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Abstract. We study the synchronization of a generalized Kuramoto system in which the coupling
weights are determined by the phase differences between oscillators. We employ the fast-learning
regime in a Hebbian-like plasticity rule so that the interaction between oscillators is enhanced by
the approach of phases. First, we study the well-posedness problem for the singular weighted Kur-
amoto systems in which the Lipschitz continuity fails to hold. We present the dynamics of the
system equipped with singular weights in all the subcritical, critical and supercritical regimes of
the singularity. A key fact is that solutions in the most singular cases must be considered in Filip-
pov’s sense. We characterize sticking of phases in the subcritical and critical case and we exhibit
a continuation criterion for classical solutions after any collision state in the supercritical regime.
Second, we prove that strong solutions to these systems of differential inclusions can be recovered
as singular limits of regular weights. We also study the emergence of synchronous dynamics for the
singular and regular weighted Kuramoto models.

Keywords. Kuramoto models, adaptive coupling, singular interactions, Hebbian learning,
Filippov-type solutions, clustering, finite-time synchronization, sticking, Cucker–Smale

1. Introduction

Synchronization is the natural collective behavior arising from agent-based interactions
given by periodic rules. These rhythmical motions can be easily observed in various biolo-
gical complex systems such as flashing of fireflies, beating of cardiac cells, etc. One of the
most significant examples of synchronization appears in neurons. Associative or Hebbian
learning [24] proposes an explanation for the adaptation of neurons in the brain during the
learning process. That mechanism is founded on the assumption that synchronous activ-
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ation of cells (firing of neurons) leads to selectively pronounced increases in synaptic
strength between those cells. A consequence is that the pattern of activity will become
self-organized. In Hebb’s words: Any two cells or systems of cells that are repeatedly
active at the same time will tend to become associated, so that activity in one facilit-
ates activity in the other. In neuroscience, these processes provide the neuronal basis of
unsupervised learning of cognitive functions in neural networks and can explain the phe-
nomena that arise in the development of the nervous system.

Since Kuramoto proposed a mathematical model for coupled oscillators in [28,29], the
synchronization has received a lot of attention and has been extensively studied in various
disciplines from this point of view [1]. In the classical Kuramoto model, the system of
oscillators has an all-to-all coupling with uniform weights given by a constant coupling
strength K:

P�i D �i C K

N

NX
jD1

sin.�j � �i /; i D 1; : : : ; N; (1.1)

where �i ’s are the natural frequencies of the oscillators. However, the uniform and con-
stant couplings are a bit restrictive to explain the complicatedness of phenomena. Thus,
it is more interesting to consider a generalization of the Kuramoto model endowed with
plastic couplings, introduced in [3, 18, 21, 34, 38, 41, 42]:

P�i D �i C 1

N

NX
jD1

Kij sin.�j � �i /; i D 1; : : : ; N; (1.2)

whereKij is the coupling between the i -th and j -th oscillators which has its own dynam-
ics depending on the phase configuration. The coupling Kij is assumed to be

Kij D Kaij ;
where aij 2 Œ0; 1� measures the degree of connectedness between the i -th and j -th oscil-
lators. They will be allowed to vary adaptively relying on the associated phases �i and �j ,
via the dynamic learning law

Paij D �.�.�j � �i / � aij / (1.3)

for some plasticity function � . Here, � is regarded as the learning rate parameter such that
a small � delays the adaptation of weight aij . According to the choice of the function � ,
the dynamics of the system (1.2) follows various scenarios. In neural network systems,
the Hebbian-type dynamics is considered for the learning algorithm of couplings between
oscillators. That learning law amounts to saying that the weight of coupling increases if
the phases of oscillators are close to each other. For example, in [21,34,42], � is assumed
to be �.�/D cos� so that attraction between near oscillators is reinforced whereas repuls-
ive interaction arises between phases that are apart. On the other hand, anti-Hebbian type
is also considered, such as �.�/D jsin� j in [21,41]. In this case, synchronization emerges
slowly due to the reduction of weight for nearby oscillators. Other types of adaptive rules
are considered in [18, 38].
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We will consider a Hebbian-like � for the dynamics of adaptive coupling so that
the coupling is enhanced by approach of phases. Assume that the Hebbian-like plasticity
function � is given by

�.�/ WD �2˛

.�2 C c˛;� j� j2o/˛
; (1.4)

where � 2 .0; �/, � 2 .0; 1� and j� jo is the orthodromic distance (to zero) over the unit
circle, which can be defined by

j� jo WD j N� j for N� � � mod 2�; N� 2 .��; ��:
Here, the parameter c˛;� WD 1 � ��1=˛ has been chosen so that whenever two phases �i
and �j stay at orthodromic distance � or larger, then the adaptive function � predicts a
maximum degree of connectedness no larger than � between such oscillators.

Since the plasticity function � in (1.4) is Lipschitz-continuous, we can apply the Ti-
khonov’s theorem [27] to (1.2)–(1.3) in order to rigorously derive the fast learning regime
�!1. Then, we arrive at the following Kuramoto model with weighted coupling struc-
ture:

P�i D �i C K

N

NX
jD1

�.�j � �i / sin.�j � �i /; (1.5)

which will play a central role in our work. If either ˛ D 0 or � D 1, then our plasticity
function (1.4) becomes 1 everywhere. In that case, our system (1.5) reduces to the classical
Kuramoto model (1.1). Hence, we will assume that ˛ > 0 and � 2 .0; 1/ from now on.
Our main interest is to analyze the system (1.4)–(1.5) and compare it with the associated
singular counterpart with singular plasticity function

�.�/ WD 1

c˛
˛;�
j� j2˛o

: (1.6)

In the next section we will derive this new singular model from the regular one through
a singular limit of the parameters. In the regular case (1.4), � is a Lipschitz-continuous
function and the system (1.5) becomes the Kuramoto model with regular weights depend-
ing on the phase configuration. Then the well-posedness of global-in-time classical solu-
tions is standard. However, in the singular case (1.6), the system (1.5) has a singular
weight and we must deal with non-Lipschitz right hand side, where the Cauchy–Lipschitz
theorem cannot guarantee the existence and uniqueness of global-in-time solutions. We
will deal with three different regimes of the singularity: ˛ 2 .0; 1=2/, ˛ D 1=2 and
˛ 2 .1=2; 1/, which we respectively call the subcritical, critical and supercritical cases.

The main results of this paper are as follows. First we study the well-posedness of the
singular weighted system. Depending on the value of ˛, the properties of the right hand
side of (1.5) vary. Specifically, in the subcritical regime, we deal with systems of ODEs
with Hölder-continuous right hand side, while we face discontinuous right hand sides of
both bounded and unbounded type in the critical and supercritical cases. In addition, the
type of uniqueness that we can expect in these systems is one-sided. Namely, a cluster
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of phases may eventually arise after a finite-time collision and oscillators belonging to
the cluster might stay stuck together. This is a phenomenon that was recently found in
other types of agent-based systems like the Cucker–Smale model with singular weights
[36, 37].

Our second result characterizes the explicit conditions for sticking in the subcritical
and critical regimes. In the former case, we show that only clusters of oscillators with
the same natural frequencies can stick together. Nevertheless, in the latter case, a cluster
of oscillators with different natural frequencies may stick together as long as the fre-
quencies fulfill an appropriate condition. Regarding the supercritical case, the analogous
sticking condition becomes trivial and we can show a procedure of continuation of clas-
sical solutions after finite-time collisions. Namely, after a cluster is formed in finite time,
the cluster keeps stuck together no matter what are the natural frequencies of the oscillat-
ors involved.

The third result consists in showing that these singular weights are physically relev-
ant. Specifically, we will show that the system (1.5)–(1.6) with singular weights can be
obtained as a rigorous singular limit of the regular model (1.4)–(1.5). Again, the strategy
will differ in each of the regimes. For the subcritical case, similar tools to those in [36,37]
for the singular Cucker–Smale model can be adapted. What is more, we can even obtain
an analogous gain of extra W 1;1 piecewise regularity of the frequencies of oscillators.
For the critical and supercritical cases we cannot resort to the same ideas. Hence, we use
the underlying gradient-flow structure to gain compactness of frequencies. Identifying the
limit will be the heart of the matter in this part.

Our last result concerns the emergence of synchronization in each regime of the para-
meter ˛. For identical oscillators, we show the emergence of complete phase synchron-
ization in finite time under appropriate assumptions on the initial diameters of phases.
At least in the subcritical regime, where frequencies become more regular, we study the
asymptotic emergence of complete frequency synchronization of non-identical oscillat-
ors. Also, we study the stability properties of collisionless phase-locked states in all the
three regimes.

The techniques are initially inspired by a combination of results for the classical Kur-
amoto model, but they require a new perspective allowing for singular interactions. For
this purpose, we introduce a well-posedness result “à la Filippov” that is valid for systems
of ODEs with discontinuous right hand sides. Specifically, we will rely on the study of
absolutely continuous solutions of the differential inclusions associated with the Filip-
pov set-valued map. The values of that map are convex polytopes that are bounded and
unbounded in the critical and supercritical case respectively. Hence, the classical theory
can be used in the former case whereas new ideas are developed for the latter case. Also,
we prove some one-sided uniqueness results for non-Lipschitzian interactions that rely
on the structure of the interaction kernel near the points of loss of Lipschitz-continuity.
For the stability of equilibria, Lyapunov’s first method entails a similar scenario to that of
the classical Kuramoto model in the critical and supercritical regimes. On the other hand,
the subcritical regime requires a center manifold approach that yields the stability of the
corresponding equilibria. What is more interesting is that we can still get some accurate
control of the diameter of the system of singularly weighted coupled oscillators. That
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control amounts to the corresponding finite-time and asymptotic synchronization for the
identical and non-identical cases. Unfortunately, the emergence of phased-locked states
independently of the initial configurations cannot be derived as in previous results for
the classical Kuramoto model (see [19]) because it is not clear whether the Łojasiewicz
gradient inequality [32] holds for non-analytic systems with gradient structure like this.
Regarding the singular limit of the regular coupling weights, the main goal is to prove that
solutions of the regularized system converge towards absolutely continuous trajectories
that fulfill the differential inclusion. For that, an appropriate H-representation (half-space
representation) of such convex polytopes is obtained through convex analysis techniques.
Then, the gain of compactness of frequencies along with the geometric representation of
the Filippov map will provide the necessary tools for the singular limit to work in the
critical and supercritical regimes.

The rest of the paper is organized as follows. In Section 2, we present definitions,
basic properties of the weighted Kuramoto model, the underlying gradient-flow structure,
the passage from regular to singular plasticity function and the expected macroscopic
equations. In Section 3, we study the system with singular weights and we prove the
well-posedness in each regime. In Section 4, we prove the rigorous singular limit in every
regime and compare the model with previous results derived in other agent-based sys-
tems, in particular we make a comparison with Cucker–Smale models. In Section 5, we
show the synchronization for the singular weighted system. In Appendix A, we will recall
some classical tools of the Kuramoto models that we apply to show the emergence of
synchronization in the regular weighted system for the sake of clarity. Appendix B shows
the proofs of the H-representation of the Filippov set-valued map in the critical and super-
critical cases. Finally, Appendix C introduces an explicit characterization of the sticking
conditions.

2. Preliminaries

2.1. Basic properties and definitions

In this section, we study the basic properties of the weighted Kuramoto system and intro-
duce some related results that will be useful in the following sections. For simplicity, let
us denote the interaction kernel by h.�/ WD �.�/ sin � (here � can be any even function,
e.g., (1.4) or (1.6)). Then the system (1.5) can be expressed as

P�i D �i C K

N

NX
jD1

h.�j � �i /: (2.1)

For simplicity, we shall sometimes use vector notation in (2.1). We define the vector field
H D H.‚/ D .H1.‚/; : : : ;HN .‚// whose components read

Hi .‚/ D �i C K

N

NX
jD1

h.�j � �i /: (2.2)
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Then (2.1) can be restated as
P‚ D H.‚/: (2.3)

Since h is an odd function, by taking sums on both sides of (2.1), we have

NX
iD1
P�i D

NX
iD1

�i ;

i.e., the average of frequencies is conserved. Thus, without loss of generality, we may
assume that the average of the natural frequencies is zero, N�1

PN
iD1�i D 0, in order to

focus on the fluctuation from the constant average motion.
For the discussion in Section 4, we briefly introduce the second order augmentation

of the Kuramoto model [16]. By taking one more derivative of the system (2.1), we get
the second order model 8̂̂<̂

:̂
P�i D !i ;

P!i D K

N

NX
jD1

h0.�j � �i /.!j � !i /:
(2.4)

For both systems (2.1) and (2.4) we have the following equivalence.

Theorem 2.1. The Kuramoto model (2.1) is equivalent to an augmented Kuramoto model
(2.4) in the following sense.

(1) If ‚ D .�1; : : : ; �N / is a solution to (2.1) with initial data‚0, then .‚;! WD P‚/ is a
solution to (2.4) with well-prepared initial data .‚0; !0/:

!i;0 WD �i C �

N

NX
jD1

h.�j;0 � �i;0/:

(2) If .‚;!/ is a solution to (2.4) with initial data .‚0; !0/, then‚ is a solution to (2.1)
with natural frequencies

�i WD !i;0 � �

N

NX
jD1

h.�j;0 � �i;0/:

For the regular cases (1.4), the proof can be found in [16]. However, one has to take
special care with the time regularity of solutions in the singular cases (1.6) before we take
derivatives in (2.1). In the case of ˛ 2 .0; 1=2/, the type of solutions to be considered
for (2.1) are absolutely continuous solutions, while for (2.4) solutions have to be taken
in a weak sense with C 1 and piecewise W 2;1 regularity (see [36] for this concept of
solution for the discrete Cucker–Smale model with singular influence function). The well-
posedness of both singular systems (2.1) and (2.4) will be established in Sections 3 and 4
(see Theorems 3.1, 3.3, 4.1, 4.2 and Remark 4.1), and comparisons with Cucker–Smale
models with singular influence function will be made in Subsection 4.4.

For completeness, we recall the different definitions of synchronization [15].
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Definition 2.1. Let ‚.t/ D .�1.t/; : : : ; �N .t// be the phase configuration of oscillators
with dynamics governed by the system (1.5).
(1) The system shows complete phase synchronization asymptotically if

lim
t!1 j�i .t/ � �j .t/j D 0 for all i ¤ j:

(2) The system shows complete frequency synchronization asymptotically if

lim
t!1 j

P�i .t/ � P�j .t/j D 0 for all i ¤ j:

(3) A phase-locked state emerges asymptotically in the system if there exist constants
�1ij such that

lim
t!1 j�i .t/ � �j .t/j D �

1
ij for all i ¤ j:

Analogous definitions of synchronization will be considered if, instead of asymptotically,
the relevant dynamics takes place in some finite time T (which then replaces 1 in the
above conditions).

We note that complete phase synchronization is a special case of a phase-locked state.
It is obvious that emergence of a phase-locked state implies complete frequency synchron-
ization. However, the converse is valid when frequency synchronization occurs fast, i.e.,
we have integrable decay of frequency differences.

2.2. Singular weighted model

In this part, we formally derive the Kuramoto model with singular weights as a singular
limit of the regular weighted model. We note that the regular weighted model is (2.1) with
interaction kernel given by

h.�/ WD �2˛ sin �
.�2 C c˛;� j� j2o/˛

:

Recall that the degree of connectedness is smaller than � for interparticle distances larger
than � and ˛ imposes the fall-off of the interactions. Consequently, � measures the effect-
ive range of interactions. Similarly, the parameter K measures the maximum strength of
interactions. Hence, one can propose the following scaling:

� D O."/; K�2˛ D O.1/; as "! 0:

Or more specifically, using the change of variables

� ! " and K ! K"�2˛;

where " is a dimensionless parameter, we arrive at the scaled system

P�i D �i C K

N

NX
jD1

h".�j � �i /; (2.5)
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where the scaled interaction kernel now reads

h".�/ WD sin �
."2 C c˛;� j� j2o/˛

: (2.6)

If we formally take limits as "! 0, we arrive at the desired singular weighted Kuramoto
model, whose singular interaction kernel is

h.�/ WD sin �
c˛
˛;�
j� j2˛o

:

All these arguments are heuristic. However they might become rigorous depending on the
value of ˛. For a rigorous derivation of the singular limit in all the subcritical, critical and
supercritical regimes, see Section 4.

2.3. Emergence of clusters: collision and sticking of oscillators

In this part we introduce some notation that will be used all along the paper. We will
denote the set of pairwise collisions of the i -th and j -th oscillators by

Cij WD ¹‚ 2 RN W N�i D N�j º;
where N� denotes again the representative of � in .��; ��. Then the set of collisions is

C WD
[
i¤j

Cij D ¹‚ 2 RN W 9 i ¤ j such that N�i D N�j º:

Consider any phase configuration of N oscillators, i.e.,

‚ D .�1; : : : ; �N / 2 RN :

We will say that the i -th oscillator collides with the j -th oscillator when ‚ 2 Cij , and
we will say that ‚ is a collision state when ‚ 2 C . To deal with collisions, we define the
binary relation

i
‚� j () ‚ 2 Cij :

This is an equivalence relation, and we denote the equivalence classes by

Ci .‚/ WD ¹j 2 ¹1; : : : ; N º W i ‚� j º D ¹j 2 ¹1; : : : ; N º W ‚ 2 Cij º: (2.7)

As is apparent from the definition, Ci .‚/ is the set of indices of collision with the i -th
oscillator. Thus, ‚ is a collision state when some of its equivalence classes is non-trivial.
Consequently, each equivalence class can be regarded as a cluster of oscillators. Let us
denote by E.‚/ the family of all the different equivalence classes, that is, clusters. It is
apparent that E.‚/ establishes a partition of ¹1; : : : ;N º, which we will call the collisional
type of ‚. For simplicity of notation, we will enumerate the equivalence classes

E.‚/ D ¹E1.‚/; : : : ; E�.‚/.‚/º
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in such a way that the minimal representatives in each of them, i.e., �k.‚/ WD minEk.‚/,
are increasingly ordered. �.‚/ WD #E.‚/ will denote the total number of clusters in the
phase configuration ‚ and we will denote the size of the k-th cluster, that is, the number
of particles which form the k-th cluster, by nk.‚/ WD #Ek.‚/, for each k D 1; : : : ; �.‚/.

Assume now that not only do we know some phase configuration at a particu-
lar time, but we also know the whole absolutely continuous trajectory t 7! ‚.t/ D
.�1.t/; : : : ; �N .t// 2 RN governing the dynamics of the N oscillators. Then, as long
as it is clear from the context, we will simplify the notation and write

Ci .t/ WD Ci .‚.t//; E.t/ WD E.‚.t//; �.t/ WD �.‚.t//; nk.t/ WD nk.‚.t//:
Similarly, time may be omitted in our notation for simplicity. Apart from collisions and
the subsequent formation of clusters, it is important to characterize when those clusters
remain stuck together. If the i -th and j -th oscillators have collided at time t , we will say
that they stick together when

N�i .s/ D N�j .s/ for all s � t:
Then we can define the set of indices of sticking with the i -th oscillator by

Si .t/ WD ¹j 2 Ci .t/ W N�i .s/ D N�j .s/ for all s � tº: (2.8)

In Section 3 we will introduce some results about the clustering and sticking behavior of
solutions to our singular weighted Kuramoto model (2.5) with " D 0.

2.4. Gradient flow structure

Note that (2.1) can be equivalently turned into a gradient flow system:

P‚ D �rV.‚/; (2.9)

governed by a potential V D V.‚/ defined by

V.‚/ D �
NX
iD1

�i�i C Vint.‚/ WD �
NX
iD1

�i�i C K

2N

X
i¤j

W.�j � �i /: (2.10)

Here, W is the primitive function of h such that W.0/ D 0, i.e.,

W.�/ WD
Z �

0

h.� 0/ d� 0: (2.11)

The function W can be regarded as the interaction potential of binary interactions, while
Vint stands for the total interaction potential due to binary interactions. This approach is
obviously formal and relies on specifying the regularity of the plasticity function � . For
instance, if we choose � to be analytic, then (2.1) can be regarded as a gradient flow
system with analytic potential V . In that particular case, one can simplify the proof of
synchronization as in the classical Kuramoto model [17]. Specifically, some boundedness
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property of the trajectory is all we need to ensure exponential convergence towards a
phase-locked state by the Łojasiewicz inequality for analytic functions. For the choices of
plasticity function of interest in this paper, i.e., (1.4) and (1.6), analyticity is lacking and
this approach does not necessarily work. Nevertheless, we will focus on values ˛ 2 .0; 1/,
and consequently V will be a globally continuous function that is smooth outside the set
of collisions. Since in general we lack either analyticity or convexity of V , the gradient
flow structure will not be used in this paper, except in Subsections 4.2 and 4.3.

2.5. Kinetic formulation of the problem

We now formally introduce the expected kinetic models associated with (2.5). The clas-
sical arguments rigorously proving the mean field limit as N ! 1 are based on the
analysis of propagation of chaos in the system as the number N of particles becomes
large [26, 31]. On the one hand, for every " > 0 the mean field limit f" D f".t; �;�/ for
the distribution function of the oscillators is governed by the following Vlasov equation
with regular kernels:

@f"

@t
C @

@�
Œ.� �K.h" � �"/f"� D 0; t 2 RC0 ; � 2 Œ0; 2��; � 2 R; (2.12)

where periodic boundary conditions in the variable � are assumed. Here the macroscopic
phase density �" is just

�".t; �/ WD
Z

R
f" d�:

Similarly, when "D 0 the corresponding mean field limit f D f .t; �;�/ for the distribu-
tion function of the oscillators is subject to a Vlasov equation with singular kernel

@f

@t
C @

@�
Œ.� �K.h � �/f � D 0; t 2 RC0 ; � 2 Œ0; 2��; � 2 R; (2.13)

with analogous periodic conditions in � . The derivation of the mean field limit is much
more involved in the latter case and requires a sharper analysis; see [8,23,33] for a related
singular model like the Cucker–Smale model with weakly singular influence function.
Let us briefly recall the main formal idea supporting the above mean field limit through
the empirical measures approach. Fix the following empirical measure as initial condition
in (2.13):

�N0 .�;�/ D
1

N

NX
iD1

ı�N
i;0
.�/ı�N

i
.�/;

associated to some discrete initial configuration ‚N0 D .�N1;0; : : : ; �
N
N;0/. By the results

in this paper, the Filippov solution ‚N .t/ D .�N1 .t/; : : : ; �NN .t// to the singular discrete
model allows considering the following measure-valued solution to (2.13):

�Nt .�;�/ D
1

N

NX
iD1

ı�N
i
.t/.�/ı�N

i
.�/:
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The ultimate effort to make is to show that the weak limit f of �N as N !1 is another
measure-valued solution in some generalized sense to the singular macroscopic system.
For a comprehensive analysis of the singular macroscopic model (2.13) see [40]. Also,
see [33] for a close approach in the Cucker–Smale model with weakly singular influence
kernel corresponding to the smaller range of parameters ˛ 2 .0; 1=4/ of the subcritical
regime. Analogous results in aggregation models and the classical Kuramoto model have
been studied in [8, 11, 12] and [7, 31] respectively.

3. Well-posedness of singular interaction

We now consider the Kuramoto model with singular coupling � , which we introduced in
Section 2 as a singular limit of regular weighted coupling

P�i D �i C K

N

NX
jD1

sin.�j � �i /
j�j � �i j2˛o

; i D 1; : : : ; N: (3.1)

Recall that in the limit as "! 0 of the regular kernel h" we recover the singular interaction
kernel of the model, i.e.,

h.�/ WD sin �
j� j2˛o

:

For simplicity, we will forget about the constant c D c˛;� D 1 � ��1=˛ . Then we can
rewrite the system (3.1) as

P�i D �i C K

N

NX
jD1

h.�j � �i /; i D 1; : : : ; N: (3.2)

Regarding the parameter ˛, it belongs to the interval .0; 1/ to allow for mild singularities.
Note that the kernel is continuous for ˛ 2 .0; 1=2/, it exhibits a jump discontinuity at
� 2 2�Z for ˛D 1=2, and it shows essential discontinuities for ˛ 2 .1=2;1/ (see Figure 1).

In this section, we will focus on developing the well-posedness theory of the system
(3.1) of coupled ODEs. Note that uniqueness is not trivial even in the subcritical case.
Indeed, due to the choice of singular plasticity function, the right hand side of the sys-
tem (3.2) is not Lipschitz-continuous in any of the subcritical, critical and supercritical
regimes. Thus, we need to explore existence and uniqueness of solution to the system
(3.1) before we proceed to study synchronization. For the following discussion, we recall
the definition of the vector field H D H.‚/ in (2.2) that allows dealing with the system
(3.2) in the vector form (2.2).

3.1. Well-posedness in the subcritical regime

In the subcritical case, namely ˛ 2 .0;1=2/, the vector fieldH DH.‚/ in (2.2) is continu-
ous. Therefore, it is a clear consequence of Peano’s theorem that (3.1) has a local-in-time
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�

(a) ˛ D 0:25

�3 �2 �1 1 2 3
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0:5

1

�

(b) ˛ D 0:5

�3 �2 �1 1 2 3

�20

�10

10

20

�

(c) ˛ D 0:75
Fig. 1. Plot of the interaction kernel hD h.�/ in (3.1) for the values ˛D 0:25, ˛D 0:5 and ˛D 0:75.

solution for every initial configuration ‚.0/ D ‚0 2 RN . Unfortunately, note that h.�/
exhibits an infinite slope at the phase values � 2 2�Z and so the classical Cauchy–Picard–
Lindelöf theorem does not apply since H D H.‚/ is no longer a Lipschitz-continuous
vector field. Nevertheless, one can still use an easy trick: it is enough to show that near
the points of loss of Lipschitz-continuity our vector field can be locally split into the
sum of a decreasing vector field and a Lipschitz-continuous vector field, thus ensuring
the local one-sided Lipschitz condition that is enough to obtain a one-sided uniqueness
result.

Lemma 3.1. Let F W RN ! RN be a bounded and continuous vector field and assume
that for every x� 2 RN there exists some open neighborhood V � RN and a positive
constant M such that F satisfies the one-sided Lipschitz condition in V ,

.F.x/ � F.y// � .x � y/ �M jx � yj2

for every couple x; y 2 V . Then the following initial value problem associated with any
initial configuration x0 2 RN enjoys a global-in-time solution, which is unique forward
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in time: ´
Px D F.x/; t � 0;
x.0/ D x0:

Since the proof is classical, we omit it here. Let us now apply that result to our case of
interest. To do so, it is enough to introduce a decomposition of the vector fieldH DH.‚/
in the Kuramoto model (3.2). We first set the following split of the interaction function
h D h.�/. First, consider h and Q� 2 .0; �=2/ such that

h WD max
0<r<�

h.r/ and 2˛ sin Q� D Q� cos Q�:

Note that Q� is uniquely defined as the value in .0;�/where h attains its maximum. Second,
define a couple of functions f D f .�/ and g D g.�/ in .��; �/ as follows:

f .�/ WD

8̂̂<̂
:̂
h for � 2 .��;� Q�/;
�h.�/ for � 2 Œ� Q�; Q�/;
�h for � 2 Œ Q�; �/;

g.�/ WD

8̂̂<̂
:̂
�h � h.�/ for � 2 .��;� Q�/;
0 for � 2 Œ� Q�; Q�/;
h � h.�/ for � 2 Œ Q�; �/:

Notice that
� h.�/ D f .�/C g.�/ for all � 2 .��; �/; (3.3)

as depicted in Figure 2.

�3 �2 �1 1 2 3

�1

�0:5

0:5

1

�

�h.�/

(a) �h.�/

�3 �2 �1 1 2 3

�1

�0:5

0:5

1

�

f .�/

g.�/

(b) f .�/ and g.�/

Fig. 2. Graph of the function �h.�/ and the functions f .�/ and g.�/ in the decomposition for the
value ˛ D 0:25.
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Remark 3.1. Note that although�h.�/ is not a Lipschitz-continuous function because of
the infinite slope at � 2 2�Z, one can locally decompose it around those values in terms
of a decreasing function f .�/ and a Lipschitz-continuous function g.�/.

Finally, for any ‚� D .��1 ; : : : ; ��N / 2 RN we will locally decompose H around ‚�.
For ‚ D .�1; : : : ; �N / in a small enough neighborhood V of ‚� in RN , we set

Fi .‚/ WD K

N

X
j2Ci .‚

�/

f .�i � �j /; (3.4)

Gi .‚/ WD �i C K

N

X
j2Ci .‚

�/

g.�i � �j / � K
N

X
j…Ci .‚

�/

h.�i � �j /; (3.5)

where we recall that Ci .‚
�/ stands for the set of indices of collision with the i -th oscil-

lator in the phase configuration ‚� (see Subsection 2.3).

Proposition 3.1. Let ‚� D .��1 ; : : : ; ��N / 2 RN , and define the vector fields

F;G W V ! RN

via the formulas (3.4)–(3.5), for a small enough neighborhood V of ‚� in RN . Then:

(1) H D F CG in V .

(2) F is decreasing in V .

(3) G is Lipschitz-continuous in V .

(4) H is one-sided Lipschitz-continuous in V .

Proof. The decomposition of H is clear by the decomposition (3.3) and the definitions
(3.4)–(3.5). Let us therefore focus on the last three properties.

First, consider ‚ D .�1; : : : ; �N /;e‚ D .e�1; : : : ;e�N / 2 RN in a small enough neigh-
borhood of‚�. Without loss of generality, we will assume that �i � �j ande� i �e�j belong
to .��; ��. In the other case, we just need to work with representatives. On the one hand,

.F.‚/ � F.e‚// � .‚ � e‚/ D K

N

NX
iD1

X
j2Ci .‚

�/

�
f .�i � �j / � f .e� i �e�j /�.�i �e� i /:

Interchanging the indices i and j we obtain

.F.‚/ � F.e‚// � .‚ � e‚/ D K

N

NX
jD1

X
i2Cj .‚

�/

�
f .�j � �i / � f .e�j �e� i /�.�j �e�j /

D �K
N

NX
iD1

X
j2Ci .‚

�/

�
f .�i � �j / � f .e� i �e�j /�.�j �e�j /;
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where the properties of the sets Ci .‚
�/ along with the antisymmetry of f have been used

in the last line. Taking the mean value of both expressions and using the fact that f is
decreasing, we arrive at

.F.‚/ � F.e‚// � .‚ � e‚/
D K

2N

NX
iD1

X
j2Ci .‚

�/

�
f .�i � �j / � f .e� i �e�j /��.�i � �j / � .e� i �e�j /� � 0;

and, as a consequence, we get the monotonicity of F . On the other hand,

jGi .‚/ �Gi .e‚/j
� K

N

X
j2Ci .‚

�/

jg.�i � �j / � g.e� i �e�j /j C K

N

X
j…Ci .‚

�/

jh.�i � �j / � h.e� i �e�j /j:
Since g is Lipschitz-continuous in .��; �/ and h is locally Lipschitz-continuous in
.��; �/ n ¹0º, there exists some constant M DM.V/ such that

jGi .‚/ �Gi .e‚/j � KM

N

NX
jD1
j.�i � �j / � .e� i �e�j /j � N C 1

N
KM j‚ � e‚j

for every i 2 ¹1; : : : ; N º, thus yielding the Lipschitz-continuity of G in V . The last item
is a simple consequence: consider x; y 2 V and note that

.H.x/ �H.y// � .x � y/ D .F.x/ � F.y// � .x � y/C .G.x/ �G.y// � .x � y/
� N C 1

N
KM jx � yj2;

where the preceding two properties have been used along with the Cauchy–Schwarz
inequality.

Finally, putting together Lemma 3.1 and Proposition 3.1, one concludes the following
well-posedness property.

Theorem 3.1. For any initial configuration, there is a global-in-time strong solution to
the system (3.2) with ˛ 2 .0; 1=2/; the solution is unique forwards in time.

The next result is a simple consequence of the above well-posedness theorem and
characterizes the eventual emergence of sticking in a cluster after a potential collision.

Theorem 3.2. Let ‚ D .�1; : : : ; �N / be the global-in-time solution in Theorem 3.1.
Assume that two oscillators collide at t�, i.e., N�i .t�/ D N�j .t�/ D �� for some i ¤ j .
Then the following two statements are equivalent:

(1) �i and �j stick together at t�.
(2) Their natural frequencies agree, i.e.,

�i D �j : (3.6)
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Proof. Without loss of generality, assume that i D 1, j D 2 and �1.t�/ D �2.t
�/ 2

.��; ��. Assume that the two particles keep stuck together after time t�. Then, look-
ing at the first two equations in (3.2), it is clear that �1 D �2. Conversely, assume that
�1 D �2 DW � and consider the following system of N � 1 ODEs:

P# D �C K

N

NX
jD3

h.#j � #/;

P#i D �i C 2K

N
h.# � #i /C K

N

NX
jD3

h.#j � #i /; i D 3; : : : ; N;

with initial data given by

.#.t�/; #3.t�/; : : : ; #N .t�// D .��; �3.t�/; : : : ; �N .t�//:
A similar technique to that in Theorem 3.1 clearly yields a global-in-time solution to this
initial value problem. Hence, the two trajectories in RN ,

t 7! .�1.t/; �2.t/; �3.t/; : : : ; �N .t//; t 7! .#.t/; #.t/; #3.t/; : : : ; #N .t//;

are both solutions to (3.2) that at t D t� take the value

.��; ��; �3.t�/; : : : ; �N .t�//:

By uniqueness they agree, and in particular �1.t/ D #.t/ D �2.t/ for all t � t�.

3.2. Well-posedness in the critical regime

In the critical case, i.e. ˛ D 1=2, the vector field H D H.‚/ is no longer continuous
and the Peano existence theorem does not work. Nevertheless, in that case H is still a
measurable and essentially bounded vector field. Consequently, one can apply Filippov’s
existence criterion [4, 14].

We introduce the necessary notation that will be used from now on: 2RN stands for the
power set of RN , jN j is the Lebesgue measure of any measurable set N � RN , co.A/
is the convex hull of A and co.A/ D co.A/ is its closure. For every convex set C we
denote by m.C/ the element of minimal norm of C , i.e. m.C/ D �C .0/, where �C is
the orthogonal projection operator over the convex set C . The main ingredient will be the
Filippov set-valued map of a given single-valued measurable map.

Definition 3.1. Let F W RN ! RN be any measurable map. The Filippov set-valued map
F W RN ! 2RN of F is defined for any x 2 RN as follows:

F .x/ WD
\
ı>0

\
jN jD0

co.F.Bı.x/ nN //:

The main interest in considering this map can be summarized in the next couple of
results (see [4, Theorem 2.1.3, Theorem 2.1.4, Proposition 2.1.1]).
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Lemma 3.2. Let F W RN ! RN be any measurable map and consider its Filippov set-
valued map F . Then:

(1) F .x/ is a closed and convex set for every x 2 RN .

(2) F.x/ 2 F .x/ for almost every x 2 RN .

(3) If F is continuous at x 2 Rn, then F .x/ D ¹F.x/º.
(4) If F takes non-empty values, then F has closed graph.

(5) If F has closed graph and m.F /.Ux/ lies in a compact set for some neighborhood
Ux of each x 2 RN , then F is upper semicontinuous.

(6) If F is locally essentially bounded, then F is upper semicontinuous, it takes non-
empty values andm.F /.Ux/ lies in a compact set for some neighborhood Ux of each
x 2 RN .

(7) If F is essentially bounded, then F is upper semicontinuous, it takes non-empty val-
ues and m.F /.RN / lies in a compact set.

Here m.F / stands for the map m.F /.x/ WD m.F .x// for every x 2 RN .

Lemma 3.3. Let F W RN ! 2RN be any set valued-map with non-empty closed and
convex values. Assume that F is upper semicontinuous and consider the following initial
value problem associated with any given initial datum x0 2 RN :´

Px 2 F .x/;

x.0/ D x0:
.IVP/

(1) If m.F /.Ux/ lies in a compact set for some neighborhood Ux of any x 2 RN , then
(IVP) has an absolutely continuous local-in-time solution.

(2) If m.F /.RN / lies in a compact set, then (IVP) has an absolutely continuous global-
in-time solution.

Putting together Lemmas 3.2 and 3.4 we arrive at the next result.

Lemma 3.4. Let F W RN ! RN be any measurable map and F its Filippov set-valued
map.

(1) If F is locally essentially bounded, then (IVP) has an absolutely continuous local-in-
time solution.

(2) If, in addition, F is globally essentially bounded, then such a solution is indeed
global.

The solutions to the above differential inclusion are called solutions in Filippov’s
sense to the original discontinuous dynamical system. To deal with uniqueness we first
introduce the next technical result.

Lemma 3.5. Let F W RN ! RN be a measurable and locally essentially bounded map
and F W RN ! 2RN its Filippov set-valued map. If F satisfies the one-sided Lipschitz
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condition a.e., then F also satisfies it in the set-valued sense: there exists a positive con-
stant M such that

.X � Y / � .x � y/ �M jx � yj2
for all x; y 2 RN and all X 2 F .x/, Y 2 F .y/.

Proof. Fix x; y 2 RN and X 2 F .x/; Y 2 F .y/. Also fix any ı > 0 (assume ı < 1

without loss of generality) and any negligible set N . Using the definition of F , we see
that

X 2 co.F.Bı.x/ nN // and Y 2 co.F.Bı.y/ nN //:

Thus, one can find sequences ¹Xnºn2N � RN and ¹Ynºn2N � RN such that Xn ! X ,
Yn ! Y and

Xn 2 co.F.Bı.x/ nN // and Yn 2 co.F.Bı.y/ nN //;

for every n 2 N. Therefore, the Carathéodory theorem from convex analysis allows rep-
resenting Xn and Yn as convex combinations,

Xn D
NC1X
iD1

˛ni F.x
n
i / and Yn D

NC1X
jD1

ˇnj F.y
n
j /;

where xni 2 Bı.x/ nN , ynj 2 Bı.y/ nN and the coefficients ˛ni ; ˇ
n
j 2 Œ0; 1� satisfy

NC1X
iD1

˛ni D 1 D
NC1X
jD1

ˇnj :

Note that

Xn D
NC1X
iD1

NC1X
jD1

˛ni ˇ
n
j F.x

n
i / and Yn D

NC1X
iD1

NC1X
jD1

˛ni ˇ
n
j F.y

n
j /:

By defining the constants

Mx WD ess sup
z2B1.x/

jF.z/j and My WD ess sup
z2B1.y/

jF.z/j;

we have

.Xn � Yn/ � .x � y/ D
�NC1X
i;jD1

˛ni ˇ
n
j .F.x

n
i / � F.ynj //

�
� .x � y/

D
NC1X
i;jD1

˛ni ˇ
n
j

�
.F.xni / � F.ynj // � .x � y/

�
D

NC1X
i;jD1

˛ni ˇ
n
j

�
.F.xni / � F.ynj // � .xni � ynj /

C .F.xni / � F.ynj // � ..x � xni / � .y � ynj //
�
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�
NC1X
i;jD1

˛ni ˇ
n
j

�
M jxni � ynj j2 C 2.Mx CMy/ı

�
�

NC1X
i;jD1

˛ni ˇ
n
j

�
M.jx � yj C 2ı/2 C 2.Mx CMy/ı

�
DM.jx � yj C 2ı/2 C 2.Mx CMy/ı:

Since the above property holds for arbitrary n 2 N and 0 < ı < 1, we obtain

.X � Y / � .x � y/ �M jx � yj2:
Lemma 3.6. Let F W RN ! RN be a measurable and essentially bounded vector field,
and F W RN ! 2RN its Filippov set-valued map. In addition, assume that F satisfies the
local one-sided Lipschitz condition. Then the following initial value problem associated
with any initial configuration x0 2 RN enjoys a global-in-time absolutely continuous
solution, which is unique forwards in time:´

Px 2 F .x/; t � 0;
x.0/ D x0:

Proof. The existence of global-in-time Filippov solutions follows from Lemma 3.4. Let
us just discuss the uniqueness of solution. We consider two Filippov solutions x1 D x1.t/
and x2 D x2.t/ with the same initial datum x0 and define

T WD inf ¹t > 0 W x1.t/ ¤ x2.t/º:
Our main goal is to prove that T D 1. Assume T <1. Let x� WD x1.T / D x2.T / and
take a small enough neighborhood V of x� such that F satisfies the one-sided Lipschitz
condition in it. By continuity there is " > 0 such that x1.t/; x2.t/ 2 V for every t 2
ŒT; T C "�. Consequently,

d

dt

1

2
jx1 � x2j2 2 .F .x1.t// � F .x2.t/// � .x1.t/ � x2.t//:

By the one-sided Lipschitz condition, there is a constant M depending on x� such that

d

dt
jx1 � x2j2 �M jx1 � x2j2

for every t 2 ŒT; T C "�. By Grönwall’s inequality, one then obtains x1.t/ D x2.t/ for
every t 2 ŒT; T C "�, and this contradicts the assumption T <1.

Let us now explicitly compute the Filippov set-valued map H D H .‚/ of our par-
ticular vector field H D H.‚/ for the critical case ˛ D 1=2. See Subsection 2.3 for
the collision equivalence relation and the necessary notation to deal with clusters of
oscillators.
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Proposition 3.2. In the critical regime ˛ D 1=2, the value H .‚/ of the Filippov set-
valued map associated withH is the convex and compact polytope consisting of the points
.!1; : : : ; !N / 2 RN such that

!i D �i C K

N

X
j…Ci .‚/

h.�j � �i /C K

N

X
j2Ci .‚/n¹iº

yij for all i D 1; : : : ; N;

for some Y D .yij /1�i;j�N 2 SkewN .Œ�1; 1�/.
Since the proof is clear by definition of the Filippov map, we omit it.

Remark 3.2. Notice that for every .!1; : : : ; !N / 2 H .‚/,

NX
iD1

!i D
NX
iD1

�i :

In particular, every Filippov solution .�1; : : : ; �N / to (3.2), in the case ˛ D 1=2, satisfies

NX
iD1
P�i .t/ D

NX
iD1

�i for a.e. t � 0:

Hence, the Filippov solutions in the critical case still preserve the average frequency like
classical solutions do for the subcritical case or in the original Kuramoto model.

Example 3.1. To gain some intuition about those sets, let us exhibit some examples:
(1) For every N 2 N, if ‚ … C , then H .‚/ D ¹H.‚/º.
(2) ForN D 2, if‚D .�1; �2/ 2 C12, then H .‚/ is the polytope consisting of the points

.!1; !2/ 2 R2 such that

!1 D �1 C K

2
y12;

!2 D �2 � K
2
y12;

for some y12 2 Œ�1; 1�.
(3) For N D 3, if ‚ D .�1; �2; �3/ 2 C12 n C13, then H .‚/ is the polytope consisting of

the points .!1; !2; !3/ 2 R3 such that

!1 D �1 C K

3
h.�3 � �1/C K

3
y12;

!2 D �2 C K

3
h.�3 � �2/ � K

3
y12;

!3 D �3 C K

3
h.�1 � �3/C K

3
h.�2 � �3/;

for some y12 2 Œ�1; 1�.
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(4) For N D 3, if‚D .�1; �2; �3/ 2 C12 \ C13, then H .‚/ is the polytope consisting of
the points .!1; !2; !3/ 2 R3 such that

!1 D �1 C K

3
y12 C K

3
y13;

!2 D �2 � K
3
y12 C K

3
y23;

!3 D �3 � K
3
y13 � K

3
y23;

for some y12; y13; y23 2 Œ�1; 1�.
The second and third cases yield line segments and the last one is a regular hexagon as
depicted in Figure 3.
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ω1ω2

ω
3

(b)N D 3
Fig. 3. Pictures of the Filippov set-valued map in the critical case at a total collision phase con-
figuration. In (a), N D 2 and the polytope is a line segment joining .�1 ˙ K=2; �2 � K=2/. In
(b), N D 3 and the polytope is a regular hexagon with vertices .�1 ˙ 2K=3; �2 � 2K=3; �3/,
.�1 ˙ 2K=3; �2; �3 � 2K=3/ and .�1; �2 ˙ 2K=3; �3 � 2K=3/. For simplicity, the natural
frequencies are set to zero and K D 1 in the figures.

Finally, let us apply Lemma 3.6 to construct the unique Filippov solutions of our
particular system (3.2) in the critical case ˛ D 1=2. The way to go is similar to that in
Subsection 3.1 and relies on a good decomposition of �h. Define a couple of functions
f D f .�/ and g D g.�/ in .��; �/ as follows:

f .�/ WD
´
1 for � 2 .��; 0/;
�1 for � 2 Œ0; �/; g.�/ WD

´
�1 � h.�/ for � 2 .��; 0/;
1 � h.�/ for � 2 Œ0; �/:

Notice that
� h.�/ D f .�/C g.�/ for all � 2 .��; �/; (3.7)

as depicted in Figure 4.
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f .�/
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(b) f .�/ and g.�/

Fig. 4. Graph of the function �h.�/ and the functions f .�/ and g.�/ in the decomposition for the
value ˛ D 0:5.

Remark 3.3. Note that although �h.�/ is a discontinuous function because of the jump
discontinuities at � 2 2�Z, one can locally decompose it around such values in terms of
a decreasing function f .�/ and a Lipschitz-continuous function g.�/.

Finally, for every‚� D .��1 ; : : : ; ��N / 2 RN we locally decomposeH around‚� into

Fi .‚/ WD K

N

X
j2Ci .‚

�/

f .�i � �j /; (3.8)

Gi .‚/ WD �i C K

N

X
j2Ci .‚

�/

g.�i � �j / � K
N

X
j…Ci .‚

�/

h.�i � �j /; (3.9)

where the above functions are defined almost everywhere (f does not make sense at 0, so
Fi just makes sense a.e.). Recall that for any � 2 R, N� is its representative modulo 2� in
the interval .��; ��.
Proposition 3.3. Let ‚� D .��1 ; : : : ; ��N / 2 RN and define the vector fields

F;G W V ! RN

via the formulas (3.8)–(3.9), for a small enough neighborhood V of ‚� in RN . Then:

(1) H D F CG in V .

(2) F is decreasing in V .

(3) G is Lipschitz-continuous in V .

(4) H is one-sided Lipschitz continuous in V .

Proof. The proof is analogous to that of Proposition 3.1.
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Finally, putting Lemmas 3.4 and 3.6 and Proposition 3.3 together, one concludes the
following well-posedness result.

Theorem 3.3. For any initial configuration, there is a global-in-time Filippov solution to
the system (3.2) with ˛ D 1=2; the solution is unique forwards in time.

Again, we can characterize the eventual emergence of sticking of a cluster after a
potential collision in a similar way as we did in Theorem 3.2. We require the following
notation. For any N 2 N, each 1 � m � N and every permutation � of ¹1; : : : ; N º we
define the following couple of m �m matrices:

M �
m.�/ WD .��i ���j /1�i;j�m;

Jm WD .1/1�i;j�m;
(3.10)

i.e., M �
m.�/ stands for the matrix of relative natural frequencies of the m oscillators with

indices i D �1; : : : ; �m and Jm is the m �m matrix whose all components are 1.

Theorem 3.4. Let ‚ D .�1; : : : ; �N / be the global-in-time Filippov solution of The-
orem 3.3. Assume that t� is some collision time and fix any cluster Ek.t�/ � Ek with
k D 1; : : : ; �.t�/. Then the following two statements are equivalent:

(1) The nk.t�/ D #Ek.t�/ oscillators in the cluster all stick together at time t�.
(2) There exists a bijection � W ¹1; : : : ; nkº ! Ek and Y 2 Skewnk .Œ�1; 1�/ such that

M �
nk
.�/ D K

N
.Y � Jnk C Jnk � Y /: (3.11)

Proof. Write n WD nk for simplicity and assume that the oscillators in the cluster are the
first n oscillators, i.e., Ek D ¹1; : : : ; nº. By continuity, take some small " > 0 such that
N�j .t/ ¤ N�i .t/ for every t 2 Œt�; t� C "�, any i 2 Ek and each j … Ek . First, assume that
(1) holds true. Without loss of generality we may assume that �1.t/ D � � � D �n.t/ for
all t � t� and we define �.t/ WD �1.t/ D � � � D �n.t/ for all t � t�. Then, looking at the
explicit expression in Proposition 3.2 of the Filippov set-valued map H we get

P�i D �i C K

N

NX
jDnC1

h.�j .t/ � �.t//C K

N

nX
jD1

yij .t/

for a.e. t 2 Œt�; t� C "� and every i D 1; : : : ; n, where yij 2 L1.t�; t� C "/ and Y.t/ D
.yij .t//1�i;j�n 2 Skewn.Œ�1; 1�/ for almost all t 2 Œt�; t� C "�. Since P�i D P�j a.e., for all
i; j D 1; : : : ; n, we obtain the system of equations

�i ��j D �K
N

nX
lD1
l¤i

yil .t/C
K

N

nX
lD1
l¤j

yjl .t/

for a.e. t 2 Œt�; t� C "�. In particular, (3.11) holds.
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Conversely, assume that (3.11) is satisfied for some Y 2 Skewn.Œ�1; 1�/. Then

�i C K

N

nX
lD1
l¤i

yil D �j C
K

N

nX
lD1
l¤j

yjl DW b�:
Now consider the vector fieldbHn D .bHn

0;
bHn
nC1; : : : ; bHn

N / W RN�nC1 ! RN�nC1

given by

bHn
0.#; #nC1; : : : ; #N / D b�C K

N

NX
jDnC1

h.#j � #/;

bHn
i .#; #nC1; : : : ; #N / D �i C

nK

N
h.# � #i /C K

N

NX
jDnC1

h.#j � #i /

for i D nC 1; : : : ; N . Also, consider the associated Filippov set-valued map bHn and the
associated differential inclusion

. P#; P#nC1; : : : ; P#N / 2 bHn.#; #nC1; : : : ; #N /;

with initial datum

.#.t�/; #nC1.t�/; : : : ; #N .t�// D .��; �nC1.t�/; : : : ; �N .t�//:
A well-posedness result similar to that in Theorem 3.3 shows that the resulting IVP enjoys
a global-in-time solution. In addition, by definition it is apparent that whenever we pick
.!; !nC1; : : : ; !N / 2 bHn.#; #nC1; : : : ; #N /, we obtain

.!; : : : ; !„ ƒ‚ …
n pairs

; !nC1; : : : ; !N / 2 H .#; : : : ; #„ ƒ‚ …
n pairs

; #nC1; #N /:

Consequently, the two trajectories in RN ,

t 7! .�1.t/; : : : ; �n.t/; �nC1.t/; : : : ; �N .t//;
t 7! .#.t/; : : : ; #.t/„ ƒ‚ …

n pairs

; #nC1.t/; : : : ; #N .t//;

are Filippov solutions to (3.2) with the same value at t D t�, namely,

.��; : : : ; ��„ ƒ‚ …
n pairs

; �nC1.t�/; : : : ; �N .t�//:

By uniqueness they agree, and in particular

�i .t/ D #.t/ for all t � t� and every i D 1; : : : ; n:
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The sticking condition (3.11) can be characterized in a much more explicit manner
by convex analysis techniques supported by Farkas’ alternative: see Appendix C, and in
particular, the characterization of condition (3.11) in Lemma C.2. These ideas lead to the
next result.

Corollary 3.1. Under the assumptions of Theorem 3.4, the following two assertions are
equivalent:

(1) The nk oscillators in the cluster Ek stick together at time t�.
(2) We have ˇ̌̌̌

1

m

X
i2I

�i � 1

nk

X
i2Ek

�i

ˇ̌̌̌
� K

N
.nk �m/ (3.12)

for every 1 � m � nk and every I � Ek such that #I D m.

Remark 3.4. Notice that in Theorem 3.4 and Corollary 3.1 we have characterized when
the whole cluster Ek remains stuck together, but not when a subcluster of a given size
instantaneously splits from the remaining oscillators of the cluster. The main problem in
extending the above proof is that it is hard to quantify the way in which an oscillator splits
from the subcluster. Specifically, it is possible that an oscillator departs from the cluster
exhibiting a left accumulation of switches of state where it instantaneously splits and
collides with the subcluster. Although this accumulation phenomenon will cause some
problems throughout the paper, we will show how we can overcome them.

Let us mention that this phenomenon is called left Zeno behavior in the literature. It
appears in the Filippov solutions of some systems like the reversed bouncing ball. For
instance, in [14, p. 116] Filippov proposed a discontinuous first order system with solu-
tions exhibiting Zeno behavior. In [14, Theorem 2.10.4], he considered absence of Zeno
behavior as part of sufficient (but not necessary) conditions guaranteeing forward unique-
ness. We skip the analysis of Zeno behavior here and will address it in a future work.

3.3. Well-posedness in the supercritical regime

Recall that in the supercritical regime, i.e., ˛ > 1=2, the vector field H D H.‚/ is not
only discontinuous at the collision states but also unbounded near those points (see Fig-
ure 1). Thus, the classical theory of well-posedness cannot be applied either and one
might look for a notion of generalized solutions in the same sense as in the critical case
˛ D 1=2 (see Subsection 3.2). Hence, one strategy could be to turn again the differential
equation of interest into an augmented differential inclusion given by the associated Fil-
ippov set-valued map. A similar analysis to that in Proposition 3.2 yields the following
characterization of the Filippov set-valued map for the supercritical regime.

Proposition 3.4. In the supercritical regime ˛ > 1=2, the value H DH .‚/ of the Filip-
pov set-valued map associated with H is the convex and unbounded polytope consisting
of the points .!1; : : : ; !N / 2 RN such that for some Y D .yij /1�i;j�N 2 SkewN .R/,

!i D �i C K

N

X
j…Ci .‚/

h.�j � �i /C K

N

X
j2Ci .‚/n¹iº

yij for all i D 1; : : : ; N:
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The Filippov set-valued map enjoys similar expressions in the critical and supercrit-
ical regimes except for a “slight” change. In the former case, the coefficients yij range in
the interval Œ�1; 1� whereas in the latter case they take values in the whole R. Indeed, the
examples for ˛ D 1=2 in Example 3.1 can also be considered for ˛ > 1=2. For instance,
similar polytopes to those in Figure 3 are obtained at the total collision phase configura-
tions when the corresponding polygon is replaced by its affine envelope. Those similarities
ensure that any Filippov solution to (3.2) with ˛ > 1=2 also conserves the average fre-
quency as in Remark 3.2. What is more, since H .‚/ is apparently non-empty, Lemma
3.2 shows that H takes values in the non-empty, closed and convex sets and it has closed
graph in the set-valued sense.

However, the unboundedness in yij entails a severe change of behavior. Specifically,
it breaks the local compactness of m.H / and, as a consequence, the existence result in
Lemma 3.3 fails to work. The loss of compactness is fatal and implies that in the super-
critical regime ˛ > 1=2 all the “classical” assumptions ensuring global existence and
one-sided uniqueness do not hold. The literature about the abstract analysis of unbounded
differential inclusions is rare [25, 45]. In addition, all those results require some sort of
relaxed set-valued Lipschitz condition and linear growth that do not hold in our problem.
Nevertheless, we will show that in some cases we can still construct a Filippov solution
which is unique under some conditions.

Remark 3.5. Notice that, despite the lack of uniqueness in the supercritical case, the
approach in Theorem 3.4 may still be used to obtain a partial answer. Namely, it might
give a sufficient condition on the natural frequencies to ensure that after a collision of
a classical solution, we can continue a Filippov solution with sticking of the resulting
cluster. Since we elaborate on this idea later, we skip it here and will just focus on a
necessary condition of sticking as in (3.11). Indeed, consider some Filippov solution‚D
.�1; : : : ; �N / to (3.2) with ˛ > 1=2 and assume that it is defined in an interval Œ0; T /
and that t� 2 .0; T / is some collision time. Then we might fix a cluster Ek.t�/ � Ek
and assume that the nk.t�/ � nk oscillators in the cluster stick together at time t�. Then
a proof similar to that of Theorem 3.4 would entail the existence of some bijection � W
¹1; : : : ; nkº ! Ek and some Y 2 Skewnk .R/ such that

M �
m.�/ D

K

N
.Y � Jnk C Jnk � Y /: (3.13)

One might want to obtain again a more explicit characterization of that condition. We can
resort to similar ideas coming from Farkas’ alternative. Lemma C.1 ensures that (3.13) is
perfectly equivalent to the condition (C.2),

mij Cmjk Cmki D 0
for all i; j; k D 1; : : : ; nk , wheremij denotes the .i; j / component of the matrixM �

m.�/.
Let us look into the structure of M �

nk
.�/ to restate the above condition (see (3.10)):

mij Cmjk Cmki D .��i ���j /C .��j ���k /C .��k ���i /:
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Thus, the necessary sticking condition is automatically satisfied for every given config-
uration of natural frequencies. This suggests that, independently of the chosen natural
frequencies, any classical solution in the supercritical case that stops at a collision state
might always be continued as a Filippov solution with sticking of the cluster. For this, we
will need some precise control of the behavior of the classical solutions at the maximal
time of existence.

Lemma 3.7. Let ‚ D .�1; : : : ; �N / be any classical solution to (3.2) with ˛ 2 .1=2; 1/
that is defined in a finite maximal existence interval Œ0; t�/. Then:

(1) The solution does not blow up at t�, i.e.,

lim
t!t�
j‚.t/j ¤ 1:

(2) The solution converges to a collision state, i.e., there exists ‚� 2 C such that

lim
t!t�

‚.t/ D ‚�:

In addition, the trajectory t 7! ‚.t/ remains absolutely continuous up to the collision
time t D t�; specifically, P‚ 2 L2..0; t�/;RN /.
Proof. We split the proof into three parts. The first part is devoted to showing that the
classical trajectories satisfy the following fundamental inequalities:

1

2

Z t

0

j P‚.s/j2 ds � Vint.‚0/C
C 2�
2
t; (3.14)

j‚.t/j � j‚0j C
Z t

0

j P‚.s/j ds; (3.15)

for every t 2 Œ0; t�/. Here, Vint.‚/ is the second term of the potential V.‚/ in (2.10) and
we set

C� WD
� NX
iD1

�2i

�1=2
:

In the second step we will show that the inequalities (3.14) and (3.15) imply

1

2

Z t�

0

j P‚.s/j2 ds � Vint.‚0/C
C 2�
2
t� <1; (3.16)Z t�

0

j P‚.s/j ds � Vint.‚0/C
1C C 2�
2

t� <1; (3.17)

j‚.t/j � j‚0j C Vint.‚0/C
1C C 2�
2

t�; (3.18)

for every t 2 Œ0; t�/. Finally, in the third part we will deduce the assertions of the lemma
from the inequalities (3.14)–(3.18).
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� Step 1. Recall that in Section 2, the classical solution t 7! ‚.t/ of (3.2) equivalently
solves the gradient flow system (2.9), i.e.,

P‚.t/ D �rV.‚.t//
for all t 2 Œ0; t�/, where V is given in (2.10). Hence,

d

dt
V .‚.t// D rV.‚.t// � P‚.t/ D �j P‚.t/j2

for every t 2 Œ0; t�/. Taking integrals in time, we obtainZ t

0

j P‚.s/j2 ds D V.‚0/ � V.‚.t// D
NX
iD1

�i .�i;0 � �i .t//C Vint.‚0/ � Vint.‚.t//

(3.19)

for every t 2 Œ0; t�/. Recall that the function W in (2.11) involved in the potential (2.10)
is a primitive function of h. Thus,W � 0, as a consequence of the antisymmetry of h and
our choiceW.0/ D 0, and in particular Vint � 0. This, together with the Cauchy–Schwarz
inequality, yields Z t

0

j P‚.s/j2 ds � C�
Z t

0

j P‚.s/j ds C Vint.‚0/ (3.20)

for every t 2 Œ0; t�/. Using Young’s inequality in the first term of (3.20), we arrive at the
first fundamental inequality (3.14). The inequality (3.15) is standard, but let us sketch it
for the sake of clarity:

d

dt

j‚j2
2
D ‚ � P‚ � j‚j j P‚j

for all t 2 Œ0; t�/. Hence, we arrive at

d

dt
j‚.t/j � j P‚.t/j

for every t 2 Œ0; t�/, and integrating with respect to time yields (3.15).

� Step 2. First, taking limits as t ! t� in (3.14), we clearly obtain (3.16). Also, the finite
length of the trajectory (3.17) holds true by the Cauchy–Schwarz inequality and Young’s
inequality both applied to (3.16). Finally, inequalities (3.15) and (3.17) entail (3.18).

� Step 3. The classical trajectory t 7! ‚.t/ is defined up to a finite maximal time t�.
Hence, classical results show that either it blows up at t D t� or there exists some sequence
¹tnºn2N % t� and some ‚� 2 C such that ¹‚.tn/ºn2N ! ‚�: Since the former option
is prevented by (3.18), the latter must hold true. Let us prove that the whole trajectory
converges to the collision state‚�. Indeed, in the other case, there exists another sequence
¹snºn2N % t� and some "0 > 0 such that

j‚.sn/ �‚�j � "0 (3.21)
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for all n 2 N. Without loss of generality we can assume that the sequences ¹tnºn2N and
¹snºn2N are ordered as t1 < s1 < t2 < s2 < � � � and that

j‚.tn/ �‚�j � "0=2n (3.22)

for every n 2 N. Therefore,

j‚.tn/ �‚.sn/j � j‚.sn/ �‚�j � j‚.tn/ �‚�j � "0 � "0=2n;
j‚.sn/ �‚.tnC1/j � j‚.sn/ �‚�j � j‚.tnC1/ �‚�j � "0 � "0=2nC1;

for all n 2 N. Then it is clear thatZ t�

0

j P‚.t/j dt �
Z t�

t1

j P‚.t/j dt D
1X
nD1

Z sn

tn

j P‚.t/j dt C
1X
nD1

Z tnC1

sn

j P‚.t/j dt

�
1X
nD1
j‚.tn/ �‚.sn/j C

1X
nD1
j‚.sn/ �‚.tnC1/j

�
1X
nD1

"0

�
1 � 1

2n

�
C
1X
nD1

"0

�
1 � 1

2nC1

�
D1;

which contradicts (3.17). Hence, limt!t� ‚.t/ D ‚�.
This conclusion shows that, as expected, it is possible to continue classical solutions

by Filippov solutions (hence absolutely continuous) after a possible collision. The explicit
method of continuation is exhibited in the following result.

Theorem 3.5. Let ‚ D .�1; : : : ; �N / be any classical solution to (3.2) with ˛ 2 .1=2; 1/
that is defined in a finite maximal existence interval Œ0; t�/ and, according to Lemma 3.7,
let the collision state ‚� 2 C be such that

lim
t!t�

‚.t/ D ‚�:

Then there exists " > 0 such that the classical trajectory t 7! ‚.t/ can be continued to
a Filippov solution to (3.2) in Œt�; t� C "/ in such a way that oscillators belonging to the
same cluster of the collision state ‚� remain stuck together after t�.

Proof. Let Ek be the k-th cluster of oscillators with nk D #Ek for k D 1; : : : ; �. We
consider a bijection �k W ¹1; : : : ; nkº ! Ek for every k D 1; : : : ; �. Since the necessary
condition (3.13) is automatically satisfied as discussed in Remark 3.5, there exists a matrix
Y k 2 Skewnk .R/ such that

��k
i
C K

N

nkX
lD1
l¤i

ykil D ��k
j
C K

N

nkX
lD1
l¤j

ykjl DW b�k (3.23)
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for any i; j 2 ¹1; : : : ; nkº. Consider the system of � differential equations

P#k D bH k.#1; : : : ; #k/ WD b�k C K

N

�X
mD1
m¤k

nmh.#m � #k/ (3.24)

for k D 1; : : : ; �, with initial data

.#1.t
�/; : : : ; #�.t�// D .���1 ; : : : ; ���� /: (3.25)

Since the initial datum is a non-collision state in a lower-dimensional space R� of phase
configurations, there exists a unique classical solution to the problem that is defined in a
maximal existence interval Œt�; t��/ and such that if t�� <1, then .#1; : : : ;#�/ converges
to a new collision state by Lemma 3.7 (merging of clusters). The same result ensures that

Œ0; t�/ 3 t 7! .�1.t/; : : : ; �N .t//;

Œt�; t��/ 3 t 7! .#1.t/; : : : ; #�.t//;

belong toW 1;2..0; t�/;RN / andW 1;2..t�; t��/;R�/, respectively. Let us set the prolong-
ation of t 7! ‚.t/ in Œt�; t��/ in such a way that

��k
i
.t/ WD #k.t/; 8t 2 Œt�; t��/;

for every i 2 Ek and k D 1; : : : ; �. The two trajectories glue together in a W 1;2 way
and it is clear, by the definition of bH k in (3.24) and b�k in (3.23) along with the explicit
expression of the Filippov map in Proposition 3.4, that Œ0; t��/ 3 t 7! ‚.t/ becomes a
Filippov solution to (3.2) in Œ0; t��/.

Remark 3.6. The above procedure can be repeated as many times as needed after each
collision time of the corresponding classical solutions to the reduced systems (3.24)–
(3.25). Indeed, by Remark 3.5 the necessary condition (3.13) is automatically satisfied.
Since there can only be N � 1 collisions of oscillators with sticking, we may apply The-
orem 3.5 finitely many times to obtain global-in-time Filippov solutions to (3.2) in the
supercritical case. However, one may wonder whether this global-in-time continuation
procedure is unique or whether oscillators may also be allowed to split instantaneously
after a collision. Although answering the general question for any numberN of oscillators
and any collision state is really difficult, let us give a particular answer for N D 2:

P�1 D �1 C K

2
h.�2 � �1/; (3.26)

P�2 D �2 C K

2
h.�1 � �2/: (3.27)

Consider the relative phase � WD �2 � �1 and relative natural frequency � WD �2 ��1.
Then the associated dynamics of a classical solution is governed by the equation

P� D � �Kh.�/
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in the maximal interval of existence Œ0; t�/. According to Lemma 3.7, we infer that
t� D 1 if �.0/ D N� , whereas t� < 1 if �.0/ … ¹0; N�º. Here, N� stands for the unique
(unstable) equilibrium of the system (see Proposition 5.2). Without loss of generality, we
will fix the initial relative phase so that �.0/ 2 .0; N�/ (the other cases are similar). Thus,
we arrive at a collision of oscillators at t D t�, i.e., limt!t� �.t/ D 0.
(1) Assume for contradiction that there is another Filippov solution in Œt�; t��/ consisting

of two particles that instantaneously split again after t D t�. The split can arise in only
two different manners:
(a) (Sharp split) There exists a small " > 0 such that �.t/ ¤ 0 for every t 2

.t�; t� C "/. In that case, either �.t/ > 0 for all t 2 .t�; t� C "/, or �.t/ < 0

for all t 2 .t�; t� C "/.
(b) (Zeno split) There exist sequences ¹tnºn2N & t� and ¹snºn2N & t� such that

�.sn/ D 0 but �.tn/ ¤ 0, for every n 2 N. Recall Remark 3.4 for the left accu-
mulations of switches or Zeno behavior and see Figure 6.

Replacing t� by a suitable time, it is apparent that the second type of split at t�
guarantees the first one at a (possibly) later time. Let us focus on just the first case.
Looking at the profile of�� kh.�/ in Figure 5, we would then arrive at the following
conclusion: either P�.t/ < 0 and �.t/ > 0 for all t 2 .t�; t� C "/, or P�.t/ > 0 and
�.t/ < 0 for all t 2 .t�; t� C "/. In any case, we obtain a contradiction.

�3 �2 �1 1 2 3

�3

�2

�1

1

2

3

�

� �Kh.�/

Fig. 5. Profile of � �Kh.�/ for � D 0:25, K D 1 and ˛ D 0:75.

(2) Hence, the only choice for the oscillators after the collision state is to stick together.
Let us define the phase of the reduced system (see (3.23))b� WD �1 C y12 D �2 C y21;
where Y 2 Skew2.R/ is any matrix satisfying the necessary condition (3.13). Indeed,
there exists just one such matrix Y , with y12 D �y21 D .�2 ��1/=2. Then b� D
.�1 C�2/=2 and the reduced system (3.24) looks like

P# D b�; t 2 Œt�;1/:
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0:2 0:4 0:6 0:8 1

0:5

1

1:5

2

t

�.t/
�.t/

Fig. 6. Left-Zeno behavior in the relative phase �.t/ D �2.t/ � �1.t/ of two oscillators.

Consequently, the only Filippov solution to (3.2) evolves through (3.26)–(3.27) up to
the collision time t�. Afterwards, both oscillators stick together and they move with
constant frequency equal to the average natural frequency.

For general N , it is not clear whether (b) in the above first item can be reduced to (a) in a
similar way. Namely, we cannot guarantee that along the whole time interval .t�; t� C "/
all the subclusters splitting from the given cluster remain a positive distance apart or they
actually merge and split instantaneously with eventual switches of collision type in a
similar way to Figure 6 in Zeno behavior. Also, studying the higher-dimensional phase
portrait in the same spirit as we have done for N D 2 is not easy and we shall address it
in future work.

4. Rigorous limit towards singular weights

In the previous section, we studied the existence and one-sided uniqueness of abso-
lutely continuous solutions to the singular weighted first order Kuramoto model in all
the subcritical, critical and supercritical cases. Because of the continuity of the kernel
for ˛ 2 .0; 1=2/, we can show that in that case the solutions are indeed C 1, although
we can say the same neither for the critical case ˛ D 1=2 nor for the supercritical case
˛ 2 .1=2; 1/. Also, these results do not necessarily provide any extra regularity of the
frequencies !i D P�i for an augmented second order model to make sense.

Let us recall that in Subsection 2.2, the singular Kuramoto model was formally
obtained as the singular "! 0 limit of the scaled regular model (2.5)–(2.6). Notice that
if we rigorously proved the "! 0 limit, we would achieve an alternative existence result
for the singular models. In this section, we shall inspect to what extent this idea works
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and how many exponents we can obtain with that technique. In particular, we will recover
the existence results of Section 3. Indeed, this technique will yield a gain of piecewise
W 1;1 regularity of the frequencies !i in the subcritical case and will provide an equation
for them in a weak sense that will be discussed and related to similar models in Subsec-
tion 4.4. However, this idea fails for the more singular cases, where the compactness of
frequencies is very weak. While the singular limit for the subcritical case is straightfor-
ward, we need new ideas to deal with the limiting set-valued Filippov map in the critical
and supercritical cases along with the loss of strong compactness of the frequencies in
those cases.

4.1. Limit in the subcritical case and augmented flocking model

The following result provides a list of a priori estimates for the global-in-time classical
solutions of the regularized system (2.5)–(2.6), for any " > 0:

Lemma 4.1. Let‚0 D .�1;0; : : : ; �N;0/ 2RN be any initial data and consider the unique
global-in-time classical solution ‚" D .�"1 ; : : : ; �"N / to (2.5)–(2.6) in the subcritical case
˛ 2 .0; 1=2/, for every " > 0. Then there exists a non-negative constant C such that

k P‚"kC0;1�2˛.Œ0;1/;RN / � C; k‚"kC1;1�2˛.Œ0;T �;RN / � j‚0j C CT;
for all T > 0 and " > 0. As a consequence, there exists a subsequence of ¹‚"º">0,
denoted in the same way for simplicity, and ‚ 2 C 1.Œ0;1/; RN / such that P‚ 2
C 0;1�2˛.Œ0;1/;RN /, ‚ satisfies the same estimates as above and

¹‚"º">0 ! ‚ in C 1.Œ0; T �;RN /

for every T > 0.

Proof. All the properties follow directly from the first one along with the Ascoli–Arzelà
theorem. Recall that there is a constant M > 0 such that

jh".�/j �M and jh".�1/ � h".�2/j �M j�1 � �2j1�2˛o

for all �; �1; �2 2 R and all " > 0. Thus, the first property is also a straightforward con-
sequence of the uniform-in-" boundedness and Hölder-continuity of the kernel.

The following result holds true as a clear consequence of the uniform equicontinuity
of the sequence h" along with the compactness of the sequence ¹‚"º">0.

Theorem 4.1. The limit function‚ of ¹‚"º">0 in Lemma 4.1 is a classical global-in-time
solution of the singular model (2.5)–(2.6) with " D 0 in the subcritical case ˛ 2 .0; 1=2/.

Notice that we have arrived at a construction of classical global-in-time solutions of
the singular problem with 0 < ˛ < 1=2 through two different techniques: Theorems 3.1
and 4.1. However, both techniques are actually closely related to each other, since origin-
ally, Filippov theory relies on a similar regularizing procedure. In what follows, we will
see that this procedure provides us with extra a priori estimates for the “accelerations”
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(derivatives of frequencies). Also, the procedure will allow us to derive a “piecewise weak
equation” for them. This is the rest of the content of this subsection.

Note that a necessary and sufficient condition for two oscillators �i and �j that collide
at some time to stick together is that �i D �j , by Theorem 3.2. In some sense, those
two oscillators are identified in a unique cluster with a bigger “mass”. Further, we can
quantify the times of “pure collisions” as follows. Starting with T0 D 0, we define

Tk WD inf ¹t > Tk�1 W 9i; j 2 Si .Tk�1/c such that N�i .t/ D N�j .t/º (4.1)

for every k 2 N. Recall the notation in Subsection 2.3, and see [37] for related nota-
tion in the discrete Cucker–Smale model with singular influence function. Then taking
derivatives in (2.5)–(2.6) we can obtain the split

R�"i D
K

N

X
j…Ci .Tk�1/

h0".�
"
j � �"i /. P�"j � P�"i /

C K

N

X
j2.CinSi /.Tk�1/

h0".�
"
j � �"i /. P�"j � P�"i /

C K

N

X
j2Si .Tk�1/

h0".�
"
j � �"i /. P�"j � P�"i /; (4.2)

where t 2 ŒTk�1; Tk/. The idea is to show that we can pass to the limit in the above
expressions in L1.ŒTk�1; � �/-weak, for every k 2N and every � 2 .Tk�1; Tk/. This is the
content of the next theorem. Before going on, let us discuss the possible scenarios for the
sequence ¹Tkºk2N and how we can cover the whole interval Œ0;1/ with them in any case
so that our dynamics can be reduced to each of them:

(1) It might happen that there exists k0 2 N such that Tk0C1 D 1 (then Tk D 1 for
every k > k0). This is the case when either all particles have stuck together in finite
time or after some finite time there is no more collision. In this case

Œ0;1/ D
[

0�k�k0�1
ŒTk ; TkC1/ [ ŒTk0 ;1/;

and there is no collision in any of these intervals.
(2) Also it might happen that the sequence ¹Tkºk2N is infinite and unbounded, Tk %1.

Then
Œ0;1/ D

[
k�0

ŒTk ; TkC1/;

and there is no collision in any of these intervals.
(3) Finally, it might also be the case that the sequence ¹Tkºk2N is infinite but bounded.

In that case, there exists T1 2 RC with right Zeno behavior, i.e. Tk % T1. Then
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a straightforward argument involving the mean value theorem shows that T1 is a
sticking point. Then we can split the dynamics up to time T1 through

Œ0; T1/ D
[
k�0

ŒTk ; Tk�1/:

Taking T1 as our initial time, we can repeat each of Steps 1, 2 and 3 above so that we
can globally recover the whole dynamics. Notice that since there can be just N � 1
times of sticking, there can be no more than N � 1 times like T1.

For simplicity of argument, we will assume that we are in case (2), although the same
results apply to any of the other cases. Before going to the heart of the result, let us
summarize some good properties of the kernel h0".

Lemma 4.2. Let ˛ 2 .0; 1=2/. Then the following properties hold true:

(1) Formula for the derivative:

h0".�/ D
1

."2 C cj� j2o/˛
�

cos � � 2˛c sin j� j0
j� j0

j� j20
"2 C cj� j2o

�
:

(2) Upper bound by an L1.T /-function:

jh0".�/j; jh0.�/j �M
1

j� j2˛o
:

(3) Strong L1.T / convergence:

h0" ! h0 in L1.T /:

(4) Weighted Hölder-continuity:

jh0".�1/ � h0".�2/j �M
j�1 � �2jˇo

min¹j�1jo; j�2joº

for any exponents ˇ;  2 .0; 1/ such that  D 2˛ C ˇ.

(5) Weighted L1.T / convergence:

jh0".�/ � h0.�/j �M
"1�2˛

j� jo
:

Proof. The first two results are straightforward and the third one is a clear consequence
of the dominated convergence theorem. The fourth property follows from an obvious
application of the mean value theorem and the fifth one is a standard property of mildly
singular kernels (one can show that M D ˛=ˇ) .

Theorem 4.2. For any initial datum ‚0 2 RN , let ‚" be the classical global-in-time
solution of (2.5)–(2.6) in the subcritical case ˛ 2 .0; 1=2/. Also, consider the limiting ‚
in Theorem 4.1 and the collision times ¹Tkºk2N in (4.1). Then:
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(1) For every i 2 ¹1; : : : ; N º and j … Ci .Tk�1/,

h0".�
"
j � �"i /! h0.�j � �i / as "! 0; in C.ŒTk�1; � �/:

(2) For every i 2 ¹1; : : : ; N º and j 2 Ci .Tk�1/ n Si .Tk�1/,
h0".�

"
j � �"i / * h0.�j � �i / as "! 0; in L1.ŒTk�1; � �/:

(3) For every i 2 ¹1; : : : ; N º and j 2 Si .Tk�1/,
d

dt
h".�

"
j � �"i /! 0 as "! 0; in W �1;1.ŒTk�1; � �/:

Proof. (1) Fix any i 2 ¹1; : : : ; N º and j … Ci .Tk�1/. There exists (by definition) some
positive constant ı0 D ı0.k; �/ < � such that

j�i .t/ � �j .t/jo � ı0 for all t 2 ŒTk�1; � �:
Then, by the uniform convergence in Lemma 4.1 there exists some "0 > 0 such that

j�"i .t/ � �"j .t/jo � ı0=2 for all t 2 ŒTk�1; � �; (4.3)

for every " 2 .0; "0/. Consequently, by crossing terms we have

jh0".�"j .t/ � �"i .t// � h0.�j .t/ � �i .t//j
� jh0".�"j .t/ � �"i .t// � h0.�"j .t/ � �"i .t//j C jh0.�"j .t/ � �"i .t// � h0.�j .t/ � �i .t//j

for every t 2 ŒTk�1; � �. Hence, both terms converge to zero uniformly in ŒTk�1; � � as
"! 0. This is due to (4.3), the third property in Lemma 4.2, the uniform continuity of h0
in compact sets away from 2�Z and the uniform convergence of the phases in Lemma 4.1.
This ends the proof of the first part.

(2) Now fix i 2 ¹1; : : : ; N º and j 2 Ci .Tk�1/ n Si .Tk�1/. Then

N�j .Tk�1/ D N�i .Tk�1/ but P�j .Tk�1/ ¤ P�i .Tk�1/:
Thus, it is clear that we again have j�j .t/ � �i .t/jo > 0 for t 2 Œ��; � � and for every
�� 2 .Tk�1; �/. This amounts to saying that the preceding argument again holds in Œ��; � �,
and consequently

h0".�
"
j � �"i /! h0.�j � �i / in C.Œ��; � �/

for every �� 2 .Tk�1; �/. Thus, we just need to prove the weak convergence in some
interval ŒTk�1; ���. Fix ��. Since P�j .Tk�1/ ¤ P�i .Tk�1/, we can assume without loss of
generality that

ı0 WD P�j .Tk�1/ � P�i .Tk�1/ > 0:
By continuity of P�j and P�i , there exists some small �� 2 .Tk�1; �/ such that

P�i .t/ � P�j .t/ � ı0=2 for all t 2 ŒTk�1; ���: (4.4)
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Then, by the uniform convergence of the frequencies (see Lemma 4.1), we can take a
small enough "0 > 0 such that if " 2 .0; "0/ then

P�"i .t/ � P�"j .t/ � ı0=4 for all t 2 ŒTk�1; ���: (4.5)

In particular, we have well defined inverses of �j � �i and �"j � �"i in ŒTk�1; ��� for every
" 2 .0; "0/. Indeed, the inverse function theorem states that

..�j � �i /�1/0 D 1

. P�j � P�i / ı .�j � �i /�1
; (4.6)

and a similar statement holds for �"j � �"i . In order to show the weak convergence in
L1.ŒTk�1; ���/, we equivalently claim that the following assertions are true:
(a) Uniform-in-" L1 bound of h0".�"j � �"i / and h.�j � �i / in ŒTk�1; ���: there exists a

constant M > 0 such that

kh0".�"j � �"i /kL1.ŒTk�1;���/; kh0.�j � �i /kL1.ŒTk�1;���/ �M
for every " 2 .0; "0/.

(b) Convergence of the mean values over finite intervals:

lim
"!0

Z ���

Tk�1

.h0".�
"
j .t/ � �"i .t// � h0.�j .t/ � �i .t/// dt D 0

for every ��� 2 .Tk�1; ��/.
Let us prove this claim. Regarding (a), we just focus on h0".�"j � �"i / (the other case is
similar). By a simple change of variables � D .�"j � �"i /.t/ and (4.5)–(4.6),Z ���

Tk�1

jh0".�"j .t/ � �"i .t//j dt D
Z �"

j
.���/��"

i
.���/

�"
j
.Tk�1/��"i .Tk�1/

jh0".�/j d�
. P�"j � P�"i /..�"j � �"i /�1.�//

� kh0"kL1.T/
4

ı0
:

Then (a) follows from Lemma 4.2(2).
Regarding (b), we splitZ ���

Tk�1

.h0".�
"
j � �"i / � h0.�j � �i // dt D I" C II";

where

I" WD
Z ���

Tk�1

.h0".�
"
j � �"i / � h0.�"j � �"i // dt;

II" WD
Z ���

Tk�1

.h0.�"j � �"i / � h0.�j � �i // dt:
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The same change of variables as above allows us to rewrite I" in the following way:

I" D
Z �"

j
.���/��"

i
.���/

�"
j
.Tk�1/��"i .Tk�1/

.h0".�/ � h0.�//
d�

. P�"j � P�"i /..�"j � �"i /�1.�//
:

Then estimate (4.5) along with the strong L1.T / convergence of the kernels in
Lemma 4.2(3) shows that I" vanishes when "! 0:

jI"j � 4

ı0

Z �"
j
.���/��"

i
.���/

�"
j
.Tk�1/��"i .Tk�1/

jh0".�/ � h0.�/j d�

D 4

ı0
kh0".�/ � h0.�/kL1.T/ ! 0 as "! 0:

For the term II", we use Lemma 4.2(4) to show

jII"j �M
Z ���

Tk�1

j.�"j � �j / � .�"i � �i /jˇo
min¹j�"j � �"i jo; j�j � �i joº

dt

� 2ˇMk‚" �‚kˇ
C.ŒTk�1;�

���;RN /

Z ���

Tk�1

1

min¹j�"j � �"i jo; j�j � �i joº
dt

� 2ˇMk‚" �‚kˇ
C.ŒTk�1;�

���;RN /

Z ���

Tk�1

max
²

1

j�"j � �"i jo
;

1

j�j � �i jo

³
dt

� 2ˇMk‚" �‚kˇ
C.ŒTk�1;�

���;RN /

Z ���

Tk�1

�
1

j�"j � �"i jo
C 1

j�j � �i jo

�
dt:

Then, a new change of variables along with the equations (4.5)–(4.6) and the local
integrability in one dimension of an inverse power of order  entail the existence of a
non-negative constant C that does not depend on " such that

jII"j � Ck‚" �‚kC.ŒTk�1;����;RN /:
Now (2) follows from the uniform convergence of the phases in Lemma 4.1.

(3) Consider i 2 ¹1; : : : ; N º and j 2 Si .Tk�1/. By the uniqueness in Theorem 3.1,
we can ensure that �j .t/ D �i .t/ for all t � Tk�1. Then the uniform convergence of the
kernels h" along with the uniform convergence of the phases in Lemma 4.1 shows that

h".�
"
j � �"i /! 0 in C.ŒTk�1; � �/;

and hence the result holds true by definition of the norm in W �1;1.ŒTk�1; � �/.

Remark 4.1. The preceding results show that the unique global-in-time solution ‚ to
the problem (3.2), with ˛ 2 .0; 1=2/, which we constructed in Theorem 3.1, satisfies
�i 2 C 1;1�2˛.Œ0;1/;RN / and the frequencies P�i exhibit higher regularity. Indeed, they
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are piecewise W 1;1 in the sense that P�i 2 W 1;1.ŒTk�1; � �/ for every k 2 N and every
� 2 .Tk�1; Tk/. In addition, they satisfy the following equation in the weak sense:

R�i D K

N

X
j…S.i/.Tk�1/

h0.�j � �i /. P�j � P�i / (4.7)

in ŒTk�1; � �. Throughout the proof of the above result we have just used the local integ-
rability in one dimension of any inverse power of order smaller than 1. However, one
might have tried to use the fact that such inverse powers actually belong to Lploc in order
to show that in Step 2 the convergence takes place inLp.ŒTk�1; � �/-weak for any 1� p <
1=.2˛/. In this way, the gain of regularity is in reality higher, namely P�i 2W 1;p.ŒTk�1; � �/
for every 1 � p < 1=.2˛/.

In the following, we shall discuss the corresponding singular limit in the critical and
supercritical cases. Since the Filippov set-valued map is relatively simpler in the latter
case, we will start from it. Later, we will adapt the ideas therein to show a parallel result
in the critical regime.

4.2. Limit in the supercritical case

Using vector notation similar to that in (2.3) for the singular weighted model, our regu-
larized system (2.5)–(2.6) can be restated as² P‚" D H ".‚"/;

‚".0/ D ‚0;
where the components of the vector field H " read

H "
i .‚/ D �i C

K

N

X
j¤i

h".�j � �i /

for every ‚ 2 RN and every i 2 ¹1; : : : ; N º. Then one can mimic the ideas in Section 2
to show that the regularized system can also be written as a gradient flow² P‚" D �rV ".‚"/;

‚".0/ D ‚0; (4.8)

where the regularized potential now reads

V ".‚/ WD �
NX
iD1

�i�i C V "int.‚/ WD �
NX
iD1

�i�i C K

2N

X
i¤j

W".�i � �j / (4.9)

for every ‚ 2 RN . Again, W" is the antiderivative of h" such that W".0/ D 0, i.e.,

W".�/ WD
Z �

0

h".�
0/ d� 0:

Also, it is clear that in the supercritical case, W" � 0 for every " > 0. Thus, the following
result holds true.
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Lemma 4.3. In the supercritical case ˛ 2 .1=2; 1/, let ‚" be the unique global-in-time
classical solution to the regularized system (4.8). Then

1

2

Z t

0

j P‚".s/j2 ds � C 2�
2
t C Vint.‚0/

for every t > 0 and every " > 0, where C� WD .
PN
iD1�2i /1=2.

The above result shows that ¹‚"º">0 is bounded in H 1..0; T /;RN / for every T > 0.
Hence, there exists a subsequence (not relabeled) such that ¹‚"º">0 weakly converges to
some‚ 2H 1

loc..0;1/;RN / inH 1..0;T /;RN / for every T > 0. The Sobolev embedding
and the definition of weak convergence ensure that

‚" ! ‚ in C.Œ0; T �;RN /; P‚" * P‚ in L2..0; T /;RN /;

for every T > 0. Before we obtain the desired convergence of (4.8) towards a Filippov
solution, let us introduce the following split of the frequencies:

P‚".t/ D x".t/C y".t/; (4.10)

where, componentwise, each term reads as follows:

x"i .t/ D
K

N

X
j…Ci .t/

.h".�
"
j .t/ � �"i .t// � h.�j .t/ � �i .t///;

y"i .t/ D
K

N

X
j…Ci .t/

h.�j .t/ � �i .t//C K

N

X
j2Ci .t/

h".�
"
j .t/ � �"i .t//:

Then it is clear by definition that

x" ! 0 in C.Œ0; T �;RN /; y" * P‚ in L2..0; T /;RN /;

for every T > 0, and y".t/ 2 H .‚.t// for every t � 0. As a consequence, ‚" becomes a
Filippov approximate solution in the following sense:

P‚".t/ 2 H .‚.t//C x".t/: (4.11)

Remark 4.2. Recall that H .‚.t// is a closed set for every t � 0 (see Proposition 3.2).
Consequently, in order to prove that the limiting ‚.t/ yields a Filippov solution, it would
be enough to show the almost everywhere convergence of the sequence ¹ P‚"º">0 to P‚.
Unfortunately, it is well known that weak convergence in L2 is not enough for that pur-
pose. Hence, we must deal only with that weak convergence.

Before going to the heart of the matter, we need to exhibit another characterization of
the Filippov set-valued map in terms of implicit equations. The next technical lemma will
be used for that. For the proof, see Lemma B.1 of Appendix B.

Lemma 4.4. Let n 2 N and x 2 Rn. Then the following assertions are equivalent:
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(1) There exists Y 2 Skewn.R/ such that

x D Y � j:
(2) The following implicit equation holds true:

x � j D 0;
where j stands for the vector of ones.

Hence, we are ready to obtain the above-mentioned characterization.

Proposition 4.1. In the supercritical regime ˛ > 1=2, the value H .‚/ of the Filippov
set-valued map associated with H is the affine subspace of dimension N � � of points
.!1; : : : ; !N / 2 RN obeying the following implicit equations .recall Subsection 2.3/:

1

nk

X
i2Ek

!i D 1

nk

X
i2Ek

�
�i C K

N

X
j…Ci

h.�j � �i /
�

(4.12)

for every k D 1; : : : ; �:
Proof. By Proposition 3.4, H .‚/ is the set of .!1; : : : ; !N / 2 RN such that for every
k D 1; : : : ; � there exist Y k 2 Skewnk .R/ and a bijection �k W ¹1; : : : ; nkº ! Ek such
that

!�k
i
D ��k

i
C K

N

�X
mD1
m¤k

nmh.��m � ��k /C
K

N

nkX
jD1

ykij

for every i D 1; : : : ; nk . Then the result follows by applying Lemma 4.4 to each of the
above sets of nk equations to the vectors xk 2 Rnk.‚/ with components

xki WD !�k
i
���k

i
� K
N

�X
mD1
m¤k

nmh.��m � ��k /; i D 1; : : : ; nk ;

when we equivalently restate it using the notation of Subsection 2.3.

Remark 4.3. Here we discuss why the same approach as in Subsection 4.1 to decompose
the dynamics for ˛ 2 Œ1=2; 1/ into subintervals .Tk ; TkC1/ of the same collisional type
cannot be taken:

(1) Recall that in the subcritical case ˛ 2 .0; 1=2/ in Subsection 4.1, any strong limit ‚
already yielded a solution to the limiting system (3.2). Indeed, there can be just one
such strong limit by the one-sided uniqueness of the limiting system (3.2). Also, in
that case one can find a nice split of the dynamics into a sequence of intervals where
no collision happens. Thus, on every such interval, the kind of collisional state of our
trajectory remains unchanged. Let us remember that the reason why that sequence
fills the whole half-line in the subcritical case relies on the following facts: first, by
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uniqueness we can characterize the sticking of oscillators and once they stick during
some time they remain stuck for all time. In particular, only N � 1 sticking times
can exist. Second, when an accumulation of collisions takes place, it has to be at a
sticking time. Hence, there can be just N � 1 such accumulations of collisions, thus
covering the whole half-line.

(2) Unfortunately, for ˛ 2 .1=2; 1/ or ˛ 2 1=2 we still do not know at this point whether
any limit ‚ becomes a Filippov solution to the limiting system (3.2). Thus, despite
the fact that we have clear characterizations of sticking of such solutions, we cannot
apply them to any such limit ‚. In addition, the behavior of any H 1 weak limit can
be very wild. Specifically, a possible scenario of an H 1

loc trajectory is that sticking
might happen just for a short period of time, after which the cluster detaches. Also,
“pure collisions” might accumulate at a non-sticking time exhibiting Zeno behavior
(recall Remark 3.4 and Figure 6). Therefore, a split of the dynamics into countably
many intervals .Tk ; TkC1/ as in Subsection 4.1, where the collisional state remains
unmodified, is not viable.

As discussed in the above remark, it is not clear how to achieve a split of the dynamics
into countably many time intervals covering the whole half-line, each of them exhibit-
ing unvaried collisional state. Hence we need a new approach, where the above explicit
H-representation of the Filippov set-valued map at any collision state will play a role.
One of our main tools will be the Kuratowski–Ryll-Nardzewski measurable selection the-
orem [30], which applies to set-valued Effros-measurable maps. For completeness we
include the statement of that result, adapted to a finite-dimensional setting.

Lemma 4.5 (Kuratowski–Ryll-Nardzewski). For any n;m 2 N, consider any set-valued
map F W Rn! 2Rm with non-empty and closed values. Assume that F is Effros-measur-
able, that is, for every open set U � Rm, the set

¹x 2 Rn W F .x/ \ U ¤ ;º:
is measurable. Then F has a measurable selection, i.e., there exists a measurable function
F W Rn ! Rm such that

F.x/ 2 F .x/; a.e. x 2 Rn:

Sometimes, it is helpful to control how many of these single-valued measurable selec-
tions of the Effros-measurable set-valued map are needed in order to essentially have the
whole set-valued map “represented” in some sense. This is the content of an intimately
related result: the Castaing representation theorem [13, Theorem III.30].

Lemma 4.6 (Castaing). For any n;m 2 N, consider any set-valued map F W Rn! 2Rm

with non-empty and closed values. Assume that F is Effros-measurable. Then F has
a Castaing representation, i.e., there exists a sequence ¹F nºn2N of measurable maps
F n W Rn ! Rm such that

F .x/ D ¹F n.x/ W n 2 Nº; a.e. x 2 Rn:
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These results will be directly applied to the critical case in Subsection 4.3. How-
ever, for the supercritical case, we will need a refinement of the above theorem to allow
for integrable representations of the set-valued map. The Effros-measurability has to be
improved to some integrability condition for set-valued maps.

Lemma 4.7. For any n;m 2 N, consider any set-valued map F W Rn ! 2Rm with non-
empty and closed values. Assume that F is Effros-measurable and strongly integrable,
that is, the single-valued map jF j is integrable, where

jF j.x/ WD sup¹jyj W y 2 F .x/º; a.e. x 2 Rn:

Then every measurable selection of F is integrable. In particular, F enjoys a Castaing
representation consisting of integrable selections.

Proof. Take any measurable selection F of F , which exists by Lemma 4.5. Then, by
definition of jF j,

jF.x/j � jF j.x/; a.e. x 2 Rn:

Since jF j is integrable, the first part of the result holds true. The second one is a simple
consequence of the first one along with Lemma 4.6.

Remark 4.4. The same ideas as in Lemma 4.7 also yield similar statements for the spaces
L1loc.R

n/ and L1.Rn/:
(1) If F is locally strongly integrable, i.e., jF j 2 L1loc.R

n/, then every measurable selec-
tion belongs to L1loc.R

n/.
(2) If F is strongly essentially bounded, i.e., jF j 2L1.Rn/, then each measurable selec-

tion belongs to L1.Rn/.

Theorem 4.3. Consider the classical solutions ¹‚"º">0 to the regularized system (4.8)
with ˛ 2 .1=2; 1/ and any weak H 1

loc limit ‚. Then

P‚.t/ 2 H .‚.t//; a.e. t � 0:
Proof. � Step 1: H -representation of the Filippov map. By Proposition 4.1,

H .‚.t// D
�.t/\
lD1

Pl .t/; (4.13)

where
Pl .t/ WD ¹x 2 RN W al .t/ � x D bl .t/º

with

al .t/ WD
1

nl .t/

X
i2El .t/

ei ; bl .t/ WD
1

nl .t/

X
i2El .t/

�
�i C K

N

X
j…Ci .t/

h.�j � �i /
�
:
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� Step 2: Castaing representation of coefficients. Define A WRC0 !2RN and B WRC0 !2R

by

A.t/ WD ¹al .t/ W l D 1; : : : ; �.t/º and B.t/ WD ¹bl .t/ W l D 1; : : : ; �.t/º:
It is clear that both maps take closed non-empty values and they are Effros-measurable.
Thus, Lemma 4.6 yields their Castaing representations. On the one hand, A is strongly
essentially bounded (see Remark 4.4), so there exists a sequence ¹Anºn2N � L1.0;1/
such that

A.t/ D ¹An.t/ W n 2 Nº
for almost every t � 0. By the finiteness of A.t/ we equivalently have

¹al .t/ W l D 1; : : : ; �.t/º D ¹An.t/ W n 2 Nº; (4.14)

for almost every t � 0. However, it is not clear whether B is strongly locally integrable
since we expect possible switches of the collisional type of the limiting ‚.t/, thus on the
coefficients bl .t/.

� Step 3: Strong local integrability of B. Let us show that the above wild behavior still
does not prevent us from achieving our goal. Consider the regularized coefficients

b"l .t/ WD
1

nl .t/

X
i2El .t/

�
�i C K

N

X
j…Ci .t/

h".�
"
j � �"i /

�
; l D 1; : : : ; �.t/:

We can define a similar set-valued map B" W RC0 ! 2R by

B".t/ D ¹b"l .t/ W l D 1; : : : ; �.t/º:
By definition it is clear that

lim
"!0 b

"
l .t/ D bl .t/

for every l D 1; : : : ; �.t/ since j … Ci .t/ in the definitions and, at those �j .t/ � �i .t/,
the limiting kernel h is continuous. Since both B.t/ and B".t/ consist of finitely many
terms, we deduce that

jB".t/j ! jB.t/j; a.e. t 2 RC0 : (4.15)

Then Fatou’s lemma on any finite time interval Œ0; T � � RC0 with T > 0 entailsZ T

0

jBj.t/ dt � lim inf
"!0

Z T

0

jB"j.t/ dt: (4.16)

By definition, it is clear that

P‚".t/ � al .t/ D
1

nl .t/

X
i2El .t/

�
�i C K

N

NX
jD1

h".�
"
j � �"i /

�
D b"l .t/;
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where we have canceled the terms with j 2 El .t/ in the last step by the antisymmetry
of h". Hence, our set-valued maps are strongly dominated as follows:

jB"j.t/ � j P‚".t/j; a.e. t � 0: (4.17)

Putting (4.17) into (4.16) we obtainZ T

0

jBj.t/ dt D
Z T

0

lim inf
"!0 jB

"j.t/ dt

� lim inf
"!0

Z T

0

j P‚".t/j dt

� T 1=2 lim inf
"!0

�Z T

0

j P‚".t/j2 dt
�1=2

� T 1=2.C 2�T C 2Vint.‚0//
1=2 <1:

Here, we have used the Cauchy–Schwarz inequality in the second step and the a priori
bound of Lemma 4.3 in the last one. Then Remark 4.4 yields the existence of a Castaing
representation ¹Bnºn2N � L1loc.0;1/ of the map B. Again, we conclude that

¹bl .t/ W l D 1; : : : ; �.t/º D ¹Bn.t/ W n 2 Nº (4.18)

for almost every t � 0.

� Step 4: Conclusion. Since y".t/ 2 H .‚.t// for every " > 0 and every t � 0, the
H-representation (4.13) along with the essentially bounded and locally integrable rep-
resentations (4.14) and (4.18) yield

An.t/ � y".t/ D Bn.t/; n 2 N;

for almost every t � 0. In particular,Z 1
0

An.t/ � y".t/ '.t/ dt D
Z 1
0

Bn.t/'.t/ dt

for every " > 0, each ' 2 Cc.RC/ and any n 2 N. Notice that the boundedness and local
integrability of our selectors ensures that such expressions make sense. We can now use
the weak L2 convergence of y" towards P‚ to obtainZ 1

0

An.t/ � P‚.t/'.t/ dt D
Z 1
0

Bn.t/'.t/ dt

for every ' 2 Cc.RC/ and each n 2 N. The fundamental lemma of calculus of variations
along with the Castaing representations in (4.14) and (4.18) and the H-representation in
(4.13) allow us to deduce the desired result.
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4.3. Limit in the critical case

In this subsection, we will address the singular limit of the regularized system (2.5)–
(2.6) towards a Filippov solution to (3.2) in the critical regime ˛ D 1=2. We will mostly
apply a similar approach to that in the supercritical regime. Nevertheless, there are several
novelties. First, we will show that we actually enjoy a betterW 1;1 a priori estimate, apart
from the above H 1 bound of Lemma 4.3. Second, the explicit expression of the Filippov
map in Proposition 4.1 in terms of the intersection of hyperplanes will be adapted to this
case.

Lemma 4.8. In the critical regime ˛ D 1=2, let ‚" be the unique global-in-time solution
to the regularized system (4.8). Then

k P‚"kL1..0;1/;RN / � C� CK

for every " > 0, where C� WD .
PN
iD1�2i /1=2.

We omit the proof since it is a clear consequence of the boundedness of h in the
critical case. As a consequence of Lemma 4.8, we infer the existence of a subsequence
of ¹‚"º">0 (not relabeled) that weak-* converges to some ‚ 2 W 1;1

loc ..0;1/;RN / in
W 1;1..0; T /;RN / for every T > 0. In particular,

‚" ! ‚ in C.Œ0; T �;RN /; P‚" �* P‚ in L1..0; T /;RN /;

for every T > 0. In addition, the same split as in (4.10) can be considered and we obtain

x" ! 0 in C.Œ0; T �;RN /; y"
�
* P‚ in L1..0; T /;RN /;

and y".t/ 2H .‚.t// for every t � 0 and " > 0. Hence,‚" becomes an approximate solu-
tion in the same sense as in (4.11). What is more, the same Remark 4.2 is in force. Thus,
again we cannot ensure pointwise convergence of P‚". In order to obtain an analogous
characterization of the Filippov map, we will need the next technical lemma.

Lemma 4.9. For any n 2 N and x 2 Rn, the following two assertions are equivalent:

(1) There exists Y 2 Skewn.Œ�1; 1�/ such that

x D Y � j:
(2) We have

1

k

kX
iD1

x�i 2 Œ�.n � k/; .n � k/�

for every permutation � of ¹1; : : : ; nº and any k 2 N.

For easier readability, we postpone the proof to Appendix B. The following result a
straightforward consequence of Lemma 4.9 along with the explicit formula in Proposi-
tion 3.2.
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Proposition 4.2. In the critical regime ˛ D 1=2, the value H .‚/ of the Filippov
set-valued map associated with H is the compact and convex polytope of points
.!1; : : : ; !N / 2 RN whose H-representations consist of the affine inequalities .recall
Subsection 2.3/

1

m

X
i2I

!i 2 1
m

X
i2I

�
�i C K

N

X
j…Ci

h.�j � �i /
�
C
�
�K
N
.nk �m/;

K

N
.nk �m/

�
.4:19/

for every k D 1; : : : ; � and I � Ek with #I D m.

Now we turn to the main result, i.e., the convergence of the singular limit to a Filippov
solution of the critical system.

Theorem 4.4. Consider the classical solutions ¹‚"º">0 to the regularized system (4.8)
with ˛ D 1=2 and any weak-* limit ‚ in W 1;1

loc . Then

P‚.t/ 2 H .‚.t//; a.e. t � 0:
Proof. We mimic the proof of Theorem 4.3. Recall that by Proposition 4.2, an analogous
H-representation to that in (4.13) holds. Specifically,

H .‚.t// D
�.t/\
lD1

\
I�El

.�C
l;I
.t/ \ ��l;I .t//; (4.20)

where the half-spaces are

�C
l;I
.t/ WD ¹x 2 RN W al;I .t/ � x � bCl;I .t/º;

��l;I .t/ WD ¹x 2 RN W al;I .t/ � x � b�l;I .t/º;
for every I � El .t/. We set

al;I .t/ WD
1

m

X
i2I

ei ;

b˙l;I .t/ WD
1

m

X
i2I

�
�i C K

N

X
j…Ci .t/

h.�j .t/ � �i .t//
�
˙ K

N
.nl .t/ �m/;

where m D #I . Now, the coefficients are clearly uniformly bounded. A straightforward
application of Remark 4.4 leads to the existence of essentially bounded selectors for the
coefficients. Namely, we can give an ordering such that

¹al;I .t/ W l D 1; : : : ; �.t/; I � El .t/º D ¹An.t/ W n 2 Nº (4.21)

¹b˙l;I .t/ W l D 1; : : : ; �.t/; I � El .t/º D ¹B˙;n.t/ W n 2 Nº; (4.22)

for almost every t � 0. Recall that y".t/ 2 H .‚.t// for every " > 0 and every t � 0.
Then, by (4.20)–(4.22), we equivalently have

An.t/ � y".t/ � BC;n.t/ and An.t/ � y".t/ � B�;n.t/;
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for all n 2 N, each " > 0 and almost every t � 0. In particular,Z 1
0

An.t/ � y".t/ '.t/ dt �
Z 1
0

BC;n dt;Z 1
0

An.t/ � y".t/ '.t/ dt �
Z 1
0

B�;n dt;

for all n 2 N, each " > 0 and any non-negative ' 2 Cc.RC/. Then, using the weak-* L1
convergence we obtain Z 1

0

An.t/ � P‚.t/ '.t/ dt �
Z 1
0

BC;n dt;Z 1
0

An.t/ � P‚.t/ '.t/ dt �
Z 1
0

B�;n dt;

for all n 2 N and any non-negative ' 2 Cc.RC/. Hence, the result follows from the
fundamental lemma of calculus of variations along with the Castaing representations
(4.21)–(4.22) and the H-representation (4.20).

4.4. Comparison with previous results about singular weighted systems

We have studied the existence and one-sided uniqueness for the singular weighted first
order Kuramoto model in all the subcritical, critical and supercritical regimes. We now
compare our result with previous research on the singular weighted Cucker–Smale model,
which is a second order system describing the flocking behavior of interacting particles. In
Section 2, the first order Kuramoto model (2.1) was shown to be equivalent to its second
order augmentation (2.4). On the one hand, this is clear for regular weights as studied in
Theorem 2.1 (see [16, 22]). What is more, it remains true in our case, which is character-
ized by singular weights. However, we must be specially careful with time regularity in
order for such heuristic arguments to become true. Let us focus on the subcritical regime,
where the rigorous equivalence between (2.1) and (2.4) follows from Remark 3.6 by virtue
of the one-sided uniqueness in both models. Indeed, in the subcritical case, the “influence
function” of the augmented flocking-type model reads

h0.�/ D 1

j� j2˛o

�
cos � � 2˛ sin j� jo

j� jo

�
� 1 � 2˛
j� j2˛o

near � 2 2�Z; (4.23)

which enjoys mild singularities of order 2˛ < 1 in the subcritical case. The singular
second order model (2.4), (4.23) shares some similarities with the Cucker–Smale model
with singular weights, 8̂̂<̂

:̂
Pxi D vi ;

Pvi D K

N

NX
jD1

 .jxj � xi j/.vj � vi /;
(4.24)
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where the communication weight  is given by

 .r/ WD 1

rˇ
(4.25)

for r > 0 and ˇ > 0. Although some results regarding the asymptotic behavior of that
system have been established [20], its well-posedness has not been addressed until very
recently in [36,37] for the microscopic model and [9,33,39,43] for some first and second
order kinetic and macroscopic versions of the model. Regarding the microscopic system
(4.24)–(4.25), the existence of globalC 1 piecewise weakW 2;1 solutions .x1; : : : ;xN / has
been established in [36] for ˇ 2 .0; 1/, which corresponds to ˛ 2 .0; 1=2/ in our setting
(see Theorem 3.1, Theorem 4.1 and Remark 4.1). Also, in the weakly singular regime ˇ 2
.0; 1=2/ (i.e., ˛ 2 .0; 1=4/), the same author proved in [37] that the velocities .v1; : : : ; vN /
are indeed absolutely continuous. Consequently, the C 1 weak solutions .x1; : : : ; xN / are
actually W 2;1

loc in that case. This property was proved through a differential inequality.
The method of proof is similar to ours in Section 4 and relies on a regularization pro-

cess of the second order model near the collision times. In our case, we have obtained a
similar regularization process of the first order model, entailing the corresponding regu-
larization of the augmented second order model. Indeed, the method has not only proved
successful in the subcritical case, but also in the critical and supercritical cases. Also,
we have obtained the well-posedness results in an alternative way based on the gain of
continuity of the kernel in the first order model along with its particular structure near
the points of loss of Lipschitz-continuity. Indeed, we have succeeded in introducing an
analogous well-posedness theory in Filippov sense for the endpoint case ˛ D 1=2 and the
supercritical case ˛ > 1=2.

Regarding the more singular cases ˇ � 1 (i.e., ˛ � 1=2), one can show that there
exists some class of initial data for (4.24)–(4.25) such that one can avoid collisions and the
solutions remain smooth for all time. Indeed, such solutions exhibit asymptotic flocking
dynamics [2]. Very recently, it was shown in [10] that the loss of integrability of the kernel
when ˇ � 1 actually ensures the avoidance of collisions for general initial data. In that
regime, the asymptotic flocking behavior is not guaranteed for any initial data. However,
the ideas for (4.24)–(4.25) fail in our model (2.4)–(4.23) because the kernel h0 with ˛ �
1=2 no longer behaves like the communication weight  with ˇ � 1. Specifically,  
is always a positive and decreasing function whereas h0 is negative and increasing (see
Figure 7). Thus, we expect our solutions to exhibit finite time collisions as shown in the
results of Section 5. This is the reason for the generalized theory in Filippov’s sense to
come into play in the critical and supercritical cases.

5. Synchronization of the singular weighted system

We now analyze the collective behavior in the system (3.2). We first consider the system
of two interacting oscillators. Then we extend the argument to the N -oscillator system.
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�3 �2 �1 1 2 3

�3

�2

�1

1

2

3

�

h0.�/

(a) h0.�/

�3 �2 �1 1 2 3

�3

�2

�1

1

2

3

�

 .�/

(b)  .�/

Fig. 7. Comparison of the functions h0.�/ and  .�/ with ˛ D 0:75.

5.1. Two-oscillator case

In this part, we consider the dynamics of two oscillators. The system (3.1) for two oscil-
lators becomes

P�1 D �1 C K

2

sin.�2 � �1/
j�2 � �1j2˛o

; P�2 D �2 C K

2

sin.�1 � �2/
j�1 � �2j2˛o

: (5.1)

Recall that in the critical and supercritical cases we do expect collisions (see Subsections
3.2 an 3.3). The above representation of the system is only valid before the first collision.
After that time, the right hand side has to be replaced with the corresponding Filippov
set-valued map. At this step, we shall focus on the dynamics before the first collision. Let
us define the relative phase and the natural frequency by � WD �2 � �1 and� WD�2 ��1.
Then the system (5.1) can be rewritten as

P� D � �K sin �
j� j2˛o

: (5.2)

Proposition 5.1. Let � W Œ0; T /! R be a maximal classical solution to the differential
equation (5.2) with ˛ 2 .0; 1/ such that the oscillators are identical, i.e., � D 0, and
with initial datum 0 < j�0j < � . Then the maximal time of existence T lies in the interval
Œtmin; tmax�, where

tmin D j�0j
2˛

2K˛
and tmax D j�0j2˛C1

2K˛ sin j�0j
:

In addition, the lower and upper estimates

j�0j2˛ � 2K˛t � j� j2˛ � j�0j2˛ � 2K˛t sin j�0j
j�0j t

hold for all t 2 Œ0; T /, and limt!T �.t/ D 0. Hence, two identical oscillators confined to
the half-circle exhibit finite-time phase synchronization.
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Proof. First of all, in the identical case, � C 2�Z are equilibria of (5.2) where the inter-
action kernel is Lipschitz-continuous. Hence, the maximal solution � cannot touch such
values if started at �0. Therefore, �.t/ 2 .��; �/ for every t 2 Œ0; T /, and consequently
j�.t/jo D j�.t/j for t 2 Œ0; T /. Let us now multiply by .2˛C 1/j� j2˛sgn.�/ on both sides
to obtain

d

dt
j� j2˛C1 D .2˛ C 1/j� j2˛sgn.�/

d

dt
� D �K.2˛ C 1/ sin � sgn.�/

D �K.2˛ C 1/ sin j� j:
Denote y D j� j2˛C1; then the equation becomes

d

dt
y D �K.2˛ C 1/ siny

1
2˛C1 : (5.3)

We now consider upper and lower estimates for (5.3) separately.

� Lower estimate: Since jyj � sin jyj, we have

d

dt
y � �K.2˛ C 1/y 1

2˛C1 :

By multiplying by 2˛
2˛C1y

� 1
2˛C1 on both sides, we obtain

d

dt
y

2˛
2˛C1 � �2K˛:

This yields

y
2˛
2˛C1 � y

2˛
2˛C1

0 � 2K˛t:
Thus, we have a lower estimate

j� j2˛ � j�0j2˛ � 2K˛t for 0 � t < T:
In particular, the above lower estimate shows that

T � j�0j
2˛

2K˛
� tmin:

� Upper estimate: As long as 0 � y < �2˛C1, the solution y is non-increasing, i.e.,
d
dt
y � 0. Since the initial data �0 satisfies j�0j < � , we have y0 < �2˛C1, thus y.t/ � y0

for t > 0. Hence,

siny
1

2˛C1 � siny
1

2˛C1

0

y
1

2˛C1

0

y
1

2˛C1 : (5.4)

Applying (5.4) to (5.3), we find

d

dt
y � �K.2˛ C 1/ siny

1
2˛C1

0

y
1

2˛C1

0

y
1

2˛C1 :
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Multiplying by 2˛
2˛C1y

� 1
2˛C1 on both sides, we obtain

d

dt
y

2˛
2˛C1 � �2K˛ siny

1
2˛C1

0

y
1

2˛C1

0

;

which yields

y
2˛
2˛C1 � y

2˛
2˛C1

0 � 2K˛ siny
1

2˛C1

0

y
1

2˛C1

0

t:

This is equivalent to

j� j2˛ � j�0j2˛ � 2K˛ sin j�0j
j�0j

t for 0 � t < T:

Again, the upper estimate shows that

T � j�0j2˛C1
2K˛ sin j�0j

� tmax:

Assume that the oscillators are non-identical:�D�2 ��1 > 0, and the system (5.1)
has a phase-locked state . N�1; N�2/ satisfying 0 < N�2 � N�1 < � . Then the equation (5.2) has
an equilibrium N� D N�2 � N�1 2 .0; �/ such that

� �K sin N�
j N� j2˛o

D 0: (5.5)

To guarantee the existence of that equilibrium, we need the following conditions for the
coupling strength K:

if ˛ < 1=2; choose K � �=h;
if ˛ D 1=2; choose K > �;

where h WD max0<r<� h.r/. Note that the equilibrium exists for of ˛ > 1=2 without any
condition on K > 0. We now investigate the stabilities of the equilibria in each case.

Proposition 5.2. Let � be a solution of (5.2).
(1) For ˛ � 1=2, the equilibrium N� is unstable. Furthermore, if

�0 ¤ 0 and �0 ¤ N�;
then the solution � reaches 0 or 2� in finite time.

(2) For ˛ < 1=2, there are a stable equilibrium N� 2 .0; Q�/ and an unstable equilibrium
N�� 2 . Q�; �/, where Q� 2 .0; �=2/ is the solution to Q� D 2˛ tan Q� . Moreover, if �0 2
.�2� C N��; N��/, then the solution � converges to N� asymptotically.
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Proof. We linearize the equation (5.2) near N� as

P� D �kh0. N�/.� � N�/CR. N�/:
When ˛ � 1=2, we have h0. N�/ < 0 for � 2 .0; �/. Thus, the equilibrium N� is unstable.
For ˛ < 1=2, if the equilibrium N� is located in .0; Q�/, we have h0. N�/ > 0, i.e., it is stable.
By a similar argument, since h0. N��/ < 0, the equilibrium N�� located in . Q�; �/ is unstable.
We now investigate the convergence of the solution.

� Step 1: Critical and supercritical cases, ˛ � 1=2.

ı Case 1 (�0 > N� ): Since the function h is decreasing in .0; 2�/, we have h.�/ < h. N�/
for � 2 . N�; 2�/. Thus,

P� D � �Kh.�/ > � �Kh. N�/ D 0 for � 2 . N�; 2�/:
Moreover, due to the monotonic increase of � , we obtain the lower estimate for the fre-
quency:

P� D � �Kh.�/ > � �Kh.�0/ > 0 for � 2 . N�; 2�/:
Hence, there exists a finite time t1 < 2���0

��Kh.�0/ at which the solution converges to 2� .

ı Case 2 (�0 < N� ): We apply an analogous argument. Since h is decreasing, we deduce
h.�/ > h. N�/ for � 2 .0; N�/. Thus,

P� D � �Kh.�/ < � �Kh. N�/ D 0 for � 2 .0; N�/:
This monotonic decrease of the phase yields the upper estimate for the frequency:

P� D � �Kh.�/ < � �Kh.�0/ < 0 for � 2 .0; N�/:
So, there exists a finite time t2 < �0j��Kh.�0/j at which the solution converges to zero.

� Step 2: Subcritical case ˛ < 1=2. We consider two steps for the asymptotic convergence
to the equilibrium:

ı Step 2a: We first show the solution moves into the interval .0; Q�/ in finite time when
the initial datum �0 is in .�2� C N��; 0� [ Œ Q�; N��/. As long as the solution � is in Œ Q�; N��/,
we have h.�/ > h. N�/. Thus, the solution is non-increasing:

P� D � �Kh.�/ < � �Kh. N�/ D 0 for � 2 Œ Q�; N��/:
Moreover, the non-increase of solution �.t/ � �0 gives an upper bound on the frequency:

P� D � �Kh.�/ < � �Kh.�0/ < 0;

while � is in Œ Q�; N��/. So, there exists a finite time t3 WD �0�Q�j��Kh.�0/j such that the solution

satisfies �.t/ < Q� for t > t3. Analogously, if the initial datum �0 is in .�2� C N��; 0�, then
we have h.�/ < h. N�/, the solution is non-decreasing:

P� D � �Kh.�/ > � �Kh. N�/ D 0;
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and the frequency has a lower bound

P� D � �Kh.�/ > � �Kh.�0/ > 0;

as long as � 2 .�2� C N��; 0�. Thus, there exists a finite time t4 WD j�0j
j��Kh.�0/j such that

the solution satisfies �.t/ > 0 for t > t4.

ı Step 2b: We will show that the solution converges to the stable equilibrium N� asymp-
totically when the initial datum is in .0; Q�/. Suppose the initial datum is in .0; N�/. Then

h. N�/
N� � < h.�/ < h0. N�/.� � N�/C h. N�/:

Thus, the solution satisfies the differential inequality

� �K�h0. N�/.� � N�/C h. N�/� < P� < � � Kh. N�/N� �:

By Grönwall’s lemma, we obtain

N� � . N� � �0/e�kh0. N�/t < �.t/ < N� � . N� � �0/e�
Kh. N�/
N�

t
:

Similarly, if the initial datum �0 is in . N�; Q�/, the function h satisfies

h. Q�/ � h. N�/
Q� � N� .� � N�/C h. N�/ < h.�/ < h0. N�/.� � N�/C h. N�/:

Then we have the following differential inequality:

� �K�h0. N�/.� � N�/C h. N�/� < P� < � �K�h. Q�/ � h. N�/Q� � N� .� � N�/C h. N�/
�
:

Hence, by Grönwall’s lemma, we find

N� � .�0 � N�/e�Kh0. N�/t < �.t/ < N� � .�0 � N�/e�K
h. Q�/�h. N�/
Q�� N�

t
:

Remark 5.1. In the subcritical case ˛ 2 .0; 1=2/, for two non-identical oscillators
a phase-locked state emerges asymptotically (see Proposition 5.2), whereas for two
identical oscillators phase synchronization holds in finite time (see Proposition 5.1). How-
ever, in the critical and supercritical cases ˛ 2 Œ1=2; 1/, phase synchronization always
appears in finite time as shown in Propositions 5.2 and 5.1 as long as the initial phase
configuration does not agree with the unstable phase-locked state � . Namely, in the
supercritical case both oscillators stick together into a unique cluster moving at constant
frequency b�D .�1 C�2/=2, independently of the chosen natural frequencies. However,
in the critical case, the same only happens under the assumption j�1 ��2j � K. In the
other case, the resulting cluster will instantaneously split.
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5.2. N -oscillator case

In this subsection, we consider the system of N interacting oscillators. We will first focus
on the dynamics in the simpler subcritical case ˛ 2 .0; 1=2/, where solutions have been
proved to be classical (see Theorem 3.1). The reason to start with this case is that the right
hand side of (3.2) can then be considered in the single-valued sense. The dynamics in the
critical case ˛ D 1=2 and some intuition about the dynamics in the supercritical regime
˛ 2 .1=2; 1/ will be provided at the end of this subsection.

Let ‚ D .�1; : : : ; �N / be the solution to the system (3.2). We first study phase syn-
chronization for identical oscillators. Let the indices M and m satisfy

�M .t/ WD max ¹�1.t/; : : : ; �N .t/º and �m.t/ WD min ¹�1.t/; : : : ; �N .t/º; (5.6)

for each time t � 0. Then we can define the phase diameter to be

D.‚/ WD �M � �m: (5.7)

Theorem 5.1. Let‚D .�1; : : : ; �N / be the solution to (3.2) with ˛ 2 .0;1=2/ for identical
oscillators .�i D 0 for i D 1; : : : ;N /. Assume that the initial configuration‚0 is confined
to a half-circle, i.e., 0 < D.‚0/ < � . Then there is complete phase synchronization at a
finite time not larger than

Tc D D.‚0/
1�2˛

2˛Kh.D.‚0//
:

Proof. We consider the dynamics of the phase diameter:

d

dt
D.‚/ D K

N

NX
jD1

�
h.�j � �M / � h.�j � �m/

�
:

Since h.�j � �M / < 0 and h.�j � �m/ > 0 as long as D.‚/ < � , we have

d

dt
D.‚/ � 0 and D.‚.t// � D.‚0/ < � for t > 0:

Due to the contraction of phase, and the fact that .0; �/ 3 � 7! h.�/=� is decreasing, we
have

h.�j � �M / � h.D.‚0//

D.‚0/
.�j � �M / and h.�j � �m/ � h.D.‚0//

D.‚0/
.�j � �m/:

Thus, we obtain the following differential inequality:

d

dt
D.‚/ � K

N

NX
jD1

�
h.D.‚0//

D.‚0/
.�j � �M / � h.D.‚0//

D.‚0/
.�j � �m/

�

D K

N

h.D.‚0//

D.‚0/

NX
jD1

�
.�j � �M / � .�j � �m/

� D �Kh.D.‚0//
D.‚0/

D.‚/:



J. Park, D. Poyato, J. Soler 3248

By Grönwall’s lemma, we obtain

D.‚/ � D.‚0/e�K
h.D.‚0//

D.‚0/
t for t � 0:

Notice that h.�/ behaves like �1�2˛ near the origin. Indeed, it is easy to prove that for
every �� 2 .0; �/,

h.�/ � h.��/
�1�2˛�

�1�2˛; 8� 2 Œ0; ���:

The main idea is to show that the mapping � 7! h.�/=�1�2˛ is non-increasing in Œ0; ��.
Since the phase diameter D.‚/ is bounded above by D.‚0/ we can take �� D D.‚0/
and apply the above lower estimate for h to obtain

d

dt
D.‚/ D K

N

NX
jD1

�
h.�j � �M / � h.�j � �m/

�
� K

N

h.D.‚0//

D.‚0/

NX
jD1

��.�M � �j /1�2˛ � .�j � �m/1�2˛�
� �K

N

h.D.‚0//

D.‚0/

NX
jD1

�
.�M � �j /C .�j � �m/

�1�2˛
D �Kh.D.‚0//

D.‚0/
D.‚/1�2˛

for every t � 0. In the last inequality we have used that 1� 2˛ 2 .0; 1/, and consequently

.aC b/1�2˛ � a1�2˛ C b1�2˛

for any a; b � 0. Integrating the above differential inequality implies

D.‚.t// �
�
D.‚0/

2˛ � 2˛K h.D.‚0//
D.‚0/

t

� 1
2˛

for all t � 0. This implies the convergence to zero at a finite time not larger than Tc .

We now consider the system for non-identical oscillators. The next proposition yields
the structure of a phase-locked state of (3.2) for non-identical oscillators with mutually
distinct natural frequencies in the subcritical regime.

Proposition 5.3. Let ˛ 2 .0; 1=2/ and N‚ D . N�1; : : : ; N�N / be an equilibrium of the system
(3.2) such that maxi;j j N�i � N�j j < Q� where Q� 2 .0; �=2/ is the solution to

Q� D 2˛ tan Q�:
Assume the natural frequencies satisfy �1 < � � � < �N . Then the phase-locked state N‚
satisfies N�1 < � � � < N�N .
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Proof. First, we show that the equilibria N�i are mutually distinct, i.e., N�i ¤ N�j for i ¤ j .
Since N‚ is an equilibrium, it satisfies

�i C K

N

X
k¤i

h. N�k � N�i / D 0 (5.8)

for every i D 1; : : : ;N . If there existed two oscillators having the same equilibria N�i D N�j ,
then we would have

K

N

X
k¤i

h. N�k � N�i / D
K

N

X
k¤j

h. N�k � N�j /;

which contradicts �i ¤ �j .
We now show the ordering property. From (5.8), we have

�iC1��i D �K
N

X
j¤iC1

h. N�j � N�iC1/C K
N

X
j¤i

h. N�j � N�i /

D K

N

X
j¤i;iC1

�
h. N�iC1� N�j /�h. N�i � N�j /

�� K
N

�
h. N�i � N�iC1/�h. N�iC1� N�i /

�
D K

N

X
j¤i;iC1

�
h. N�iC1� N�j /�h. N�i � N�j /

�C 2K
N
h. N�iC1� N�i /

D K

N

X
j¤i;iC1

cj . N�iC1� N�i /C 2K
N
h. N�iC1� N�i /;

where

cj WD h. N�iC1� N�j /�h. N�i � N�j /
N�iC1� N�i

:

They are properly defined because all the equilibria are mutually distinct, and they are
positive because h is strictly increasing in .� Q�; Q�/. Thus, the order �iC1 > �i yields the
order of equilibria N�iC1 > N�i .

In the subcritical case, we can attain the uniform boundedness of phase differences
under sufficiently large coupling strength.

Lemma 5.1. Let ‚ be the solution to (3.2) for ˛ 2 .0; 1=2/ and non-identical oscillators
with initial data ‚0 satisfying D.‚0/ < D1 < Q� . If

K >
D. P‚0/

h0.D1/.D1 �D.‚0// ;

then the phase diameter D.‚/ is uniformly bounded by D1:

D.‚.t// < D1 for t � 0:
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Proof. Suppose there exists a finite time t� > 0 such that

t� WD sup ¹t W D.‚.s// < D1 for 0 � s � tº and D.‚.t�// D D1:
Let indices F and S be such that

P�F WD max ¹ P�1; : : : ; P�N º and P�S WD min ¹ P�1; : : : ; P�N º;
for each time t . We define the frequency difference so that

D. P‚.t// WD P�F � P�S :
We note that

D. P‚.t// �D. P‚0/ D
Z t

0

d

dt
D. P‚.s// ds: (5.9)

By taking the time derivative of D. P‚/, we obtain

d

dt
D. P‚/ D K

N

NX
jD1

�
h0.�j � �F /. P�j � P�F / � h0.�j � �S /. P�j � P�m/

�
:

As long as D.‚/ < D1, we have h0.�j � �i / � h0.D1/ > 0. Thus, we get

d

dt
D. P‚/ � K

N

NX
jD1

h0.D1/
�
. P�j � P�F / � . P�j � P�S /

� D �Kh0.D1/D. P‚/: (5.10)

We combine (5.9) and (5.10) to obtain

D. P‚.t// � D. P‚0/ �Kh0.D1/
Z t

0

D. P‚.s// ds: (5.11)

Setting y.s/ WD R t
0
D. P‚.s// ds, we can rewrite (5.11) as

y0.t/ � y0.0/ �Kh0.D1/y.t/:
Hence,

y.t/ � y0.0/
Kh0.D1/

.1 � e�Kh0.D1/t / � y0.0/
Kh0.D1/

:

Since D.‚.t�// D D1 and K > D. P‚0/
h0.D1/.D1�D.‚0// , we get

D1 D D.‚0/C
Z t�

0

d

ds
D.‚.s// ds � D.‚0/C

Z t�

0

D. P‚.s// ds

� D.‚0/C D. P‚0/
Kh0.D1/

< D1;

which is a contradiction. Thus, we have the desired uniform bound D.‚.t// < D1 for
t � 0.
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Remark 5.2. In the preceding proof, the solution‚D‚.t/ is C 1 but not necessarily C 2

because of the essential discontinuity of h0. Hence, one cannot directly argue with two
time derivatives in the computation of d

dt
D. P‚/. However, the preceding arguments can

be made rigorous because the C 1 solution of (3.2) is a piecewise W 2;1 solution of the
augmented model (2.4)–(4.23) as discussed in Remark 4.1. Another possible approach is
to directly show the Grönwall inequality (5.11) in integral form.

In the following result, we show the collision avoidance when the oscillators are ini-
tially well-ordered.

Lemma 5.2. Let ‚ be the solution to (3.2) with ˛ 2 .0; 1=2/ and with initial datum ‚0
satisfyingD.‚0/ <D1 < Q� . Assume the natural frequencies and the initial configuration
satisfy �1 < � � � < �N and �1;0 < � � � < �N;0. Assume that

K >
D. P‚0/

h0.D1/.D1 �D.‚0// :

Then there is no collision between oscillators, i.e.,

�i .t/ ¤ �j .t/ for i ¤ j; t > 0:
Proof. From Lemma 5.1, we have a uniform bound D.‚.t// < D1 for t � 0. Let ` be
an index such that

�`C1.t/ � �`.t/ D min
jD1;:::;N�1

.�jC1.t/ � �j .t//

for each t � 0. For notational simplicity, we set

� WD �`C1 � �`:
Then

P� D �`C1 ��` C
K

N

NX
jD1

�
h.�j � �`C1/ � h.�j � �`/

�
� �ı C

K

N

NX
jD1

�
h.�j � �`C1/ � h.�j � �`/

�
; (5.12)

where �ı WD minjD1;:::;N�1.�jC1 ��j / > 0. We define

�1.`/ WD ¹j W j < `º and �2.`/ WD ¹j W j > `C 1º:
Note that h.�/ is convex increasing for � 2 .� Q�; 0/ and is concave increasing for � 2
.0; Q�/. Thus, we have

0 < h0.b/ � h.b/ � h.a/
b � a � h0.a/ for 0 � a < b � Q�;

0 < h0.c/ � h.d/ � h.c/
d � c � h0.d/ for � Q� � c < d � 0:

(5.13)
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From (5.12) and (5.13), we obtain

P� � �ı C
K

N

X
j2�1.`/

�
h.�j � �`C1/ � h.�j � �`/

�C K

N
h.�` � �`C1/

� K
N
h.�`C1 � �`/C

K

N

X
j2�2.`/

�
h.�j � �`C1/ � h.�j � �`/

�
� �ı �

K

N

X
j2�1.`/

h0.�j � �`/� �
K

N

X
j2�2.`/

h0.�j � �`C1/� �
2K

N
h.�/

� �ı �
Kj�1.`/j
N

h0.�/� � Kj�2.`/j
N

h0.�/� � 2K
N
h.�/

� �ı �Kh0.�/� �
2K

N
h.�/ � �ı � C� DW q.�/;

where we have used h.�/�C1� and h0.�/� �C2� for � � 0 and 0<  < 1� 2˛. Since
lim�!0C q.�/ D �ı > 0 and q.�/ is continuous for � > 0, there exists a positive " > 0
such that q.�/ > 0 for � 2 .0; "/. Hence, the distance � has a positive lower bound.

In what follows, we study the stability of the phase-locked state for the system of non-
identical oscillators. We use the center manifold theorem to investigate the stability of the
linearized system.

Lemma 5.3 (Center Manifold Theorem [6]). Consider the system

Px D Ax C fA.x; y/; Py D By C fB.x; y/ (5.14)

where x 2 Rn, y 2 Rm and A and B are constant matrices such that all the eigenvalues
of A have zero real parts while all the eigenvalues of B have negative real parts. Assume
that the functions fA and fB are C 2 with fA.0; 0/ D 0, rfA.0; 0/ D 0, fB.0; 0/ D 0,
rfB.0; 0/ D 0. Then:

(1) There exists a center manifold for (5.14), y D �.x/, jxj < ı, where � D �.x/ is C 2.
The flow on the center manifold is governed by the n-dimensional system

Pu D AuC fA.u; �.u//: (5.15)

(2) Assume the zero solution of (5.15) is stable .respectively asymptotically stable/un-
stable/. Then so is the zero solution of (5.14).

Theorem 5.2. Let N‚ WD . N�1; : : : ; N�N / … C be a collisionless equilibrium of (3.2).
(1) If ˛ � 1=2, then the phase-locked state N‚ is unstable.

(2) If ˛ < 1=2, then the phase-locked state N‚ is stable.

Proof. (1) In the critical and supercritical regimes ˛ 2 Œ1=2; 1/, we first linearize the
system (3.2):

P‚ D A.‚ � N‚/CR. N‚/; (5.16)
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where the elements of the matrix A D .aij /1�i;j�N are determined by

aij D cos. N�j � N�i /
j N�j � N�i j2˛o

� 2˛ sin j N�j � N�i jo
j N�j � N�i j2˛C1o

for i ¤ j;

ai i D �
X
j¤i

aij :
(5.17)

If ˛ � 1=2, we find aij < 0 for i ¤ j , and hence ai i > 0 for i D 1; : : : ; N . Hence A
is a Laplacian type matrix with all eigenvalues non-negative. Since A represents all-to-
all connected network, there exists a zero eigenvalue of multiplicity 1 and all the other
eigenvalues are positive, which implies the unstability of the equilibrium.

(2) In the subcritical regime ˛ 2 .0; 1=2/, since the equilibrium satisfies

max
i;j
j N�i � N�j j < Q�

and N�i ¤ N�j for i ¤ j , the elements of the matrix have aij > 0 for i ¤ j and ai i < 0 for
i D 1; : : : ; N . By a similar argument to the above, the eigenvalues of A are non-positive
and there is a zero eigenvalue with multiplicity 1. Let �1 D 0 and �2; : : : ; �N < 0 be the
eigenvalues of A and let v1; : : : ; vN be the corresponding left eigenvectors such that

viA D �ivi for i D 1; : : : ; N:
We note that v1 D .1; : : : ; 1/. Consider the matrices

P�1 WD

0BBB@
1 � � � 1

v2
:::

vN

1CCCA and D WD

0BBB@
0 0 � � � 0

0 �2 � � � 0
:::

:::
: : :

:::

0 0 � � � �N

1CCCA :
Then P diagonalizes the matrix A:

P�1AP D D: (5.18)

We change variables from ‚ D .�1; : : : ; �N / to X D .x1; : : : ; xN / such that

X WD P�1‚: (5.19)

Then the system (5.16) can be transformed into

PX D D.X � NX/C QR.X/: (5.20)

Let Ox1 WD .x2; : : : ; xN / and

OD WD

0B@�2 � � � 0
:::

: : :
:::

0 � � � �N

1CA :
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Then we can rewrite the system (5.20) as�
x1
Ox1
�0
D
�
0 0

0 OD
��

x1 � Nx1
Ox1 � ONx1

�
C
� QR1.x1; Ox1/
OQR1.x1; Ox1/

�
: (5.21)

Consider the center manifold in Lemma 5.3, which can be written as

Wc WD ¹.x; y/ 2 R �RN�1 W y D c.x/ for jxj < "; �. Nx1/ D 0; D�. Nx1/ D 0º;
and consider the equation

Px1 D QR1.x1; �.x1//: (5.22)

By the Center Manifold Theorem, the stability of (5.22) implies the stability of (5.21).
Since (5.19) yields x1 D �1 C � � � C �N , we have

Px1 D
NX
iD1
P�i D

NX
iD1

�i D 0:

Thus, QR1 � 0 and the dynamics of (5.22) is stable. Therefore, the phase-locked state N‚ is
stable for ˛ < 1=2.

Finally, we are ready to show the emergence of a phase-locked state for non-identical
oscillators.

Theorem 5.3. Let ‚ be a solution to (3.2) for ˛ 2 .0; 1=2/ with initial datum ‚0 satisfy-
ing

D.‚0/ < D
1 < Q�:

If

K >
D. P‚0/

h0.D1/.D1 �D.‚0// ;

then we can show the emergence of a phase-locked state. Moreover, if the oscillators
have distinct natural frequencies, i.e., �i ¤ �j for i ¤ j , then synchronization occurs
asymptotically.

Proof. By applying Grönwall’s lemma to (5.10), we have exponential decay of the upper
estimate on the frequency diameter:

D. P‚.t// � D. P‚0/e�Kh0.D1/t :
This exponential decay implies the emergence of a phase-locked state.

Assume the oscillators have mutually distinct natural frequencies. Since Proposi-
tion 5.3 gives the structure of a phase-locked state, the oscillators become sorted in
increasing order of natural frequencies in finite time. After this time, by Lemma 5.2,
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we have a positive lower bound "� > 0 for the distances between the oscillators. Con-
sequently,

d

dt
D. P‚/ D K

N

NX
jD1

�
h0.�j � �F /. P�j � P�F / � h0.�j � �S /. P�j � P�S /

�
� K

N

NX
jD1

�
h0."�/. P�j � P�F / � h0."�/. P�j � P�S /

� D �Kh0."�/D. P‚/:
By Grönwall’s lemma, we have a lower estimate on the frequency diameter:

D. P‚.t// � D. P‚0/e�Kh0."�/t :
Let us now get some insight into the behavior of the Filippov solutions to (3.2) (see

Theorems 3.3 and 3.5) in the most singular cases ˛ D 1=2 and ˛ 2 .1=2; 1/. Looking at
Remark 5.1 for the dynamics of two oscillators, we expect global synchronization in finite
time for N oscillators. Specifically, in the supercritical case, the emerging global cluster
is expected to stay stuck independently of the chosen natural frequencies. In the critical
case, the sticking conditions (3.12) are required for the cluster to remain stuck. To begin,
let us prove finite-time global phase synchronization of identical oscillators in the critical
and supercritical cases. To that end, we need the following technical results.

Lemma 5.4. Let ˛ 2 Œ1=2; 1/, ˇ 2 .0; 2˛� and �� 2 .0; �/ and define

c.˛; ˇ/ D
�
2˛ � ˇ
ˇ

�1=2
:

Then

h".�/ � h".��/
�
ˇ�

�ˇ ; 8� 2 Œc.˛; ˇ/"; ���;

for every 0 < " < c.˛; ˇ/�1��.

Proof. Define

g".�/ WD h".�/

�ˇ
D

sin �
."2C�2/˛
�ˇ

; � 2 .0; �/:

We claim that g" is non-increasing in .c.˛; ˇ/"; �/ for every " 2 .0; c.˛; ˇ/�1��/; then
the result is apparent. Indeed, taking derivatives we have

g0".�/ D
1

�ˇC1."2 C �2/˛
�
� cos � �

�
2˛

�2

"2 C �2 C ˇ
�

sin �
�

D 1

�ˇC1."2 C �2/˛
�
� cos � �

�
2˛ C ˇ�2 � .2˛ � ˇ/"2

�2 C "2
�

sin �
�
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for every � 2 .0; �=2/. Notice that 2˛ � 1 and ˇ � 2˛. Then, by virtue of the definition
of c.˛; ˇ/ one checks that

� cos � �
�
2˛ C ˇ�2 � .2˛ � ˇ/"2

�2 C "2
�

sin � � � cos � � sin � � 0

for every � 2 .c.˛; ˇ/"; �/ and the monotonicity of g" becomes clear.

Lemma 5.5. Let‚D .�1; : : : ; �N / be the solution to (3.2) with ˛ 2 Œ1=2; 1/ for identical
oscillators,�i D 0 for i D 1; : : : ;N , obtained in Theorems 4.3 and 4.4 as singular limits.
Suppose the initial configuration‚0 is confined to a half-circle, i.e., 0<D.‚0/ <� . Then

D.‚.t// � D.‚0/e�K
h.D.‚0//

D.‚0/ t if ˛ D 1=2;

D.‚.t// �
�
D.‚0/

1�2˛ C .2˛ � 1/22˛�1Kh.D.‚0//
D.‚0/2˛

t

�� 1
2˛�1

if ˛ 2 .1=2; 1/;

for every t � 0.

Proof. The main idea is to handle the approximate sequence ¹‚"º">0 obtained as solu-
tions to the regularized system (4.8) and to take limits as "! 0 in the phase diameter
estimates. First, notice that by the assumed initial condition on the diameter one has

d

dt
D.‚"/ � 0 and D.‚".t// � D.‚0/ < � for t > 0:

Indeed, note that we can obtain an explicit decay rate for the diameter by mimicking the
ideas in Theorem 5.1. Namely, choosing �� D D.‚0/ and ˇ D 2˛ in Lemma 5.4, we
notice that c.˛; ˇ/ D 0. Consequently, the lower bound of the kernel h" is valid in the
whole interval Œ0;D.‚0/�. Hence,

d

dt
D.‚"/ D K

N

NX
jD1

�
h".�

"
j � �"M / � h".�"j � �"m/

�
� K
N

NX
jD1

�
h".�

"
M � �"j /C h".�"j � �"m/

�
� �K

N

h".D.‚0//

D.‚0/2˛

NX
jD1

�
.�"M � �"j /2˛ C .�"j � �"m/2˛

�
� �K

N

h".D.‚0//

D.‚0/2˛
22˛�1

NX
jD1

�
.�"M � �"j /C .�"j � �"m/

�2˛
D �Kh".D.‚0//

D.‚0/2˛
22˛�1D.‚/2˛:
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Let us integrate the above differential inequality. We need to distinguish the cases ˛D 1=2
and ˛ 2 .1=2; 1/:

D.‚".t// � D.‚0/e�K
h".D.‚0//

D.‚0/ t if ˛ D 1=2;

D.‚".t// �
�
D.‚0/

1�2˛ C .2˛ � 1/22˛�1Kh".D.‚0//
D.‚0/2˛

t

�� 1
2˛�1

if ˛ 2 .1=2; 1/;

for every t � 0. Recall that by Lemmas 4.3 and 4.8,

‚"
�
* ‚ in H 1..0; T /;RN /:

In particular,
‚" ! ‚ in C.Œ0; T �;RN /:

Finally, we can take the limit as "! 0 in the above estimates to obtain the desired result.

Under the assumptions of Lemma 5.5 one obtains exponential decay of the diameter
in the critical case and algebraic decay in the supercritical regime. However, finite-time
global synchronization is expected. This is the content of the following result.

Theorem 5.4. Let‚D .�1; : : : ; �N / be the solution to (3.2) with ˛ 2 Œ1=2;1/ for identical
oscillators,�i D 0 for i D 1; : : : ;N , obtained in Theorems 4.3 and 4.4 as singular limit of
the regularized solutions ‚" to (4.8). Assume that the initial configuration ‚0 is confined
to a half-circle, i.e., 0 < D.‚0/ < � . Then for every ˇ 2 .0; 1/ there exist two oscillators
that collide at some time not larger than

T 1c D
D.‚0/

.1 � ˇ/Kh.D.‚0// :

Proof. Assume the contrary. Then by continuity there exists T > T 1c such that there is
no collision between oscillators along the time interval Œ0; T �. Again, by continuity there
exists ıT 2 .0;D.‚0// such that

j�i .t/ � �j .t/j � ıT =2
for all t 2 Œ0; T � and all i ¤ j . Since ‚" ! ‚ in C.Œ0; T �;RN /, there exists "0 > 0 such
that

j�"i .t/ � �"j .t/j � ıT
for all t 2 Œ0; T �, all i ¤ j and all " 2 .0; "0/. Take �� D D.‚0/ and let

0 � "1 < min ¹"0; c.˛; ˇ/��1� ; c.˛; ˇ/�1ıT º:
Then it is clear that

j�"i .t/ � �"j .t/j 2 Œc.˛; ˇ/"; ���
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for every t 2 Œ0; T �, any " 2 .0; "1/ and i ¤ j . Applying Lemma 5.4 we obtain

d

dt
D.‚"/ D K

N

NX
jD1

�
h".�

"
j � �"M / � h".�"j � �"m/

�
� K
N

NX
jD1

�
h".�

"
M � �"j /C h".�"j � �"m/

�
� �K

N

h".D.‚0//

D.‚0/ˇ

NX
jD1

�
.�"M � �"j /ˇ C .�"j � �"m/ˇ

�
� �K

N

h".D.‚0//

D.‚0/ˇ

NX
jD1

�
.�"M � �"j /C .�"j � �"m/

�ˇ
D �Kh".D.‚0//

D.‚0/ˇ
D.‚/ˇ

for all t 2 Œ0; T � and " 2 .0; "1/. Integrating the differential inequality yields

D.‚.t/"/ �
�
D.‚0/

1�ˇ � .1 � ˇ/K h".D.‚0//
D.‚0/ˇ

t

� 1
1�ˇ

for all t 2 Œ0; T � and " 2 .0; "1/. Letting "! 0 leads to

D.‚.t// �
�
D.‚0/

1�ˇ � .1 � ˇ/K h.D.‚0//
D.‚0/ˇ

t

� 1
1�ˇ

for each t2Œ0;T �. However, this clearly contradicts T >T 1c due to the definition of T 1c .

The above result leads to a time estimate for the first collision between a couple of
oscillators in the critical and supercritical cases. However, this idea can be repeated and
improved in the critical case to give a total collision in finite time. The key ideas will be
the uniqueness in Theorem 3.3 or, more specifically, the characterization of sticking of
oscillators in Corollary 3.1.

Theorem 5.5. Let ‚ D .�1; : : : ; �N / be the solution to (3.2) with ˛ D 1=2 for identical
oscillators,�i D 0 for i D 1; : : : ;N . Assume that the initial configuration‚0 is confined
to a half-circle, i.e., 0 < D.‚0/ < � . Then there is complete phase synchronization in a
finite time not larger than

Tc D D.‚0/

Kh.D.‚0//
:

Proof. Assume the contrary, i.e., complete synchronization does not arise along Œ0; Tc �.
By continuity there exists T > Tc such that it does not happen along Œ0; T � either. Recall
that by Corollary 3.1, sticking of oscillators takes place in the critical case after any col-
lision. Then the collision classes Ci .t/ and sticking classes Si .t/ in Subsection 2.3 agree
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with each other. Let us list the family of collision (or sticking) classes, i.e., the different
clusters at time t :

E.t/ D ¹C1.t/; : : : ;CN .t/º D ¹E1.t/; : : : ; E�.t/.t/º:
As a consequence of the assumed hypothesis �.t/ is non-increasing with respect to t and
bounded below by 2. Coming back to the initial configuration, we define iM and im to be
such that

max
1�j�N

�j;0 D �iM ;0 and min
1�j�N

�j;0 D �im;0:

Since the regularized system (4.8) enjoys uniqueness in the full sense, the oscillators �"i
and �"j cannot cross. Similarly, by Corollary 3.1, the oscillators �i and �j cannot cross
either unless they keep stuck together after that time. In any case, it is clear that

max
1�j�N

�j .t/ D �iM .t/; min
1�j�N

�j .t/ D �im.t/;

max
1�j�N

�"j .t/ D �"iM .t/; min
1�j�N

�"j .t/ D �"im.t/;

for every t � 0 and any " > 0. Then

D.‚".t// D �"iM .t/ � �"im.t/ and D.‚.t// D �iM .t/ � �im.t/;
for all t � 0 and " > 0. All the above remarks ensure that for every t 2 Œ0; T �,

�j .t/ � �im.t/ > 0 for all j 2 CiM .t/;

�iM .t/ � �j .t/ > 0 for all j 2 Cim.t/;

�iM .t/ � �j .t/ > 0 for all j … CiM [ Cim.t/;

�j .t/ � �im.t/ > 0 for all j … CiM [ Cim.t/:

Since ‚" ! ‚ in C.Œ0; T �;RN /, by continuity we can find "0; ıT > 0 such that

�"j .t/ � �"im.t/ > ıT for all j 2 CiM .t/;

�"iM .t/ � �"j .t/ > ıT for all j 2 Cim.t/;

�"iM .t/ � �"j .t/ > ıT for all j … CiM [ Cim.t/;

�"j .t/ � �"im.t/ > ıT for all j … CiM [ Cim.t/;

(5.23)

for all t 2 Œ0; T � and all " 2 .0; "0/. Take �� D D.‚0/, fix ˇ 2 .0; 1/ and consider

0 � "1 < min¹"0; c.˛; ˇ/��1� ; c.˛; ˇ/�1ıT º:
Then it is clear that

�"j .t/ � �"im.t/ 2 Œc.˛; ˇ/"; ��� for all j 2 CiM .t/;

�"iM .t/ � �"j .t/ 2 Œc.˛; ˇ/"; ��� for all j 2 Cim.t/;

�"iM .t/ � �"j .t/ 2 Œc.˛; ˇ/"; ��� for all j … CiM [ Cim.t/;

�"j .t/ � �"im.t/ 2 Œc.˛; ˇ/"; ��� for all j … CiM [ Cim.t/;

(5.24)
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for all t 2 Œ0; T � and " 2 .0; "1/. Now, let us split as follows:

d

dt
D.‚"/ D� K

N

X
j2CiM .t/

�
h".�

"
iM
� �"j /C h".�"j � �"im/

�
� K
N

X
j2Cim .t/

�
h".�

"
iM
� �"j /C h".�"j � �"im/

�
� K
N

X
j…CiM .t/[Cim .t/

�
h".�

"
iM
� �"j /C h".�"j � �"m/

�
� � K

N

X
j2CiM .t/

h".�
"
j � �"im/ �

K

N

X
j2Cim .t/

h".�
"
iM
� �"j /

� K
N

X
j…CiM .t/[Cim .t/

�
h".�

"
iM
� �"j /C h".�"j � �"im/

�
for all t 2 Œ0; T � and " 2 .0; "1/. By Lemma 5.4 and the estimates in (5.24), the above
chain of inequalities implies

d

dt
D.‚"/ � �K

N

h".D.‚0//

D.‚0/ˇ

X
j2CiM .t/

.�"j ��"im/ˇ

�K
N

h".D.‚0//

D.‚0/ˇ

X
j2Cim .t/

.�"iM ��"j /ˇ

�K
N

h".D.‚0//

D.‚0/ˇ

X
j…CiM .t/[Cim .t/

�
.�"iM ��"j /ˇC.�"j ��"im/ˇ

�
:

Let us integrate this differential inequality to obtain

D.‚".t//

� D.‚0/ � K
N

h".D.‚0//

D.‚0/ˇ

Z t

0

X
j2CiM .s/

.�"j .s/ � �"im.s//ˇ ds

� K
N

h".D.‚0//

D.‚0/ˇ

Z t

0

X
j2Cim .s/

.�"iM .s/ � �"j .s//ˇ ds

� K
N

h".D.‚0//

D.‚0/ˇ

Z t

0

X
j…CiM .s/[Cim .s/

�
.�"iM .s/ � �"j .s//ˇ C .�"j .s/ � �"im.s//ˇ

�
ds
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for all t 2 Œ0; T � and " 2 .0; "1/. Letting "! 0 we obtain

D.‚.t//

� D.‚0/ � K
N

h.D.‚0//

D.‚0/ˇ

Z t

0

X
j2CiM .s/

.�iM .s/ � �im.s//ˇ ds

� K
N

h.D.‚0//

D.‚0/ˇ

Z t

0

X
j2Cim .s/

.�iM .s/ � �im.s//ˇ ds

� K
N

h.D.‚0//

D.‚0/ˇ

Z t

0

X
j…CiM .s/[Cim .s/

�
.�iM .s/ � �j .s//ˇ C .�j .s/ � �im.s//ˇ

�
ds

for every t 2 Œ0; T �. To sum up, we obtain

D.‚.t// � D.‚0/ �Kh.D.‚0//
D.‚0/ˇ

Z t

0

D.�.s//ˇ ds:

Hence,

D.‚.t// �
�
D.‚0/

1�ˇ � .1 � ˇ/K h.D.‚0//
D.‚0/ˇ

t

� 1
1�ˇ

for all t 2 Œ0; T �. Then, it is clear that

T <
D.‚0/

.1 � ˇ/Kh.D.‚0//
for all ˇ 2 .0; 1/. Letting ˇ ! 0 shows that T � Tc , a contradiction.

Remark 5.3. Notice that Theorem 5.4 also works in the supercritical case. However, the
same proof as in Theorem 5.5 is not valid to show finite-time complete phase synchron-
ization of identical oscillators for ˛ 2 .1=2; 1/. The reason is that at this point we cannot
guarantee that the Filippov solution in ‚ obtained as the singular limit of the regularized
solutions ‚" to system (4.8) in Theorem 4.3 agrees with the solution obtained in Remark
3.6 via the “sticking after collision” continuation procedure of classical solutions. How-
ever, if the limiting‚ obtained in Theorem 4.3 has the “sticking after collision” property,
we can mimic Theorem 5.5 to show that it exhibits complete phase synchronization no
later than at time

Tc D D.‚0/

Kh.D.‚0//
:

Appendix A. Regular interactions

In this appendix, we study the Kuramoto model with regular coupling weights:

P�i D �i C K

N

NX
jD1

�2˛

.�2 C cj�j � �i j2o/˛
sin.�j � �i / for i D 1; : : : ; N; (A.1)
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where we denote c � c˛;� D 1� ��1=˛ for simplicity. Recall that this model comes from
the choice (1.4) of � as the Hebbian plasticity function in (1.5). Since the right hand
side of (A.1) is Lipschitz-continuous, the system (A.1) has a unique solution by Cauchy–
Lipschitz theory in this case.

For positive � , we get the following bounds for �:

"� WD �2˛

.�2 C c�2/˛ � �.�/ � 1; �.0/ D �.2�/ D 1:

Note that "� converges to zero as � ! 0. We will study the emergence of synchroniza-
tion for identical and non-identical oscillators and we will use the idea of [15] to prove
synchronization.

A.1. Identical oscillators

Consider the Kuramoto model (A.1) for identical oscillators which have the same natural
frequency. Without loss of generality, we may assume �i D 0 for all i D 1; : : : ; N . The
system (A.1) becomes

P�i D K

N

NX
jD1

�2˛

.�2 C cj�j � �i j2o/˛
sin.�j � �i /; i D 1; : : : ; N: (A.2)

We can show complete phase synchronization asymptotically for (A.2) with a con-
straint on the initial configuration. Let us recall the notation �M .t/ and �m.t/ in (5.6)
for the indices of largest and shortest phases and D.‚/ for the phase diameter defined
in (5.7).

Theorem A.1. Let ‚ D .�1; : : : ; �N / be the solution to (A.2). Assume that the initial
configuration is confined to a half-circle, i.e., D.‚0/ < � , and the coupling strength K
is positive. Then the solution ‚ shows complete phase synchronization asymptotically:

D.‚0/e
�Kt � D.‚/ � D.‚0/e�

K�.D.‚0// sinD.‚0/
D.‚0/

t
:

Proof. We consider the dynamics of the phase diameter,

d

dt
D.‚/ D K

N

NX
jD1

�
�.�j � �M / sin.�j � �M / � �.�j � �m/ sin.�j � �m/

�
: (A.3)

Since sin.�j � �M / � 0 and sin.�j � �m/ � 0, as long as D.‚/ � � we have

d

dt
D.‚/ � 0 and D.‚.t// � D.‚0/ < � for t > 0:

By this contraction of phase difference, we have

sin.�j � �M / � sinD.‚0/
D.‚0/

.�j � �M / and sin.�j � �m/ � sinD.‚0/
D.‚0/

.�j � �m/:
(A.4)
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On the other hand,
"� < �.D.‚0// � �.D.‚// � 1: (A.5)

By applying (A.4) and (A.5) to (A.3), we obtain the differential inequality

d

dt
D.‚/

� K

N

NX
jD1

�
�.�j � �M / sinD.‚0/

D.‚0/
.�j � �M / � �.�j � �m/ sinD.‚0/

D.‚0/
.�j � �m/

�

D �K
N

sinD.‚0/
D.‚0/

NX
jD1

�
�.�j � �M /.�M � �j /C �.�j � �m/.�j � �m/

�
� �K

N

�.D.‚0// sinD.‚0/
D.‚0/

NX
jD1

�
.�M � �j /C .�j � �m/

�
D �K�.D.‚0// sinD.‚0/

D.‚0/
D.‚/:

Grönwall’s lemma yields the desired upper estimate. Similarly, from (A.5) and sin x � x
for 0 � x � � , we have

d

dt
D.‚/ � K

N

NX
jD1

�
.�j � �M / � .�j � �m/

� D �KD.‚/;
which gives the lower estimate.

A.2. Non-identical oscillators

We assume that the diameter of the initial configuration is less than D1 < �=2. We first
show that the phase diameter is less thanD1 for all time t � 0 for sufficiently large coup-
ling strength K. Recall that for � 2 .��; �/ the plasticity function is �.�/ D �2˛

.�2Cc�2/˛ .
Thus,

� 0.�/ D � 2�2˛˛c�

.�2 C c�2/˛C1 ; � 00.�/ D �2�
2˛˛cŒ�2 � .2˛ C 1/c�2�
.�2 C c�2/˛C2 :

If we set
�˙ WD ˙ �p

c.2˛ C 1/ ;

then � 0 attains its global extrema at those points:

� 0.��/ D max
�2.��;�/

� 0.�/ > 0 and � 0.�C/ D min
�2.��;�/

� 0.�/ < 0:
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Indeed,

� 0.��/ D �� 0.�C/ D 2˛
p
c

�
p
2˛ C 1 .1C 1

2˛C1 /˛C1
:

We first show the boundedness of phase differences.

Lemma A.1. Assume that D.‚0/ < D1 for some small D1 < �=2, and that the coup-
ling strength is sufficiently large so that

�� 0.�C/ < �.D1/
tanD1

and

K >
D. P‚0/

Œ� 0.�C/ sinD1 C �.D1/ cosD1�.D1 �D.‚0//
:

Then
D.‚.t// < D1 for t � 0:

Proof. Assume that there exists a time t for which D.‚.t// � D1. Then by continuity

t� WD sup ¹t > 0 W D.‚.s// < D1 for 0 � s � tº
is positive and finite and D.‚.t�// D D1. Let indices F and S be such that

P�F .t/ WD max ¹ P�1.t/; : : : ; P�N .t/º and P�S .t/ WD min ¹ P�1.t/; : : : ; P�N .t/º;
for each time t , and define the frequency diameter by

D. P‚.t// WD P�F .t/ � P�S .t/:
Then

D. P‚.t// �D. P‚0/ D
Z t

0

d

ds
D. P‚.s// ds: (A.6)

By taking the time derivative, we get

d

dt
D. P‚/ D K

N

NX
jD1

�
� 0.�j � �F / sin.�j � �F /C �.�j � �F / cos.�j � �F /

�
. P�j � P�F /

� K
N

NX
jD1

�
� 0.�j � �S / sin.�j � �S /C �.�j � �S / cos.�j � �S /

�
. P�j � P�S /:

(A.7)
Then we get the upper and lower bounds

� 0.�C/ sinD1 � � 0.�j � �i / sin.�j � �i / � 0; (A.8)
�.D1/ cosD1 � �.�j � �i / cos.�j � �i / � 1: (A.9)
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By applying (A.8) and (A.9) in (A.7), we deduce

d

dt
D. P‚/ � K

N

NX
jD1

�
� 0.�C/ sinD1 C �.D1/ cosD1

��
. P�j � P�F / � . P�j � P�S /

�
D �K�� 0.�C/ sinD1 C �.D1/ cosD1

�
. P�F � P�S /

� �K �� 0.�C/ sinD1 C �.D1/ cosD1
�„ ƒ‚ …

>0

D. P‚/ (A.10)

for every t 2 Œ0; t��. Combining (A.6) and (A.10), we obtain

D. P‚.t// � D. P‚0/ �K
�
� 0.�C/ sinD1 C �.D1/ cosD1

� Z t

0

D. P‚.s// ds (A.11)

for every t 2 Œ0; t��. Define y.t/ WD R t
0
D. P‚.s// ds. Then (A.11) can be rewritten as

y0.t/ � y0.0/ � Cy.t/:
Here, C WD KŒ� 0.�C/ sinD1 C �.D1/ cosD1� and t 2 Œ0; t��. Then

y.t/ � y0.0/
C

.1 � e�Ct / � y0.0/
C

for all t 2 Œ0; t��. However, since D.‚.t�// D D1, we get

D1 D D.‚0/C
Z t�

0

d

ds
D.‚.s// ds � D.‚0/C

Z t�

0

D. P‚.s// ds

� D.‚0/C y.t�/ � D.‚0/C y0.0/
C

< D1

when

K >
D. P‚0/

Œ� 0.�C/ sinD1 C �.D1/ cosD1�.D1 �D.‚0//
;

a contradiction. Thus, D.‚.t// < D1 for all t � 0.

We are ready to prove frequency synchronization for non-identical oscillators.

Theorem A.2. Assume thatD.‚0/ <D1 for some smallD1 < �=2, and that the coup-
ling strength is sufficiently large so that

�� 0.�C/ < �.D1/
tanD1

and K >
D. P‚0/

Œ� 0.�C/ sinD1 C �.D1/ cosD1�.D1 �D.‚0//
:

Then we have complete frequency synchronization

D. P‚.0//e�Kt � D. P‚.t// � D. P‚.0//e�KŒ�0.�C/ sinD1C�.D1/ cosD1�t :
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Proof. From (A.7)–(A.10), we obtain

d

dt
D. P‚/ � �K�� 0.�C/ sinD1 C �.D1/ cosD1

�
D. P‚/:

On the other hand, from (A.7)–(A.9), we have

d

dt
D. P‚/ � �KD. P‚/:

By Grönwall’s lemma, we achieve the exponential estimates for frequency synchroniza-
tion.

Since the decay rate of the asymptotic frequency synchronization is exponential, the
solution ‚ shows the emergence of a phase-locked state.

Appendix B. H-representation of Filippov set-valued maps

In this appendix, we prove the technical Lemmas 4.4 and 4.9. Recall that they were
respectively applied in Propositions 4.1 and 4.2 in order to explicitly characterize some
H-representation of the Filippov set-valued map in the supercritical and critical cases. We
introduce some notation.

Definition B.1. For n 2 N and i; j 2 ¹1; : : : ; nº we define the linear operators

Lij W Skewn.R/! R; Y 7! yij ;

Li W Skewn.R/! R; Y 7!
nX
kD1

yik ;

L W Skewn.R/! Rn; Y 7! Y � j:
By definition, we have

Li D
nX
kD1

Lik and L D .L1; : : : ; Ln/:

First, we give the simpler proof of Lemma 4.4:

Lemma B.1. For any n 2 N and x 2 Rn, the following assertions are equivalent:

(1) There exists Y 2 Skewn.R/ such that x D Y � j.
(2) x � j D 0, where j stands for the vector of ones.

Proof. Define the linear operator

L W Skewn.R/! Rn; Y 7! Y � j:



Filippov trajectories and clustering in the singular Kuramoto model 3267

Then the assertion is equivalent to

L.Skewn.R// D j?: (B.1)

On the one hand, it is clear that the inclusion � in (B.1) holds by the properties of skew-
symmetric matrices. On the other hand, define the matrices

Eij WD 1
2
.ei ˝ ej � ej ˝ ei / (B.2)

for every i ¤ j , where ¹ei W i D 1; : : : ;N º is the standard basis of Rn and˝ denotes the
Kronecker product. Notice that

L.Eij / D 1
2
.ei ˝ ej � ej ˝ ei / � j D ei � ej :

Hence,

¹L.Ei;iC1/ W i D 1; : : : ; n � 1º D ¹ei � eiC1 W i D 1; : : : ; n � 1º
consists of n � 1 linearly independent vectors. Consequently, L has rank larger than or
equal to n � 1. Since j? has rank n � 1, the identity in (B.1) holds true.

Now, we turn to the proof of Lemma 4.9. Our main tool will be the Farkas alternative
from convex analysis, which we now recall.

Lemma B.2 (Farkas alternative). Consider any finite-dimensional vector space V , a finite
family of linear operators T1; : : : ; Tk W V ! R and b D .b1; : : : ; bk/ 2 Rk . Then exactly
one of the following statements holds true:

(1) There exists v 2 V such that

Ti .v/ � bi ; i D 1; : : : ; k:
(2) There exists q 2 Rn with qi � 0 for all i D 1; : : : ; k such that

kX
iD1

qiTi D 0 and q � b < 0:

This result has several equivalent representations in the literature and it is sometimes
called the Theorem of Alternatives. One reference where we can find our version is [44,
Lemma 2.54]. We are now ready to give the proof of Lemma 4.9.

Lemma B.3. For any n 2 N and x 2 Rn, the following assertions are equivalent:

(1) There exists Y 2 Skewn.Œ�1; 1�/ such that x D Y � j.
(2) There exists Y 2 Skewn.R/ such that

Lij .Y / � 1; Li .Y / � xi and �Li .Y / � �xi ;
for all i; j 2 ¹1; : : : ; nº.
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(3) We have
nX

i;jD1
qij C �ixi � 0 (B.3)

for all Q 2Mn.R
C
0 / and � 2 Rn such that qij C �i D qj i C �j .

(4) We have
kX
iD1

x�i 2 Œ�k.n � k/; k.n � k/�

for every permutation � of ¹1; : : : ; nº and any k 2 N.

Proof. We split the proof into two parts. First, we establish the equivalence of the first
three assertions. The main tool here is Lemma B.2. Secondly, we focus on the more con-
voluted equivalence between the first group of assertions and the last assertion.

� Step 1: Equivalence of the first three assertions. The first two assertions are equi-
valent by Definition B.1. In (2), we have a system of affine inequalities in the vec-
tor space Skewn.R/ of skew-symmetric matrices. Hence, by the Farkas alternative (see
Lemma B.2), (2) amounts to saying that whenever qij ; qCi ; q

�
i are non-negative coeffi-

cients satisfying

nX
i;jD1

qijLij C
nX
iD1

qCi Li �
nX
iD1

q�i Li � 0 in Skewn.R/;

then
nX

i;jD1
qij C

nX
iD1

qCi xi �
nX
iD1

q�i xi � 0:

Defining �i D qCi � q�i , we can simplify the equivalent assertion: for everyQ 2Mn.R
C
0 /

and � 2 Rn such that
nX

i;jD1
qijLij C

nX
iD1

�iLi � 0 in Skewn.R/; (B.4)

we have
nX

i;jD1
qij C

nX
iD1

�ixi � 0:

Thus, the equivalence with the third assertion follows by evaluating the identity (B.4) on
every matrix in the canonical basis of Skewn.R/, i.e.,

¹ei ˝ ej � ej ˝ ei W 1 � i < j � nº;
and noticing that we obtain the condition qij C �i D qj i C �j in the third assertion.
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� Step 2: Equivalence with the last assertion. Assume that (1) is satisfied, i.e., x D Y � j
for some Y 2 Skewn.Œ�1; 1�/. Taking any permutation � of ¹1; : : : ; nº and any 1 � k � n
we obtain

kX
iD1

x�i D
kX
iD1

nX
jD1

y�i�j D
kX
iD1

kX
jD1

y�i�j C
kX
iD1

nX
jDkC1

y�i�j :

Since the first term is zero (by antisymmetry) and the second term consists of n.n � k/
terms with values in Œ�1; 1�, it follows that

kX
iD1

x�i 2 Œ�k.n � k/; k.n � k/�:

Conversely, assume that (4) is true and let us prove (B.3). Consider Q 2 Mn.R
C
0 / and

� 2 Rn such that
qij � qj i D �j � �i : (B.5)

Without loss of generality we will assume that qi i D 0 for every i D 1; : : : ; n (in the other
case, (B.3) is even larger), and we split

I WD
X
i¤j

qij C
nX
iD1

�ixi DW I1 C I2:

Notice that

I2 D
nX
iD1

�ixi D
nX
iD1
.�i � �j /xi C �j

nX
iD1

xi

for every j D 1; : : : ; n. Since the sum of all the xi is zero by hypothesis, taking averages
with respect to all the indices j D 1; : : : ; n we obtain

I2 D 1

n

nX
iD1

nX
jD1

.�i � �j /xi :

Finally, interchanging i and j and taking the average of the resulting two expressions we
can equivalently write

I2 D 1

2n

nX
iD1

nX
jD1

.�i � �j /.xi � xj / D 1

n

X
i<j

.�j � �i /.xj � xi /:

Thus, substituting (B.5) into I2 and putting it together with I1 we can write

I D
X
i¤j

qij C 1

2n

X
i¤j
.qij � qj i /.xj � xi / D

X
i¤j

qij

�
1C 1

n
.xj � xi /

�
: (B.6)
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Let us consider a permutation � of ¹1; : : : ; nº that puts the coefficients �i in increasing
order:

��1 � � � � � ��n : (B.7)

Then

I D
X
i¤j

q�i�j

�
1C 1

n
.x�j � x�i /

�
D
X
i<j

.q�i�j � q�j �i /
�
1C 1

n
.x�j � x�i /

�
C 2

X
i<j

q�j �i

DW I3 C I4:
It is clear that I4 is non-negative. We will show that so is I3. By (B.5), it is easy to show
that

q�i�j � q�j �i D
j�1X
kDi

.q�k�kC1 � q�kC1�k /

for any i < j . Therefore,

I3 D
X
i<j

j�1X
kDi

.q�k�kC1 � q�kC1�k /
�
1C 1

n
.x�j � x�i /

�

D
n�1X
kD1

ak.q�k�kC1 � q�kC1�k /

D
n�1X
kD1

ak.��kC1 � ��k /; (B.8)

where in the last step we have used (B.5) again and the coefficients ak are

ak WD
X
i�k

j�kC1

�
1C 1

n
.x�j � x�i /

�

D k.n � k/C k

n

nX
jDkC1

x�j �
n � k
n

kX
iD1

x�i :

Bearing in mind that the sum of all the xi vanishes by hypothesis, we have

ak D k.n � k/ �
kX
iD1

x�i :

Thus, ak � 0 by hypothesis. Since we have chosen � so that (B.7) takes place, the result
follows from the expression (B.8) for I3.
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Appendix C. Characterizing the sticking conditions

Our purpose in this appendix is to give explicit conditions on the weights yielding neces-
sary and sufficient conditions for sticking of particles (3.12) and (3.13) in Subsections 4.3
and 4.1 respectively. The first part is devoted to the supercritical case and the second part
will focus on the critical case.

Apart from the linear operators in Definition B.1 we will need the following ones.

Definition C.1. For any n 2 N and i; j 2 ¹1; : : : ; nº we define the linear operator

Tij W Skewn.R/! R; Y 7!
nX
kD1

.yik � yjk/:

Notice that by definition we get the following relation to the operators in Definition B.1:

Tij D
nX
kD1

.Lik � Ljk/:

The next result yields a characterization of the sticking condition (3.13).

Lemma C.1. For any n2N andM 2 Skewn.R/, the following assertions are equivalent:

(1) There exists Y 2 Skewn.R/ such that

M D Y � JC J � Y:
(2) There exists Y 2 Skewn.R/ such that

Tij .Y / � mij and � Tij .Y / � �mij :
(3) We have

m1i Cmij Cmj1 D 0 (C.1)

for all 2 � i < j � n.

(4) We have
mij Cmjk Cmki D 0 (C.2)

for all 1 � i < j < k � n.

Proof. First, it is clear that the first two assertions are equivalent. Second, let us briefly
show that (C.1) and (C.2) are equivalent. On the one hand, it is clear that (C.1) is a par-
ticular case of (C.2). On the other hand, assume that (C.1) holds. Then in particular for
1 � i < j < k � n we have

m1i Cmij Cmj1 D 0;
m1j Cmjk Cmk1 D 0;
m1k Cmki Cmi1 D 0:

Taking the sum of these equations we obtain (C.2) by the skew-symmetry of M .
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Hence, let us prove the equivalence between the second and third assertions. By
Lemma B.2, (2) amounts to saying that whenever ƒ 2Mn.R/ satisfies

nX
i;jD1

�ijTij D 0;

then
nX

i;jD1
�ijmij � 0:

Evaluating on the basis ei ˝ ej � ej ˝ ei we equivalently write the former condition as

nX
kD1

Œ.�ik � �ki / � .�jk � �kj /� D 0:

Hence, if we define pij D �ij � �j i we can conclude that (2) is equivalent to the fact that
whenever P 2 Skewn.R/ satisfies

nX
kD1

.pik � pjk/ D 0 (C.3)

for all i; j 2 ¹1; : : : ; nº, then
nX

i;jD1
pijmij � 0: (C.4)

� Step 1. Here, we characterize the condition (C.3). Taking

x D
� nX
kD1

pjk

�
j

in Lemma 4.4 shows that the matrices P 2 Skewn.R/ fulfilling (C.3) coincide with those
in the kernel of the operator L D .L1; : : : ; Ln/. Recall that L has rank n � 1. Since
Skewn.R/ is a vector space of dimension d1 WD n.n � 1/=2, we find that

d2 WD dim.ker L/ D n.n � 1/
2

� .n � 1/ D .n � 1/.n � 2/
2

:

Consider the matrices

Pij WD E1i CEij CEj1 D E1i �Eij CEij ; (C.5)

where Eij are the skew symmetric matrices in (B.2). Then

L.Pij / D L.E1i /CL.Eij /CL.Ej1/ D .e1 � ej /C .ei � ej /C .ej � e1/ D 0:
Hence, the subset

P WD ¹Pij W 2 � i < j � nº � ker L
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consists of .n � 1/.n � 2/=2 different elements, which can be ordered according to the
lexicographic order of the pairs .i; j /. Let us show that they are linearly independent, thus
generating the whole kernel. We first consider the basis of skew-symmetric matrices

B WD ¹Eij W 1 � i < j � nº;
and again we arrange them in lexicographic order. Let M 2Md2�d1.R/ be the matrix of
coordinates of the elements in P with respect to the basis B. Then by (C.5) one infers
that the d2 � d2 identity matrix appears as the submatrix of M consisting of all the d2
rows but just the last d2 columns. Hence, rank M D d2 and consequently

ker L D span.P /:

� Step 2. Here, we characterize the condition (C.4), which clearly amounts to
nX

i;jD1
pijmij D 0

for every P 2 P . Taking P D Pij for 2 � i < j � n we get
nX

i;jD1
pijmij D 1

2
.m1i �mi1 Cmij �mj i Cmj1 �m1j / D m1i Cmij Cmj1;

and this concludes the proof.

Finally, we focus on the sticking condition (3.11) in the critical case. The next result
gives an explicit characterization that uses similar techniques to those in Lemma B.3.

Lemma C.2. For any n2N andM 2 Skewn.R/, the following assertions are equivalent:

(1) There exists Y 2 Skewn.Œ�1; 1�/ such that M D Y � JC J � Y .

(2) There exists Y 2 Skewn.R/ such that

Tij .Y / � mij ; �Tij .Y / � �mij and Lij .Y / � 1:
(3) We have

nX
i;jD1

qij C 1

2

nX
i;jD1

pijmij � 0

for any i; j D 1; : : : ; n, and for every P 2 Skewn.R/ and Q 2Mn.R
C
0 / such thatPn

kD1.pik � pjk/C qij � qj i D 0.

(4) The following two conditions hold:

(a) Condition (C.2) holds true.

(b) We have
mX
iD1

nX
jDmC1

m�i�j 2 Œ�nm.n �m/; nm.n �m/� (C.6)

for every permutation � of ¹1; : : : ; nº and any 1 � m � n.
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Proof. Assertions (1) and (2) are apparently equivalent due to the definition of the linear
operators involved. Also, .2/ and .3/ are equivalent by an application of Lemma B.2 that
is analogous to that in the proof of Lemma B.3; hence, we skip the proof for simplicity.
Therefore, we will only focus on the equivalence with the last assertion. First, assume that
for some Y 2 Skewn.Œ�1; 1�/ the first assertion holds true, i.e.,

mij D
nX
kD1

.yik � yjk/:

By Lemma C.1 we arrive at (C.2). Moreover,
mX
iD1

nX
jDmC1

m�i�j D
mX
iD1

nX
jDmC1

nX
kD1

.y�i�k � y�j �k /

D .n �m/
mX
iD1

nX
kDmC1

y�i�k �m
nX

jDmC1

mX
kD1

yjk D n
mX
iD1

nX
kDmC1

yik :

Since it is n times the sum of m.n � m/ numbers in Œ�1; 1�, the condition (C.6) is also
satisfied. Conversely, assume that both (C.2) and (C.6) hold and take any P 2 Skewn.R/
and Q 2Mn.R

C
0 / such that

nX
kD1

.pik � pjk/C qij � qj i D 0 (C.7)

for any i; j D 1; : : : ; n. Without loss of generality we can assume that qi i D 0 for every
i D 1; : : : ; n. Also, define �i WD

Pn
kD1 pik and consider a permutation � of ¹1; : : : ; nº

such that the ��i are in non-decreasing order,

��1 � � � � � ��n : (C.8)

Let us split

I WD
nX

i;jD1
q�i�j C

1

2

nX
i;jD1

p�i�jm�i�j DW I1 C I2:

Using (C.2) in the second term we can write

I2 D 1

2

nX
i;jD1

p�i�j .m�i�k �m�j �k /

for any k D 1; : : : ; n. Let us take the average with respect to k in the above expression:

I2 D 1

2n

nX
iD1

� nX
kD1

m�i�k

�
��i C

1

2n

nX
jD1

� nX
kD1

m�j �k

�
��j

D 1

n

nX
iD1

� nX
kD1

m�i�k

�
��i D

1

n

nX
iD1

� nX
kD1

m�i�k

�
.��j C q�j �i � q�i�j /
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for any j D 1; : : : ; n, where (C.7) has been used in the last step. Taking the average with
respect to j we get

I2 D 1

n2

nX
i;jD1

� nX
kD1

m�i�k

�
.q�j �i � q�i�j /

D 1

2n2

nX
i;jD1

� nX
kD1

.m�i�k �m�j �k /
�
.q�j �i � q�i�j /

D 1

n2

X
i<j

� nX
kD1

.m�i�k �m�j �k /
�
.q�j �i � q�i�j /: (C.9)

On the other hand,
I2 D

X
j>i

q�i�j C
X
i<j

.q�i�j � q�j �i /: (C.10)

Putting (C.9)–(C.10) together we obtain

I D 2
X
j>i

qij C
X
i<j

�
1 � 1

n2

nX
kD1

.m�i�k �m�j �k /
�
.q�i�j � q�j �i /:

Finally, notice that for any i < j , the condition (C.7) entails

q�i�j � q�j �i D
j�1X
mDi

.q�m�mC1 � q�mC1�m/;

and consequently

I D 2
X
j>i

qij C
nX
kD1

am.q�m�mC1 � q�mC1�m/;

where the coefficients are

am D
mX
iD1

nX
jDmC1

�
1 � 1

n2

nX
kD1

.m�i�k �m�j �k /
�

D m.n �m/ � 1
n

mX
iD1

nX
jDmC1

m�i�j :

Here, (C.2) has been used again. Since the am are all non-negative by (C.6) and the ��i
are ordered as in (C.8), we conclude that I � 0 and this ends the proof.
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