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Abstract: Standard methodologies for redesigning physical networks rely on Geographic Informa-
tion Systems (GIS), which strongly depend on local demographic specifications. The absence of a
universal definition of demography makes its use for cross-border purposes much more difficult.
This paper presents a Decision Making Model (DMM) for redesigning networks that works without
geographical constraints. There are multiple advantages of this approach: on one hand, it can be used
in any country of the world; on the other hand, the absence of geographical constraints widens the
application scope of our approach, meaning that it can be successfully implemented either in physical
(ATM networks) or non-physical networks such as in group decision making, social networks, e-
commerce, e-governance and all fields in which user groups make decisions collectively. Case studies
involving both types of situations are conducted in order to illustrate the methodology. The model
has been designed under a data reduction strategy in order to improve application performance.

Keywords: universal decision making model; redesigning networks; Markov random fields

1. Introduction

Network redesigning is a dynamic problem that arises in several fields. The wide
range of reasons for redesigning includes the need to adapt to changing requirements (new
regulatory scenarios, for instance) or to enhance the sector’s capacities [1–3]. Not only is
the further expansion of the network considered, but also reductions may be provided.
Likewise, redesigning affects a large number of sectors in which networks play a role:
apart from areas with standard branch networks (banking institutions, supermarkets and
petrol or gas stations), it concerns the telecommunications and electricity sectors, transport
industries by land, sea and air and many others in which the consideration of physical
networks is required [4].

Redesigning processes go much further than adapting to changes as they involve sev-
eral factors. However, at their core, all these variables may be considered to be within two
main groups: (i) identifying operational shortfalls and (ii) projecting future performance in
order to anticipate future needs. The latter concern could be interpreted as re-distributing
nodes in the network (adding, removing and merging nodes) and assessing the results for
each possibility. This paper is related to the latter concept: an approach is developed to
model the evaluation of the future performance of a network in different scenarios in order
to design the future network structure.

Standard methodologies for redesigning physical networks rely on Geographic In-
formation Systems [5,6], which strongly depend on local specifications. However, the
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absence of a universal definition of demography makes the joint use of such technologies in
domestic and international scenarios more difficult, especially for cross-border enterprises.
Our contribution is to present a Decision Making Model to restructure networks that works
without geographical constraints. More specifically, the novelty of our model is that local
geographical specifications are optional (they could be included if required by the specific
context) instead of compulsory. There are multiple advantages of our approach: on one
hand, it may be used in any country of the world; on the other hand, there is a broad
application scope, as our approach could successfully be implemented either in physical
(ATM networks [7]) or in non-physical networks such as e-commerce, e-governance and all
fields in which user groups make decisions collectively [8–10].

An additional contribution is that the model has been designed under a data reduction
strategy (i.e., only significant information is required) in order to improve application
performance. The advantages of this vary from reducing the storage space to increasing
the speed of the decision-making model. Specifically, our approach is based on a joint
probability distribution, which can be expressed as function of a few significant nodes of
the network, called the cliques. While the employment of probability functions in decision-
making models is not new (they have been widely used by Bayesian-based techniques), the
novelty of our approach relies on the choice of Markov random fields instead of Bayesian
networks as a supporting structure [11].

As a previous stage to the decision model itself, a universal (geographical constraint-free)
network is overlapped with the given network. Such a universal network is constructed from
the selected criteria for redesigning in such a way that if multiple criteria were needed, the
methodology may be executed in parallel for all the considered criteria, thereby enhancing
the decision capabilities of the model. Besides, the independence of the processes guarantees
that the model may monitor the application performance automatically, without the figure of
a driver (a moderator in GDM contexts, for instance; see [12,13]. As a result, different levels
of precision can be simultaneously considered.

Related works on Markov fields include [14,15], where Markov Decision Processes are
the tools used to analyze the given information in order to make decisions. In [16], Markov
networks are the framework used to develop a scoring function (called BJP) that computes
the joint posterior distribution of the collection of Markov blankets.

Network redesigning may be addressed from several standpoints and is usually
related to a given criteria and performed by means of many techniques. In [17], the
authors presented a branch redesigning framework by means of integer 0–1 programming,
the objective of which is to restructure the network after mergers and takeovers. Other
approaches rely on Fuzzy Cognitive Maps (FCMs) [18], in which a dynamic network of
interconnected knowledge nodes is designed through the use of FCMs. The authors could
not find any previous works which jointly addressed the restructuring of both physical
and non-physical networks.

The organization of the paper is as follows. Section 2 provides an overview of Markov
random fields. Sections 3 and 4 are devoted to the decision-making model. Specifically, in
Section 3, the pre-processing steps are established (Section 3.1 shows the construction of
the universal network and Section 3.2 shows its resulting properties), while in Section 4,
the decision-making model itself is developed. In Sections 5 and 6, some applications are
presented (Section 5: the banking context, Section 6: group decision making problems).
Finally, Section 7 concludes the paper.

2. Preliminaries on Markov Random Fields

In the beginning, Graph Theory was devoted to finding walks and paths (Euler,
Hamilton), but it is now used to find substructures (communities) in networks. As this is
also the philosophy that underlies this paper, let us briefly review Markov random fields
by starting with Graph Theory.

In a graph G = (V, E) (V represents the set of vertices (nodes or sites) and E represents
the set of edges), two vertices u, v are said to be adjacent, u ∼ v, if (u, v) ∈ E. Thus,
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the collection of adjacent vertices to a given vertex u is called the neighborhood of u,
N(u) = {v ∈ V|u ∼ v}. In this regard, it is well-known that defining a neighborhood is
equivalent to defining the set E. Cliques in a graph are communities (subgraphs) of fully
connected nodes: C ⊆ V is a clique if C ⊆ {u, N(u)}, ∀u ∈ C.

Depending on whether the edges are bidirectional or not, graphs are called undirected
or directed. Those graphs whose nodes are random variables Xv, v ∈ V and whose
edges show statistical relationships with nodes are called graphical models. Graphical
models over an undirected graph are called Markov random fields (MRFs), while Bayesian
networks are graphical models whose underlying graph is a directed one.

MRFs may be also viewed as spatial networks that fulfill an extension of the Markov
chains’ memory-less property. More specifically, Markov chains are linear random pro-
cesses {Xn|n ∈ N} in which the probability of occurrence of each state Xn depends solely
on the immediately previous state Xn−1:

P[Xn = xn|Xk = xk, ∀k 6= n] = P[Xn = xn|Xn−1 = xn−1].

Now, let us consider a spatial random process X = {Xv|v ∈ V}, V = {1, 2, . . . , n} ×
{1, 2, . . . , n}, and let P[X] denote the joint distribution of X in the following sense: P[X] =
P[{Xv = xv|v ∈ V}] = {P[Xv = xv]|v ∈ V}., X = {Xv|v ∈ V} is an MRF if the probability
of a state depends solely on the nearest states, on the understanding that the nearest nodes
are those that are in the neighborhood N:

P[Xv = xv|XV−{v} = xV−{v}] = P[Xv = xv|XN(v) = xN(v)].

For our purposes, it is important to highlight that the joint probability distribution of
an MRF X takes a specific form provided that P[X] ≥ 0. Particularly, it may be written in
terms of functions that only take values on cliques of the network (called clique potentials),
as follows:

P[X] =
1
Z ∏

C∈C
φC(XC), Z = ∑ ∏

C∈C
φC(XC),

where functions φC(XC) over the cliques C ∈ C are the clique potentials and Z is a
normalization constant. In Gibbs distribution contexts, the normalizing constant Z is
also known as the partition function. Its primary role is to ensure that the joint distribution
sums to 1. While such a function φC may take several forms, these are usually φC(XC) =
exp(− f (C)), with f (C) being a function known as an energy function on C. Thus, the joint
distribution of an MRF X may be expressed as

P[X] =
1
Z

exp

[
− ∑

C∈C
f (C)

]
.

In Image modeling and processing, such a joint probability distribution is called a
Gibbs distribution, and it gives its name to those spatial random processes whose full
distribution is similar to the one above. These are known as Gibbs random fields and,
following the Hammersley–Clifford theorem, they are essentially the same as MRFs.

3. The Redesigning Process: Pre-Processing Steps

The required steps in the redesigning process may be mainly divided into pre-
processing steps and the decision-making model itself, according to Sections 3.1 and 3.2.

3.1. Creation of a Universal Support Network (Xv, Nv)v∈V

This section presents the design of a support network that is overlapped with the
original one in order to granulate the original set of nodes depending on the selected
criteria for redesigning. This support network is called universal in the sense that it works
without local constraints. Let (V, E) be the network that we aim to restructure according to
a selected criterium. (V, E) could be either physical or non-physical: in physical networks,
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nodes are physically connected, while in the non-physical contexts, edges are abstract links
(for instance, friendships in social networks or business relationships in market scenarios).
Thus, the steps to follow are as follows:

(i) A random variable X related to the criterion for redesigning should be selected. For
example, in the case of restructuring a bank branch network under the criterion of branch
size (as shown in Section 5), we have to select the random variable which best gathers the
main features of the branch size.

(ii) Construct a support network (Xv, Nv)v∈V . To achieve our goal, each node in the
original network v ∈ V produces a node in the support network Xv when v is identified
with the random variable Xv tailored to v and extensively detailed by a collection of features
xk

v, k = 1, . . . , n; i.e., v ∼ Xv ' (x1
v, x2

v, . . . , xn
v )

t.
From now on, both terms v ∼ Xv shall be used indistinctly. Note that in Xv, the vector

coordinates (which represent the features xk
v, k = 1, . . . , n) and their number can be chosen

as needed. As mentioned in the Introduction, in the universal support network (Xv, Nv)v∈V ,
local geographical specifications are optional if required by the specific context. Actually,
they may be included as part of the features of the random variable X. We refer to Xv as a
variable-in-a-site, thereby providing a set of random variables X = {Xv | v ∈ V}.

Definition 1. Consider nodes Xvi = (x1
vi

, . . . , xn
vi
)t, Xvj = (x1

vj
, . . . , xn

vj
)t i 6= j in the support

network, and let Xvi be the mean value in a given interval of time. The distance between Xvi , Xvj ,
i 6= j, written as dij, is

dij = d(vi, vj)(= d(Xvi , Xvj)) = +
√

∑n
k=1(xkvi − xkvj)

2. (1)

Remark 1. Recall that the realization of a random variable X is the process of taking a concrete
value xv over the full range of values that may be considered: Xv = xv. In this regard, the mean
value is a choice of realization of the random variable, but many other choices may be considered
instead depending on what best suits each particular context. The definition of distance may be
freely selected as well.

Definition 2. The neighborhood of a node vi ∈ V, Nvi , is defined as

Nvi = {vj ∈ V |d(vi, vj) ≤ k, k ∈ R, k 6= 0},

where the benchmark k (which states the degree of similarity) must be specifically defined.

Note that, due to the equivalence between defining edges in a graph and a topology
through a system of neighborhoods, edges in the support network (Xv, Nv)v∈V are now
defined: for vj ∈ N(vi), an edge (vi, vj) will be joined if d(vi, vj) ≤ k 6= 0. It should be
noticed that Definition 2 could be seen as a more general definition of a neighborhood (a
multi-hop neighborhood; see [19]).

3.2. Properties

In this section, some of the properties of the universal support network are described.
Firstly, let us describe the nature of the neighborhood of a random variable:

Proposition 1 (Neighborhoods). The neighborhood of a random variable-in-a-site is formed
by random variables that are very similar with regard to the selected criterion for redesigning
the network.

Proof. Having identified every node with its set of features (according to the selected
criterion) and considering that the benchmark k may be as small as desired, the former
definition of a neighborhood implies that all random variables in a neighborhood are
similar to the selected features.
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Proposition 2 (Cliques). A clique C in the universal network (Xv, Nv)v∈V (and in the original
network (V, E) as well) is a community which consists of those nodes ci

1, ci
2 that are highly similar

with respect to the features of the random variable Xv; i.e., d(ci
1, ci

2) ≤ ki, i = 1, 2.

Proof. The result follows from the fact that the nodes in a clique are also in the correspond-
ing neighborhoods. Then, d(ci

1, ci
2) ≤ min{k1, k2} ≤ k1, k2.

Remark 2. Note that the selection of X directly affects the type of network categorization in the
sense that for each choice of the random variable X, there is an associated network re-configuration.
It is also important to note that the level of similarity for nodes in each Ci is variable; i.e., nodes
ci

1, ci
2 ∈ Ci are similar with degree ki while cj

1, cj
2 ∈ Cj may be similar with different degrees of

similarity ki 6= k j if i 6= j (an instance of this is the Internet (the universal network), in which a
community of routers are linked by cables with different lengths). In short, cliques are groups of
nodes that are similar but with different degrees of similarity depending on each clique.

The following property is very useful in practice: it states that, even if the entire
network is not an MRF, there are cliques when viewed as subnetworks:

Lemma 1. As subnetworks, cliques are MRFs.

Proof. Since cliques are clique subgraphs of fully connected nodes, C is a clique if ∀u ∈
C it holds true that C ⊆ {u} ∪ N(u). This implies that the (Markov) local property
is satisfied.

Finally, we focus on the entire universal network. The fact that the entire network
is an MRF would provide extra information about the behavior of the network under
the selected criterion (i.e., the selected random variable X). Let it be noted that, as long
as the universal network (Xv, Nv)v∈V is an MRF, the next result follows by using the
Hammersley–Clifford theorem:

Theorem 1. Assuming that (Xv, Nv)v∈V is an MRF, the joint probability distribution of the
universal network can be written as a product of clique potentials based on the function f of clique C

P[X] =
1
Z ∏

C∈C
exp[ f (C)].

The function f may be freely selected depending on the context. This opens the door
for sensitivity tests to be performed to empirically determine the best functions for each
scenario. This result is of high practical functionality thanks to the simple and direct form
of determining the joint probability distribution, expressed only in terms of cliques.

4. The Redesigning Process: The Decision-Making Model

In this section, the process by which the best location for a new node is identified is
fully described. To this end, let us simulate that the universal support network (Xv, Nv)
is divided into subnets Si(Xv, Nv). Thus, such a partition offers different scenarios for
locating a new node v∗:

(Xv, Nv) = ∪i=1Si(Xv, Nv).

The key point is to consider not subnets but the cliques, since cliques on a network,
considered as subnetworks, are MRFs themselves. Thus, the decision-making model for
best locating a new node according to a given criterion consists of the following steps:

Step 1 The universal support network (Xv, Nv) should be divided into its own cliques

Ci(Xv, Nv).
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This division yields different possibilities for locating a new node v∗: (Xv, Nv) =
∪i=1Ci(Xv, Nv).

Step 2 The subnetworks are considered together with the new node v∗: Ci
v∗(Xv, Nv) =

Ci(Xv, Nv) ∪ {v∗}.

In this regard, the following remark should be made:

Remark 3. Let it be noted that the subnetworks Ci
v∗(Xv, Nv) = Ci(Xv, Nv) ∪ {v∗} are cliques as

well: actually, a clique consists of either a single node or a maximally connected subgraph of the
whole graph.

Step 3 By Lemma 1, the joint distributions of the subnetworks {P[Ci
v∗(Xv, Nv)]}i may

be computed.

Comparisons between these numerical scores allow us to make decisions regarding
the most convenient locations.

Step 4 In the case of multiple outputs, the output should be considered that is most in
accordance with the established criteria.

The criteria considered can vary from cost minimization to the minimization of dis-
tances, and even combinations of criteria.

5. Case Study for Physical Networks: The Bank Branch Network

In this section, the decision making model is applied to the banking context—an
scenario that continually undergoes changes (mergers, acquisitions, entries and exits of
banks into the market, changes in banking regulation) that require dynamic redesigning.
In this regard, let us suppose that a new branch with a specific size has to be opened. Thus,
we need to locate a new node in the bank branch network depending on the size of the
branch; that is, size is the criterion under which the network will be restructured.

In order to identify the random variable which best fits the criterion (size), let it be
noted that size may be set according to several parameters (number of users, number
of staff, brick-and-mortar dimensions, number of credits/deposits . . . ). We select the
most accepted measure following the advice of branch managers: the branch cash holdings,
CH, which represent the total amount of cash which is allowed to be stored in a branch:
X = CH.

On the one hand, note that this random variable has a strong dependence on local
demographics. Actually, branch cash holdings greatly rely on local demographics as they
depend on branch cash transactions, which depend on the needs for cash of customers,
which strongly depend on branch locations. In general, most branch variables have a
strong dependence on local demographics. This is one of the reasons why our approach,
which is geographical constraint-free, would be useful in the banking scenario.

On the other hand, the two stochastic processes associated with CH are as follows:
firstly, the temporal process that models the temporal movements of cash holdings, denoted
by {CHn, n ∈ N} with n being the unit of time (see [20]); and secondly, the spatial process
{CHb, b ∈ BN} in which b denotes a branch in the network BN. Here, we are concerned
with the spatial stochastic process {CHb, b ∈ BN}. Now, features that explicitly describe
the random variable CH should be selected. Branch cash holdings are mainly determined
by cash transactions. For simplicity, only two determinants of branch cash transactions are
chosen, CHb = (nb, vb), where nb represents the number of branch transactions at branch b
while vb denotes the maximum volume of branch transactions permitted at branch b. As a
result, branches b ∈ BN (nodes in the universal support network) are identified with their
cash holdings, CHb = (nb, vb).
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Following the definition of the support network, edges are defined by alternatively
defining the neighborhood of a branch. This is formed by those branches which are nearby
branches, N(bi) = {bj ∈ BN such that d(bi, bj) ≤ k}, where “nearby” is understood to
mean that there are great similarities in the features related to branches’ cash holdings:
following the branch managers’ criteria, this is equivalent to having the same size. As
a result, there is an edge linking two branches if and only if they have the same size.
Moreover, cliques in the branch network BN are communities of branches with the same
size. For instance, cliques in BN may be Cl , Cm or Cs, representing the clique of branches
with a large size, a medium size and a small size, respectively, as shown in Figures 1–4.

Figure 1. Partition of the network into its cliques.

Figure 2. Subnetwork Cl
b∗ = Cl ∪ {b∗}.

Figure 3. Subnetwork Cm
b∗ = Cm ∪ {b∗}.

Figure 4. Subnetwork Cs
b∗ = Cs ∪ {b∗}.

Remark 4. Each selection of the random variable (which is stated according to the selected criterion
for redesigning) leads to cliques representing different communities of branches. Thus, in a natural
way, the original network (BN) is granulated depending on the selected criterion.
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Thus, the decision making model can now be applied:

Step 1 The universal network (Xv, Nv) might be divided into its own cliques
Ci(Xv, Nv) depending on the different possibilities for locating a new branch b∗.

Step 2 The new branch b∗ is added to the above network:

Ci
v∗(Xv, Nv) = Ci(Xv, Nv) ∪ {v∗}.

Step 3 According to Lemma 1, the joint distributions of the sub-networks

{P[Ci
v∗(Xv, Nv)]}i

may be computed, thereby allowing comparisons between these numerical scores.
Step 4 When more than one output is obtained, the most suitable output is selected

according to the given criteria.

Additionally, the BBN is an MRF with respect to branch cash holdings, as shown in
the next theorem:

Theorem 2. Branch network {CHb, b ∈ BN} is a MRF.

Proof. We show here that BN is an MRF by proving the corresponding
Markov requirement:

P[CHb = cb|CHBN−{b} = cBN−{b}] = P[CHb = cb|CHN(B) = cN(b)].

The result follows from the choice of the features considered.

According to the Hammersley–Clifford theorem, we may prove the following result:

Corollary 1. The joint distribution function of the branch network’s cash holdings CH = {CHb, b ∈
BN} P[CH) is of the form

P[CH) =
1
Z ∏

c∈C
φc(CHC) =

1
Z ∏

c∈C
e
−1
T

Vc(CHC)
=

1
Z

e
−1
T

∑c∈C Vc(CHC)
,

where φc are clique potentials and Vc denote energy functions.

Note that Theorem 2 also allows us to specify the weight w of the cliques Ci (see
Hao et al., 2018) by computing the ratio between the joint distribution of the clique as
MRFs and the joint distribution of the network support, as follows:

wCi =
P[{CH, b ∈ BN}]
P[{CH, b ∈ Ci}]

through a selected realization (the mean value of the random variable in a given time
interval, for instance) of these random variables (the same for both).

6. Case Study for Non-Physical Networks: Group Decision Making

This section demonstrates the application of the proposed universal decision-making
model to the framework of Qualitative Reasoning (QR) as part of an AI approach that
analyzes human reasoning with incomplete information. Specifically, an application to
reach consensus in Group Decision Making (GDM) problems is provided. Actually, the
application to consensus presented in this paper produces a model that is able to measure
the consensus within a committee without the need for a moderator (Section 6.1). Further,
the theoretical model applied to this context may be used in order to measure the impact of
changes in opinions when reaching consensus (Section 6.2).
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Group decision making is the process of multiple individuals making decisions by
acting collectively, analyzing problems and assessing alternative courses of action in order
to select a solution (see the papers [21–24] for further details). This resembles the general
description of our decision-making model (see the Introduction) as a process that would
allow the evaluation of the future performance of the network in different scenarios to
design the future network structure.

There are several contingencies that define group decision making: the number
and nature of people involved, the target of the decision-making groups—either formal
(formally designated and charged with a specific task) or informal—and the process used
to reach decisions—unstructured or structured . . .. Due to the global nature of the universal
decision-making model, the process described here will be valid for group decision making
of any kind. A typical group decision making problem can be formally defined by a set of
experts E and a set of alternatives A. Thus, the group decision making problem consists of
sorting A using some preferences values provided by the experts. In general, to solve a
group decision making problem, the following steps need to be taken:

• The definition of the DMP (decision making process), which includes the descriptions
of alternatives and a list of experts, E = {e1, . . . , en};

• Outlining the alternatives, A = {a1, . . . , am};
• Extracting individual preferences: for each participant, a specific preference value is

assigned, Pek , k ∈ {1, . . . , n};
• Calculating the aggregation of collective preferences;
• Ranking alternatives (sorted using the collective preference values);
• Calculating consensus values: the level of consensus reached allows the determination

of whether participants in the network community reach a common opinion or not.

The preferences are considered to be fuzzy preference relations in which the preference
matrix is additive reciprocal. To this regard, recall that a fuzzy preference relation P on a set
of alternatives A is defined as a fuzzy set on the product set A× A, which is identified with
a membership function µP : A× A→ [0, 1], usually represented by the a matrix P = (pij),
where pij = µP(ai, aj) is interpreted as the preference degree of the alternative ai over aj
(for instance, pij = 1/2 indicates indifference between ai and aj, pij = 1 indicates that ai is
absolutely preferred to aj and pij > 1/2 indicates that ai is preferred to aj). As mentioned,
it is assumed that the preference matrix, P, is additive reciprocal; i.e., pij + pji = 1, ∀i, j ∈
{1, . . . , n}. Reciprocal multiplicative preference relations (pij · pji = 1) could be considered
instead (where the equivalence between reciprocal multiplicative preference relations with
values in the interval range [1/9, 9] and reciprocal fuzzy preference relations with values
in the range [0, 1]) are stated).

For the purposes of applying our universal decision making model, the support
network must be defined first. Thus, let us consider the group decision making problem
as a network in which each node is represented by an expert ek, k = 1, . . . , n. As the
random variable X must be selected according to the goal of reaching consensus, the list of
individual fuzzy preferences of each expert over the set of alternatives shall be considered:
X = P = (individual fuzzy preferences). That is, any expert ek (i.e., any node in the
GDM) is identified with the corresponding node of the support network, with the random
variable-in-a-site of Pek = (pek

ij )
t, k = 1, . . . , n, in such a way that any expert ek is identified

with their list of preferences Pek . Note that, using the reciprocity condition, pji = 1− pij, the
resulting pairwise comparisons (sometimes structured in a matrix shape) may be gathered
into a vector of individual preferences. Following the steps provided before, edges in the
support network are defined by alternatively defining the neighborhhood of an expert. To
this end, apart from the Euclidean distance, many other definitions in the GDM context
(Manhatan, Cosine) may be taken. For further details, see [8] for instance.

Furthermore, as mentioned, the realization of the random variable Pek may be freely
selected. In this context, this can be simply considered as the scores (i.e., the numerical
preferences) provided by the experts. Once the support network has been stated, some of
its properties should apply: the neighborhood of an expert is composed of those experts
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with the closest preferences. Moreover, a clique C is a community of experts with a high
degree of similarity regarding their preferences with respect to the discussion topic (closest
preferences, where the degree of similarity may vary depending on the clique). Importantly,
let it be noted that the degree of similarity between preferences is measured by means of
the selected distance (as stated in Definition 1), where this distance may be freely selected
as necessary.

6.1. The Universal Decision-Making Model used to Measure Consensus

We now show the use of the decision-making model to derive a model that is capable
of measuring the consensus within a committee without the use of a moderator. For this,
recall that a probability distribution may be associated to each of these cliques (either the
original cliques or the original ones plus one more expert) and provides the likelihood of
the preferences (as a random variable) of the whole clique in such a way that it enables
comparisons between cliques (or cliques plus one more expert).

The process of reaching consensus may be divided into three stages:

1. The counting process, which consists of calculating the number of participants who
have selected each preference value for each alternative pair.

2. The coincidence process, the main goal of which is to aggregate the distances between
individual preferences. Thus, the objective is twofold: on the one hand, to find
similarities between preferences by computing the distance between them—this is
called the LCR process, which consists of finding a common label for each of the
groups containing the most similar preferences; on the other hand, to compute the
numbers of experts who integrate each of the previous labeled groups.

3. The computing process: If D denotes the set of decisions, the calculation of some
mean value decision schema of D should imply the selection either of an algebraic
consensus (i.e., a mapping D× D → D) or a topological consensus (i.e., a mapping
D× D → L for some lattice complete L). An example of algebraic consensus is the
(L)OWA ((Label) Ordered Weighted Averaging) operator.

Let it be noted that our approach automatically carries out steps two and three: on the
one hand, for the coincidence process, our model aggregates the individual preferences
by computing the cliques of the universal network (consisting of those people whose
preferences present a high degree of similarity with respect to the distance chosen for this
task). On the other hand, for the computing process, the distribution functions correspond-
ing to cliques (viewed as a score attached to each clique) allow us to find the consensus
level by simply comparing the scores and selecting the highest one. Many other levels of
consensus can be considered. For instance, the level of consensus may be defined as the
following ratio:

∑
Ck is a clique

P[{Pek |ek ∈ Ck]

∏
Ck is a clique

P[{Pek |ek ∈ Ck]
.

The main advantage of this proposal is that different levels of precision can be simul-
taneously considered without the presence of a moderator as well as many other functions
(as shown in the next subsection) that may be executed in parallel.

6.2. The Universal Decision-Making Model to Assess the Impact of Changes in Opinions

The proposed model can evaluate either the impact of a new expert’s entry in the
network or the impact of changes of the clique of an existing expert. In the context of GDM,
this means that the model may consider the impact of experts’ changing preferences. This
could be used to reach consensus when it has not been reached after some attempts have
been made.

Based on the standard notion of herd behavior (herding refers to an alignment of
behaviors of individuals in a group through local interactions among them), the main
result is as follows:
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Theorem 3. Assuming that there is no herd behavior (and no mimetic contagion in consequence),
the group decision making (GDM) problem is a Markov random field.

Proof. Let Xvi , Xvj be two random variables in the same neighborhood. Thus, their distance
in terms of similarity with regard to the selected features is as small as desired (as it is the
benchmark k). Thus, their marginal distributions are equal, P[Xvi ] = P[Xvj ], and so the
corresponding conditional distributions are obtained by the Bayes’ theorem: P[Xvi |Xvj ] =

P[Xvj |Xvi ].
As a consequence, an opinion depends on those of the cliques with maximum like-

lihood. Moreover, the assumption of no herd behavior ensures that there will not be
any mimetic contagion to modify the collective learning, excepting the nearest opinions
(i.e., from the neighborhood of an expert). This means that the Markov property holds:
P[Pek = pk|PGDM−{ek} = pGDM−{ek}] = P[Pek = pk|PN(ek) = pN(ek)

].

Similar to the branch network case, the previous theorem provides extra information
that allows us to assign a weight wCi to the ith-clique by computing the ratio between the
joint distribution of the clique as an MRF and the joint distribution of the network support.

Moreover, based on primary notions on collective learning through mimetic contagion,
a sketch of a procedure to change opinions in a GDM in case consensus has not been reached
may be provided. From the perspective of economic behavior and sociological theories
about the interactions and collective dynamics of opinion, one effective way to produce
changes in opinion (from opinion A to opinion B) is to “surround” an individual with
opinion A by people with opinion B.

In GDM, that would mean moving an expert from their own clique—of opinion A—
to another clique: changes in the projects/teams/departments of an employee within a
company should provide a new framework for them to be “surrounded” by new opinions.
In that case, the proposed universal decision-making model allows the comparison of
all the possibilities of change through the corresponding probability distribution whose
outputs are the likelihood of the new preferences, expressed by numerical values (see
Section 5, step 3 in the model). Thus, the comparison of these outputs allows decisions to
be made.

7. Sensitive Study

The previous theorem 1 shows that the joint probability distribution of an MRF is
presented in terms of cliques C as

P[X] =
1
Z

exp

[
− ∑

C∈C
f (C)

]
.

It is worthy of mention that the comments on this theorem state that the form of
function f on clique C (called the energy function) strongly determines the performance
of the whole probability distribution in such a way that it is highly advisable to carry
out sensitivity tests in order to determine which best represent each particular situation.
By and large, function f on clique C may be arbitrarily selected as long as it meets the
energy constraint: if the features in a clique match the features in a given template, the
energy function decreases; otherwise, it increases. Thus, the general procedure for defining
function f on clique C consists of considering it as f (C) = 1 − λ(C), where λ is an
assessment of the similarities between the features of the clique and those of a given
template, which may be taken as a distance. Some examples of energy functions f (C) are

exp
(
c + ∑i wi fi(XCi )

)
(log linear) or

(XCi − µi)
2

σ2
i

(Gaussian), where µi and σ2
i are

the mean and the variance, respectively. Let us consider the Gaussian energy functions in
the particular context of the GDM, with Pe denoting the preference of an expert e. Following
Theorem 3, the GDM process is an MRF. Let us assume that the GMD is granulated into
n cliques, Ck, k = 1, . . . , n, with each of them containing experts with similar preferences
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Pek between them, Pek , ek ∈ Ck. Then, since the joint probability distribution is P[Pe] =

1
Z e
−∑n

i=1

(Pei − µ)2

σ2
i , the probability of GMD obtaining a concrete preference pei = Pe

Ci
(ei)

may be simply computed as P[Pe = pei ] = 1
Z e
−∑n

i=1

(pei − µ)2

σ2
i , and a similar approach can

be taken to compute P[Pe ≤ pei ] or [Pe > pei ].

8. Conclusions

The performance of any network-based system can be improved by an efficient and
reliable re-distribution. Dealing with redesigning involves both managing and anticipating
the changes. This paper presents a decision-making model that can be used in order to
design the future network structure of either physical or non-physical networks. This
works on the basis that it allows the evaluation of the future performance of the network
in different scenarios, thereby anticipating future needs. As for managing redesigning,
our approach benefits from an easy-to handle application performance as it is based
on joint probabilistic distributions (working independently) that measure the likelihood
of success of any alternative scenarios. If multiple criteria for redesigning are needed,
the methodology may be executed in parallel, thereby enhancing the decision-making
capabilities of the model. Regarding the potential applications of our model, it has been
shown in game theory, for instance [25], that every correlated equilibrium of every graphical
game is a Markov random field. In this sense, similar models have been proposed in recent
works to solve the problem of opponent state modeling in RTS games (StarCraft) (see [26]),
contributing the benefit of giving players an extra dimension with which to compete against
the AI or for social media spam detection on Twitter (see [27]).

Moreover, one of the advantages of our approach is that it is geographical constraint-
free, which makes it suitable for cross-border enterprises as well as expands its range of
potential applications. Apart from physical networks, group decision making, social net-
works and all groups of users that make decisions together (ranking and recommendation
systems, online prediction markets) can now be included in the application scope.

Regarding future lines of research, alternative fuzzy versions of our DMM that incor-
porate the use and development of linguistic information are under consideration (see [28]).
Furthermore, although the case of multiple criteria is possible now in our model, new pro-
posals for decision-making models with multiple criteria based on incomplete information
should be considered (see [29]).
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