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Abstract: Graphene oxide (GO) is used to enhance the photocatalytic activity of ZnO nanoparticles
for the degradation of vanillic acid (VA) under simulated solar light and visible-LED (λ > 430 nm).
ZnO-GO composites are prepared by a mixing and sonication process with different GO loadings
(i.e., from 1.8 to 6.5 wt.%). The materials are extensively characterized by thermogravimetric analysis
(TGA), physisorption of N2, X-ray diffraction (XRD), infrared spectroscopy (FTIR), scanning electron
microscopy (SEM), point of zero charge (pHPZC), and UV-Vis diffuse reflectance spectroscopy (DRUV).
The presence of GO increases the photocatalytic activity of all the prepared composites in comparison
with the pristine ZnO. The highest photocatalytic activity is found for the composite containing
5.5 wt.% of GO (i.e., ZnO-GO5.5), reaching a VA degradation of 99% and 35% under solar light
and visible-LED, respectively. Higher TOC removal/VA degradation ratios are obtained from the
experiments carried out under visible-LED, indicating a more effective process for the mineralization
of VA than those observed under simulated solar light. The influence of hole, radical, and non-radical
scavengers is studied in order to assess the occurrence of the reactive oxygen species (ROS) involved
in the photocatalytic mechanism. The study of the photo-stability during three reuse experiments
indicates that the presence of GO in the composites reduces the photocorrosion in comparison with
pristine ZnO.

Keywords: graphene oxide; ZnO; vanillic acid; water treatment; scavengers

1. Introduction

Over the past 40 years, advanced oxidation processes (AOPs) have been successfully
applied to manage the problematic issues associated to water, air, and soil pollution [1].
These processes are mainly based on the generation of hydroxyl radicals (HO•) which
can generate a sequence of reactions capable of degrading contaminants into CO2 and
H2O, or converting them into less toxic organic compounds. These processes include
heterogeneous photocatalysis, which is based on the effective utilization of ultraviolet (UV)
or solar irradiation as a technology for environmental applications [2]. On the other hand,
many structural materials including polymers, metals, ceramics, glasses, and composite
materials have been synthetized for different industrial applications [3–8].

Normally, metal oxides such as titanium dioxide (TiO2), zinc oxide (ZnO), zirco-
nia (ZrO2), tungsten trioxide (WO3), and vanadium oxide (V2O5), have been used as
semiconductor photocatalysts for water and air decontamination, as well as for energy
applications [9–12]. ZnO is an n-type semiconductor with a band gap ca. 3.22 eV and a
large excitation binding energy of ca. 60 meV. It can be considered as a suitable successor of
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the benchmark TiO2 semiconductor due to its similar properties such as strong oxidation
ability, good photocatalytic properties, chemical stability, biocompatibility, non-toxicity,
high photosensitivity, and electronic and piezoelectric properties, among others [13–15].
This semiconductor usually exists in one-dimensional (1D), two-dimensional (2D) and
three-dimensional (3D) associations [16], and has been used in a wide range of applica-
tions, such as sensors [17], photocatalysis [14,18–21], transistors, solar cells [22,23], etc. It
is well known that the use of ZnO in photocatalysis displays some drawbacks such as:
(i) the limitation of its use in the visible range due to its wide band gap [24]; (ii) particle
aggregation during photocatalytic reactions which significantly restrict the photocatalytic
activity of ZnO at a large scale [25]; and (iii) the rapid recombination of the photogenerated
electron-hole pairs [26,27].

Many strategies have been carried out to improve the photocatalytic performance of
ZnO, e.g., the design of suitable sizes and morphologies [28,29], noble metal loading [14,30,31],
heteroatom doping [32–34], or by forming semiconductor composites [35], among others.
In particular, the design and development of hybrids based on the coupling of carbon
materials and ZnO is an effective option for enhancing its photocatalytic response under
UV/Vis irradiation [18,36–38], by inhibiting the electron-hole recombination as well as
extending the light absorption into visible range [39].

Amongst the vast number of carbon nanomaterials, graphene and its derivatives
have been shown to significantly enlarge the photocatalytic degradation activity of ZnO
in the field of photocatalytic wastewater treatment [37,40–43]. Of particular interest is
the use of one of the most well-known derivatives of graphene, i.e., graphene oxide
(GO), for the synthesis of ZnO-GO hybrid materials, as the presence of oxygen-containing
surface groups in GO offers an excellent dispersibility in polar solvents for the synthesis
of the composites. Furthermore, GO can improve the photocatalytic efficiency in the
composites by: (i) acting as an electron-acceptor, hindering the electron-hole recombination;
(ii) increasing the adsorption of organic pollutants through π-π interactions between the sp2

region of graphene and the aromatic pollutant; and (iii) creating oxygen vacancies in the
lattice of ZnO, extending its response under the visible light region [35,37,42,44,45]. Various
methods have been reported for the synthesis of ZnO-GO composites, such as hydrothermal
process [46,47], chemical vapor deposition (CVD) [35,48,49], physical vapor deposition
(PVD) [50,51], pulsed laser deposition (PLD) [52], spray pyrolysis [53,54], solvothermal [19],
and microwave synthesis [55], among others.

In this paper, we report a low-cost and scaling up method for the synthesis of ZnO-GO
composites. Nanostructured ZnO particles were formed using zinc acetate as precursor,
then the composites were synthetized by a simple mixing and sonication method. The
photocatalytic performance of the prepared materials was tested in the degradation of a
phenolic compound, namely vanillic acid (VA), under both simulated solar irradiation
and visible-LED (λ > 430 nm). VA is a model compound typically present in the phenolic
fractions of olive mill wastewater (OMW). The presence of this phenolic compound con-
stitutes an important environmental problem, especially in Mediterranean countries and,
in particular, areas of southern Spain, where a great number of plants are involved in the
production and refining of olive oil [56].

2. Materials and Methods
2.1. Synthesis of GO, ZnO and ZnO-GO Composites

Graphite oxide was prepared using a modified Hummers’ method [57,58]. Specifi-
cally, 5 g of graphite (powder < 20 µm, Sigma–Aldrich, St. Louis, MO, USA) and 5 g of
sodium nitrate, NaNO3 (99.0%, Acros Organics, Geel, Belgium) were put into 240 mL of
concentrated sulfuric acid, H2SO4 (96–99%, supplied by PanReac AppliChem, Darmstadt,
Germany). The mixture was kept stirring for 30 min in an ice bath to prevent the tem-
perature exceeding 10 ◦C. Thereafter, 30 g of potassium permanganate, KMnO4 (99.0%,
PanReac AppliChem, Darmstadt, Germany) was added gradually with stirring (30 min).
The ice bath was then removed, and the mixture was warmed at 35 ◦C and stirred for 24 h.
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The reaction was terminated by slowly adding 800 mL of distilled water and 30 mL of
30% hydrogen peroxide, H2O2 (30% w/w, PanReac AppliChem, Darmstadt, Germany)
solution. Finally, the resulting dispersion was filtered and washed repeatedly with distilled
water until its pH became neutral. The acquired solid (i.e., graphite oxide) was dried in an
oven at 60 ◦C. Graphene oxide (GO) was prepared by sonication in an aqueous solution
using an ultrasound bath (ultrasonic processor UP400S, 24 kHz, Hielscher, Germany). The
undissolved solid was removed by centrifugation for 30 min at 3000 rpm to obtain the GO
suspension (1 g L−1).

ZnO nanoparticles were prepared by calcination of zinc acetate dihydrate, Zn(Ac)2
2H2O (≥99.0%, Alfa Aesar, Haverhill, MA, USA) in a furnace with air flow at 5 ◦C min−1

until 600 ◦C, with a soak time of 3 h [59]. ZnO-GO composites were synthesized by a soni-
cation method [38,60]. Briefly, the required amount of ZnO was added to different amounts
of an aqueous GO dispersion (1 g L−1) and ethanol (96% v/v) mixture in a proportion of 1:2,
respectively. The resulting dispersion was kept under vigorous agitation for 30 min, then
sonicated for 2 h in an ultrasound bath (ultrasonic processor UP400S, 24 kHz, Hielscher,
Germany). The obtained composites were filtered, washed with ultrapure water, and dried
at 120 ◦C in a vacuum oven for 8 h. The GO loading was fitted at ca. 2, 3, 5, and 7 wt.%.

2.2. Characterization Techniques

Infrared spectra (ATR-IR) were recorded in a NICOLET 510P spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA) with an attenuated total reflection accessory and a
ZeSn as ATR crystal. Thermogravimetric (TG) analysis of the composites was obtained
using a SHIMADZU TGA–50H thermobalance (Shimadzu Corporation, Japan) by heat-
ing the sample in air flow up to 950 ◦C with a heating rate of 20 ◦C min−1. The N2
adsorption–desorption isotherms at −196 ◦C were obtained using a Quadrasorb SI equip-
ment (Quantachrome, Boston Beach, FL, USA). The samples were outgassed overnight at
110 ◦C under high vacuum (10−6 mbar). The Brunauer–Emmett–Teller (BET) equation was
applied to calculate the apparent surface area (SBET) [61,62], while the mesopore volume
(Vmeso) and total pore volume (Vtotal) were determined by applying the Barrett, Joyner, and
Halenda (BJH) method [63,64] to the desorption branch of the N2 isotherms. The point
of zero charge (pHPZC) of the materials was determined following the method described
elsewhere [65,66]. The surface morphology of the synthesized photocatalysts was investi-
gated by scanning electron microscopy (SEM) using a LEO (Carl Zeiss) GEMINI–1430–VP
microscope (Oberkochen, Germany). Transmission electron microscopy (HRTEM) images
were taken using a FEI Titan G2 60–300 microscope (FEI, Hillsboro, OR, USA) with a
high brightness electron gun (X-FEG) operated at 300 kV and equipped with a Cs image
corrector (CEOS). The X-ray diffraction (XRD) patterns were obtained using a Philips PW
1710 diffractometer (Bruker, Rivas-Vacia, Madrid, Spain) provided with a CuKα radiation
and a nickel filter that removes κβ radiation. The average crystal size (D) of the samples
was calculated by the Scherrer formula [67]:

D =
0.94λ

β cosθ
(1)

where λ is the wavelength of the X-ray, β is the FWHM (full-width at half-maximum) and
θ is the diffraction angle. X-ray photoelectron spectroscopy (XPS) measurements were
carried out using a Physical Electronics VersaProbe II apparatus (PHI, Chanhassen, MN,
USA) equipped with a MgKα X-ray source (hν = 1486.6 eV) operating at 1.3 V and 20 mA,
and a hemispherical electron analyzer. Survey and multi-region spectra were recorded at
the O1s and Zn2p photoelectron peaks. The optical properties of the photocatalysts were
characterized by a UV–Vis spectrophotometer CARY 5E (VARIAN, Palo Alto, California,
USA) equipped with a diffuse reflectance accessory (DRA. The band gap of the materials
was calculated from the corresponding Tauc plots using (Abs·hν)1/2 units as a function of
energy (eV).
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2.3. Photocatalytic Tests

The photocatalytic performance of the prepared catalysts was evaluated for the degra-
dation of vanillic acid, VA (C8H8O4, 97%, Sigma-Aldrich, St. Louis, MO, USA) in aqueous
solutions under both simulated solar irradiation and visible-LED at room temperature (av-
erage 25 ◦C). Solar irradiation was carried out using a SOLAR BOX 1500e (CO.FE.MEGRA,
Milano, Italy) with a 1500 W Xenon lamp (500 W m−2 of irradiance power). Irradiation
with visible light was performed with an LED lamp from Oriel, model LSH-7320 LED Solar
Simulator (Metrohm, Herisau, Switzerland), with a total power output of 110 mW cm−2

and a wavelength range from 410 to 1100 nm.
The photocatalytic experiments were performed in a glass reactor loaded with 50 mL

of solution containing the model pollutant VA (20 mg L−1). The composite concentration
was fixed as 1 g L−1 to avoid the effect of light scattering. The suspension was magneti-
cally stirred and continuously purged with an oxygen flow. A dark period (30 min) was
maintained before switching on the lamp in order to achieve the adsorption–desorption
equilibrium conditions.

A syringe polyethersulfone (PES) filter of 0.45 µm (Agilent Technologies, CA, USA)
was used to separate the photocatalyst from the solution. The concentration of VA was de-
termined by Ultra High-Performance Liquid Chromatography (UHPLC), using a Shimadzu
Corporation apparatus (model Nexera, Tokyo, Japan) equipped with a Pump LC-30AD, an
Autosampler SIL-30AC, an Oven CTO-20AC, a Degasser DGU-20A5r, a System Controller
CBM-20 A Lite, and a Diode Array Detector (SPD-M20A). Chromatographic separation
was optimized using a Shim-pack GISS-HP C18 3 µm column (100 × 3.0 mm I.D.) supplied
by Shimadzu Corporation (Tokyo, Japan). The temperature of the column oven and au-
tosampler were set at 40 ◦C and 15 ◦C, respectively, while the injection volume was 20 µL.
The mobile phase consisted of a mixture of acetonitrile, water, and acetic acid (29:70:1),
respectively, at isocratic conditions and with a flow rate of 1 mL min−1.

The total organic carbon (TOC) content of initial and final samples was determined at
the end of the experiments (i.e., 60 and 180 min for simulated solar light and visible-LED,
respectively) using a TOC–5000A apparatus (Shimadzu, Kyoto, Japan).

The photocatalytic degradation was calculated using the following equation:

[VA] = [VA]0 × e−kap×t (2)

where kap is the pseudo–first order kinetic constant, t is the reaction time, and [VA]0 and
[VA] denote the pollutant concentration at t = 0 and t = t, respectively. The values of kap
were obtained by non–linear regression.

The photocatalytic degradation pathway of VA was studied using ethylenediaminete-
traacetic acid (EDTA, 1.0 mM), furfuryl alcohol (FFA, 1.0 mM), and methanol (MeOH,
1.0 mM) and as hole, singlet oxygen (1O2), and radical scavengers, respectively [58].

3. Results and Discussion
3.1. Materials Characterization

The GO content in the composites was verified by thermogravimetric analysis (TG).
Figure 1 shows the thermogravimetric analysis (TG) under air flow for GO and ZnO, as
well as for the composites. The GO content of the composites was determined by burning
in TG experiments, which directly analyze the weight loss along the combustion of GO
in the composite (Figure 1). The results indicate a weight loss of 1.8, 2.8, 5.5, and 6.5 wt.%
which is in agreement with the nominal GO content of the composites (i.e., 2.0, 3.0, 5.0,
and 7.0 wt.%., respectively). Taking into account the obtained weight loss, the composites
were labelled as ZnO-GO1.8, ZnO-GO2.8, ZnO-GO5.5, and ZnO-GO6.5 for GO loading of
1.8, 2.8, 5.5 and, 6.5 wt.%, respectively. For GO, the weight loss observed up to ca. 500 ◦C
should be attributed to the removal of oxygenated surface groups of GO, followed by the
carbon combustion, as previously reported in the literature. [58,68]. Regarding the TG of
composites, the carbon combustion occurs at lower temperatures (i.e., <500 ◦C). These
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results suggest that the presence of ZnO in the composites could have a catalytic effect on
the combustion of the GO.
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Figure 1. Thermogravimetric analysis in air of GO, pristine ZnO, ZnO-GO1.8, ZnO-GO2.8, ZnO-
GO5.5, and ZnO-GO6.5 composites.

The textural characterization of pristine ZnO and the corresponding composites was
studied by physisorption of N2 at −196 ◦C. Figure 2 shows the N2 adsorption-desorption
isotherms of the prepared materials. In general, the isotherms can be classified as type-II,
in accordance with IUPAC classification. These results indicate the samples consist of
macroporous materials, or materials with a low porosity [60]. In fact, the N2 volume is
negligible as a consequence of the absence of micropores at a very low relative pressure.
However, a large amount of N2 is adsorbed at high relative pressures due to the presence
of large mesopores. In addition, all isotherms presented a small hysteresis loop of type H3,
typical of agglomerates formed by platelets or adsorbents with slit-shaped pores, which
could correspond to GO layers coated by ZnO particles.
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Figure 2. N2 adsorption–desorption isotherms of (a) pristine ZnO, (b) ZnO-GO1.8, (c) ZnO-GO2.8 and
(d) ZnO-GO6.5.

Apparent surface areas (SBET) of all prepared materials were between 10 and 19 m2 g−1,
with ZnO-GO composites usually presenting higher SBET than pristine ZnO (e.g., 12 and
18 m2 g−1 for pristine ZnO and ZnO-GO5.5, respectively, Table 1). In general, the addition
of GO improved the porosity of the composites, namely the mesoporore volume (Vmeso)
and the total pore volume (Vtotal), these parameters generally increasing as the GO loading
increased (e.g., Vtotal = 0.10 and 0.29 cm3 g−1 for ZnO-GO1.8 and ZnO-GO6.5, respectively).
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This improvement in composites’ porosity should be attributed to the intercalation of GO
layers with ZnO particles generating new interstitial spaces in the mesopore range.

Table 1. BET surface area (SBET), mesopore volume (Vmeso), total pore volume (Vpore), pH at the point of zero charge
(pHPZC), band–gap energy (Eg) of materials, and crystallite size of synthetized materials.

Samples SBET
(m2 g−1)

Vmeso
(cm3 g−1)

V total
(cm3 g−1) pHPZC

Eg
(eV)

Crystallite Size
(nm)

GO 21 n.d. n.d. 2.8 - n.d.
ZnO 12 0.07 0.07 7.6 3.12 41

ZnO-GO1.8 19 0.09 0.10 7.4 3.05 36
ZnO-GO2.8 18 0.08 0.09 7.4 3.05 34
ZnO-GO5.5 18 0.13 0.15 7.3 2.98 35
ZnO-GO6.5 10 0.23 0.29 7.3 2.95 35

n.d. = not determined.

The pHPCZ for ZnO, GO and the composites are listed in Table 1. The pHPZC value of
GO was 2.9, indicating the strong acidic character of the GO surface due to the presence of
a large amount of oxygenated groups (mainly epoxy and hydroxyl groups) [69]. pHPZC
could change depending on the synthesis method and structure of ZnO [70]. In this study,
the pHPZC for ZnO was calculated to be approximately 7.6, indicating the neutral/slightly
basic character of the semiconductor. The results point out that the pHPZC values for
ZnO-GO composites decrease as the GO content increases, resulting in materials with a
slightly lower basic character than pristine ZnO [69].

Figure 3a shows the XRD patterns of ZnO nanoparticles and the ZnO-GO composites.
The similar patterns obtained denote that the crystalline structure of bare ZnO is maintained
in the composites, as reported elsewhere [37,42]. Peaks observed at 31.9◦, 34.5◦, 36.3◦, 47.6◦,
56.6◦, 62.9◦, 66.5◦, 68.0◦, and 69.3◦ correspond to the (100), (002), (101), (102), (110), (103),
(200), (112), and (201) planes of the hexagonal ZnO wurtzite structure (JCPDS No. 36-1451),
respectively [35,37]. Moreover, the characteristic peak of GO at approximately at 12◦, and
associated to the reflection for the (001) plane of GO, is not observed in the XRD patterns,
due to the low content of GO present in the composites, as well as to the strong diffractions
of ZnO that could mask the peak associated to GO [42,44]. The particle size of the ZnO
nanoparticles and the ZnO composites were calculated using the Scherrer’s equation
and the results are included in Table 1. Particles sizes of 41, 36, 34, 35, and 35 nm were
calculated for ZnO, ZnO-GO1.8, ZnO-GO2.8, ZnO-GO5.5, and ZnO-GO6.5 photocatalysts,
respectively. In general, all the materials showed similar particles size values.
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Figure 3. (a) XRD patterns of ZnO and ZnO-GO composites, (b) FTIR spectra of GO, ZnO and ZnO-GO composites.
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ATR-IR spectra of pristine ZnO, GO and ZnO-GO composites are depicted in Figure 3b.
GO spectrum shows the main characteristic bands associated to the presence of oxygen
functionalities at around 1050, 1350, and 1720, and a broad band ca. at 3000–3400 cm−1

attributed to C–O, C–OH (stretching), C=O, and C–OH (vibration) groups, respectively [64].
The spectra of ZnO and the composites show a common high intensity band at around
450–500 cm−1, corresponding to the stretching vibration of Zn-O [71]. In general, the
IR-spectra of the ZnO-GO composites also show two weak bands at around 1600 cm−1

and 850 cm−1, attributed to the bending vibration of water and to the Zn–OH group,
respectively [71–73]. It is interesting to note that the intensity of the peaks associated to
carbonyl groups (C=O) and epoxy groups (C–O) at around 1700 and 1100 cm−1, respec-
tively, decreased significantly for the ZnO-GO composites. These results indicate that the
anchoring of ZnO to GO could be preferentially through these groups.

The SEM images of ZnO and ZnO-GO1.8, ZnO-GO5.5, and ZnO-GO6.5 are depicted
in Figure 4a–f (ZnO and ZnO-GO6.5 are shown for two different magnifications). The ZnO
structure consists of rod-like particles with size of ~100 nm and spherical-like particles with
ca. 50 nm of diameter (Figure 4a,b). In general, ZnO-GO composites show more aggregated
structures in comparison with pristine ZnO, originating larger particle clusters and pro-
gressively favouring the formation of flat structures. The formation of ZnO nanoparticles
from acetate/nitrate, forming from nanorods to nanoflakes, or grouped forming flower-like
structures, depend on the experimental conditions, as previously described [72]. The com-
posite micrographs (Figure 4c–f) do not show GO sheets uncoated with ZnO, indicating a
good assembly between ZnO and GO phases for all the composites prepared.
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Figure 5 shows HRTEM images of pristine ZnO and several ZnO-GO composites.
In general, ZnO consists of rod-like nanoparticles with a uniform size distribution and
clear crystalline structure. Regarding the ZnO-GO composites, micrographs reveal the
presence of GO in the composites in the form of aggregated sheet-like structures. The
HRTEM images (Figure 5b–d) also show a uniform distribution of the GO between the ZnO
structures, inducing a good contact between the two phases. SAED images for selected
samples allowed us to corroborate the polycrystalline character of ZnO particles with some
of them highly ordered (inset—Figure 5b), and others with several overlapping planes (hkl)
corresponding to different nanocrystals (inset—Figure 5d).
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The chemical composition of ZnO and the ZnO-GO composites was studied by XPS,
the results corresponding to the analysis for the O1s and Zn2p regions shown in Figure 6a,b,
respectively. The O1s spectra of the materials were deconvoluted into three components,
the first peak placed at ~529.8 eV is assigned to O2

− ions from Zn–O bonds belonging
to the ZnO wurtzite structure, while the second one at ~530.8 eV corresponds to OH
groups absorbed onto the ZnO surface [74], and double-bonded oxygen (C=O) of oxygen-
containing groups anchored in the GO structure [75]. The last peak of the O1s region located
~531.8 eV can be ascribed to single-bonded oxygen (C–O) from the oxygen functionalities
of GO, in particular alcohol, ether, and epoxy groups [75]. The detected carbon for the ZnO
sample could be related to the carbon adsorbed on its surface during the exposure of the
sample to the ambient atmosphere [74].
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Figure 6. XPS spectra and deconvolution of (a) O1s and (b) Zn2p regions of ZnO and selected ZnO-GO composites. (The
Zn2p3/2 region was only represented for clarification).

Regarding the Zn2p region, two peaks were located at ~1021.2 and ~1044.2 eV, at-
tributed to Zn2p3/2 and Zn2p1/2, respectively, and a binding energy (B.E.) difference of
23.0 eV [74]. The XPS spectra of Zn2p region for the different materials only showed a clear
peak at ~1021.2 eV, which denotes a Zn2+ oxidation state. For ZnO-GO composites with
larger GO contents, a shifted Zn2p3/2 peak towards a higher B.E was observed, due to the
chemical environment interaction between ZnO particles and GO functionalities.

UV–Vis diffuse reflectance spectra were carried out in order to determine the electronic
properties of pristine ZnO and their composites. For all the photocatalysts, a strong intense
absorption band in the UV range with onset at <400 nm was observed (Figure 7a) This band
is associated to the intrinsic band-gap absorption of pristine ZnO [35]. It can be seen that the
absorption intensity of the composites is significantly improved in the visible region due to
the presence of GO [35,37,44]. In general, this effect is proportional with the different GO
loading on the composites, obtaining a stronger absorption capacity in the visible region
for the composites with a higher amount of GO (i.e., ZnO-GO5.5 and ZnO-GO6.5). This
effect can be attributed to the capacity of carbon materials to absorb light as well as to the
creation of electronic interactions between carbon and ZnO as reported in the literature for
the case of other carbon and metal oxide phases [38,60,76]. Figure 7b shows the Tauc’s plots
versus the energy (eV). The calculated Eg of ZnO, ZnO-GO1.8, ZnO-GO2.8, ZnO-GO5.5,
and ZnO-GO6.5 were 3.12, 3.05, 3.05, 2.98, and 2.95 eV, respectively (Table 1), being the
obtained band gap for the composites lower than the value obtained for pristine ZnO.

3.2. Photocatalytic Activity of the ZnO-GO Composites

The photocatalytic efficiency of ZnO and ZnO-GO composites (with different GO
loading) for VA degradation under simulated solar light and visible-LED are shown in
Figure 8a,b, respectively. The kinetic rate constant for solar light (kap), the VA conversion
(XVA (%)), and TOC removal (XTOC (%)) for both solar light and visible-LED are gathered
in Table 2. The experiment in the absence of a photocatalyst (i.e., photolysis) shows a null
degradation of the contaminant under both solar light (Figure 8a) and visible-LED (not
shown). On the other hand, the adsorption equilibrium in dark conditions was established
after 60 min for ZnO and ZnO-GO composites, with obtained values of approximately
3–8% of the initial VA concentration. For all the photocatalysts tested, 60 min was proven
to be enough to reach the adsorption equilibrium.
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Figure 7. (a) UV–vis spectra and (b) Tauc’s plots versus the energy in eV of ZnO and ZnO-GO composites.
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Figure 8. Photocatalytic degradation of VA as a function of time for ZnO and the ZnO-GO composites under (a) simulated
solar light and (b) visible-LED.

Table 2. VA conversion (XVA), TOC removal (%), pseudo–first order kinetic rate constant (kap), and regression coefficient
(r2) under simulated solar light and visible-LED.

Simulated Solar Light (60 Min) Visible-LED (180 Min)

Sample XVA
(%)

kap
(10−3 min−1) r2 XTOC

(%) XTOC/XVA
XVA
(%)

XTOC
(%) XTOC/XVA

Photolysis 2.8 - - - - - - -
ZnO 85.9 44.7 ± 2 0.992 25.9 0.302 8.1 3.2 0.395

ZnO-GO1.8 90.5 50.2 ± 2 0.993 30.5 0.337 9.9 5.5 0.555
ZnO-GO2.8 93.9 59.4 ± 4 0.988 38.9 0.414 14.4 8.1 0.563
ZnO-GO5.5 99.0 100.8 ± 5 0.995 57.5 0.581 35.0 20.1 0.574
ZnO-GO6.5 93.1 54.6 ± 3 0.991 40.2 0.432 20.7 10.7 0.517

Figure 8a shows a significant photocatalytic performance using all the prepared
materials for the degradation of VA under solar light. The results indicate that the presence
of GO in the composites enhances the degradation efficiency of pristine ZnO under solar
light (kap = 100.8 × 10−3 min−1, 59.4 × 10−3 min−1, 54.6 × 10−3 min−1, 50.2 × 10−3 min−1,
and 44.7 × 10−3 min−1 for ZnO-GO5.5, ZnO-GO2.8, ZnO-GO6.5, ZnO-GO1.8, and ZnO,
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respectively). Regarding the results obtained under visible-LED (Figure 8b), a similar
trend was observed for VA degradation, i.e., ZnO-GO5.5 (35%) > ZnO-GO6.5 (20.7%) >
ZnO-GO2.8 (14.4%) > ZnO-GO1.8 (9.9%) > ZnO (8.1%), where the values in brackets are
the VA conversion (Table 2). As expected, the VA degradation under visible-LED was
lower than that obtained under simulated solar irradiation as there is no UV irradiation,
and only photons with λ > 430 nm can reach the samples. For all the photocatalysts
tested, the results indicate that the presence of GO enhances the photocatalytic activity
under both solar irradiation and visible-LED as previously reported [42,44,77,78]. The
possible reasons for higher photocatalytic activity of the ZnO-GO composites compared to
pristine ZnO could mainly be ascribed to the increased adsorption capacity, as well as the
extended light absorption in the visible range (Figure 7a) [77,78]. Moreover, considering
the conduction band of pristine ZnO (c.a. −4.05 eV) [79] and work function of graphene
(c.a. −4.42 eV) [80], the direct transfer of photogenerated electrons between ZnO and GO
could be favorable. This electron transfer might hinder the electron-hole recombination,
enhancing the photocatalytic performance under solar irradiation and visible light as
previously observed [78,81].

It is noteworthy that amongst all the prepared materials, the composite containing
5.5 wt.% of GO, i.e., ZnO-GO5.5 exhibits not only the best catalytic activity but also the
highest TOC removal in comparison with all other composites under solar irradiation and
visible-LED (i.e., 57.5 and 20.1%, respectively, Table 2). These results point out the relevance
to select the adequate carbon content in the carbon-semiconductor composites in order to
obtain the optimal catalytic performance, as previously reported for other graphene-metal
oxide composites [58,60]. However, the lower photocatalytic activity observed for the
composite containing a GO loading higher than the optimum value (i.e., ZnO-GO6.5 vs.
ZnO-GO5.5) could be associated with the scattering effect of GO [77], or the formation of
larger aggregates, as shown by SEM (Figure 4), that could hinder the interactions with
the irradiation.

In order to evaluate the mineralization under both solar light and visible-LED, the
ratio of TOC removal (XTOC) and VA degradation (XVA) was introduced in Table 2. In
spite of the lower activity obtained under visible-LED compared to solar light (due to the
lower extent of the emission spectra), the results show that the experiments under LED
illumination were more effective for the mineralization of VA as the ratio (XTOC/XVA) was
higher under visible-LED than that obtained under simulated solar light (Table 2). It is also
noteworthy that this parameter varies according to the tendency previously observed for
the photocatalytic activity, i.e., progressively increases with the increases in GO loading
but decreases for GO contents higher than the optimum value (i.e., 6.5 wt.%).

3.3. Influence of Hole, Radical, and Non-Radical Scavengers and Study of the Stability

The ZnO-GO5.5 composite was selected for a deep study using hole, radical, and
non-radical scavengers, in particular ethylenediaminetetraacetic acid (EDTA), methanol
(MeOH), and furfuryl alcohol (FFA), respectively, in order to elucidate the possible reactive
oxygen species (ROS) involved in the photodegradation of VA under simulated solar light
and visible-LED (Figure 9a,b, respectively).

Figure 9a shows the degradation of VA in presence of the selected scavengers under
simulated solar irradiation. The results show that all scavengers used decrease the VA
degradation. In particular, this effect was more pronounced in the presence of EDTA and
to a lesser extent by MEOH and FFA, obtaining a VA degradation of around 5, 81, and 97%,
respectively, compared to 99% with no scavenger. These results indicate that, although
reactive radicals (formed from photoexcited electrons) and non-radical species (such as
singlet oxygen, 1O2) are involved in the reaction, the photogenerated holes seem to be the
main responsible species in the degradation of VA (by direct oxidation or by formation of
radicals such as HO•) under simulated solar light.
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Figure 9. Effect of hole/radical/non-radical scavengers (EDTA/MeOH/FFA) on the photocatalytic degradation of VA using
ZnO-GO5.5 under (a) simulated solar light and (b) visible-LED.

In the case of visible-LED (Figure 9b), the obtained results also suggest that hole,
radical, and non-radical species participate in the reaction mechanism, however, the partic-
ipation of non-radicals (singlet oxygen, 1O2 ) in the photocatalytic mechanism seems to
play a major representative role in the photocatalytic mechanism under visible-LED, as
the degradation observed in presence of FFA was lower in comparison with that obtained
for EDTA and MeOH (i.e. 10, 14, and 17%, respectively). The formation of species such as
hydroxyl radicals (HO•) and hydroperoxyl radicals (HOO•) under UV irradiation, as well
as the formation of other species such as singlet oxygen (1O2) and superoxide anion (O2

•−)
under visible light, have been reported in the literature as active species during the degra-
dation of contaminants in the aqueous phase using ZnO and other semiconductors [82–86].
These results show the different photocatalytic mechanisms involved in the degradation of
water pollutants under simulated solar irradiation and visible illumination [87].

The photo-stability of photocatalysts is an important factor for industrial applications.
Thus, one of the major drawbacks of ZnO is their severe photo-corrosion under UV/Vis
irradiation, which can result in a significant decrease in the photocatalytic activity in
reused processes [88,89]. Pristine ZnO and ZnO-GO5.5 were selected in order to evaluate
its photocatalytic stability in several recycle runs under simulated solar light (i.e., UV-
Vis) and visible-LED for 60 min and 180 min, respectively (Figure 10). The experimental
procedure was similar to that described in Section 2.3, but in this case after each reaction,
the catalyst was rinsed with water and dried in an oven at 80 ◦C for 5 h before reuse in two
additional consecutive photocatalytic experiments. The photocatalytic activity of pristine
ZnO decreased during the three consecutive cycles under solar and LED light. However,
stability increased in the case of the composite, the conversion values decreasing slightly
after the first cycle under both radiations (Figure 10). In fact, the VA conversion (XVA, %)
was lower in the second run in comparison with the first under both simulated solar light
(i.e., from 99 to 80%) and visible-LED (i.e., from 35 to 20%), whereas the photocatalytic
activity remained practically constant in the third run (75 and 18% for solar light and visible-
LED, respectively) for the composite. These results show that the ZnO-GO composite was
stable under solar irradiation and visible-LED, indicating that the photo-corrosion of ZnO
could be reduced by the presence of GO. This fact highlights the stability and viability of
the prepared ZnO-GO composites to work under continuous mode in future studies.
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Figure 10. Photocatalytic performance of three consecutive cycles degradation for pristine ZnO and
ZnO-GO5.5 under simulated solar light and visible-LED.

Table 3 comprises studies regarding different photocatalysts that have been recently
published towards phenolic compounds degradation under UV/Vis light irradiation. It
can be concluded that the obtained photocatalyst in this work showed a good photocat-
alytic performance and photostability compared to that of other materials reported in
the literature.

Table 3. Compilation of recently published works regarding different photocatalysts for phenolic compounds degradation
under UV/Vis light irradiation.

Photocatalyt Contaminant Light Source Catalyst Loading
(g L−1)

Degradation
(%) Ref.

Pd-based photocatalyst Phenol
(20 mg L−1) UV-Vis 0.7 93.75 [90]

TiO2
Phenolic compounds

(0.53 mM) UV 1 >90 [91]

Au-ZnO nanomaterials Phenol, catechol and
hydroquinone (25 mg L−1) UV-Vis 1 >85 [92]

Nano-TiO2
Phenolic compounds

(100 mg L−1) UV 1 97 [93]

rGO-TiO2
Phenol, p-chlorophenol and p

nitrophenol (20 mg L−1) UV and Xenon 0.1 ~60 [94]

immobilized nano-ZnO Phenol (2 mg L−1) UVA 10–25 m2 g−1 20 [95]
ZnO/TiO2-rGO Phenol (60 mg L−1) 3 visible Cd lamps 0.6 100 [96]
ZnO-Graphene Phenol (40 mg L−1) Solar radiation 1 >90 [97]

ZnO-GO Vanillic acid (20 mg L−1) Xenon Lamp 1 100 This work
ZnO-GO Vanillic acid (20 mg L−1) LED visible 1 35 This work

4. Conclusions

Photocatalysts based on ZnO and GO were prepared with different GO contents. The
results indicated a high photocatalytic efficiency for the degradation and mineralization of
vanillic acid (VA) under simulated solar light and visible-LED (λ > 430 nm). SEM images
showed that pristine ZnO consisted of rod and spherical-like particles. For the composites,
more aggregate structures (with the formation of flat assemblies) were observed. The pres-
ence of GO in the composites led to superior photocatalytic performance when compared
to that obtained from pristine ZnO under solar light and visible-LED. Nevertheless, the
highest catalytic performance was obtained with the composite comprising a GO content
of 5.5 wt.%, achieving a VA degradation of 99.0% under simulated solar light. Higher
XTOC/XVA ratios were obtained under LED light, indicating a more efficient mineralization
of contaminant in comparison to that obtained under simulated solar light.
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The obtained results from the study of hole, radical, and non-radical scavengers
suggested that the photogenerated holes seem to be the main responsible species in the
degradation of VA under solar light. The participation of singlet oxygen (1O2) played a
major representative role in the photocatalytic mechanism under visible-LED.

The most effective material, i.e., ZnO-GO5.5, showed better photo-stability in three
consecutive runs compared to pristine ZnO, and only a slight decrease of VA degradation
was observed under both solar irradiation and visible-LED.
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