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Abstract: Background: The purpose of this study was to determine the reliability for the strength
and movement velocity of the concentric phase from the five Sit-to-Stand (5STS), using three incre-
mental loads measured by a functional electromechanical dynamometer (FEMD) in healthy young
adults. Methods: The average and peak strength and velocity values of sixteen healthy adults
(mean ± standard deviation (SD): age = 22.81 ± 2.13 years) were recorded at 5, 10 and 15 kg. To
evaluate the reliability of FEMD, the intraclass correlation coefficient (ICC), standard error of mea-
surement (SEM) and coefficient of variation (CV) were obtained. Results: Reliability was high for
the 10 kg (CV range: 3.70–4.18%, ICC range: 0.95–0.98) and 15 kg conditions (CV range: 1.64–3.02%,
ICC: 0.99) at average and peak strength, and reliability was high for the 5 kg (CV range: 1.71–2.84%,
ICC range: 0.96–0.99), 10 kg (CV range: 0.74–1.84%, ICC range: 0.99–1.00) and 15 kg conditions
(CV range: 0.79–3.11%, ICC range: 0.99–1.00) at average and peak velocity. Conclusions: The findings
of this study demonstrate that FEMD is a reliable instrument to measure the average and peak
strength and velocity values during the five STS in healthy young adults.

Keywords: reproducibility; isokinetic; muscle

1. Introduction

The Sit-to-Stand (STS) is one of the most frequent motor gestures in daily life [1] and
its effective realization depends on multiple determinants of both the environment and the
physical capacity and strategies of the subjects [2]. Thus, the STS performance is considered
a key factor in maintaining functional independence [3,4]. STS considers the vertical
displacement of the center of mass from a low and stable position [5,6] to an elevated and
less stable one, as well as being able also to consider different phases and events during its
execution [7]. The STS transition is regarded as one of the most demanding daily physical
activities [8], associated with a high level of energy expenditure [9] and joint stress [10]. The
STS performance can be adversely affected by multiple clinical conditions [11,12], such as
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aging [13–15]. It has been reported that people who have difficulty in reaching the bipedal
position are more likely to fall [16]. In this regard, although STS has been widely used
in older adults with disabling conditions, it is important to consider that it has also been
considered to assess the functional capacity of young adults [17,18] and children [19].

The muscular performance of the lower limb is fundamental for the functional capacity
of the human being in different contexts [20,21], and STS has been proposed as a strategy
for its assessment [22]. On the other hand, electromyography studies have described the
synergic role of the lower limb muscle chain, highlighting the contribution of the quadriceps
and hamstrings as executors of this movement [23]. In addition, the erector spinae and
gluteal muscles are important when changing from the sitting to standing position in
elderly persons [1]. Thus, STS-based exercise is considered one of the most effective
resistance training modalities for improving lower extremity strength [24], especially for
quadriceps, which, from the age of 50 years onwards, decreases by approximately 2–4%
per year [25].

The STS evaluated through field tests corresponds to a valid and reliable alternative,
which due to its simplicity, short administration time and minimal instrumentalization, is
widely used in clinical studies [22,26,27]. However, it is important to keep in mind that the
traditional expression of its raw result (time in seconds or number of repetitions) does not
allow for other relevant indicators of muscular performance such as strength and velocity
of execution, among other variables, to be obtained Therefore, instrumental methods
that offer muscular performance assessment can contribute to a much more exhaustive
functional evaluation.

Currently, the development of the functional electromechanical dynamometer (FEMD)
(as opposed to the angular isokinetic devices) [28] allows systematizing and controlling
multiple components of the load during the performance of natural movements, such as the
range and velocity of movement, magnitude of resistance, control of strength exercised and
type of muscle contraction (isometric, concentric and eccentric). In this regard, studies have
assessed the reliability and validity [29–32] and used the FEMD [33–38] under different
experimental modalities and muscle groups. However, studies that propose to assess the
reliability of the STS test using this type of technology have not been previously developed.

According to the proposed background, the purpose of this study was to determine
the reliability for the strength and movement velocity of the concentric phase from the five
STS, using three incremental loads measured by a FEMD in healthy young adults.

2. Materials and Methods
2.1. Subjects

Sixteen subjects (eight women and eight men) volunteered to participate in this study
(mean ± standard deviation (SD): age = 22.81 ± 2.13 years, body mass = 64.75 ± 10.60 kg,
body height = 166 ± 16 cm, body mass index = 23.15 ± 2.48 kg/m2, body fat percentage =
25.81 ± 9.0%, skeletal muscle mass = 26.71 ± 6.01 kg). The inclusion criteria were (i) adult
subjects (>18 years), (ii) both sexes, without distinction of race, and (iii) subjects free of
physical limitations, health problems or musculoskeletal injuries that could compromise
the evaluated performance. All subjects were informed of the procedures to be used and
signed an informed consent form before initiating their participation in the study. The
study protocol adhered to the tenets of the Declaration of Helsinki and was approved by
the University of Granada Institutional Review Board (IRB approval: 619/CEIH/2018).

2.2. Study Design

A repeated measures design was used to evaluate STS strength and velocity using
three incremental loads (5, 10 and 15 kg, respectively). Subjects attended two familiarization
sessions, 48–72 h apart, and one week before the first experimental session took place. After
two familiarization sessions, participants attended the laboratory on two separate days (at
least 48 h apart) for two weeks. The same evaluator conducted all evaluations as they had
experience of using the FEMD device. All sessions were performed at the same time of the
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day for each participant (±1 h) and under similar environmental conditions (~22 ◦C and
~60% humidity). The order of the loads were randomly established. This order was carried
out in the two testing sessions.

2.3. Testing Procedures

All measurements were conducted at the faculty research laboratory, using a FEMD
(Dynasystem, Model Research, Granada, Spain). The FEMD corresponds to a new tech-
nology that allows the evaluation and training of strength in humans, generating linear
isokinetic velocities, dynamic modes (tonic, kinetic, elastic, inertial, conical) and static (iso-
metric, vibratory), and allows for the evaluation and training through resistance/constant
velocity and/or variables [39–41]. For each experimental session, the participants were
invited to the laboratory after a four-hour fast, having rested and without having consumed
caffeine 24 h before the experimental session. In addition, the participants wore sports
clothing and footwear.

All participants performed a standard warm-up on a low-load ergometer at a speed
of 60 rpm for 10 min, 5 min of lower limb joint mobility and three to five submaximal
(exercises that did not exceed a subjective intensity according to the modified Borg scale,
<2–3 = light to moderate) repetitions of the STS protocol with the FEMD with a load of 5 kg.
After this, the participants rested 2–3 min and were then evaluated through the FEMD
by executing the five STS through three incremental loads of 5, 10 and 15 kg, respectively,
performing five repetitions for each load with a 3 min rest interval between loads. In the
five STS protocols, the subjects were seated in a rigid chair (height = 40 cm), with their
arms across the chest and hip, knee and ankle joints at about 90◦. From this position and at
the command of the 3 2 1 countdown, participants stand and sit as fast as possible for five
repetitions [42]. The linear displacement was measured by the FEMD rope attached to a
harness on a vest used by each participant at the time of standing (Figure 1). The average
strength (kg), peak strength (kg), average velocity (cm/s) and peak velocity (cm/s) of each
stand was recorded during the concentric phase using the FEMD software.
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Figure 1. Set-up for STS using FEMD to measure movement velocity and strength.

2.4. Statistical Analyses

Descriptive data are presented as mean ± standard deviation (SD). The normal dis-
tribution of the data was confirmed using the Shapiro–Wilk test (p > 0.05). Paired sample
t-test and standardized mean differences (Cohen’s d figure effect size (ES)) were used to
compare the magnitude of the load between both testing sessions. The criteria to interpret
the magnitude of the ES were as follows: null (<0.20), small (0.2–0.59), moderate (0.60–1.19),
large (1.20–2.00) and very large (>2.00) [43]. Absolute reliability was assessed using the
standard error of measurement (SEM) and coefficient of variation (CV), while relative
reliability was assessed using the ICC, model 3.1 [44]. The following criteria were used
to determine acceptable (CV ≤ 10%, ICC ≥ 0.80) and high (CV ≤ 5%, ICC ≥ 0.90) relia-
bility [45]. Systematic bias was examined through Bland–Altman plots [46]. Finally, the
Pearson’s product-moment correlation coefficient (Pearson’s r) was used to quantify the
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correlation of strength and velocity between both testing sessions. The criteria to interpret
the magnitude of the r were null (0.00–0.09), small (0.10–0.29), moderate (0.30–0.49), large
(0.50–0.69), very large (0.70–0.89), nearly perfect (0.90–0.99) and perfect (1.00) [43]. For
all statistical calculations, a 95% confidence interval was used in the analysis. Statistical
significance was accepted at p < 0.05. All reliability assessments were performed by means
of a customized spreadsheet [47], while other statistical analyses were performed using the
JASP software (version 0.14.1 http://www.jasp-stats.org accessed on 1 March 2021).

3. Results

No significant differences were found for average and peak strength during the differ-
ent experimental conditions between both testing sessions, except for the average strength
condition of 5 kg (p = 0.008; ES = 0.42) with a “small” ES magnitude. Absolute reliability
provided stable repeatability for the average strength and peak strength condition, with a
CV of less than 10% in almost all cases, except for the 5 kg condition in the average strength
where the CV was 10.67%. Reliability was high for 10 kg (CV range: 3.70–4.18%, ICC range:
0.95–0.98) and 15 kg conditions (CV range: 1.64–3.02%, ICC: 0.99) at average and peak
strength (Table 1).

Table 1. Test–retest reliability of the average and peak strength in the 5STS using a FEMD.

Condition Session 1
(Mean ± SD)

Session 2
(Mean ± SD)

p-
Value

ES
(95% CI)

CV
(95% CI)

SEM
(95% CI)

ICC
(95% CI)

Average
Strength

(kg)

5 kg 6.3 ± 1.7 7.1 ± 1.9 0.008 0.42
(−0.258–1.1459)

10.67
(7.88–16.52)

0.71
(0.53–1.11)

0.87
(0.66–0.95)

10 kg 10.9 ± 1.6 10.8 ± 1.7 0.728 −0.03
(−1.041–0.92)

3.70
(2.73–5.72)

0.40
(0.30–0.62)

0.95
(0.86–0.98)

15 kg 14.7 ± 2.5 14.8 ± 2.4 0.476 0.03
(−0.939–1.021)

1.64
(1.21–2.54)

0.24
(0.18–0.37)

0.99
(0.98–1.00)

Peak
Strength

(kg)

5 kg 26.3 ± 10.8 27.1 ± 10.3 0.180 0.08
(−0.905–1.056)

6.04
(4.46–9.35)

1.61
(1.19–2.49)

0.98
(0.94–0.99)

10 kg 35.0 ± 11.3 35.7 ± 10.8 0.116 0.07
(−0.917–1.044)

4.18
(2.88–7.63)

0.40
(0.30–0.62)

0.98
(0.94–0.99)

15 kg 46.1 ± 17.1 45.2 ± 16.6 0.075 −0.06
(−1.034–0.927)

3.02
(2.23–4.68)

0.24
(0.18–0.37)

0.99
(0.98–1.00)

SD, standard deviation; ES, Cohen’s d effect size ((higher mean–lower mean)/SD both); SEM, standard error of measurement; CV, coefficient
of variation; ICC, intraclass correlation coefficient; 95% CI, 95% confidence interval.

No significant differences were found in the assessment of average and peak velocity
between the test and retest using the STS (p > 0.05) for all conditions. Absolute reliability
provided stable repeatability for the average and peak velocity condition, with a CV of
less than 5% in all cases. Reliability was high for 5 kg (CV range: 1.71–2.84%, ICC range:
0.96–0.99), 10 kg (CV range: 0.74–1.84%, ICC range: 0.99–1.00) and 15 kg conditions
(CV range: 0.79–3.11%, ICC range: 0.99–1.00) at average and peak velocity (Table 2).

Table 2. Test–retest reliability of the average and peak velocity in the 5STS using a FEMD.

Condition Session 1
(Mean ± SD)

Session 2
(Mean ± SD)

p-
Value

ES
(95% CI)

CV
(95% CI)

SEM
(95% CI)

ICC
(95% CI)

Average
Velocity
(cm/s)

5 kg 100.8 (13.9) 102.0 (14.0) 0.281 0.08
(−0.894–1.066)

2.84
(2.10–4.40)

2.88
(2.13–4.46)

0.96
(0.90–0.99)

10 kg 95.8 (19.8) 95.9 (20.7) 0.800 0.01
(−0.975–0.985)

1.80
(1.33–2.78)

1.72
(1.27–2.66)

0.99
(0.98–1.00)

15 kg 93.0 (22.0) 91.7 (23.6) 0.205 −0.06
(−1.037–0.923)

3.11
(2.30–4.81)

2.87
(2.12–4.44)

0.99
(0.96–1.00)

Peak
Velocity
(cm/s)

5 kg 210.8 (34.3) 212.4 (33.6) 0.223 0.05
(−0.933–1.027)

1.71
(1.26–2.65)

3.62
(2.67–5.60)

0.99
(0.97–1.00)

10 kg 199.5 (31.2) 200.0 (30.6) 0.385 0.02
(−0.964–0.996)

0.74
(0.55–1.15)

1.48
(1.09–2.29)

1.00
(0.99–1.00)

15 kg 196.6 (34.7) 197.5 (34.7) 0.121 0.03
(−0.954–1.006)

0.79
(0.59–1.23)

1.56
(1.15–2.42)

1.00
(1.00–1.00)

SD, standard deviation; ES, Cohen’s d effect size ((higher mean–lower mean)/ SD both); SEM, standard error of measurement; CV, coefficient
of variation; ICC, intraclass correlation coefficient; 95% CI, 95% confidence interval.

http://www.jasp-stats.org
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Bland–Altman plots reveal a low systematic bias for average and peak strength
(<0.80 kg) and velocity (<1.65 cm/s) during the 5, 10 and 15 kg conditions (Figures 2 and 3).
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Finally, the r magnitude for average and peak strength was from very large to nearly
perfect during the different experimental conditions (r range = 0.854–0.993) and nearly
perfect for average and peak velocity (r range = 0.916–0.996) (Figures 4 and 5).
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(e) average strength at 15 kg, (f) peak strength at 15 kg.
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(e) average velocity at 15 kg, (f) peak velocity at 15 kg.

4. Discussion

The objective of this study was to determine the reliability for the strength and
movement velocity of the concentric phase from the five STS, using three incremental loads
controlled by a FEMD in healthy young adults. The main findings of this research show
that there is “high” reliability for all conditions evaluated through the FEMD. These results
show a stable repeatability for the protocols used (CV < 10%) [44].
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Although this is the first study to evaluate the reliability of the STS using a FEMD, the
reliability of other FEMD on the market has also been evaluated in recent years [29–32,48].
An example of this was the study by Campos et al. [48]. This study analyzed the validity
and reliability at 0.25, 0.50, 0.75 and 1.0 m·s−1, using a FEMD (Haefni Health System 1.0®,
Granada, Spain) and comparing it with a linear velocity transducer (LVT) (T-Force System®,
Murcia, Spain). At the end of the study, an ICC of 0.99 was reported for both the
concentric and eccentric phases, while the CV was higher for the velocity of execution
(1.0 m·s−1 = CV 4.38%) [48]. In parallel, Chamorro et al. (2018) and Cerda et al. (2019)
determined the reliability of a FEMD at the shoulder and hip joints, respectively [30,32].
The study by Chamorro et al. (2018) reported ICC values of 0.96 for 90◦ shoulder internal
rotation and 0.94 for external shoulder rotation, and an ICC of 0.89 and 0.97 for shoulder
internal and external rotation at 40◦, respectively [32]. Likewise, to determine the validity
and reliability of a FEMD in the hip joint, Cerda et al. (2019) used three isometric strength
protocols on the hip abductor muscles. At the end of the study, the researchers reported a
CV of 9.80, 6.60, and 5.64 for the side-lying, standing and supine positions, respectively [30].
Recently, Rodriguez-Perea et al. (2021) determined the validity and reliability of the FEMD
(Dynasystem, Model Research, Granada, Spain) for assessing the velocity of movement,
and the results indicated that the mean velocity values collected with FEMD and LVT were
practically perfect correlations (r > 0.99) with low random errors (<0.06 m·s−1) [41]. In
addition, the FEMD is reliable for assessing isometric and concentric strength of trunk flex-
ors (CV range = 6.82–7.72) [29] and the effect of velocity on internal and external shoulder
rotators (ICC: 0.81–0.98, CV: 5.12–8.27% SEM: 4.06–15.04 N) [39]. The previously referenced
results are interesting since they allow us to compare the degree of reliability of the FEMD
in different exercises, joint ranges, and muscle contraction types, showing that the FEMD
is not only reliable for STS (CV < 10%), but also for other functional assessments.

The reliability of the tests used to assess physical fitness is influenced by the biological
differences of the participants [49] and by of the variations that may occur in the instrument
used to obtain the data [44]. In this sense, statistical analyses reported in some studies
indicate that the reliability of the instruments is assured with an ICC value above 90%
between two or more evaluations [44], while differences between participants can be
reduced by including a familiarization period before data collection [29,36]. Therefore, the
reliability achieved in the present study after multiple repetitions is due to two fundamental
reasons: the accuracy of the FEMD used [30,32], and, on the other hand, the familiarization
process that the participants had before data collection. Thus, it is important that when
replicating this protocol, participants should start from a seated position, back straight,
elbows bent and forearms close to the chest, while hips and knees should be bent at 90◦

(Figure 1). Any modification to this starting point could alter the reliability of the STS.
In parallel and to maintain the reliability of the STS, it is important to consider the grip
point, as it has been shown that distal and multi-joint grips have a lower ICC compared to
proximal grips (ICC = 0.33) using a FEMD [50]. In the present study, the grip point was
at the xiphoid process level; at this point, with the help of Velcro, it was anchored to the
FEMD tension cable (Figure 1); this allowed fluid and natural execution of the movement,
maintaining stable repeatability in all the repetitions.

The scientific literature has described the STS as a reliable test for assessing lower
extremity muscle strength in young, healthy elderly and stroke patients [51]. A significant
correlation has also been demonstrated with other functional mobility tests in patients
with total knee replacement [52]. This test has also been used to observe the effect of
oxygen therapy in patients with chronic obstructive pulmonary disease (COPD), showing
that it is an excellent alternative to evaluate the functional capacity in this type of patient
without the need for large implements [53]. In turn, the STS has been used as a standard
functional balance test in children with cerebral palsy, proving to be a reliable test to assess
this physical disability [54]. As it has become evident, the STS has functional applications
in both healthy populations [51] and patients with various pathologies [52–55], proving
to be a good indicator of strength, balance and functional capacity. Independently of this
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and increasing the reliability of the STS, influenced by the biological differences of the
participants [49] or by the variations in the instruments used [44], We recommend including
a familiarization session before data acquisition.

This study was not without limitations. The evaluation of strength and velocity during
the concentric phase of the STS was only able to be evaluated in an initial condition of
5 kg because it was the minimum possible load to modulate in the FEMD. Therefore, it
was not possible to determine the behavior of the average and peak velocity during an
STS without load. On the other hand, the study was performed in a healthy population;
future studies should study the behavior of strength and velocity in older adults where
the STS has proven to be a valid tool to assess lower extremity muscle power [26] and the
differences that may exist in the biomechanics of STS according to gender.

5. Conclusions

The findings of this study demonstrate that FEMD is a reliable instrument to measure
the average and peak strength and velocity during the five STS in healthy young adults.
Consequently, the trainer could have an additional alternative to record STS parameters
and their progression in training programs, resulting in a useful tool for assessing the
individual’s physical performance and physical capabilities.
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