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Multivariate time series classification is a machine learning task with increasing impor-
tance due to the proliferation of information sources in different domains (economy,
health, energy, crops, etc.). Univariate methods lack the ability to capture the relationships
between the different variables that compose a multivariate time series and therefore can-
not be directly extrapolated to multivariate environments. Despite the good performance
and competitive results of the multivariate proposals published to date, they are hard to
interpret due to their high complexity. In this paper, we propose a multivariate time series
classification method based on an alternative representation of the time series, composed
of a set of 41 descriptive time series features, in order to improve the interpretability of
time series and results obtained. Our proposal uses traditional classifiers over the extracted
features to look for relationships between the different variables that form a multivariate
time series. We have selected four state-of-the-art algorithms as base classifiers to evaluate
our method. We have tested our proposal on the complete University of East Anglia repos-
itory, obtaining highly interpretable results capable of explaining the relationships
between the features that compose the time series and achieving performance results sta-
tistically indistinguishable from the best algorithms of the state-of-the-art.
� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Nowadays, large amounts of data are generated. Everything is increasingly interconnected, more and more sensors are
included in everything around us, and these monitor the behavior of any event of interest over time. These sensors generate
lots of data as multivariate time series (MTS). A key task in the analysis and mining of these data is multivariate time series
classification (MTSC), which aims to give an accurate response to a large number of problems: e.g. from detecting when a
patient is sick or has an anomaly in his heart behavior [28], or if a driver is in optimal condition to drive [26], the recognition
of human activities [37], the occupation of an office room based on environmental information [12], the wind speed forecast-
ing [35] or how to adapt energy production based on particular circumstances [24].

The field of MTSC can be divided into two main types of work. Firstly, applied works that seek to obtain a better solution
for a given problem, offering ad hoc proposals considering the peculiarities of the treated problem [11,25,31]. Secondly, pro-
posals that deal with MTS in a general way but taking into account possible interrelations between the different variables
available [2,17,33,43]. The proposals in the later group are usually based on strong theoretical foundations. A relatively large
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number of proposals for MTSC can be found in the literature [7,16,19,36]. Most of them are guided towards obtaining
increasing levels of accuracy. However, eXplainable Artificial Intelligence (XAI) [14] is a topic enjoying a growing level of
interest. Its goal is to build accurate intelligent system for complex tasks, but also paying special attention to their inter-
pretability. The built systems or the way they make decisions are required to be easy to understand for human beings. Thus
top accuracy is no longer the only objective and interpretability receives higher attention. This also applies to solutions for
classification problems.

In the field of MTSC, there are few proposals that pay attention to the interpretability of results [18]. Given the complexity
of the problem, most proposals are focused on obtaining the best results in terms of accuracy. Even the proposals based on
shapelets [4,42], which are interpretable from their univariate origins, have chosen to use the Transformed Shapelets in mul-
tivariate environments [9] or proposals that are even less interpretable [20], giving priority to accuracy results over inter-
pretability. One possible way to pave the path towards easier to understand solutions to MTSC is expressing time series
in different domains. Perhaps in terms of descriptive features instead of the raw time domain values.

In this paper, we present a new MTSC approach based on the representation of time series through a set of features and
measures. This approach allows transforming the original MTSC problem into a traditional classification problem, enabling to
apply the whole set of the traditional classification algorithms. The proposal is mainly focused on obtaining interpretable
classifiers, so that, an end user can understand and feel more confident with the obtained systems. In addition, the approach
allows to obtain acceptable accuracy results with respect to the main techniques of the state-of-the-art.

The remainder of this paper is organized as follows: Section 2 introduces the state of the art in MTSC. Section 3 describes
in depth our proposal. Section 4 shows the experimental study conducted, and the results obtained. Section 5 discusses the
interpretability of our proposal. Finally, Section 6 concludes the paper.
2. Related work

In the field of MTSC, proposals from methods that have demonstrated good behavior in univariate cases predominate.
Some of the first proposals for MTSC were multivariate extensions of the distance-based algorithm 1NN-DTW [22,40], given
its simplicity and good results in univariate environments. These proposals are a good starting point, but they carry the lim-
itations they already had in univariate environments, such as high computational complexity and low interpretability, since
they only indicate how much the instances are similar to each other. To these limitations, we must add that in a multivari-
able environment, the first proposals of 1NN-DTW processed each variable of each time series independently, so they were
not able to extract information from the relationship between the different variables that make up each multivariate time
series. With this in mind, we can say that multiple proposals for a multivariate DTW have been made, such as dependent
(DTWD) and independent (DTWI) warping, both having the same performance [38]. Other proposals such as Mahalanobis
Distance-based Dynamic Time Warping measure (MDDTW) [32] seek to give a general answer to this problem. MDDTW
is able to precisely calculate the relationship between the different variables that compose an MTS. This, together with
the alignment obtained by DTW, allows obtaining very competitive results.

The feature-based approach has multiple proposals, giving special importance to the extraction of additional information
and to the speed of processing, especially when compared to similarity-based techniques. In this field we can differentiate
between proposals based on shapelets and bag-of-words. In the field of shapelets, Generalized Random Shapelets Forests
(gRSF) [21] is considered the state-of-the-art, obtaining better results than its direct competitor, Ultra Fast Shapelets
(UFS) [41]. gRSF is based on the creation of a set of shapelet-based decision trees from a random extraction of the shapelets.
In the field of bag-of-words, Word ExtrAction for time SEries cLassification plus Multivariate Unsupervised Symbols and
dErivatives (WEASEL + MUSE) [36] is considered the state-of-the-art, as it obtains the best results against its direct competi-
tors: Learned Pattern Similarity (LPS) [8], AutoRegressive Forests for multivariate time series modelling (mv-ARF) [39], Sym-
bolic representation for Multivariate Time Series classification (SMTS) [7], and gRSF. All of them have been tested on one of
the first reference MTS database collected from [6], with a total of 20 MTSC datasets. WEASEL + MUSE extracts a vector of
features by applying a sliding-window to each variable of the MTSC and filtering out non-discriminative features, finally a
classifier analyses these data.

In the field of deep learning, the extension of the Long Short Term Memory Fully Convolutional Network (LSTM-FCN) and
Attention LSTM-FCN (ALSTM-FCN) [19] to a multivariate environment, including a squeeze-and-excitation block in the fully
convolutional block that improves accuracy. This proposal improved the WEASEL + MUSE results over the original database
of 20 datasets [6] extended with 10 datasets from the UC Irvine Machine Learning Repository (UCI) [15] and 6 datasets used
by Pei et al. [34]. Also, we find proposals that pay attention to detect natural features of time series such as trend [27].

A new proposal has recently emerged, Local Cascade Ensemble for Multivariate Data Classification (LCE) and its extension
for Multivariate Time Series (LCEM) [16]. LCE and LCEM are a hybrid ensemble method with 2 major objectives. The first one
is to handle the bias-variance tradeoff by an explicit boosting-bagging approach. The second one is to individualize classifier
errors on different parts of the training data by an implicit divide-and-conquer approach. This proposal is outlined as the
new state-of-the-art in MTSC by obtaining better results than the previous state-of-the-art MLSTM-FCN and
WEASEL + MUSE, on the University of East Anglia (UEA) repository [3], a new repository for MTSC composed of 30 datasets
that is becoming increasingly important.
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In contrast to state-of-the-art methods, we propose a method that obtains essential features of each variable and each
MTS and applies a transformation to the MTS dataset, obtaining a traditional classification problem based on attributes.
All traditional classification algorithms can be applied to this new dataset, and depending on the applied algorithms, inter-
pretable results can be obtained to explain the problem or results of higher accuracy.
3. Multivariable times series classification through an interpretable representation

In this work we propose a method that allows the calculation of complexity measures to be applied to MTSC problems.
Our proposal, namely Complexity Measures and Features for Multivariate Time Series (CMFMTS), is based on the idea that a
time series can be faithfully represented with a set of complexity measures and descriptive features [5]. Furthermore, these
features preserve most of the information content of the series to such an extend that they can be used to classify the series.

The following is an example of the calculation of some features on an MTS with three variables. In Table 1, we show some
features highly related to the nature of the time series and its range of possible values. In Fig. 1, we show a simple example of
the feature computation used and its interpretability. In the first place, we can see how variables 1 and 2 are similar, so we
can expect values of the features also similar to each other. This is reflected in the values of kurtosis and skewness. If vari-
ables 1 and 2 have similar values their probability distribution will be similar and therefore their values of kurtosis and
skewness. We can appreciate a significant difference concerning variable 3. In the three variables, we can see the existence
Fig. 1. Example of feature extraction from an MTS with 3 variables.

Table 1
Example of some features used.

Char. Name Description Range

F1 curvature Calculated based on the coefficients of an orthogonal quadratic regression ð�1;1Þ
F2 kurtosis The ‘‘tailedness” of the probability distribution ð�1;1Þ
F3 linearity Calculated based on the coefficients of an orthogonal quadratic regression ð�1;1Þ
F4 shannon_entropy_cs Chao-Shen entropy estimator ½0;1Þ
F5 skewness Asymmetry of the probability distribution ð�1;1Þ
F6 trend Strength of trend ½0;1�
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of a single trend, for this reason, the trend values are close to 1 in all cases. The oscillations present in the variables 1 and 2
seem more typical of seasonal patterns that do not affect the trend of the time series. To evaluate the Chao-Shen shannon
entropy (shannon_entropy_cs) we have to appreciate the evolution of variables 1, 2, and 3. Variables 1 and 2 show a certain
pattern, while variable 3 shows a long period without changes with a final reduction of the value never seen before. For this
reason, it obtains a higher value in shannon entropy very far from the one obtained by variables 1 and 2. We also analyze the
values of curvature and linearity. Given the evolution and shape of the three variables and the perceptible linear relationship
between the current values of variables 1 and 2 with their corresponding past values, it is logical to expect positive and sim-
ilar values of curvature and linearity for variables 1 and 2. On the other hand, variable 3 does not show these forms or a linear
relationship between its present and past values, so it obtains negative values that are far from curvature and linearity con-
cerning what is obtained by variables 1 and 2.

Fig. 2 shows the workflow of our proposal. First, a set of n multivariate time series is assumed, each consisting of m vari-
ables (Fig. 2.1). Individually, each one of the variables that compose each time series is processed, obtaining the j features for
each variable (Fig. 2.2). A dataset is obtained with n�m rows and j columns, where each row is composed of the set of fea-
tures processed on each time series that compose each MTS (Fig. 2.3). Finally, this dataset is processed by placing all the vari-
ables of the same MTS in the same row (Fig. 2.4). In this way, a new (transformed) dataset is obtained where all the features
of all the variables that compose the same MTS are placed in the same row, forming part of the same instance. This enables
the search for patterns and relationships of interest among the different variables that compose the same MTS (Fig. 2.5).

Although the feature calculation based approach can be applied to all types of automatic learning problems as well as
supervised, unsupervised, semi-supervised learning, etc. In the supervised case, simple and fast comparisons can be made
with respect to the main state-of-the-art algorithms. Due to the great variety of the processed time series, it is possible that
undesired values are obtained for some of the proposed features. For example, to calculate the autocorrelation function (ACF)
[5] concerning the values delayed 10 instants of time it is necessary that our time series has a minimum length of 11, other-
wise, we will obtain an Not Available (NA). Time series with a single value are another problematic case since features like
kurtosis and skewness are not defined for these cases and would return Not a Number (NaN) values. Time series containing
NA generate problems internally in some of the features used (acf, kurtosis, skewness, shannon_entropy_cs, etc.) returning
NA values in those features. Finally, there are features that can obtain values in the range ð�1;1Þ. Extreme values close to
the limits are considered as undesirable since they generate several problems in the different algorithms applied later. To
deal with these cases, we have specified a preprocessing stage, following the calculation of the features and their correct
ordering, which solves the possible inconveniences generated by these cases. The whole process is depicted in Algorithm1.
Fig. 2. Features calculation workflow.
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Algorithm1 Preprocessing procedure

Input:
train: train dataframe with (Ts_id, Ts_dimId, Ts_class, Ts_values)
test: test dataframe with (Ts_id, Ts_dimId, Ts_class, Ts_values)
models: list of models to be processed

Output:
output data: a triplet that contains the fitted models, the vectors with the predicted labels and the accuracies

obtained
mvf train: features train dataframe
mvf test: features test dataframe

1: mvf_train, mvf_test  calc_mvcmfts((train, test), all)
2: for each value in (mvf_train, mvf_test) do
3: if (is.na(value) k is.nan(value) k is.infinite(value)) value then  NA end if
4: end for
5: for each column in mvf_train do
6: if sum(!is.na(colum.values)) ¼¼ 0) then
7: mvf_train.delete(column)
8: mvf_test.delete(column)
9: end if
10: end for
11: for each column in (mvf_train, mvf_test) do
12: for each value in column do
13: if is.na(value) value then  mean(column) end if
14: end for
16: end for
16: for each column in mvf_train do
17: if (length(unique(column)) <¼ 1) then
18: mvf_train.delete(column.index)
19: mvf_test.delete(column.index)
20: end if
21: end for
22: output_data  NULL
23: for each model in models do
24: fit  train.model(mvf_train, train.Ts_class)
25: pred  fit.predict(mvf_test)
26: acc  accuracy(pred, test.Ts_class)
27: output data.add(fit, pred, acc)
28: end for
29: return (output_data, mvf_train, mvf_test)

The starting point is the calculation of the proposed features in the training and test sets (Line 1). For any of the cases
mentioned above in which an undesired value has been obtained, these values are unified under a single NA identifier (Lines
2–4). We check on the training set if any column lacks interest because it is full of undesired values. If so, this column is
removed from both the training set and the test set (Lines 5–10). In order to simplify the treatment of missing values, we
have chosen to impute these values with the average of their respective column (Lines 11–15). There are better imputation
techniques, but we do not address that task in this paper and the considered one has proved to be effective enough. To avoid
the use of variables without information, we analyzed the training set looking for variables with a single value. If any variable
with this condition is found, it is eliminated from both the training set and the test set (Lines 16–21). Finally, each of the
specified models is processed, obtaining the desired model fit, its prediction on the test set and the accuracy achieved (Lines
23–28). These data are returned to the user, together with the datasets transformed to the features of our proposal (Line 29).

Finally, once we have explained our proposal and its application in a real environment, we can list the main advantages
offered by this approach:

� Allows the use of the application of any vector-based classification method, since after the applied transformation, we
obtain a traditional dataset where each instance is represented by its corresponding attributes (features).
� Allows the use of machine learning methods based on different paradigms: supervised, semi-supervised, self-supervised,
unsupervised, etc., since it obtains a vector-based dataset, where each instance is composed of different attributes.
� Handles easily datasets of time series with varying lengths, as it processes each time series individually.
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� Decisions made can be easily understood by human experts, since the features used explain the behavior of the time ser-
ies. In addition, the represented concepts by the selected features are interpretable by the users.

3.1. Computational complexity

Our proposal is composed of two main steps: the calculation of the feature value set and the construction of the classifier.
Since the steps have to be executed sequentially, the complexity of the whole process can be computed by simply adding the
complexity of each one. For the sake of convenience, the variables used in the formulas are: f, number of features computed;
n, number of time series in a dataset; v, the number of variables in a multivariate time series; and l, the length of the time
series.

The computing of the feature values is defined as a sequential process, each feature computing at one time, although if
enough threads are available, all of them can be computed in parallel. Thus the overall complexity, stated in O notation, is
equal to the feature with the highest complexity. The computation of the complexity of all of them is quite straightforward.
Two of them have the greatest complexity, namely approximation entropy and sample entropy. For a univariate time series,

those features have a computational time complexity of Oðl2Þ [29,30], each one. Based on the feature computation process

shown in Fig. 2, we can conclude that our proposal has a computational complexity of Oðn � v � f � l2Þ. As for the classification
models used in our proposal, each one has a different computational complexity. In Table 2, we show the computational
complexity of typical models. The final computational complexity of our proposal results from the addition of the feature
computation complexity, seen above, and the complexity of the model used, as shown in Table 2.

The computational complexity of our proposal is very similar to the one offered by the main state-of-the-art algorithm.
LCEM has a computational complexity OðN � s � d � D � 2D � TBaseÞ, where d is the number of attributes, d0 is the number of attri-
butes in RF subset of attributes, D is the maximum depth of a tree, s is the number of samples, N is the number of trees, and
TBase is the time complexity of the base classifier. To this complexity, we must add the complexity of the applied transfor-
mation, which linearly grows in complexity with the number of samples.

One of the main advantages of our proposal is that the time complexity of the feature extraction process scales linearly
with the number of time series to be processed and is trivial to parallelize. In addition, we have not considered hyper-
parameter optimization for feature computation, unlike LCEM proposal or the models used, so the procedure is kept simple
and does not increase the computational complexity. Furthermore, the feature extraction process is applied independently to
each multivariate time series, so we can compute these characteristics directly as the time series are received, and we do not
need to have a complete set of time series to start processing them. Again, the process can be trivially parallelized. This
allows us, in the best case, to reduce the computational complexity of our proposal to the complexity of the classification
model used.
4. Empirical study

To assess the effectiveness of our proposal, we have developed a detailed empirical study. We start by explaining the
experimental design (Section 4.1), followed by the results obtained (Section 4.2). The analysis of the interpretability of
the models is important enough so that a complete section is devoted to them, namely Section 5.

4.1. Experimental design

We describe the performance measures used to evaluate our proposal (Section 4.1.1), followed by the datasets used (Sec-
tion 4.1.2) and the machine learning models selected (Section 4.1.3). Finally, we describe the hardware and software used in
the development of our proposal (Section 4.1.4).

4.1.1. Performance measures
Since the datasets come from very different fields, we have opted for a ranking performance measure. We have selected

the average rank as a comparative method from the accuracy calculation on the original training and test sets. The accuracy
has been calculated as the number of instances correctly classified divided by the total number of instances of the test set. To
obtain robust results from a statistical point of view, we have executed each experiment 100 times, —using different random
seeds—, and calculated the mean of the obtained values. Also, we have included the Win/Loss/Tie ratio to quantify the num-
ber of cases in which each model and approach wins, loses, or ties concerning the best case. Since the range of possible
results is wide, we have opted to include a Critical Difference diagram (CD) [13], and the Wilcoxon Signed-Rank test. CD
shows the results of a statistical comparison between all models in pairs based on average ranks. Models that are connected
by a bold line do not have a statistically significant difference for a particular confidence level. The Wilcoxon Signed-Rank
test allows us to assess whether two models offer statistically distinguishable results at a particular confidence level, com-
pared between all models in pairs based on the accuracies. In our case, we have set an a of 0.05 for a 95% confidence level.
The average rank and the CD were obtained using the R scmamp package. The Wilcoxon Signed-Rank test results were
obtained using the R stats package.
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Table 2
Computational complexity of typical models. Notation: n, number of
samples, t, number of randomized trees; k number of attributes
randomly included at each node; h, height of a tree; m, number of
attributes; c, number of classes.

Models Time complexity

Random Forest Oð0:632 � n � t � k � logð0:632 � nÞÞ [4]
C5.0 with Boosting Oðh �m � ðn � c þ n � logðnÞÞ [23]
Support Vector Machine Oðn3Þ [1]
1-Nearest Neighbor Oðn � v � f Þ
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4.1.2. Datasets
To evaluate the performance of our proposal on problems of all kinds, we have selected the main repository of MTSC

problems, the UEA multivariate time series classification archive. In Table 3, we show the characteristics of the 30 datasets
of the UEA repository: number of instances of the training and test sets, length of the time series, number of variables of each
MTS, and number of classes. Some of these datasets are composed of time series of different lengths, so the repository chose
to pad with NA values. In our case, we have removed those values. We have processed the values of the time series that con-
tain information without affecting the original values of each time series.

4.1.3. Models
For our proposal, we have selected a set of traditional models with two main approaches: to obtain interpretable results

and to obtain the best classification results by sacrificing interpretability [5]. These models are C5.0 with Boosting (C5.0B),
Random Forest (RF), Support Vector Machine (SVM), and 1-Nearest Neighbors with Euclidean Distance (1NN-ED). For this
last model, we have applied a normalization between [0, 1]. This set of models will be applied to the set of time series fea-
tures obtained by our proposal. The final models of our proposal are obtained from the union of the transformed datasets
with the four models previously commented. These proposals are: CMFMTS + C5B, CMFMTS + RF, CMFMTS + SVM, and
CMFMTS + 1NN-ED. We have simplified the CMFMTS nomenclature by CMFM due to space limitations in later tables. On
the other hand, we have selected the main state-of-the-art MTSC models:

� 1-Nearest Neighbor classifier with Euclidean distance (1NN-ED), with and without normalization.
� 1-Nearest Neighbor classifier based on multi-dimensional points (DTW-1NN-D) [38], with and without normalization.
� 1-Nearest Neighbor classifier based on the sum of DTW distance for each dimension (DTW-1NN-I) [38], with and without
normalization.
� Multivariate LSTM Fully Convolutional Networks for Time Series Classification (MLSTM-FCN) [19] with the settings spec-
ified by their authors: 128–256-128 filters, 250 training epochs, a dropout of 0.8, and a batchsize of 128.
� Word ExtrAction for time SEries cLassification plus Multivariate Unsupervised Symbols and dErivatives (WEASEL + MUSE)
[36] with the settings specified by their authors: SFA word lengths l in [2,4,6], windows length in [4:max(MTSlength)],
chi = 2, bias = 1, p = 0.1, c = 5 and a solver equals to L2R LR DUAL.
� Local Cascade Ensemble for Multivariate data classification (LCEM) [16], optimized hyper-parameters for each dataset
(Windows (%), Trees, and Depth). The results have been obtained from the published work of the authors.
� Random Forest for Multivariate (RFM) algorithm, from the sklearn library, applied to the transformation proposed in the
LCEM paper [16].
� Extreme Gradient Boosting for multivariate (XGBM), Extreme Gradient Boosting algorithm, from the xgboost library,
applied to the transformation proposed in the LCEM paper [16].

The results of the algorithms mentioned above have been obtained from [16].

4.1.4. Hardware and software
The experimentation carried out in this work was performed in a server with the following hardware: 4 � Intel(R) Xeon

(R) CPU E5-4620 0 @ 2.20 GHz processors, 8 cores per processor with HyperThreading, 10 TB HDD, 512 GB RAM. The server
software configuration comprises Ubuntu 18.04 and R 3.6.3.

The source code of our proposal can be found in the online repository.1

4.2. Results

We start by analyzing the accuracy and the average rank results on the 30 processed datasets. Table 4 shows the accuracy
results obtained by our proposal against the main state-of-the-art algorithms. The NA values refer to cases in which for any
reason (memory overflow, libraries limitations, etc.), a model has not been obtained correctly, and it has been impossible to
1 Complexity Measures and Features for Multivariate Times Series classification.https://github.com/fjbaldan/CMFMTS/
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Table 3
Datasets information from the UEA repository.

Dataset Train Test Length Dims Class

ArticularyWordRecognition 275 300 144 9 25
AtrialFibrillation 15 15 640 2 3
BasicMotions 40 40 100 6 4
CharacterTrajectories 1422 1436 60–182 3 20
Cricket 108 72 1197 6 12
DuckDuckGeese 50 50 270 1345 5
EigenWorms 128 131 17984 6 5
Epilepsy 137 138 206 3 4
ERing 30 270 65 4 6
EthanolConcentration 261 263 1751 3 4
FaceDetection 5890 3524 62 144 2
FingerMovements 316 100 50 28 2
HandMovementDirection 160 74 400 10 4
Handwriting 150 850 152 3 26
Heartbeat 204 205 405 61 2
InsectWingbeat 25000 25000 2–22 200 10
JapaneseVowels 270 370 7–29 12 9
Libras 180 180 45 2 15
LSST 2459 2466 36 6 14
MotorImagery 278 100 3000 64 2
NATOPS 180 180 51 24 6
PenDigits 7494 3498 8 2 10
PEMS-SF 267 173 144 963 7
PhonemeSpectra 3315 3353 217 11 39
RacketSports 151 152 30 6 4
SelfRegulationSCP1 268 293 896 6 2
SelfRegulationSCP2 200 180 1152 7 2
SpokenArabicDigits 6599 2199 4–93 13 10
StandWalkJump 12 15 2500 4 3
UWaveGestureLibrary 120 320 315 3 8
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perform the desired classification. As we can see in Table 4, our proposal CMFMTS + RF, called CMFM + RF for simplification,
obtains the best results among the four models we have proposed: CMFM + C5.0B, CMFM + RF, CMFM + SVM, and
CMFM + 1NN-ED. The CMFM + C5.0B model is especially interesting for cases where a simple and easy to interpret classifier
is required, and that offers results close to the optimum ones as it happens in the datasets: Epilepsy and LSST. We can find
cases in which CMFM + RF does not offer the best results among these four models, and it may be interesting to try other
combinations as it happens in the datasets: AtrialFibrilation, EthanolConcentration, FaceDetection, HandMovementDirec-
tion, etc.

If we compare our proposal with the rest of the state-of-the-art algorithms, we can see how CMFM + RF obtains an aver-
age rank of 7.1, close to the one obtained by LCEM (4.23), RFM (5.18), MLSTM-FCN (5.33), and WEASEL + MUSE (5.93). We
have included two decimals for the average rank so that the differences shown in Fig. 3 can be better appreciated. If we
observe the Win/Loss/Tie ratio, we can see that MLSTM-FCN obtains the best results in 11 datasets, followed by LCEM, which
wins in 8 datasets, and CMFM + RF and RFM, which obtains the best results in 5 datasets. These behaviors are reflected in the
CD diagram shown in Fig. 3. This diagram shows that there is no statistically significant difference, for an a of 0.05, between
the previously mentioned models, in addition to the DTW-1NN-D model. In Table 5, we include the p-values obtained by the
Wilcoxon Signed-Rank test of all the accuracies pairs of our models and the best models of the state-of-the-art in the first
union line in Fig. 3. For our CMFM + RF model, all the p-values are higher than the significance level 0.05, so we cannot reject
the null hypothesis, in which the results of each model come from the same population. Those results indicate that our
CMFM + RF proposal offers results that are statically indistinguishable from those obtained by the main state-of-the-art algo-
rithms. For the rest of our models, we can see that the null hypothesis is rejected except in the cases CMFM + C5.0B with
DTW-1NN-D and DTW-1NN-D (norm), and CMFM + SVM with WEASEL + MUSE, DTW-1NN-D, and DTW-1NN-D (norm).
These results reinforce CMFM + RF as our best model. If we analyze the median and average accuracy values of Table 4,
we can see that our proposal obtains competitive results. The NA values have been transformed to 0 for the calculation made.

Analyzing the results obtained for some specific cases, we can appreciate significant differences between the different
proposals. For example, in the DuckDuckGeese dataset, the MLSTM-FCN algorithm obtains 7.5 points of difference with
the next best result. LCEM and similar proposals obtain results with significant differences concerning the rest of the meth-
ods, as can be seen in the HandMovementDirection dataset. In the ERing dataset, we can see a big difference between our
CMFM + Any proposals and the rest of the algorithms. These cases confirm the idea that in the field of CMTS, the results
are strongly linked to the data itself and the approach used. It is especially complicated to find an approach that is able
to face all kinds of problems with optimal results or close to them.

Based on the results shown in this section, we can conclude that:
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Table 4
Accuracy results on the UEA repository datasets: accuracy (%), average accuracy, median, average rank, and Win/Loss/Tie Ratio. The best results are stressed in
bold.

Part 1:

Datasets CMFM + C5.0B CMFM + RF CMFM + SVM CMFM + 1NN-
ED

LCEM XGBM RFM MLSTM-
FCN

ArticularyWordRecognition 92.0 98.8 97.3 98.7 99.3 99.0 99.0 98.6
AtrialFibrillation 6.7 19.1 26.7 26.7 46.7 40.0 33.3 20.0
BasicMotions 90.0 98.2 97.5 97.5 100.0 100.0 100.0 100.0
CharacterTrajectories 94.2 97.0 97.0 93.3 97.9 98.3 98.5 99.3
Cricket 86.1 97.7 95.8 98.6 98.6 97.2 98.6 98.6
DuckDuckGeese 54.0 51.0 42.0 46.0 37.5 40.0 40.0 67.5
EigenWorms 84.7 89.5 84.7 77.9 52.7 55.0 100.0 80.9
Epilepsy 99.3 99.9 97.8 96.4 98.6 97.8 98.6 96.4
ERing 80.7 93.1 93.0 90.4 20.0 13.3 13.3 13.3
EthanolConcentration 22.1 26.0 26.6 22.8 37.2 42.2 43.3 27.4
FaceDetection 55.7 55.7 58.3 50.3 61.4 62.9 61.4 55.5
FingerMovements 50.0 50.1 46.0 49.0 59.0 53.0 56.0 61.0
HandMovementDirection 17.6 24.5 28.4 17.6 64.9 54.1 50.0 37.8
Handwriting 17.2 27.4 18.7 23.4 28.7 26.7 26.7 54.7
Heartbeat 76.1 76.8 72.7 62.4 76.1 69.3 80.0 71.4
InsectWingbeat NA 67.7 10.0 26.6 22.8 23.7 22.4 10.5
JapaneseVowels 79.5 83.7 77.8 69.5 97.8 96.8 97.0 99.2
Libras 82.2 84.7 81.7 80.0 77.2 76.7 78.3 92.2
LSST 65.2 67.3 65.6 50.4 65.2 63.3 61.2 64.6
MotorImagery 49.0 50.3 50.0 40.0 60.0 46.0 55.0 53.0
NATOPS 87.2 83.5 80.0 76.1 91.6 90.0 91.1 96.1
PEMS-SF 91.3 99.9 66.5 78.0 94.2 98.3 98.3 65.3
PenDigits 93.7 95.2 95.9 93.7 97.7 95.1 95.1 98.7
PhonemeSpectra 22.8 28.4 24.7 17.1 28.8 18.7 22.2 27.5
RacketSports 73.0 80.6 80.9 69.7 94.1 92.8 92.1 88.2
SelfRegulationSCP1 81.6 82.0 77.1 70.0 83.9 82.9 82.6 86.7
SelfRegulationSCP2 48.3 41.8 45.0 46.1 55.0 48.3 47.8 52.2
SpokenArabicDigits 93.3 97.6 97.9 91.5 97.3 97.0 96.8 99.4
StandWalkJump 26.7 36.3 26.7 20.0 40.0 33.3 46.7 46.7
UWaveGestureLibrary 65.0 77.5 72.8 74.4 89.7 89.4 90.0 85.7

Mean 62.8 69.4 64.5 61.8 69.1 66.7 69.2 68.3
Median 74.6 79.1 72.8 69.6 70.7 66.3 79.2 69.5
Average Rank 10.25 7.1 9.25 11.37 4.23 6.67 5.18 5.33
Win/Loss/Tie Ratio 0/30/0 5/25/0 0/30/0 0/30/0 8/22/2 2/28/1 5/25/2 11/19/2

Part 2:

Datasets WEASEL + MUSE ED-1NN DTW-1NN-I DTW-1NN-D ED-1NN
(norm)

DTW-1NN-
I(norm)

DTW-1NN-
D(norm)

ArticularyWordRecognition 99.3 97.0 98.0 98.7 97.0 98.0 98.7
AtrialFibrillation 26.7 26.7 26.7 20.0 26.7 26.7 22.0
BasicMotions 100.0 67.5 100.0 97.5 67.6 100.0 97.5
CharacterTrajectories 99.0 96.4 96.9 99.0 96.4 96.9 98.9
Cricket 98.6 94.4 98.6 100.0 94.4 98.6 100.0
DuckDuckGeese 57.5 27.5 55.0 60.0 27.5 55.0 60.0
EigenWorms 89.0 55.0 60.3 61.8 54.9 NA 61.8
Epilepsy 99.3 66.7 97.8 96.4 66.6 97.8 96.4
ERing 13.3 13.3 13.3 13.3 13.3 13.3 13.3
EthanolConcentration 31.6 29.3 30.4 32.3 29.3 30.4 32.3
FaceDetection 54.5 51.9 51.3 52.9 51.9 NA 52.9
FingerMovements 54.0 55.0 52.0 53.0 55.0 52.0 53.0
HandMovementDirection 37.8 27.9 30.6 23.1 27.8 30.6 23.1
Handwriting 53.1 37.1 50.9 60.7 20.0 31.6 28.6
Heartbeat 72.7 62.0 65.9 71.7 61.9 65.8 71.7
InsectWingbeat NA 12.8 NA 11.5 12.8 NA NA
JapaneseVowels 97.8 92.4 95.9 94.9 92.4 95.9 94.9
Libras 89.4 83.3 89.4 87.2 83.3 89.4 87.0
LSST 62.8 45.6 57.5 55.1 45.6 57.5 55.1
MotorImagery 50.0 51.0 39.0 50.0 51.0 NA 50.0
NATOPS 88.3 85.0 85.0 88.3 85.0 85.0 88.3
PEMS-SF NA 70.5 73.4 71.1 70.5 73.4 71.1
PenDigits 96.9 97.3 93.9 97.7 97.3 93.9 97.7
PhonemeSpectra 19.0 10.4 15.1 15.1 10.4 15.1 15.1
RacketSports 91.4 86.4 84.2 80.3 86.8 84.2 80.3
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Table 4 (continued)

Part 1:

SelfRegulationSCP1 74.4 77.1 76.5 77.5 77.1 76.5 77.5
SelfRegulationSCP2 52.2 48.3 53.3 53.9 48.3 53.3 53.9
SpokenArabicDigits 98.2 96.7 96.0 96.3 96.7 95.9 96.3
StandWalkJump 33.3 20.0 33.3 20.0 20.0 33.3 20.0
UWaveGestureLibrary 90.3 88.1 86.9 90.3 88.1 86.8 90.3

Mean 64.3 59.1 63.6 64.3 58.5 57.9 62.9
Median 67.8 58.5 63.1 66.5 58.5 61.7 66.5
Average Rank 5.93 10.25 8.83 7.65 10.6 9.27 8.08
Win/Loss/Tie Ratio 3/27/3 0/30/0 1/29/1 3/27/2 0/30/0 1/29/1 2/28/2

Fig. 3. Critical Difference diagram, a ¼ 0:05.

Table 5
Wilcoxon Signed-Rank test p-values obtained by the Wilcoxon Signed-Rank test of all the accuracies pairs of our models and the best models of the state-of-
the-art in the first union line in Fig. 3.

Models LCEM XGBM RFM MLSTM-FCN WEASEL + MUSE CMFM + RF DTW-1NN-D DTW-1NND(norm)

CMFM + RF 0.1650 0.9672 0.1294 0.0977 0.2848 – 0.5237 0.4224
CMFM + C5.0B 0.0061 0.0410 0.0012 0.0012 0.0111 0.0001 0.1442 0.2177
CMFM + SVM 0.0027 0.0379 0.0011 0.0047 0.0643 0.0045 0.4732 0.7499
CMFM + 1NN 0.0020 0.0036 0.0004 0.0032 0.0049 6.9e�06 0.0373 0.0397
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� CMFM + RF is the model of our proposal that offers the best results among the four proposed models.
� The CMFM + RF model offers, with its default configuration, competitive results that are statistically indistinguishable
from the main state-of-the-art algorithms, which optimize their parameters for each dataset.
� The CMFM + C5.0B model offers for some datasets results close to the best ones. This behavior turns it into a very inter-
esting model because of its high interpretability.
� The accuracy of the classifiers obtained with the proposal of this work has proven to be competitive over a wide range of
datasets.

5. Analysis of the interpretability

As clearly stated by many authors, interpretability has become a key property of machine learning systems. It relates to
the easiness of understanding the decision-making process of the system.

In this section, we analyze the interpretability of the classification models that can be built following our proposal and
how relevant knowledge can be derived from them. We begin by discussing the interpretability contributed by the consid-
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ered features (Section 5.1). Then we consider the interpretability provided by trees (Section 5.2). Finally, we analyze how to
extract knowledge from the models built upon the features (Section 5.3). First, we study how to assess the overall impor-
tance of the selected features as well seeking even more simplified models. Then the variable importance within the mul-
tivariate time series is addressed.

5.1. Interpretability of our proposal

The interpretation of a classifier depends mainly on features upon which it is based (inputs) and the actual algorithm (the
technique). The representation features have been chosen following, among other criteria, interpretability. These features
express different behaviors of each time series. It is expected that the time series that belong to the same class show similar
behaviors. Representing the time series through these features allows us to evaluate, numerically, these behaviors, compare
them, and draw conclusions. For example, the value distribution of the time series can define the difference between the two
classes of one problem that compose it. Features such as kurtosis and skewness allow us to differentiate time series with
different value distribution. Also, the variability level or chaos of the time series may allow us to differentiate between
the distinct classes. In this case, entropy related features allow us to quantify and compare this behavior between different
time series. Usually, we find these differentiating patterns based on different features, obtaining a greater expressiveness and
interpretability of the results. The overall point is that most of these features are easier to understand than the original time
series values. The user can grasp a better understanding of the time series behavior through these well stated features. The
interpretability of them is usually greater than a vector of lagged-values. Furthermore, they are independent of the classifier
to be used.

On the other hand, classifiers offer different interpretability levels depending on the structure and nature of the connec-
tions between inputs and outputs that they build and on their number. For example, it is more useful to know that the dif-
ference between two classes depends on the linearity of the time series, on its distribution of values, or the stability of its
values, among others, than on particular values in certain instants of time. So, for example, classification trees are easier
to understand than deep neural networks. In addition, they can be easily translated into a set of rules. Analyzing the models
considered in this work, we can observe that the C5.0B model offers us a simple decision tree based on the features used,
although as we saw in Table 4, its accuracy results are not the best. On the other hand, an RF offers competitive results
in exchange for sacrificing part of their interpretability, although RF is able to offer an assessment of the importance of each
feature in the final model that can be very useful. In contrast, models such as 1NN-ED lack interpretability since they work on
howmuch one instance resembles another, and SVMs are really complex to interpret since weights can be affected by exter-
nal components unrelated to the underlying importance of each variable. Since tree-based models offer different inter-
pretability tools, we will focus on them in this section.

5.2. C5.0 with Boosting model interpretability

Decision trees offer very simple and straightforward interpretability. The C5.0 model with boosting allows us to explain
its results using the rules included in the tree. This, together with the use of well-known features, such as those used in our
proposal, allows us to understand the decisions of the model based on well-defined behaviors of the time series.

For illustrative purposes, we have included two simple examples. In Fig. 4, we show two examples of a single C5.0B tree
for the BasicMotions and Epilepsy datasets. BasicMotions is a dataset with 4 classes and MTS with 6 variables. As we can see
in Fig. 4a, our approach allows us to solve this problem with a simple tree composed of 3 nodes. Two of these nodes refer to
features of variable 1, and the remaining one refers to variable 6. According to this tree, we can say that a time series belongs
to class 3 if the maximummean shift between two consecutive windows, for variable 1, is less than 0.252. On the other hand,
we can know that a time series belongs to class 2 if the maximummean shift between two consecutive windows, for variable
1, is greater than 1.392 and the sum of the first ten squared autocorrelation coefficients, for variable 6, is greater than 1.055.
Although the results obtained for this dataset are not the best possible ones, it is remarkable how you can obtain acceptable
results with such a simple decision tree. Next, we consider the dataset Epilepsy which has 4 classes and MTS with 3 vari-
ables. In Fig. 4b, we see a tree with 4 nodes: three of them refer to variable 1, and another to variable 2. In this dataset, if
the sum of the first ten squared autocorrelation coefficients, for variable 1, is higher than 3.187, we know that the time series
belongs to class 3. Otherwise, if the spikiness variance of the leave-one-out variances of the remainder component of the
time series is positive, we can say that the time series belongs to class 2. Another relevant conclusion is that the number
of features actually used to describe the classifier is rather small, making it easier to comprehend the process.

5.3. Feature and variable importance

The set of 41 features selected for the representation of time series enable a diverse and extensive description of the char-
acteristics of the time series. For the purpose of classification, however, not all of them are always necessary. This fact has
been observed in the classifiers obtained in the empirical analysis detailed in Section 4 and is clearly illustrated in the exam-
ples depicted in Section 5.2. It is obvious that simplicity in the classifiers leads to enhanced interpretability. This simplifica-
tion can be achieved for each classifier by including a feature selection stage in the preprocessing of each workflow.
However, we endeavor to seek a more general approach. So, in this section, we describe the work —and attained results—
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Fig. 4. Interpretability CMFM example.
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reached in the trek of a smaller subset of features. This trek has been guided through the relevance of the proposed features.
An analogue approach can be followed to identify the importance of the different variables composing an MTS.

While different definitions of feature relevance are published, and the interpretability of the features has already been
discussed, we turn an eye now towards accuracy. Since Random Forest is the model of our proposal that obtains the best
accuracy results, we are going to analyze the importance given to each variable in this section. The importance measure used
for each variable by this model is the total decrement with respect to the node impurities, resulting from splitting on the
variable, averaged over all trees. In classification problems, the node impurity is measured by the Gini Index [10]. We have
performed three different analyses that allow us to extract the desired information:
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1. Analysis of the importance of each feature in each dataset (Section 5.3.1). This allows us to know which features have a
greater contribution to the final result. Based on the features with the highest contribution, we can determine which
behaviors, represented in those features, are the ones that define each type of time series.

2. Analysis of the accumulated importance of each feature over a large set of datasets (Section 5.3.2). This analysis allows us
to identify which features are representative of most problems and which ones are uninteresting.

3. Analysis focused on the cumulative importance of features for each variable composing the MTS (Section 5.3.3). In this
way, we could identify which variables contain a greater amount of information about a given problem. These variables
would be the most interesting ones to solve the problem.

5.3.1. Feature importance by dataset
Since we are working with MTS, each feature is calculated for each variable of a MTS. Therefore, each feature of the orig-

inal set offers a different result for each variable of the same MTS. For this, it is normal obtaining different values of impor-
tance for the same feature in different variables. To easily compare the importance of the original features in MTS, we need to
simplify the importance values of each feature over each variable to a global importance value per feature. For this reason,
we have calculated the mean of the importance of each feature over all the variables. For example, for the approximation
entropy feature in a 7-variables MTS, we get 7 different values of importance (1 for each variable to which its corresponding
approximation entropy feature is calculated). We add these 7 values and divide them by the number of variables of our MTS.
In this way, we also penalize the importance of any features that could not be calculated in any variable. Finally, we normal-
ize these last values between 0 and 1 for each dataset. This produces a normalized measure that is best explored in a graph-
ical way. Fig. 5 shows a heatmap of the importance of each feature in the RF classifier for each dataset, where the datasets
have been ordered by the accumulated importance of the 41 features.

In Fig. 5, we can see significant differences among the datasets. We can differentiate two bands: the upper band where
only some features accumulate great importance, and the lower band where multiple features have great importance. In the
upper band, we can see datasets for which the classifiers are dominated by up to four features with high importance (SelfReg-
ulationSCP1, InsectWingBeat, SpokenArabicDigits, NATOPS, BasicMotions, DuckDuckGeese, PEMS-SF, among others). In these
cases, two categories are observed: the set of features used is sufficiently expressive to address the problem satisfactorily
with competitive results (RF: InsectWingBeat, and PEMS-SF), or the selected features are not sufficient and other approaches
achieve significantly better results (MLSTM-FCN: BasicMotions, DuckDuckGeese, NATOPS, SelfRegulationSCP1, and Spo-
kenArabicDigits). In the lower band, we can identify cases where all the features are necessary (HandMovementDirection,
PhonemeSpectra, Handwriting, FingerMovements, MotorImagery, EthanolConcentration, ArticularyWordRecognition,
among others). In these cases, we can observe two behaviors. On the one hand, the differentiating capabilities of the features
are not enough for some of them to stand out from the rest, so the classifier assigns similar importance to a large number of
features. On the other hand, in datasets with a complex problem, it is not possible to find a reduced subset of features cap-
able of explaining the problem. In these cases, more complex solutions are obtained, with a high number of features, capable
of offering results very close to the best ones (ArticularyWordRecognition and PhonemeSpectra).
5.3.2. Accumulated feature importance over set of datasets
Another particularly interesting analysis to be carried out is related to the importance at the feature level. In Fig. 6, we

show the average importance of each feature throughout all the datasets. We have ordered the features in decreasing order
of the Average Gini Index. These values have been obtained from the results shown in Fig. 5. The average value of the impor-
tance of each feature has been calculated over the 30 datasets processed. We can see that there is a group of three distin-
guished features that frequently reach the highest importance values, namely, curvature, linearity, and spike. This group
has values of importance far superior to the rest. As a fast check experiment, we have built a C5.0B model for every dataset
restricted to use only these three variables and have observed an average improvement of accuracy of 2.2%. A second dis-
tinguished breakpoint in the importance curve leads to a second group of relevant features: max_var_shift, max_level_shift,
skewness, spectral_entropy, and trend. All of them are assigned importance values greater than 0.45. Even further, it is inter-
esting to realize that the features related to the complexity of a time series get the highest importance values. Higher values
achieved by features such as trend confirm that the components of the time series are very descriptive and useful when
extracting information from them. Other features such as curvature, linearity, and spike, shown as characteristic behaviors
of the time series, are especially useful in describing them.

On the other hand, there are also features with particularly low values of importance: nperiods, seasonal_periods, and
length. The feature length is not of high importance because, in the UEA repository, the vast majority of datasets are com-
posed of MTS of equal length. The features nperiods and seasonal_periods have importance values of 0 because we have pro-
cessed all the time series with a frequency of 1, making the processing as general as possible. If all the time series have the
same frequency, the features nperiods and seasonal always return the same value, which does not provide distinguishing
information for the problem. In the case that the best results are sought, and a detailed analysis of the time series is carried
out in which data on seasonality is available, these measures can be very useful. Furthermore, features such as max_kl_shift
and lempel_ziv have obtained low average importance values, although they are particularly explanatory. If we look at Fig. 5,
we find some datasets like PEMS-SF and EigenWorms in which max_kl_shift and lempel_ziv have a high importance, respec-
tively. In this case, even if we identify features that are generally not interesting, they may be relevant for specific problems.
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Fig. 5. Ordered features importance heatmap.
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These cases reinforce the idea that the selection of a representative set of features must be supported by theoretical knowl-
edge about the structure of time series and by different analyses of results performed on large sets of datasets.
5.3.3. Variable importance
Finally, we analyze an important point in the field of MTSC, the existence of components or variables that contain a major

part of the information on the problem. To assess the importance of a variable in a given dataset, we have computed the sum
of the importance of the 41 features for each variable of the problem in question. Then, this value is normalized by dividing it
by the maximum value of each sum. In this way, the importance value of any variable belongs in ½0;1�, with 1 being the max-
imum. Several statistics for the variable importance of the considered datasets have been gathered in Table 6. ‘‘Sum” refers to
the addition of the variable importance of all the variables of the dataset. Conversely, ‘‘Max”, ‘‘Min”, ‘‘Mean”, ‘‘Median”, and
‘‘SD” corresponds to the maximum, minimum, mean, median, and standard deviation of the variable importance.

Some observations can be made from the table. For example, in the PhonemeSpectra dataset, all 11 variables are of similar
importance, and CMFM + RF was close to the best results obtained. This means that all variables contain information of inter-
est. On the other hand, in NATOPS, there is a relevant dispersion among variable importance. To further illustrate diversity in
variable importance, we have selected some datasets and plotted a histogram of their respective variable importance —see
Fig. 7.

For the BasicMotions dataset, in Fig. 7a, we can see 2 variables with much higher importance than the rest, together with
a third variable that also stands out. These variables are, in decreasing order of importance: 2, 6, 1, 3, 5, and 4. If we compare
these values of importance —derived from RF— against the C5.0B tree, shown in Fig. 4a, we can realize that two of the tree
nodes have features of the variable 1, and the remaining node has a feature of the variable 6, which are the second and third
most important variables. In the case of dataset Epilepsy —see Fig. 7b—, we can see 2 variables significantly distinguished
from the rest. These variables are, in decreasing order of importance: 1, 2, and 3. Fig. 4b shows a C5.0B tree for this dataset.
Three of its nodes have features of the variable 1, the most important variable, while the remaining node has a feature of the
variable 2, the secondmost important variable according to the RF. These examples show a certain relation between the vari-
ables with more importance according to the RF and those used by a simple classifier such as C5.0B.

In the case of the NATOPS dataset, the most relevant information is expressed in just 24 of the variables. In Fig. 7c, we can
see that it is more difficult to obtain well-differentiated groups of variables according to their importance. In this case, we
can see that the 3 variables with the greatest importance are significantly distanced from the rest, with importance values
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Fig. 6. Average importance of each feature in the UEA repository.

Table 6
Statistics of the variable importance.

Datasets Sum Max Min Mean Median SD Variables

ArticularyWordRecognition 4.816 1 0.190 0.535 0.504 0.263 9
AtrialFibrillation 1.720 1 0.720 0.860 0.860 0.198 2
BasicMotions 3.495 1 0.291 0.582 0.485 0.332 6
CharacterTrajectories 2.120 1 0.359 0.707 0.762 0.324 3
Cricket 4.726 1 0.627 0.788 0.797 0.131 6
DuckDuckGeese 143.003 1 0 0.106 0.074 0.115 1345
EigenWorms 3.739 1 0.367 0.623 0.594 0.208 6
Epilepsy 2.295 1 0.352 0.765 0.943 0.359 3
ERing 3.356 1 0.659 0.839 0.848 0.152 4
EthanolConcentration 2.971 1 0.980 0.990 0.991 0.010 3
FaceDetection 100.234 1 0.557 0.696 0.692 0.061 144
FingerMovements 19.528 1 0.547 0.697 0.676 0.097 28
HandMovementDirection 9.141 1 0.795 0.914 0.927 0.079 10
Handwriting 2.701 1 0.818 0.900 0.883 0.092 3
Heartbeat 30.558 1 0.307 0.501 0.470 0.162 61
InsectWingbeat 59.976 1 0.195 0.300 0.221 0.159 200
JapaneseVowels 9.279 1 0.563 0.773 0.789 0.138 12
Libras 1.901 1 0.901 0.950 0.950 0.070 2
LSST 5.213 1 0.718 0.869 0.873 0.138 6
MotorImagery 50.752 1 0.588 0.793 0.791 0.097 64
NATOPS 9.634 1 0.140 0.401 0.334 0.215 24
PEMS-SF 30.718 1 0 0.032 0.013 0.078 963
PenDigits 1.684 1 0.684 0.842 0.842 0.223 2
PhonemeSpectra 10.917 1 0.984 0.992 0.993 0.004 11
RacketSports 4.493 1 0.304 0.749 0.810 0.263 6
SelfRegulationSCP1 4.044 1 0.532 0.674 0.629 0.175 6
SelfRegulationSCP2 6.673 1 0.901 0.953 0.950 0.037 7
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Table 6 (continued)

Datasets Sum Max Min Mean Median SD Variables

SpokenArabicDigits 5.962 1 0.162 0.459 0.325 0.302 13
StandWalkJump 3.614 1 0.758 0.904 0.928 0.112 4
UWaveGestureLibrary 2.782 1 0.877 0.927 0.904 0.064 3
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Fig. 7. Histograms of variable importance values.
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higher than 0.70. Depending on the information sought and the difficulty of the problem, we could decide to lower the
threshold, create different groups of variables, etc. These histograms are especially interesting for datasets with a large num-
ber of variables. For example, in the PEMS-SF dataset, Fig. 7d, only some of the 963 variables have a high importance, giving
residual importance to the rest. In this case, there are only 5 variables with an accumulated importance value higher than
0.75. These variables are, in decreasing order of importance: 212, 55, 604, 172, and 187.

To better understand the variable importance distribution, we have calculated the percentage of cumulative importance
of each variable in each dataset. For this, we have calculated the cumulative importance of the set of features for each vari-
able and dividing these values by the sum of the importance of all the features. In this way, we can see which variables con-
tain a greater amount of useful information, e.g., for a dataset composed of MTS with 3 variables, we have calculated the
sums of the importance of the 41 features used for each variable and divided those values by the total of the sum of the
importance of the 41 features for the 3 variables. In Fig. 8, we show the percentage of cumulative importance for each vari-
able for some processed datasets: it is easy to spot the differences in importance by comparing the relative lengths of the
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colored pieces into which each bar is divided. Each of these pieces represents a single variable. For example, in the Articu-
laryWordRecognition dataset, variables 1, 4, 7, and 9 are of less importance; ERing dataset shows a great importance accu-
mulated in variables 1 and 4; Epilepsy dataset has much of its useful information in variables 1 and 2; and so forth. With
these results, the preprocessing of the data can be modified in such a way as to improve the recording of the data of these
variables or to give them greater importance in the learning process.

Based on the study conducted in this section, we can conclude that:

� Combining easily interpretable models with understandable time series features, the user can better understand and
explain the decision-making process. The CMFM+C5.0B model is especially interesting in this respect.
� CMFM+RF allows us to define a feature importance measure that can be used to reduce the set of considered features,
leading to simpler and more interpretable models.
� The feature importance can be used to assess variable importance within multivariate time series. In addition, based on
the feature importance, we have also defined a variable importance measure that allows us to identify the most relevant
variables and thus guide or prioritize the time series caption, storage, and processing.

6. Conclusions

In this paper, we have presented a method to represent multivariate time series in terms of a set of interpretable features.
This method enables the use of conventional classification algorithms on MTSC problems, considerably expanding the tools
available to deal with this type of problem. The main benefit of this approach is to obtain interpretable classifiers so that the
decision-making process can be better understood. We have designed and executed a thorough empirical study, based on the
main repository of the state-of-the-art, composed of 30 datasets. The accuracy results of the built classifiers remain compet-
itive with respect to the state-of-the-art results. In particular, no statistically relevant differences can be found between our
CMFMTS+RF proposal and the most accurate already known methods.

The interpretability of the built classifiers has been extensively analyzed. Measures for feature importance and variable
importance have been defined, allowing to derive relevant knowledge for each particular problem addressed with the pro-
posed method. In addition, we have verified the existence of a set of features that maintains high importance throughout
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different datasets. However, there are also certain cases where other features that are less important on average offer the
best results. These features are usually related to characteristic behaviors of the time series.

The method has been implemented in the R programming language. The code is publicly available.
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