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Abstract: Different software product quality models interpret different amounts of information, i.e.,
they can capture and address different manifestations of software quality. This characteristic can
cause misleading statements and misunderstandings while explaining or comparing the results of
software product quality assessments. A total of 23 previously identified distinct software product
quality models are analysed on how they handle the abstract notion of quality, and a taxonomy on
the quality manifestations that the individual software product quality models are able to capture
is established. Quality models that are able to solely describe the quality manifestation of the
source code are attractive due to their full automation potential through static code analysers, but
their assessment results ignore a huge part of software product quality, which is the one that most
impresses the end user. The manifestations of software product quality that address the behaviour of
the software while it operates, or the perception of the end user with regard to the software in use,
require human involvement in the quality assessment. The taxonomy contributes to interpreting the
quality assessment results of different quality models by showing the possible quality manifestations
that can be captured by the identified models; moreover, the taxonomy also provides assistance
while selecting a quality model for a given project. The quality manifestations used for the quality
measurement always need to be presented, otherwise the quality assessment results cannot be
interpreted in an appropriate manner.

Keywords: software engineering; software product quality model; quality assessment; quality view;
SQALE; ISO25010

1. Introduction

Software product quality models have undergone continuous development for more
than 40 years, starting with their conception in the 1970s [1–4]. Assessing software products
involves quality models of a wide range from simple hierarchic decomposition techniques
to complex meta-models to cope with the abstract notion of software quality [3–5]. Never-
theless, the quality models applied and their concrete implementations differ significantly
in terms of the ability to capture the manifestations of software quality. The differences
in this ability of the identified software product quality models are introduced in the
present paper to assist with the decision of whether a particular quality model is suit-
able for a specific task or whether the statement based on a specific software product
quality model holds for software quality in general. Following the terminology of the
ISO/IEC 9126 standard and its successor ISO/IEC 25010 [6,7], the quality manifestations
the software product quality models are able to capture are called quality views in this
paper, by which a unified terminology is also laid down. Creating a unified terminol-
ogy is necessary, as some software product quality models, including ADEQUATE [8,9],
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FURPS+ [10–12], GEQUAMO [13], reflect the opinions of different stakeholders, which are
directly or indirectly referred to as quality views in the model definition documents.

The ISO/IEC 9126 and ISO/IEC 25010 standards [6,7] distinguish three distinct views:
(1) internal quality, (2) external quality, and (3) quality-in-use view [6,7,14]:

Internal quality view: The set of quality properties of the source code and documenta-
tion that are deemed to influence the behaviour and use of the software.

External quality view: The set of quality properties that determine how the software
product behaves while it operates. These properties are usually measured when the
software product assessed is operational and is being tested.

Quality-in-use view: The set of quality properties that determine how the user perceives
software product quality, i.e., to what extent the objectives that the software is used for
can be achieved.

The software product quality assessed by the three different views needs to have
predictive power towards each other, called predictive validity [6,7]. Thus, the measured
internal quality should predict the external quality, and the measured external quality
should predict the quality-in-use [6,7]. Nevertheless, this validity does not necessarily hold
since quality metrics and measures associated with the quality properties do not always
have such a predictive power [14]. Software product quality model families explicitly or
implicitly define which manifestations of quality they are able to address.

The term software product quality model family is coined for related quality models
with the same concepts but with minor differences. While the terms software product
quality model family and software product quality framework are used interchangeably
here, a distinction is made between the product quality model and process quality model.
The former deals with the quality properties of software products while the latter assesses
the processes through which the software products come into existence [6,7]. Furthermore,
the term software product quality model or quality model in short refers to any software
product quality model or any software quality assessment approach that makes the use of
a software product quality model possible.

This research considers quality models that aim to describe each known aspect of
software product quality, i.e., models that aim for completeness and, therefore, do not focus
solely on a limited scope of quality properties such as maintainability or security. Conse-
quently, the identified software product quality models offer support for the assessment
of the software product as a whole and allow to define quality targets that endeavour for
completeness. To emphasise the aim of these models, the term "complete software product
quality models" is used. Thus, partial quality models are not eligible when assessing a
software product as a whole. In [5], 23 software product quality model families were evalu-
ated from the point of view of their relevance for the industrial and scientific communities.
These identified, complete software product quality models constitute the set of models
analysed in the present study.

Complete software product quality models usually encourage tailoring to specific
project’s needs, which is illustrated in Table 1 with variations within the same software
product quality model families. The process of how abstract software product quality
models can serve as a basis for a specific application domain (mobile application projects
at Samsung) is demonstrated by Kim and Lee in [15]. In the specific tailoring process, Kim
and Lee created a separate quality model starting from ISO/IEC 9126 [6] by removing
the hierarchy, selecting the quality properties relevant for the specific context and added
automation potential for measuring the internal quality view. The demonstrated process
can also be applied to consider the specificities of particular application domains such as
web, embedded, and IoT.

1.1. Research Question

Different software product quality models approach the abstraction of quality to
capture its distinct manifestations in various ways, herein referred to as quality views
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following the terminology of the ISO/IEC 9126 [6] and ISO/IEC 25010 [7] standards. When
assessing software products, it is of crucial importance to highlight the quality views
used because the quality assessment results can only be interpreted with regard to this
information in a fair manner to avoid misunderstandings and misinterpretation. For this
reason, it is necessary to classify all the software product quality models identified in [5] to
discover the quality views the models can address. Consequently, the research question in
this study is formulated as follows:

RQ1: Which quality views can the identified 23 software product quality model
families address?

1.2. Structure of the Study

Section 2 analyses previous studies in the field, Section 3 presents the research methods,
Section 4 introduces the taxonomy of all software product quality model families identified
in [5], while Section 5 presents the limitations of the conducted research, and Section 6
closes the paper with the concluding remarks.

2. Related Works

Galli et al. in [5] carried out a comprehensive systematic literature review as per [16],
and developed a scoring scheme for measuring the relevance of software product quality
model families for the industrial and scientific communities. In addition, an execution
tracing quality study of software product quality models was reported in [3]. Other studies
on software product quality models have been carried out by Hegeman in [17] (up to 2011)
and by Ferenc et al. in [18] (up to 2014), respectively. However, these two studies are
not systematic as per [16], do not measure the quality model families’ relevance for the
industrial and scientific communities, and include partial quality models that deal with a
specific part of software product quality.

Software product quality models defined, tailored or referenced since 2000 are elicited
in [5], which was complemented with an analysis of the developments and trends that
emerged during this period of time. Criteria regarding whether a publication establishes a
new software product quality model family or solely adjusts a quality model already in
use while keeping the existing quality model’s concepts are also introduced in detail in [5].
In addition, the relevance of the quality model families for the industrial and scientific
communities was measured (1) on the extracted, structured and synthesised qualitative
information from the software product quality model definitions, and (2) on the following
quantitative indicators: (i) relevance score; (ii) quality score average; (iii) time range;
and (iv) 12-month average Google Relative Search Index. The identified 23 software
product quality model families reveal huge differences in terms of application and research.

To make the present study self-contained, a summary of the main contributions of the
study [5] are given below:

(1) Search queries were developed and recorded for automatic document search;
(2) Searches were carried out in six computer science digital libraries, including IEEE

and ACM;
(3) The automatic document search was complemented with manual and reference searches;
(4) All the documents returned by the searches were pre-analysed, the duplicates were

removed, the non-primary sources were removed, the complete software product
quality models were included in the investigation, but process quality models and
partial quality models were excluded with the reason for exclusion recorded;

(5) Documents were assigned to the software product quality models they define, tailor or
reference, which lead to the creation of related document clusters, i.e., to software prod-
uct quality model families. Publications and model definitions stem from the academic
and industrial domain, including EMISQ [19], SQUALE [20], FURPS [10,11], SQAE
and ISO9126 combination [21], Quality Model of Kim and Lee [15] from companies
such as Air France, Siemens, Qualixo, IBM, MITRE, and Samsung;
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(6) Each document was analysed in-depth to extract the terminology and concepts of
each software product quality model;

(7) Each document was assigned a score value for clarity of the publication and a score
value for the actuality of the publication based on defined scoring criteria; the clarity
score discriminates whether a quality model was published in a detailed mature state
in one publication or in several publications by means of smaller increments;

(8) The quality score of a document is defined as the product of its clarity score and
actuality score;

(9) For each cluster of documents, the following indicators are defined:

(i) The relevance score as the sum of the quality scores of its documents;
(ii) The quality score average;
(iii) The publication time range; and
(iv) The 12-month average of Google Trends called the Google Relative Search In-

dex [22].

The first two indicators are related to research intensity, while the third one is related
to the duration of research on a software product quality model family, none of which are
normalised. The 12-month average Google Relative Search Index (GRSI) illustrates how
far a software product quality model family is spread with everyday use cases. GRSI is
computed from the normalised time series data of Google Trends. Cases when the GRSI
indicator was not possible to apply as certain software product quality model families
manifest homonyms, i.e., different things with the same name, were indicated with an
“n.a.” value in the ranking Table 1.

Table 1. Identified quality model families ranked by relevance scores [5].

Ranking Model Family Relevance Score Quality Score Average Publication Range from 2000 Google Relative Search Index

1 ISO25010 [7,23–29] 1 130 16.25 [2011; 2018] 30.02
2 ISO9126 [6,30–37] 120 13.33 [2000; 2017] 53.06
3 SQALE [17,38–44] 107 13.38 [2009; 2016] 18.33
4 Quamoco [45–48] 90 22.5 [2012; 2015] 0
5 EMISQ [19,49,50] 38 12.67 [2008; 2011] 0
6 SQUALE [20,51–53] 36 9 [2012; 2015] n.a.
7 ADEQUATE [8,9] 18 9 [2005; 2009] n.a.
8 COQUALMO [54,55] 15 7.5 [2008; 2008] 0.21
=9 FURPS [10–12] 10 3.33 [2005; 2005] 20.56
=9 SQAE and ISO9126 combination [21] 10 10 [2004; 2004] 0
=9 Ulan et al. [56] 10 10 [2018; 2018] n.a.
10 Kim and Lee [15] 9 9 [2009; 2009] n.a.
11 GEQUAMO [13] 5 5 [2003; 2003] 0
12 McCall et al. [2,57] 1 0.5 [2002; 2002] n.a.
=13 2D Model [58] 0 0 n.a. n.a.
=13 Boehm et al. [1] 0 0 n.a. n.a.
=13 Dromey [59] 0 0 n.a. n.a.
=13 GQM [60] 0 0 n.a. 40.73
=13 IEEE Metrics Framework Reaffirmed in 2009 [61] 0 0 n.a. 0
=13 Metrics Framework for Mobile Apps [62] 0 0 n.a. 0
=13 SATC [63] 0 0 n.a. n.a.
=13 SQAE [64] 0 0 n.a. n.a.
=13 SQUID [14] 0 0 n.a. n.a.

1 The original table in [5] contains an incorrect start year of ISO25010, which is corrected here.

Notice that all models except for FURPS [10] and GQM [60] have score values in
agreement with the 12-month average GRSI values, which indicates that FURPS and GQM
have more widespread application than shown by their relevance score. The ISO/IEC
9126 and ISO/IEC 25010 standards have very similar software product quality model
concepts [6,7]. The 12-month average GRSI indicator shows more activity for the ISO/IEC
9126 standard [6] than for its successor ISO/IEC 25010 [7]; moreover, the last identified
publication on the ISO/IEC 9126 standard appeared in 2017, years after the publication
of the successor standard ISO/IEC 25010 [7]. The SQALE model [44] was ranked as third
according to the relevance score, which mirrors the 12-month average GRSI if the two
outliers, FURPS [10] and GQM [60], were excluded. In addition, SonarQube [65], a popular
tool implementation of the abstract SQALE model [44], would suppress the 12-month
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average GRSI indicator for all listed quality model families to nearly zero [5,22], which
means that the majority of the activities in the domain seem to be associated with such
widespread implementation of the SQALE model [44]. Table 1 results are taken into account
while filling in the columns “Research Interest” and “Widespread Use Cases” in the present
study taxonomy in Table 2.

Table 2. Taxonomy: software product quality model families and their quality views.

ID Relevance Rank Name Quality Views Considered Predefined Quality Properties or Metrics Available Research Interest Widespread Use Cases Also Process Related Properties

1 1 ISO25010 [7,23–29] I, E, U Yes Yes Yes No
2 2 ISO9126 [6,30–37] I, E, U Yes Yes Yes No
3 3 SQALE [17,38–44] I Yes Yes Yes No
4 4 Quamoco [45–48] I, E, U Yes No No No
5 5 EMISQ [19,49,50] I Yes No No No
6 6 SQUALE [20,51–53] I, E Yes No No Yes
7 7 ADEQUATE [8,9] I, E, U Yes No No Yes
8 8 COQUALMO [54,55] I, E Yes No No Yes
9 9 FURPS [10–12] I, E, (U) Yes No Yes Yes
10 9 SQAE and ISO9126 combination [21] I, E Yes No No No
11 9 Ulan et al. [56] I Yes No No No
12 10 Kim and Lee [15] I Yes No No No
13 11 GEQUAMO [13] I, E, U Yes No No Yes
14 12 McCall et al. [2,57] I, E, (U) Yes No No Yes
15 13 2D Model [58] Undefined No No No Undefined
16 13 Boehm et al. [1] I, E, (U) Yes No No No
17 13 Dromey [59] I Yes No No No
18 13 GQM [60] D No No Yes D
19 13 IEEE Metrics Framework Reaffirmed in 2009 [61] Undefined No No No Undefined
20 13 Metrics Framework for Mobile Apps [62] Undefined Yes No No Undefined
21 13 SATC [63] I, E Yes No No Yes
22 13 SQAE [64] I Yes No No No
23 13 SQUID [14] D D No No D

3. Methods

The study applies qualitative research comprising the analysis of documents and
tailored quality models to specific project needs. The documents forming the input of the
present research were identified by a systematic literature review [16] in the scope of [5].
As the internal/external quality views and quality-in-use view are not explicitly defined in
all the model descriptions, the quality property specifications and model concepts were
investigated to obtain an insight as to whether a given quality model is able to address
external or quality-in-use manifestations.

Quality models able to provide guidelines to the investigation of the source code or
documentation, without exhibiting any quality property assessing the software’s runtime
behaviour or the perception of the end user, are designated as quality models with internal
quality view only (denoted “I” in Table 2). Quality models that contain quality properties
to assess the software’s runtime behaviour are designated with the external quality view
(denoted “E” in Table 2). In addition, if a quality model also shows up quality properties
to reflect the end user’s assessments in any form, then the quality-in-use view is also
assigned (denoted “U” in Table 2). If a given quality model does not provide quality
property specifications, but it contains concepts that allow to define or deal with existing
quality property specifications and how to extend the model, then these concepts were
examined to decide which quality views the quality model is able handle. Thus, quality
models lacking explicit information about the quality views were classified based on the
authors’ interpretation of the published model definitions with regard to concepts, and
quality properties. Cases where alternative interpretations to the authors’ one may exist
are indicated with brackets in Table 2 and with additional explanations in the next section.
Quality models not providing enough information to perform a reasonable classification
are classed “Undefined” in Table 2. There are also quality assessment approaches that
allow the definition of a new quality model or the use of a different quality model from
the one predefined. The quality views applied in such cases depend on the quality models
implemented (denoted “D” in Table 2). The flow chart of the taxonomy process is depicted
in Figure 1.

Section 4 lays out the classification of the identified software product quality models
and provides reasoning in each case where the model description does not explicitly define
the use of the internal, external and quality-in-use views.
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Figure 1. The flow chart of the quality model classification.

4. Results

This section presents the taxonomy of the software product quality model families
from the point of view of quality manifestations they can capture. An important aspect of
the quality models is their ability to measure the properties of software products; therefore,
software product quality models are involved in the study; however, some quality models
also exhibit properties to assess the process by which the software products come into
existence. Such models are also marked in Table 2 to provide support for the selection of a
potential quality model.

Quamoco, ADEQUATE, FURPS+, GEQUAMO, McCall et al.’s model, and Boehm
et al.’s model are classified as quality models with internal, external and quality-in-use
views in Table 2: the Quamoco quality model [46] encompasses an entity “utility” that
describes the relative satisfaction of stakeholders with regard to a specific “factor” in the
model’s terminology; ADEQUATE [8,9] determines the key personnel and their views.
FURPS+ [10–12] includes systematic approaches to collect architectural requirements in-
volving the stakeholders to consider their opinions; GEQUAMO [13] encompasses quality
views for users, sponsors and developers; McCall et al.’s model [2] contains usability and
testability factors; Boehm et al.’s model [1] reflects quality characteristics for usability
and human engineering, which could make it possible to consider the end user’s view
of quality.

SQUALE, COQUALMO and STAC models are classified as quality models with inter-
nal and external quality views in Table 2: SQUALE [20] possesses different metrics and
practices related to distinct test levels; COQUALMO [54,55] comprises a defect introduc-
tion and removal sub-model, which assumes the software to be operational; the STAC
model [63] defines metrics related to testing.

Ulan et al.’s model [56], SQALE [17,38–44], EMISQ [19,49,50], Kim and Lee’s model [15],
Dromey’s model [59], SQAE [64] are classified in Table 2 as quality models with internal
quality view only: Ulan et al.’s model permits the use of any goal-question-metric approach;
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its novelty lies in the complex mathematical computations used in a clustering approach,
although the model published demonstrated internal quality properties only without di-
rect guidelines for extension; SQALE also contains the testability quality property that is
divided into two further quality properties, Unit Testing Testability and Integration-level
Testability, that are based on the results of code analysers.

GQM [60] and SQUID [14] are rather general quality assessment approaches with no
predefined quality models. These approaches assume the creation of a software product
quality model or the use of an existing one, named content model in SQUID terminology,
which is suitable to achieve the goals set in the given context. Consequently, the quality
views they consider depend on the defined metrics and goals. In the published case study
with the model definition [14], SQUID also encompasses metrics that can only be collected
when the software is operational and metrics on usability that allow the expression of
end users’ quality perception. For these reasons, they are classified in Table 2 as quality
assessment approaches with quality views that depend on the quality model used.

In addition to the quality views applied, further information is presented in the
columns: “Predefined Quality Properties or Metrics Available” to describe whether the
specified model defines quality properties with associated computation methods; “Research
Interest” to indicate whether there are more publications related to the quality model and
one in the last five years; “Widespread Use Cases” to provide the judgement based on the
specified model’s 12-month average GRSI indicator from Table 1; “Also Process Related
Properties” to show whether the specified model is a hybrid model with quality properties
that describe process quality.

From Table 2, it is clear that the identified software product quality model families
apply different quality views to capture the abstract notion of quality. The capabilities of
the listed software product quality models deviate significantly; many of them are unable
to assess the external quality view and the quality-in-use view. The provided taxonomy
makes it possible to interpret the quality assessment results. Based on quality assessments
with internal quality view only, it is not possible to make valid statements regarding
software product quality as a whole. This is because such models lack the capability to
capture how the software behaves while it is used and how the end user perceives its
quality. Quality assessment results always need to be interpreted with the quality model’s
capabilities, including quality views, which is especially important for project negotiations.
In addition, Table 2 also contains relevant information to support the selection of a quality
model for a specific project. In such cases, not only the model’s quality views play an
important role but the following criteria can also influence the decision: (1) the amount of
associated research studies on the model, i.e., the research interest, (2) the model’s public
spread, and (3) whether the model has process related quality properties.

5. Limitations

The research conducted is qualitative in nature and rests on data extracted from the
definition documents of the different quality models and from their variations, which
depict how to tailor the identified models to specific needs. The analysis of the listed
software product quality model families was done carefully, although the high amount of
information implicates a risk of ignoring minor details. On the other hand, some quality
models investigated did not provide enough information to allow their classification with
regard to Table 2 taxonomy. These models were correspondingly marked in Table 2 and
explained in Section 4.

Table 2 taxonomy lists the software product quality model families according to their
relevance for the industrial and scientific communities, as reported in 2020 in [5]. This
means that publications appeared afterwards and new applications of the listed quality
models might have an influence on this order but not on the provided taxonomy of quality
models with internal, external and quality-in-use manifestations.
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6. Conclusions

Classification of software product quality models based on the amount of information
they can interpret, i.e., the quality manifestations they can address, is an important step
towards preventing misunderstandings and misleading statements regarding software
product quality assessments. At present, the most comprehensive and easy-to-understand
quality interpretations are defined by the ISO/IEC 9126 and ISO/IEC 25010 [6,7] standards.
Both standards classify quality manifestations with three distinct views: internal, external
and quality-in-use view. This was extended to all 23 software product quality models
identified in 2020 in [5] and listed in Table 2 even if the definition documents use different
terminologies or do not mention such views explicitly. Consequently, the current study
places the existing publications related to software product quality modelling into a new
context. Moreover, the research conducted stresses the requirement to present not only
the quality assessment results but also the quality manifestations, i.e., the quality views,
measured. The latter is a must for fair quality measurements and assessments.

The quality assessment results cannot be interpreted on their own without the knowl-
edge of whether internal, external or quality-in-use quality manifestations were measured.
Indicating and emphasising this characteristic of the software product quality assessment
is a major contribution of the paper. The scope of software product quality that the indi-
vidual quality models are able to assess has a direct impact on software development and
maintenance costs. In conclusion, as explained in Section 4, a “good quality” statement
made on the basis of a software product quality model that captures the above three views
has a very different meaning to a “good quality” statement made on the basis of another
software product quality model, which can only capture one individual view of the three
defined ones. Consequently, it is never fair to make a statement with regard to the whole
software product quality when only the internal quality view is assessed.

The software product quality models with full-automation potential can solely assess
the internal view of quality, which can be captured by static code analysers. The software
product quality models capable of handling all internal, external and quality-in-use views
offer partial automation features so that the results of the measurement of the external and
quality-in-use views could be considered. This is not an impediment but a broader range
of quality manifestations to consider for approximating the reality better while assessing
quality. Nevertheless, if such models are integrated into the development pipeline with the
expectation of full automation, then their capabilities are restricted to the internal quality
view only.
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