVM) [29], k-Nearest Neigh
bour (k-NN) [30] and Random Forest (RF) [31]. All of them are widely 
used to deal with genomic and transcriptomic studies by the scientific 
community [32–34], and any or all three of them can be combined with 
any of the FS algorithms and used to check the validity of the selected 
DEGs. It is important to note that if several classifiers are used, these can 
lead to slightly different results. The package implements both a 
training-test or training-validation subdivision and assessment, and a 
k-fold cross-Validation (CV) strategy, which means that the training 
dataset is split into k sub-training sets, leaving the rest of samples for 
validation. Thanks to the latter technique, all the training samples are 
used for both training and validation at least once, and an appropriate 
estimate of the expected performance can be obtained. CV will also be 
used in the experiments for the assessment of the optimal number of 
genes in the ranking extracted by the feature selection algorithms. It is 
important to note that this may provide an overestimation of the per
formance of the selected set of genes, since the feature selection pro
cedure was already applied to the whole training dataset. Instead, 
different FS ranking could be calculated for the different CV partitions, 
but this strategy can suffer from a low stability of the FS algorithms 
whose rankings can be very different among the varied, though highly 
overlapping, CV partitions. 

After the CV step, the final subset of selected DEGs can be now used 
to optimize the final model along with the whole training dataset. 
Extensively, the possibility to test the model with unseen samples 
(which were set aside from the beginning with this express purpose) has 
also been implemented. Taking this into account, there are two stages 
for each classifier: one stage for hyperparameter optimization and 
training of the models (knn_trn, svm_trn & rf_trn) and another stage for 
testing (knn_test, svm_test & rf_test). For the three algorithms, the 
following hyperparameters are optimized, searching the determination 
of the best model for each analysis: k for k-NN model, n-trees for RF, and 
for the SVM, Gaussian kernel has been implemented, thus requiring the 
optimization of hyperparameters (c & g). In all cases, grid-search and CV 
is used with the aim of finding the best combinations for the respective 
parameter or parameters. CV ends up also providing the expected per
formance on unseen samples, which can be explicitly assessed using the 
respective testing functions. KnowSeq has been designed to deal with 
multiclass classification problems regardless of the number of classes to 
address. Furthermore, the use of the coverage parameter helps to detect 
truly multiclass DEGs, improving the quality and robustness of the 

Table 1 
Most relevant functions when using KnowSeq. For each of them, its name, the 
pipeline step to which the function belongs and its description with possible 
options are shown. The KnowSeq user manual contains an in-depth explanation 
for each function.  

Function Name Pipeline step Description (options) 

downloadPublicSeries RNA-seq raw data 
processing 

Automatically download 
series from GEO and AE 

gdcClientDownload RNA-seq raw data 
Processing 

Automatically download data 
from GDC-Portal 

rawAlignment RNA-seq raw data 
processing 

Transcriptomic raw data 
alignment with hisat2 

countsToMatrix RNA-seq raw data 
processing 

Convert genes count files to 
matrix 

calculateGeneExpressionValues RNA-seq raw data 
processing 

Gene expression values 
calculation and 
normalization 

RNAseqQA Biomarkers 
Identification 
& Assessment 

Expression matrix Quality 
Analysis and Outlier 
Detection 

getAnnotation Biomarkers 
Identification 
& Assessment 

Retrieve DEGs annotation 
from a given list 

batchEffectRemoval Biomarkers 
Identification 
& Assessment 

Batch effect detection and 
removal (Combat, SVA) 

DEGsExtraction Biomarkers 
Identification 
& Assessment 

Biclass and multiclass DEGs 
extraction 

dataPlot Biomarkers 
Identification 
& Assessment 

Plots different data 
information and results 
(boxplot, orderedBoxplot, 
genesBoxplot, 
heatmap, confusionMatrix, 
classResults) 

featureSelection Biomarkers 
Identification 
& Assessment 

Feature selection for a DEGs 
matrix 
(mRMR, RF, DARED) 

knn_trn Biomarkers 
Identification 
& Assessment 

Train a k-NN by using Cross- 
Validation 
for a given DEGs matrix 

knn_test Biomarkers 
Identification 
& Assessment 

Test a k-NN model for a given 
DEGs matrix 

rf_trn Biomarkers 
Identification 
& Assessment 

Train a RF by using Cross- 
Validation 
for a given DEGs matrix 

rf_test Biomarkers 
Identification 
& Assessment 

Test a RF model for a given 
DEGs matrix 

svm_trn Biomarkers 
Identification 
& Assessment 

Train a SVM by using Cross- 
Validation 
for a given DEGs matrix 

svm_test Biomarkers 
Identification 
& Assessment 

Test a SVM model for a given 
DEGs matrix 

DEGsToDiseases DEG Functional Retrieve related diseases and 
evidence 

Enrichment for a DEGs list 
geneOntologyEnrichment DEG Functional Gene ontology enrichment 

for a DEGs list Enrichment 
DEGsToPathways DEG Functional DEG Related KEGG pathways 

Enrichment 
knowseqReport Automatic Automatic and Modular 

HTML Report 
Report for a given dataset and 

disease or diseases  
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subsequent multiclass classification process. Moreover, KnowSeq allows 
the graphical representation of the results to be plotted, including the 
confusion matrix, the sensitivity, the specificity and the f1-score. This 
gives to the user the possibility of performing a very complete analysis 
and assessment of the tackled problem in a very simple and quick way. 

2.3. DEG functional enrichment 

KnowSeq assists with attaining biological knowledge related to the 
final DEGs candidates, which have been previously assessed in the ML 
process. This knowledge can be interpreted afterwards by a clinician or 
any person with a biological profile. KnowSeq allows for retrieving 
biological information from three different well-known sources. The 
first one is the Gene Ontology (GO) enrichment which retrieves informa
tion about the biological functions from different ontologies or domains 
for each DEG [35]. The three available GO domains are queried by our 
tool: the Biological Process (BP), the Molecular Function (MF) and the 
Cellular Component (CC). Thanks to this, the biological functions 
related with the DEGs can be acquired and facilitating a deeper study to 
find connections with the addressed disease. For the GO enrichment, 
web queries to the DAVID Platform are automatically performed, and 
then the retrieved information is formatted to be readable in a table 
format [36]. In order to carry out the GOs retrieval, KnowSeq has the 
function geneOntologyEnrichment. 

The second source of biological information is pathway enrichment. 
Nowadays, it is well known that the interaction among genes can 
eventually activate or inhibit different biological processes. Genes 
interacting among themselves in the same biological function are put 
together in the same pathway. For that reason, it is important to know 
not only the expression of the DEGs but also their interactions with genes 
that belong to their same pathways. KnowSeq allows for retrieving DEG 
related pathways from the well-known pathway databases KEGG [37]. 
For this purpose, the function DEGsToPathways is responsible for per
forming this process. 

The last source of biological information implemented in KnowSeq is 
the related diseases retrieval. It is performed by executing the function 
DEGsToDiseases. In this step, all the related diseases of the DEGs candi
dates are obtained together with the evidence that support these re
lations. This information helps with finding possible associations with 
the pathology addressed and with other possible precursor pathologies. 
This information is attained from the targetValidation [38] web platform. 
This platform has several scores to determine if a gene is related with the 
different possible diseases, based on the data collected by the web 
platform. The value of these scores increases when the biological rela
tionship increases too, meaning a strong association with the selected 
disease. More concretely, each individual score is calculated taking into 
account the evidence frequency, the strength of the effect described by 
them, and their confidence. The Final Association Score is computed as 
the harmonic sum of all the available individual scores [38]. KnowSeq 
can retrieve not only each individual score but also the final score 
together with the evidence for a concrete disease. Then, the acquired 
diseases are correctly organized by KnowSeq to provide this information 
in a more readable way for the user. With the information automatically 
collected by KnowSeq from the three different sources, a strong func
tional enrichment process is carried out in order to build a biological 
profile for each of the DEGs without requiring external tools. 

2.4. Automatic report 

Taking into consideration those scientists who do not have a deep 
programming background, KnowSeq implements an Automatic HTML 
Report by simply calling the function knowseqReport with the expression 
matrix to analyze as input. This function will automatically generate an 
HTML report that the user can inspect in any web-browser. This report 
includes results of a batch execution of the pipeline, including Quality 
Analysis, Batch Effect Removal, Differential Expressed Genes, Feature 

Selection and Predictive Models and the three different functional 
enrichment sources (GOs, KEGG Pathways and Related diseases and 
evidences) along with several plots. Moreover, the report is also 
modular, having the possibility of deactivating any of the aforemen
tioned steps and adapting the study to the user requirements. An 
example of an automatic report generated by KnowSeq is provided in the 
Supplementary Information. This example report has been created using 
the same Breast cancer dataset used to show the detailed application of 
KnowSeq in the next Results and Discussion section. This report includes 
similar outcomes to those subsequently explained, according to all the 
aforementioned features, but for decisions that cannot be taken in a 
batch execution of the pipeline (for instance the number of final DEGs 
selected from a feature selection algorithm). 

3. Results and discussion 

With the purpose of showing the operation of KnowSeq under a real 
application, two different study cases have been addressed. The section 
is divided in three subsections: the first one, specifies the information 
about the data acquisition and the description of both study cases while 
the following two sections introduce the obtained results and discussion 
for each study case separately. 

3.1. Data preparation & description 

All the data samples used in this research come from The Cancer 
Genome Atlas (TCGA) and have been acquired through the GDC Portal 
platform. GDC requires permission access to download BAM files from 
the controlled data. However, the study can also be replicated by 
starting from open-access count files instead of BAM files. The links to 
the source files for both breast and lung datasets are within the Sup
plementary Information in order to make the experiments totally 
reproducible. 

Firstly, for the paired breast cancer study, 90 patients were selected 
with the condition of having BAM files from both solid normal and 
primary tumor tissues for each patient. With this condition, both the 
paired datasets and the best quality conditions in terms of samples for 
the study are ensured. The dataset was divided into a training dataset 
formed by 80 patients and was used to extract the DEGs. The test dataset 
with the 10 remaining patients was used for testing those DEGs in the ML 
step. 

Following, for the multiclass lung cancer study, 1100 count files from 
three different states were collected from GDC Portal. Concretely, 495 
ACC Primary Tumor, 502 SCC Primary Tumor and 103 Solid Tissue 
Normal samples as Control were considered. A stratified 80%–20% 
training-test subdivision was performed for this problem. The main 
motivation of this case study is the search for relevant biomarkers with 
the capability of discerning among the all addressed states and not 
exclusively for the typical case: cancer vs control. This type of studies 
allow for finding DEGs with significant differences even among different 
pathological sub-types within the same cancer type. 

3.2. Paired breast cancer study 

3.2.1. Gene expression analysis 
The quality analysis was first performed using the 80 patients and no 

outlier was detected among them. Thereafter, the batch effect removal 
step was applied taking into account that the possible batches were 
unknown. The SVA algorithm [39] was performed to find the surrogate 
variables in order to create a model considering those variable to remove 
the deviations. After the quality analysis and the batch effect correction 
steps, DEGs candidates can now be extracted. To carry out this extrac
tion, the thresholds imposed were very restrictive, using three statistical 
values for filtering: the Log Fold Change (LFC) greater or equal than 3, 
the P-value less or equal than 0.001 and COV equal to 1 due to it is a 
biclass problem. Applying these restrictions, a total amount of 50 DEGs 
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candidates ordered by LFC were extracted which can be seen at Sup
plementary Table 2. Furthermore, Fig. 2 represents an expression 
heatmap that graphically shows important differences of the DEGs 
candidates between both tumor and normal samples. 

3.2.2. Machine Learning assessment 
Firstly, a 10-CV step was applied in order to assess the behavior of the 

classifier with the 80 patients training dataset when those DEGs are used 
for classification. Thereupon, all the different combination of classifiers 
with feature selection algorithms reached better results than applying 
just only limma extraction, recognizing all the training samples with a 
lower number of genes. SVM and RF acquired outstanding results, while 
k-NN had slightly better results than the other two algorithms. However, 
it is important to know how the classifier behaves with samples never 
seen before in order to simulate a real clinical case. This is the reason to 
create a test process with the 10 patient (20 samples) datasets. Different 
matches, or combinations between classifiers and feature selection al
gorithms, were executed with the purpose of searching the combination 
with the best results. Table 2 contains the results for all these combi
nations depending on the number of genes used to classify. It is impor
tant to highlight that with only 3 genes, k-NN reached 100% of accuracy 
when mRMR and RF f. s. were applied. Although all of them achieved 
prominent results, k-NN obtained the best results regardless of the 
feature selection algorithm and the number of genes used. As it can be 
seen, with only 3 genes selected by the feature selection process from our 
DEGs, all the test patients were perfectly recognized for the ML designed 
models. This means that KnowSeq brings the support necessary to create 
intelligent systems with the capability of extracting relevant biomarkers 
that are useful to discern among the addressed diseases or states. 

Once the classification is done, it is very helpful to graphically 
visualize the gene expression differences that exist between the tumor 
samples and the normal samples for the three 3 DEGs that discriminate 
perfectly the test patients. In order to carry out this representation, 

KnowSeq contains the dataPlot function in mode genesBoxplot. Fig. 3 
represents the genes Boxplots for the top 3 DEGs applying mRMR. In this 
figure, the three selected genes (COL10A1, VEGFD AND PITX1) have 
several differences in average expression between the addressed states. 

3.2.3. DEGs enrichment 
At this point of the study, our DEGs have been assessed by applying a 

ML process. In order to help with the biological interpretation and 
functional enrichment, KnowSeq has a last step in its pipeline created 
solely and exclusively for this purpose (DEGs Functional Enrichment). 

Of the first three DEGs from limma, mRMR and RF f. s., only two 
DEGs from RF f. s. (COL10A1 & MMP11) and two DEGs from mRMR 
(COL10A1 & VEGFD) have a strong reported relation with breast cancer 
and one of them is common to limma, mRMR and RF f. s. (COL10A1). It 
is very interesting to note that only the first gene of the top 3 DEGs with 
limma has a significant relationship with breast cancer, although they 
all are the DEGs with the higher LFC or P-value. Therefore, the use of a 
feature selection step in this case has implied the determination of DEGs 
in the first positions more related with breast cancer. This fact clearly 
improves the classification accuracy as shown in the previous sub- 
section. Hence, the 3 breast cancer reported DEGs will be used for the 
enrichment, with their scores presented in Table 3. These 4 scores pro
vide values between 0 and 1 depending on if the association in each field 
is low or high, respectively. Furthermore, the Final Association score 
defined at subsection DEGs Functional Enrichment is also shown. As can 
be seen in the table, the three genes have a strong final association, so 
they are highly involved in breast cancer. From this point, the experts in 
the field have an important overview of the genes to continue investi
gating them. 

The next step is the Gene Ontology enrichment. For this process the 
same 3 DEGs are used and the five most important GOs for them and for 
the three different ontologies (BP, MP & CC) will be retrieved with the 
function geneOntologyEnrichment. Supplementary Table 4 shows the top 

Fig. 2. Heatmap of the 50 DEGs candidates clearly showing differences between tumor and normal samples.  
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5 GOs for our 3 DEGs. As it can be seen, the VEGFD gene does not appear 
for any GO terms in the top 5, but only GOs related with COL10A1 and 
MMP11 genes. Only by increasing the maximum number of retrieved 
GOs, were GOs related to the VEGFD retrieved. Thanks to this step, the 
Biological Processes (BP), the Molecular Functions (MF) and the Cellular 
Components (CC) of the DEGs are stored by KnowSeq to help users know 
the biological domain of each DEGs and study possible relations with 
processes that could lead to the development of cancer. 

Finally, the last biological enrichment step included in KnowSeq is 
the pathway enrichment. Pathways involving the selected DEGs are 
important to understand how the expression changes are affecting other 
genes and biological processes, as well as how theses changes can turn 
into cancer (breast cancer, in this case). To achieve that, KnowSeq in
cludes the function DEGsToPathways. This function makes use of KEGG 
database to acquire the pathway information. For the COL10A1, there is 
one reported pathway affected. For the MMP11 there exists no affected 
pathways in KEGG. Finally, for the VEGFD gene there are nine reported 
pathways. Table 4 shows the nine VEGFD related pathways as well as the 
pathway related with COL10A1 gene. 

As can be seen in Table 4, the gene VEGFD is involved in several 
pathways (Pathway in cancer included). The changes in its expression 
could produce disorders in those pathways, which could end up in the 
development of breast cancer and other diseases. However, since KEGG 
database does not reveal any pathway for MMP11 or any interaction 
between them, an additional search has been done into Reactome 

Database as KnowSeq will support that tool in the next release. In this 
sense, information from the Reactome database shows that both MMP11 
and COL10A1 have influence in the degradation of the extracellular 
matrix which, in turn, contributes to the tumor growth and progression 
[40]. Concretely, both DEGs affect the collagen degradation while dis
rupting the extracellular matrix. As has been reported for other cancer 
diagnoses, DEGs involved in collagen degradation can help discern 
ovarian and breast cancer from healthy controls [41]. 

3.3. Multiclass lung cancer study 

3.3.1. Gene expression analysis 
The quality analysis was first performed to the whole set of patients, 

detecting 10 outliers among them. Then, as before, the batch effect 
removal step was carried out. The SVA algorithm [39] was used to find 
the surrogate variables in order to create a model considering those 
variable to remove the deviations. For the DEGs candidates extraction, 
the thresholds imposed were very restrictive, using three statistical 

Table 2 
Breast cancer test results for the different combinations of feature selection algorithms with the classifiers depending on the number of DEGs selected.  

Method/N. Genes Limma mRMR RF f.s. 

3 5 10 3 5 10 3 5 10 

SVM 85% 90% 95% 95% 95% 100% 100% 95% 100% 
k-NN 90% 85% 100% 100% 100% 100% 100% 100% 100% 
RF 85% 90% 95% 90% 70% 95% 85% 85% 100%  

Fig. 3. Boxplots of the 3 first mRMR selected DEGs by KnowSeq for the Breast cancer study case.  

Table 3 
Information about the Breast cancer association scores (sc.) for the final 3 DEGs 
to study.  

Gene Liter. sc. RNA Exp. sc. Affected Paths. sc. Final Assoc. sc. 

COL10A1 0.0372 0.1787 0.6835 0.7323 
MMP11 0.1935 0.1094 0.6065 0.6670 
VEGFD 0.1169 0.1400 0.6948 0.7428  

Table 4 
Retrieved pathways and their description for the chosen Breast cancer DEGs.  

KEGG 
Pathway 

Name Genes 

hsa04974 Protein digestion and absorption COL10A1 
hsa04010 MAPK Signaling Pathway VEGFD 
hsa04014 RAS Signaling Pathway 
hsa04015 RAP1 Signaling Pathway 
hsa04151 PI3K-AKT Signaling Pathway 
hsa04510 Focal Adhesion 
hsa04668 TNF Signaling Pathway 
hsa04926 Relaxing Signaling Pathway 
hsa04933 Age-Rage Signaling Pathway in diabetic 

complications 
hsa05200 Pathway in cancer  
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values for filtering: the LFC greater than or equal to 1.5 (in order to not 
lose information), the P-value less than or equal to than 0.001 and COV 
equal to 2 given that it is a multiclass problem and there are 3 classes. 
Supplementary Table 3 shows the 50 more relevant multiclass genes of a 
total of 410 DEGs, taking into account both LFC and COV. 

3.3.2. Machine Learning assessment 
A 10-CV step was performed over the training dataset in order to 

observe the performance of the classifier. Thereafter, the classifier was 
applied to the test set. Table 5 contains multiclass test classification 
results for the different combinations of feature selection and classifi
cation methods for different number of DEGs. As it can be observed, 
using any type of FS improves the results over using just limma, as it 
happened for the previous problem. RF classifier obtains the best results 
when using mRMR feature selector, using only a subset of 6 genes. The 
graphic representation of the accuracy obtained on the test set, using RF 
and for each feature selector, is presented in Fig. 4. Even though mRMR 
and RF f. s. reach the same performance when using only one gene, 
mRMR outperforms RF f. s. in any other case, and both of them improve 
results over using limma. When dealing with a multiclass problem, ac
curacy might not be the most reliable metric, since it is affected by class 
imbalance, and hence the confusion matrix is a better method to mea
sure the classifier precision. Therefore, Fig. 5 presents the confusion 
matrix when using mRMR and RF classifier. As it can be observed, the f1- 
Score value (that uses the harmonic mean and therefore is not affected 
by imbalanced classes) is very similar to the accuracy value, having a 
similar behavior in terms of both sensitivity and specificity. Therefore, 
the classifier is able to properly classify each class without being prone 
to any specific one. It is important to note, that although it is very hard to 
obtain the same recognition for the classifiers, the classification trends 
between them seem to be the same in relation to the two problems 
tackled in this work. 

Fig. 6 shows the boxplots for the 6 selected genes by mRMR. As it can 
be observed in the figure, the genes are able to properly discriminate 
between the different classes. The first selected gene (KRT5) shows an 
outstanding discrimination between ACC and SCC while, for instance, 
the third selected gene (SH3GL3) presented this discrimination power 
between ACC and control. As shown for the results presented in Table 5, 
using these genes with the RF classifier led to obtaining impressive re
sults for the multiclass classification in the test set. It is important to 
highlight that all the graphs and plots have been represented by using 
the dataPlot function available at KnowSeq. 

3.3.3. DEGs enrichment 
In this case, the enrichment is done over the 6 DEGs selected by 

mRMR which is composed of the GOs enrichment, KEGG pathways and 
related diseases retrieval. 

To start with the functional enrichment step, Supplementary Table 5 
shows the list of the top 5 five GO terms for the three main ontologies 
(BP, MF & CC). All the 6 final DEGs are involved in at least one GO term 
in the table. However, more GO terms can be retrieved just by modifying 
the parameters of the function geneOntologyEnrichment. An in-depth 
study of this information could reveal relations between those DEGs 
and biological considerations related to the addressed states in the 
multiclass study. 

Table 6 contains the list of the KEGG pathways in which one or more 

of the selected DEGs are involved by using the function 
DEGsToPathways. 

Finally, it is very useful to know which is the correlation between the 
final DEGs and the different addressed diseases. To that end, the 
different Final Association Score for each DEGs for different lung related 
diseases have been retrieved with the function DEGsToDiseases. As it is 
detailed in Table 7, four of the six DEGs are related with some lung 
pathology or even directly with cancer (KRT5, SH3GL3, TFAP2A & 
S1PR5) with a very strong association in some cases. Nevertheless, the 
other remaining DEGs lack of association with practically all the 
addressed cases. FAM189A2 gene only has a very low association with 
Lung ACC while TICRR has a low association with cancer. These results 
open the door for scientists and experts to perform an in-depth study 
about those DEGs, which have several expression changes among the 
states yet have been related with a very low number of diseases. 

4. Features, limitations & future implementations 

This section summarizes relevant information about our R package. 
KnowSeq, as it is currently implemented, offers modularity and scal
ability, i.e. different modules can be replaced by the obtained results 
from other tools, customizing or even extending our proposed automatic 
pipeline. For example, the number of retrieved DEGs can vary in func
tion of the main objective of a specific study. KnowSeq is focused on 
small gene signatures as it is of utmost importance to develop diagnostic 
kits or interpretable models to help clinical decision-making [42]. 
However, a larger number of DEGs can be extracted to their posterior 
analysis through external tools taking into account, for example, net
works or sub-networks [43]. 

KnowSeq allows for developing complex studies, without the need for 
advanced programming skills. The required lines of code decrease 
dramatically due to the high encapsulation and degree of abstraction 
(around 40 to 50 lines of code for both cases). Moreover, to develop 
complete study cases, starting from the count files, 143 and 447 min 
were required respectively in the 4-node cluster described in Section 2.1. 
These time metrics consolidate the fact that thanks to KnowSeq, com
plete studies can be done using an insignificant number of lines of code 
along with a low execution time. Qualitatively, KnowSeq implements 
and automates all the necessary steps to perform complete expression 
analysis. Moreover, KnowSeq includes different parameters to allow for a 
high customization, to adapt the pipeline to the users’ requirements. 
Finally, a Docker container was designed which includes a RStudio 
server with the latest version of KnowSeq installed along with an R script 
of a real case to use as an example. The container allows KnowSeq to be 
run no matter the Operative System or the required dependencies. This 
boosts the usability while decreasing the time needed to perform a gene 
expression analysis. The KnowSeq Docker can be also deployed to 
corroborate both qualitative and quantitative assessment through the 
real analysis of breast cancer expression which is included within the 
container. 

KnowSeq has a set of limitations which will be resolved in further 
releases. At the moment of the redaction of this manuscript, KnowSeq 
does not allow GSEA within their current three Functional Enrichment 
methods. Furthermore, currently there is no support for Reactome 
pathway information retrieval. In addition, due to the large number of 
Microarray platforms and the particular existing pre-processing libraries 

Table 5 
Mean F1-score for Multiclass Lung cancer test results for the different combinations of feature selection algorithms with the classifiers depending on the number of 
DEGs selected.  

Method/N. Genes Limma mRMR RF f.s. 

3 6 9 3 6 9 3 6 9 

SVM 78.4% 88.8% 89.2% 90.4% 94.7% 95.1% 78.0% 88.0% 89.1% 
k-NN 77.7% 86.1% 87.2% 90.4% 95.1% 95.1% 79.6% 88.3% 88.2% 
RF 76.2% 83.1% 85.3% 91.4% 95.4% 94.4% 81.1% 84.7% 90.1%  
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each of them require, we decided to focus on RNA-Seq RAW pre- 
processing. Nevertheless, as aforementioned, once the Microarray 
gene expression matrix is obtained, KnowSeq can work with it. 
Currently, KnowSeq does not contain automatic training-test stratifica
tion, nor imbalance dataset treatments for classification tasks, which are 
expected to be implemented as soon as possible. Further releases of 
KnowSeq will also implement interpretable classification to provide even 
more information to help in decision making [44–48]. Finally, the ad
vances of KnowSeq can be implemented in a user-friendly pipeline, 
similar to the presented platform by R. Kohen et al. [49]. In fact, a web 
version of KnowSeq is now under development with the aim of reducing 
to zero the required programming skills to launch the tool. 

Fig. 4. Mean F1-score for the Lung cancer Test classification results by implementing RF with the three FS methods.  

Fig. 5. Test Confusion Matrix for the Lung cancer study case for RF classifier 
using mRMR 6 first selected DEGs. 

Fig. 6. Test Genes Boxplots for the Lung cancer study case for the first mRMR 6 DEGs.  

Table 6 
Retrieved pathways and their description for the chosen Lung cancer DEGs.  

KEGG Pathway Name Genes 

hsa04071 Sphingolipid signaling pathway S1PR5 
hsa04080 Neuroactive ligand-receptor interaction S1PR5 
hsa04144 Endocytosis SH3GL3  
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5. Conclusions 

In this paper, a novel tool to carry out transcriptomic gene expression 
analysis, publicly available at Bioconductor, has been presented. 
KnowSeq includes the most well-known steps to perform this type of 
study, and extends them with powerful functionalities: feature selection, 
classification and enrichment analysis. Thanks to this, complete analyses 
can be carried out from raw data treatment up to biological knowledge 
extraction, in an easy, modular and flexible way. In addition, our 
package returns an Automatic HTML report that computes all the above 
steps together, providing the expert a file with the results of the com
plete study. For this reason, KnowSeq expects to server as a decision- 
making support system that can be used by experts when diagnosing 
certain pathologies. 

The operation of KnowSeq has been exemplified by addressing two 
case studies with different complexity levels: at the biclass level (breast 
cancer) and at the multiclass level (lung cancer). For both experimental 
analyses, the classification results confirm the validity of KnowSeq 
determining a reduced and highly informative subset of DEGs for an 
intelligent diagnosis (100% for breast cancer with only 3 genes and 95% 
for lung cancer considering 6 genes). In addition to the strong biological 
evidence, supported by affected pathways and specific literature asso
ciating those biomarkers with each cancerous disease, the power of 
KnowSeq resides in the effective integration of heterogeneous datasets 
and benefits from how the feature selection algorithms are able to 
determine those more highly informative biomarkers. 

The KnowSeq R/Bioc package gives the possibility to carry out gene 
expression analyses in an easy and modular way. In fact, our tool pre
sented here is openly thought to serve as an innovative assessment in
strument to help experts in the field acquire robust knowledge and 
conclusions for the data and diseases to study. KnowSeq can be outlined 
and broadly characterized by four clear strengths: firstly, in terms of 
modularity, as the analyses can be started from different points (FASTQ, 
BAM or count files, and even from a custom expression matrix); sec
ondly, in terms of versatility, due to the different algorithms for ML and 
feature selection implemented as well as the different databases taken 
into account in KnowSeq; thirdly, in terms of adaptability of the analyses, 
because KnowSeq allows for using data from different sources and even 
selecting different parameters that give the user a real control of the 
pipeline; lastly, in terms of interpretability, as KnowSeq allows HTML 
reports to be created with the aim of providing experts with one auto
matically generated report with full and detailed results of their studies. 
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