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ABSTRACT

We study a granular gas of viscoelastic particles (kinetic energy loss upon collision is a function of the particles’ relative velocities at impact)
subject to a stochastic thermostat. We show that the system displays anomalous cooling and heating rates during thermal relaxation
processes, this causing the emergence of thermal memory. In particular, a significant Mpemba effect is present, i.e., an initially hotter/cooler
granular gas can cool down/heat up faster than an in comparison cooler/hotter granular gas. Moreover, a Kovacs effect is also observed, i.e., a
nonmonotonic relaxation of the granular temperature—if the gas undergoes certain sudden temperature changes before fixing its value. Our
results show that both memory effects have distinct features, very different and eventually opposed to those reported in theory for granular
fluids under simpler collisional models. We study our system via three independent methods: approximate solution of the kinetic equation
time evolution and computer simulations (both molecular dynamics simulations and direct simulation Monte Carlo method), finding good

agreement between them.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0050804

I. INTRODUCTION

Recently, observations in a number of systems have increasingly
focused attention on two—apparently—paradoxical and different
memory effects, namely, the Mpemba' effect (ME) and Kovacs” effect
(KE), which can be referred to as thermal memory effects.” The mem-
ory of a system can be described as its “ability to encode, access, and
erase signatures of past history” in its current state, which is intrinsi-
cally related to a far-from-equilibrium behavior." In this work, we
study the existence of both the Mpemba effect (ME)” and the Kovacs
effect (KE)® in low-density granular fluids (granular gases). A granular
gas is comprised of a large number of particles with typical sizes larger
than 1 um. These macroscopic particles undergo inelastic collisions, so
that mechanical energy is not conserved. Moreover, in the case of a
low-density gas, collisions are approximately instantaneous.”

The ME has been characterized in granular gases as follows: an
initially hotter sample can eventually cool faster than an initially com-
paratively warm one, when both are put in contact with a granular
temperature source that is cooler than both samples. The ME is
typically triggered only for a given set of far-from-equilibrium initial
conditions.’

Traditional culture has been aware, since long ago, of the ME in
water undergoing freezing, although it was systematically studied in a
scientific work only more recently. In particular, the effect owes its
name to high-school student Erasto B. Mpemba, who noticed and
measured the effect in milk while making ice cream in a high-school
lab. A complete account of the experimental observations (also with
water experiments) was later published by Mpemba in collaboration
with Osborne." A recent study reveals the reproducibility of such
experiments.” Yet the explanation of the underlying physical mecha-
nism triggering the effect has remained elusive for long.

However, rather recently, Lu and Raz showed that the ME should
always be present in Markovian processes.” In fact, they also proved
that there exists also an inverse ME, i.e., a sample of a system that is
colder than another, otherwise identical sample may heat up faster
when both are put in contact with the same hotter temperature source.
The direct and inverse ME were almost simultaneously (and indepen-
dently) confirmed by other authors in a granular gas of hard particles.”
Other systems like carbon nanotube resonators'’ or clathrate
hydrates'' had also shown this interesting effect shortly earlier,
although only in its classical direct variant.
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These works have raised renewed interest in this long-time prob-
lem; the ME has been detected in theoretical models such as non-
Markovian mean-field systems,'” driven granular gases,''* molecular
gases,"” inertial suspensions,'® antiferromagnetic models,'””'* quantum
spin models'” and spin glasses,”’ liquid water (not involving a phase
transition),”’ and experiments with colloids experiments.22 In addi-
tion, the inverse ME has been observed for the first time in experi-
ments,” in particular, in a colloidal system. Interestingly and very
recently, it has been proven that classical'* and quantum”" relaxation
dynamics in many particle systems can be accelerated using Mpemba-
like strategies, opening the door to future direct applications.

More recently, and in other fields, related memory effects are
being actively investigated. The existence of the so-called mixed ME, a
process where two identical systems with initial temperatures, respec-
tively, above and below their common relaxation temperature have
relaxation curves that cross each other, has been latterly detected.'*”
In the same line, asymmetry in thermal relaxation for equidistant tem-
perature quenches has been found for systems near stable minima*®
and the fact that uphill relaxation (warming) is faster than downhill
one (cooling) is being currently studied.”””*

Granular dynamics is perhaps the field where recent literature on
the ME is most abundant. Indeed, the ME in granular fluids has also
been analyzed in recently published works on slightly different sys-
tems, such as in confined granular layers,” granular gases with rota-
tional degrees of freedom,”’ granular suspensions'® and particles
subject to a drag force."” These works provide insight into the same
phenomenon, namely, the faster cooling/heating of a comparatively
hotter/cooler system. This results in two (granular) temperature relax-
ation curves that cross each other at some point in their evolution, as
essentially predicted by the original work in granular gases,” with the
only variation of a subtly different collisional model or another extra
modification, such as boundary conditions (for the confined layer) or
volume forces (as in the case of suspensions and particles subject to a
drag force).

Yet, experimental verification of the ME in granular dynamics is
still pending, unlike in the case of colloids, where experiments have
clearly demonstrated the existence of the ME.”” Moreover, this recent
experimental observation in colloids, combined with advances from
theoretical works predicting the ME in granular fluids, encourage con-
ducting laboratory experiments of granular dynamics, in search of
more experimental confirmation.

However, prior to searching for corroboration of the ME in gran-
ular matter, a significant improvement in the collisional model used
for the theoretical detection is much needed. In effect, the collisional
models used so far to describe the ME in granular fluids do not take
into consideration the experimental evidence that collisions usually
depend on the particles’ relative velocities on impact.”"*” These parti-
cle models may actually be seen as reductions of the Walton collisional
model,”’ which takes into account the velocity dependence only
through the friction coefficient (which, in turn, depends on the impact
angle, for sufficiently small grazing angles’””).

Walton’s model is a simplification of the theory by Maw, Barber,
and Fawecett’™" (although the work by Walton does incorporate the
kinetic energy loss during collisions), which is an extension of Hertz’s
theory for elastic contacts.”*”” Walton’s model includes the effects of
oblique impact in detail, which are usually of relevance at experimental
level grain collisions (an exhaustive report of careful measurements of
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coefficients of restitution for macroscopic particle collisions may be
found in Ref. 36).

Although Walton’s model makes a fair enough description for
the experimental conditions of collisions in a variety of hard materials
(such as metals),” it is known that the normal component of the post-
collisional relative velocity depends significantly, in general, on the
impact velocity absolute value.™ In this sense, Brilliantov, Péschel, and
collaborators worked on collisional models for inelastic particles’”*
where the kinetic energy loss upon collision is considered to be depen-
dent on the impact velocity (henceforth, this model is referred to as
viscoelastic particle model).”®

On a different note, there is also an extensive literature on the
KE, which was originally detected in a polymer system by Kovacs and
co-workers,””” in an experiment described as follows. A sample of
polyvinyl acetate, initially in a thermal equilibrium state (with known
temperature T) is subject to a temperature drop, to a value T} < Tj.
While the polymer is still relaxing toward the new equilibrium state,
the temperature is suddenly increased, at a (waiting) time t,, to an
intermediate value Ty, with T7 < Ty < Tp. This temperature Ty is
maintained stationary until the polymer reaches a final equilibrium
state. The trick in their set of experiments is that when Ty is applied at
time t,, the instantaneous volume V(t = tf,) equals the stationary
value that the volume should have for Ty, ie., V(t = t,, Tq) = Vg.In
this way, both T(t =t,,) and V(t = t,,) are equal to their stationary
value and hence, as temperature is kept by means of a temperature
source, no further evolution for the volume would be expected.
Instead, the volume follows a nonmonotonic time evolution; in this
case, what Kovacs and co-workers observed was that the volume
rebounds up to a maximum, decreasing afterwards toward its final
equilibrium value V¢ = V(t = t,,).

This nonmonotonic behavior, later denominated Kovacs hump,
consists therefore in the volume reaching one maximum before return-
ing to its equilibrium value V. As these authors explained, such a
behavior is due to the fact that the polymer has complex dynamics
and there are additional relevant variables (other than volume and
temperature) involved in the relaxation process, these being coupled
with each other and with the temperature.”

More recently, the KE has been reported in several other complex
systems such as glassy systems,"*” active matter* or in the thermali-
zation of the center of mass motion of a levitated nanoparticle;”” thus,
one could expect this memory effect to appear in other real systems.
Additionally, an analogous effect has been observed in the temperature
time evolution of other athermal systems**** and granular fluids sub-
ject to a sudden temperature change.”*” > However, the collisional
models in these works have neglected the effects of impact velocity on
the collision inelasticity. We will analyze here the KE in a granular sys-
tem for the more realistic viscoelastic collisional model, in search of a
more definitive confirmation of this effect in granular dynamics.
Furthermore, as we will see, both ME and KE pertain to the same class
of thermal memory effects.

Therefore, in Sec. I, we describe our system and the theoretical
basis in more detail. Section III is devoted to the analysis of our results
involving the presence of a clear Mpemba-like effect in our viscoelastic
granular system, where we have considered both a cooling and a heating
protocol. In Sec. IV, we investigate the existence of a Kovacs-like effect
and its relationship with the parameters characterizing the system.
Finally, Secs. V and V1 are dedicated to discussion and final conclusions.
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Il. SYSTEM AND TIME EVOLUTION EQUATIONS

We consider a system of thermalized grains, with a very low par-
ticle density (n) at all times. In our system, all particles are identical
spheres of mass m and diameter ¢ and, apart from having a meso-
scopic size, there is no restriction regarding the value of their diameter.
With low particle density in this context one usually means’ that con-
tacts occur only between two particles and contact time is negligible as
compared to the typical time between collisions. The fact that such col-
lisions are instantaneous and binary allows ignoring velocity correla-
tions and thus, assuming the molecular chaos ansatz,” considering a
statistical description based on a single particle velocity distribution
function f(v, t).

Since particles are not microscopic, collisions are inelastic, i.e.,
energy is not preserved. Furthermore, the degree of inelasticity in each
collision experimentally depends on particles’ relative velocities at
impact,” v,. For this reason, collisions are best described in this case
if the effect of relative velocity on collision inelasticity is taken into
account. In particular, a velocity-dependent restitution coefficient, in

37,38

the model by Brilliantov and Poschel is given by ”
e=1-— C1A0(2/5|V12 . 612‘1/5 + C2A2064/5|V12 . 612|Z/Si ey (1)

where e}, is a unit vector in the direction of the colliding particles’ rela-
tive position vector, A is a material dependent dissipative constant,

* = G

C; =1.15344 and C, =2C? = 0.79825 are known constants; the
terms containing higher powers of A can be neglected for small
enough A. In summary, the restitution coefficient can be described

as’’

, Y is the Young modulus, v is the Poisson ratio, and

ex~1— VI,‘V12 : e12|1/5 + (3/5)”/,2,|V12 : 612|2/5, (2)

where the known dissipative coefficient 7, = C; A«*/®> depends on the
material properties. It is, however, possible, provided that dissipation
is not too large,”" to reduce the velocity-dependent equation (2) to an
approximate expression that depends only on the velocity ensemble
average through a dependence on the granular temperature T(?),

N
teff = 1+ ZBlek/z[ZT(f)/To]k/zoa (3)
=

with n = 'c’—l (%)1/ 1% the dissipation coefficient and Ty = T(0) the ini-
tial temperature of the system. Expression (3) was deduced by Dubey
et al.,”! in whose manuscript the values of the coefficients By can also
be found. We assume that inelasticity is not large so that the approxi-
mation in (3) remains accurate.

Thermalization of grains is achieved by means of the action of a
homogeneous stochastic force, F*". In this case, the thermostat is
modeled as a zero-mean Gaussian white noise,””

(F") =0, (F™()E"(F)) = 6;0(t — )G, (4)

where I is the 3 x 3 unit matrix, J;; is the Kronecker delta, and 6(t) is
the Dirac delta function; &, characterizes the strength of the stochastic
force.

The appropriate kinetic equation for our low-density granular
gas is the Boltzmann equation,”® where there is an additional term
that takes into account the action of the stochastic thermostat,

scitation.org/journal/phf

of (v, 1) A

ot - ][fuﬂ + 2 o2 ’ (5)

in which fis the particle velocity distribution function and J[f, f] is the

collision integral for viscoelastic spheres,” with collisions modeled in

this case by taking into account a coefficient of restitution according to

(3), as we said. We have also considered that the system is at constant

density and homogeneous at all times, and therefore, in our case,
Flrv.t) = f(v,1).

As is known, the stationary distribution of a granular gas of vis-
coelastic  particles typically differs very slightly from the
Maxwell-Boltzmann distribution, this difference being noticeable only
in the high energy tails.”*”" (Only under extreme nonequilibrium con-
ditions do deviations from the Maxwellian become more significant.)
Such deviations can be quantified as follows. The set of associated

. . < 138,57 k
Laguerre polynomials (called also Sonine polynomials’**’) LI(J )(x)
fulfills the orthogonality conditions [;* x*e™ I(,k) (x)LE,k) (x)dx
= 0pq(p +k)!/p!. Therefore, they can be used to express accurately

) (with x = mv?/2T) as a truncated expansion (usually called Sonine
expansion in the context of kinetic theory of gases’) in the form,

1+ iapsp(cz)} , (6)
=1

where c is the scaled velocity ¢ = v/vy, vi = /2T /m is the thermal
temperature and ¢(c) = n/(vrn'/2)’e < is the Maxwell distribution
expressed as a function of c. Also, S,(c”) represents an associated

fle) = ¢(¢)

Laguerre polynomial L‘l(,k) () of order k= 1/2. Note that in this case
k=1/2 is the appropriate choice, since it yields a,= 0 for all p if the
distribution function is the Maxwellian.”*

In other words, the coefficients aps which are denoted as cumu-
lants, measure the deviation of f(v) off the Maxwellian. Henceforth, we
will deal only with slightly non-Maxwellian states, for which we need
to retain only the first two cumulants, i.e., we use’”

4 4, 8
e % =5 105

The thermal evolution of the system can be described by means
of the differential equations that result from integration of the
moments of kinetic equation (5) within the degree of approximation
in Refs. 38 and 54,

a (") —1, (®) — 2, ap>3 ~ 0. (7)

dTr K 3
Frie —gﬂzﬁ'i‘mfgy (®)
d(lz 2A 2 N ap
EZEK(I+az)ﬂ2ﬁ—EKﬂ4ﬁ—2Tmég7 (9)
dﬂl3 R 2A 4 R as -
?: (1 —a2+a3)ﬂ2ﬁ—gkﬂ4ﬁ+ﬁkfﬂ6ﬁ—3?m§37

(10)

where g1, is the p-th moment of the collision integral, linearized in Ref.
51 as

20
1y (T, a2, a3) :Z(MIEP’0> + M,EP‘z)az + M,Ep‘3)a3 +M,((P’22)a§
k=0

k
112
A 2T 10
P 4 a0 P” ) } S
Cl m
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Here, M (PJ) are known numerical constants’’ and we have defined
K= 2\/502 n/y/m.

When a steady state is reached (d/dt = 0), all of the moments of
the distribution function become time independent.”® We label the
steady state parameters with superscript “st.” With some little algebra,
we obtain

105
WE=5m mg =@ e, (1)

where pf has previously been obtained from (8) with dT/dt = 0.
Expressions (12) can be solved numerically with a fixed point
iteration scheme by means of the approximation given by Eq. (11).

A. Initial conditions and thermal memory

From a mathematical point of view, analyzing a thermal relaxa-
tion process in our system involves solving the differential equations
(8)—(10). For this, we logically need to specify the initial conditions
triplet [T(0), a2(0), a3(0)], after which the relaxation process is fully
specified (its relaxation is unique).

Therefore, the thermal memory emerging from the ME and KE
in granular dynamics strictly does not recall (does not provide infor-
mation about) past states, i.e., states, at t <0, prior to its final relaxa-
tion. This is in contrast with the persistent memory of past history in
other systems, such as foam sheets, which can remember past shear
cycles and have the ability, under the appropriate conditions, to mimic
them.”

Thus, for a comprehensive study of thermal memory in granular
dynamics, we will explore wide intervals of the initial triplet
[T(0),a2(0), a3(0)]. Moreover, we already know not all initial states
can produce memory effects.”” In fact, ME and KE usually occur dur-
ing a relaxation process off an initial state that is sufficiently far from
the stationary state (henceforth, by far in this context we mean an ini-
tial temperature that is not close to the stationary temperature) to
which the system is going to relax.”” This feature can be characterized
attending to the initial values of the relevant distribution moments vs
their final values. Therefore, our study will pay attention to the relative
differences A = (T, a¢', ai¥') = [|T(0) — T*|/T*, |a(0) — a3|/aS,
las (0) — a| /a3,

B. Initial conditions and experiments/computer
simulations

Analyzing thermal relaxation processes for different ranges of the
initial triplet A out of the differential equations (8)-(10) is relatively
straightforward since it only involves specifying the numerical values
of [T(0),a(0),a3(0)] and &, the noise intensity, which sets the final
state and therefore (T*, a3, a3 ).

Undertaking the analogous task in experiments and computer
simulations is, notwithstanding, somewhat more subtle. In particular,
in experiments we can indeed control the degree of thermalization of
the system (here, this role is played by the parameter £;). However, in
experiments, there is no complete control on the initial microscopic
state and thus the triplet A cannot in general be set at will to specific
values, except for the temperature. All we can do is to make the system
undergo subsequent thermal”* or pressure source’ changes, so we
can produce a far-from-equilibrium initial state with a priori unknown
values of [T(0), a»(0), a3(0)].

ARTICLE scitation.org/journal/phf

Luckily enough, in particle simulations, we can always control
the particles initial velocities as well, and in this way, we have control
of the initial velocity distribution function, but not of its moments.
Thus, the most efficient way to produce an initial distribution function
with the desired values of [T(0), a,(0), a3(0)] is with the use of ran-
dom variate distribution functions.”

Since the stationary absolute values of the cumulants (a5, af)
tend to be rather small (close to zero),”" we would need distributions
that can attain at least moderate values of [|a2(0)|, |a3(0)|], so that the
values of (a}f!, af") are not close to zero. Thus, a good choice is the
random variate of a gamma distribution, since it can achieve such val-
ues for [a5(0), a3(0)].”” The gamma distribution function with shape
parameter a, shift parameter ¢, and scale parameter  may be
expressed in terms of the variable v* as”’

;(Vz —o) e IR 2 s
Ca)p> - 7w
0 v <.

Jacp (V') =

The angular parts (in spherical coordinates) of particle velocities are
drawn from random variates of a uniform distribution, since the sys-
tem is isotropic. Therefore, for computer simulations in this work, we
use the random variates of a gamma distribution and of a uniform dis-
tribution for generating the initial particle velocity modulus and angu-
lar part, respectively.

lll. MPEMBA EFFECT IN A GRANULAR CAS
OF VISCOELASTIC PARTICLES

Since the ME occurs during a thermal transient, given the noise
intensity &, and inelasticity ¢, we need to set an initial temperature dif-
ferent from its corresponding stationary value. Thus, we will consider
two variants of the protocol for choosing initial conditions: (a) a heat-
ing process [T(0) < T*]; and (b) a cooling process [T(0) > T*].

This is not enough, however, since (as demonstrated in a former
work for a granular fluid composed of hard particles with constant
coefficient of restitution”) the memory effect will emerge only under
particular conditions, among which it is necessary that the shape of
the initial distribution function is far from its steady state form, i.e., the
relative differences of the first distribution function moments, and
hence (a}!, "), need to be big enough.”’

Therefore, the question remains if an anomalous temperature
relaxation rate can be observed when the granular gas is driven off its
steady state distribution function. By anomalous, we mean here that
the transient from the initial state with T(0)"" will be longer than
the transient resulting from T(0)™™, with |T(0)™ — T*|
< |T(0)™™e — T5t|. This implies, for instance, that a hotter system
can cool more quickly than a warmer one, which is the counterintui-
tive effect known from Antiquity in water. Conversely, it also implies
that a colder system may heat up more quickly than a warmer one.

For each of these two protocol variants (heating and cooling tran-
sients), we will compare the evolution of the same physical system (in
this case, granular gas with the same inelasticity) evolving off different
initial states. We used there three different sets of initial conditions for
each protocol variant. We compare the three resulting different transi-
ents in pairs, in such a way that one of the initial states to be compared
with has a temperature T(0)"™* and the other T(0)™™. The ME is
indistinctly identified as a crossing between such two transients (the
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normal transient temperature relaxation rate during transients would
not produce such a crossing since the initial state with temperature
closest to its stationary value would relax faster).

In this sense, Fig. 1 depicts the evolution of the temperature ratio
0(t) = T(t)/T* for three transients for each protocol. Here, time has
been expressed as 7 = #&\/T5', ie., as number of collisions per parti-
cle, referenced to the steady state, since v** = &+/T* is the collision
frequency for a system at temperature T*'. Results are shown for both
cooling (top curves) and heating (bottom curves) processes as
obtained via three independent methods: solution of the system of
equations (8)-(10), molecular dynamics simulations (MD) and exact
numerical solution of the kinetic equation obtained from the direct
simulation Monte Carlo (DSMC) method (see the Appendix for more
details on our numerical technique and MD and DSMC simulations).

As we can see, our results exhibit an excellent agreement between
the three independent methods, clearly displaying the ME in both the
cooling and heating processes (the latter referred to as inverse ME). In
effect, curve crossings between transients are clearly observed, in this
case at very early times (before T ~ 1, i.e., before all particles have sta-
tistically had the chance to collide once after initialization).

For the cooling variant [T(0)™™ > T(0)"* > T*], we have
represented the triplets (1.04,0.5, —0.071), (1.035,0,0), and (1.03,
—0.35,—0.375), whereas for the heating protocol [T > T(0)%"
> T(0)™™], we have used the triplets (0.96,0.5,—0.071),
(0.965,0,0), and (0.97,—0.35, —0.375). Notice that the relaxation
curve of the initial state whose temperature is furthest from the sta-
tionary value also crosses the one having intermediate Maxwellian ini-
tial state. This is an interesting result that indicates that the initial
conditions further away from the steady state can also produce an ME
relative to an initial state that resembles a microscopic equilibrium
state.

We analyze now to what extent the ME is observable in a granu-
lar gas of viscoelastic particles. For this, we determine, from integration
of Egs. (8)-(10), the ratio AO(0)/Aay(0), where AO(0) = [T4(0)
—Tg(0)]/T* and Aay (0) = a,4(0) — a,5(0) as a function of the dissi-
pative coefficient y,,. Results are displayed in Fig. 2, where we can see

1.04

1.02

1.00

o(t1)

0.98

0.96

0 2 4 6 8 10
T

FIG. 1. Evolution of the scaled temperature 0 toward the steady state showing a
clear Mpemba-like effect in a cooling process [top curves, with initial states
[0(0),a2(0),a3(0)] = (1.04,0.5,—0.071), (1.035,0,0), and (1.03, —0.35,
—0.375)] and an inverse Mpemba-like effect in a heating process [bottom curves,
with initial states [0(0),a,(0),a3(0)] = (0.97,0.5, —0.071), (0.965,0,0), and
(0.96, —0.35, —0.375)]. Solid lines represent the exact solution, open circles corre-
spond to MD, and dotted lines with crosses refer to DSMC simulations.
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FIG. 2. Theoretical phase diagram in the plane A6(0)/Aa,(0) vs y,. The regions
of the plane inside which there appears or does not appear the ME are separated
by a curve, showing that there is a maximum of the parameter for which the ME
can be observed.

there is a wide region of the parameter space in which the ME is pre-
sent. Much like in the case of a gas of hard spheres, the Mpemba
region grows as inelasticity increases (y, = 0 is the perfectly elastic
collision limit, and inelasticity grows as 7,) but here, distinctively, the
width of the Mpemba region for higher inelasticities soon reaches an
asymptotic value and thus increasing inelasticity stops yielding wider
Mpemba regions. Moreover, the ME is, in general, smaller for visco-
elastic particles [A6(0)/Aa,(0) < 0.02, even for higher inelasticities]
which is less than 25% the size of the ME that has been detected at
high inelasticities in granular gases of hard spheres.”

IV. KOVACS EFFECT IN A GRANULAR GAS
OF VISCOELASTIC PARTICLES

As we already know, the behavior of the KE is, in general, rather
more complex in granular fluids than that of the original KE in a poly-
mer layer.””” For instance, granular fluids display an upward hump,
analogously to the behavior encountered in the original work by
Kovacs (and thus called henceforth normal hump); but also an anoma-
lous hump downward was found, this consisting in further cooling
after the bath temperature is fixed during a cooling transient in sys-
tems with high inelasticities.””** Furthermore, multiple—alternatively
upward and downward—humps have been detected in granular fluids
where particles have rotational degrees of freedom as well.” But, again,
the question remains if the KE is really present in granular fluid
experiments and, as we said, a first theoretical approach is to model
grain collisions more realistically, via the viscoelastic model in this
case.

Thus, in order to detect the KE in granular fluids with the (more
realistic) viscoelastic model, we subject the system to a stochastic ther-
mostat of intensity &7, which is set so that T(0) = T*(&}). In addition,
the initial values of the cumulants, a,(0) and a3(0), are set to values
very different from their steady state values (similarly to the ME case),
so that the initial distribution function is far from its stationary form.
Therefore, once the system is left to evolve, it will undergo a transient
with the necessary time for the cumulants to approach their steady
state values (which are known a priori since they only depend on the
dissipation coefficient’").
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But, since the system is already initially at its steady state temper-
ature, any eventual departure during the transient of the granular tem-
perature at later times should correspond to a Kovacs-like effect. This
is potentially possible due to the strong coupling of the time evolution
of the cumulants a, and a; and T [see Eqgs. (8)-(10)]. As we will show,
we have certainly observed the KE for wide ranges of the parameter
space for viscoelastic particles.

We illustrate this in Fig. 3, in panel (a) for low inelasticity
(y, = 0.2) and in (b) for a more inelastic gas (y,, = 0.577); the differ-
ent values of a,(0) and a3(0) used in these curves are summarized in
Table 1. For the two values of y, used here, strong and remarkably
similar KEs are observed, as Fig. 3 shows. Note that the hump sign for
the curves present matches that of the difference a5 — a,(0), ie., the
hump is downward for a5 —a,(0) <0 and upward for
as' — a,(0) > 0. This behavior is identical in both dissipative coeffi-
cient values analyzed here (y = 0.577, which has high dissipation and
7, = 0.2, with small dissipation). Therefore, it does not appear to be
essentially determined by inelasticity. This is much in contrast with
the behavior for hard spheres, where a clear hump sign transition for
the coefficient of restitution critical value o, = 1/v/2 ~ 0.7 was
reported in the bibliography.” It is also interesting to notice that, in
general, there is a good agreement between theory and simulation, so
it is guaranteed that the result observed here is not an artifact of the
approximations used in the theoretical approach.

(a)
e, — a,(0) = 0.50
L0 #Tosys, — a(0)= 0.15 T
*2 a,(0) =-0.15
...... ) =-0.35
> 1.00
) )
099 v, =0.20
0 2 4 8 10 12
(b) ! T T T T
o I 32(0) = 0.50
L.olp 9°'°"‘":.:o — az(o) = 015 T
’ —  a,(0) =-0.15
/ a,(0) =-0.35
Y %

0.99F W Vo = 0.577

0 2 4 6 8 10 12

FIG. 3. Theoretical (lines), MD simulation (open circles) and DSMC (dotted lines
with crosses) results, showing the KE for (a) 7, = 0.2 and (b) y, = 0.577.
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TABLE . Initial values of the cumulants a, and a3 used in Fig. 3. The stationary val-
ues of the cumulants are &' = —0.012312 and a§ = —0.003249 for 7, = 0.2
and &' = 0.003957 and a§' = —0.002768 for 7, = 0.577.

a,(0) 0.5 0.15

as (0)

—0.15 —0.35

—0.07143 0.05357 —0.117 86 —0.375

In order to further clarify this behavior, we analyze in Fig. 4(a)
the evolution of the signed hump size (here represented as 0" — 1
where 0" =T"/T% and T" is the maximum/minimum value
achieved by the granular temperature during the transient), for differ-
ent initial values of the cumulants a,(0), a3(0), vs the dissipative coef-
ficient (as summarized in Table I). Results show that the hump sign
does not depend essentially on dissipation upon collision. Notice that
each curve remains with the same hump sign whether dissipation is
high or low. This corroborates that the behavior of this memory effect
for viscoelastic particles and, thus, very possibly in experiments, is
essentially different from that in the less realistic hard-sphere colli-
sional model.

@ 1f // ;
S 0
i
R ¢ ‘
Fn' _1 C ) 7
E o
@ — a,(0)= 0.50 — a,(0) =-0.15
_2b— a&(0)= 0.15 — a,(0)=-0.35 3
— a,(0) = 0.00
0.0 0.2 0.4 0.6 0.8 1.0
Pv
(b) L] T T L
2 L -
S o1r 1
i
R
1t 4

0.0 0.2 0.4 0.6 0.8 1.0
Vv

FIG. 4. (a) Size of the theoretical (lines) and MD simulation (open circles) hump in
the granular temperature evolution as a function of y,, for different values of a,(0)
and a3(0) (as reported in Table I). The sign of the kurtosis difference ay(0) — &t
determines whether the evolution curves exhibit an upward [a,(0) < &S] or down-
ward [a(0) > a5] hump. (b) The theoretical stationary kurtosis aj' is a noncon-
stant function of the inelasticity parameter 7.
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However, a subtle sign transition for the a,(0) = 0 curve can be
observed at 7y, ~ 0.45 [orange line in Fig. 4(a)]. We plot in Fig. 4(b),
the difference aj — a,(0) for the case a,(0) =0 [ie, a5 — a,(0)
=ad']. We note that, in effect, a5 changes sign at y, ~ 0.45.
Moreover, Fig. 4(b) shows that the sign of this difference matches the
hump sign for all y,,, by comparison with the corresponding curve in
Fig. 4(a), and therefore, that the hump sign is determined by the differ-
ence a3 — a,(0). But, even more interestingly, we observe that curve
a,(0) displays a Kovacs sign transition that is the opposite to the one
reported for hard spheres, i.e., in a granular gas of viscoelastic particles
the Kovacs hump is in the quasi-elastic collision limit.

Since, due to the scale in Fig. 4, this detail is hard to grasp, we
plot in Fig. 5 the hump size for varying a,(0) and several dissipative
coefficient (y,,) values. The large panel helps to visualize that, regarding
the hump sign, the initial value of a,(0) is indeed by far the most
determining factor. Remarkably, it helps to figure also that it is not the
only factor, since the hump changes sign at slightly different values of
a,(0) for different values of the dissipative coefficients (see inset). This
feature is also exclusive of our system and does not appear in granular
gases of hard spheres, for which the transition is fixed at coefficient of
restitution o, =1/ \/2 for all thermal protocols, i.e., all initial state
cases (see Fig. 9 in Ref. 48, for instance). Figure 5 inset helps to visual-
ize also that the hump sign, for a,(0) ~ 0, changes from negative for
quasi-elastic collisions (smaller y, values) to positive sign for highly
inelastic collisions (larger 7y, values). This is evident since, at
a,(0) = 0, the curves for more elastic collisions (y, = 0.1;7, = 0.2)
have a negative hump whereas the curves for more inelastic gases
(y, = 0.8; 7, = 0.9) have a positive hump.

Moreover, this is a striking result since it implies that the most
dissipative granular gases of viscoelastic particles, and not the quasi-
elastic ones, display a thermal memory more similar to that of equilib-
rium systems.

V. DISCUSSION

We have analyzed the presence of two memory effects in a sys-
tem of identical viscoelastic spherical grains, where the coefficient of
restitution depends on the relative velocities of pairs of colliding par-
ticles.”' We subject the granular gas to thermal protocols by means of

1.0¥ — »,=0.10
_— =0.20
o O5F —— p,=0.45 1
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— »,=0.80
% 00 - —  ,=0.90 1
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—1.0F_j02 . . \ ]
15k, ~002 000 002 . ;
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FIG. 5. The signed hump size (0™ — 1) vs a,(0) for different dissipative coefficient
values (7, in this case).
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a homogeneous stochastic force or thermostat. We have observed that,
under appropriate conditions, the temperature relaxation curves may
display a rich phenomenology of memory effects, i.e., both the ME
and the KE are observed in granular gases of viscoelastic particles, like
in their analogs with simpler, less realistic collisional models.

Nevertheless, we have reported profound differences in the
behavior of both memory effects with respect to inelastic hard spheres.
Namely, the ME is significantly smaller for viscoelastic particles, and
the increase in the effect for more inelastic particles is much more
limited.

It is interesting to note that the KE behavior that we observed is
qualitatively different from the one reported for granular gases of
smooth hard particles, as described in Sec. IV. Much like in the case of
a granular gas of hard particles, we observe here downward and
upward KEs, but the hump sign is mainly—but not uniquely—con-
trolled here by the initial values of the cumulants, whereas for smooth
hard particles the sign transition is driven by inelasticity.”” Moreover,
the hump sign is always positive for more inelastic collisions for all ini-
tial values of the cumulants, except in the region a,(0) ~ 0. Indeed, a
hump sign transition with respect to the dissipative coefficient has
been detected for a,(0) ~ 0, from positive hump—for more inelastic
particles—to negative hump—for more elastic particles. Strikingly as
well, the critical value of the dissipative coefficient for hump sign tran-
sition slightly varies for different initial conditions, contrary to the case
of hard particles, where the transition has been reported to occur at
the fixed value of the coefficient of restitution o, = 1/+/2 for all initial
conditions.

VI. CONCLUSION

We have shown that the ME and/or KE appear when a system is
relaxing toward a stationary state and the initial values of the cumu-
lants are far from their steady state values. We also demostrate numer-
ically that this is due to the existing coupling between cumulants and
temperature, which induces its direction. Furthermore, both memory
effects arising from a coupling of the granular temperature with a, and
as represents a step toward a unifying description of memory effects in
the context of granular dynamics and opens new avenues for the study
of more sophisticated systems like the ones composed of anisotropic
particles.”” ™

In summary, thermal memory effects are intrinsically present in
a granular gas whose particle collisions are described with the more
realistic viscoelastic model, but with important differences with respect
to simpler collisional models. In fact, this is another proof that the ME
is not a theoretical artifact depending on a particular model.
Therefore, and since these memory effects are ubiquitous in granular
fluid theoretical studies, we suggest they should be detectable in labo-
ratory experiments but also with important differences with results
reported in previous theoretical developments.

The present work is thus a step toward a more realistic descrip-
tion of memory effects in granular dynamics, to be compared with the
experimental behavior in future work, in the same train of thought
that both effects have been found in single-particle experiments.
Insight into thermal relaxation will improve the understanding of the
granular dynamics, whose transport properties are known to be highly
dependent on temperature. Since grains are a component present in a
variety of industrial processes,””* applied research is expected to bene-
fit from these results as well.
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APPENDIX: NUMERICAL METHODS

As explained in the body of the text, we have carried out our
study by using three complementary techniques: numerical solution
(by means of the MATLAB package) of the time differential equa-
tion system of the first three moments of the distribution function,
accounting for the required approximations, molecular dynamics
(MD) simulations,”” and numerical solution of the kinetic equation
obtained through the direct simulation Monte Carlo method
(DSMC).”™

Solutions to Egs. (8)-(10) were numerically approximated
using a forward Euler method with a time step At = 0.001. The
method’s expected first order of convergence was numerically veri-
fied as follows: let u denote the solution to one of the differential
equations, and let u;, be the numerical approximation to u using
time steps of length h. As the actual solution is not known before-
hand, for any length / we shall store the approximated values at
times T = nAt, for n=0,1,2,..., into a vector v, That is,
vii &= u(nAt). If the method has an order of convergence p, then
max,|u(nAt) — vji| < Ch?, for some constant C> 0. Since u is not
available, the order can be estimated by means of successive refine-
ments of the time step length,

HVA‘E - VA‘E/ZHOO

T = 2’ 4 O(A1), (A1)
||VAI/2 - VA‘E/4||£)O

where ||v||., = max,|v"|. Using this, the order of convergence p ~
1 has been consistently recovered for all the experiments described
heretofore. Moreover, a time step At < 0.01 was sufficient in all
cases. Hence At = 0.001 lies well within the stability region of the
method.

MD computer simulation is a powerful tool that allows know-
ing the spatial coordinates of every constituent particle in the
molecular gas at all times, an option that, though time-consuming,
is barely accessible through experiments. It numerically solves
Newton’s equations of motion for all particles by accounting for
forces and torques acting on them and by incorporating realistic
values for the parameters describing the material properties.

In (event-driven) MD simulations, collisions are binary and of
infinitesimal duration, and the dynamics is regulated by a sequence
of discrete events. The system particles follow known ballistic tra-
jectories during the time intervals between collisions, allowing the
computation of particle positions on the next collision in a single
step. The MD algorithm can be summarized as follows:

ARTICLE scitation.org/journal/phf

(1) Initialization of positions and velocities for all N particles at
time ¢ =0.

(2) Determination of the time t,., at which the next collision
occurs and the particles i and j involved in such a collision.

(3) Update of positions of all particles at time #,,,;.

(4) Update of velocities of the two colliding particles, according to
the system collision rule, in our case given by

1+¢

vi=v; — — (Vi €i)ei (A2)
1+¢

V= — —— (Vi - €)ei (A3)

Here, the not-primed and primed v;s refer to precollisional and
postcollisional velocities, respectively, ¢ is the restitution coeffi-
cient given in Eq. (2), v;;=v; - v; is the relative velocity and e;
is a unit vector pointing from the center of mass of particle j to
that of particle 7 at the instant of the collision.

Steps (ii)-(iv) are repeated until a steady state, which is defined
by a target temperature provided by a thermostat, is reached.

In our experiments, the MD data sets have been obtained out
of simulation runs for systems with dimensionless number density
no> = 0.01, with n the number of particles per volume unit, which
are composed of particles of mass and diameter equal to 1. We have
considered periodic boundary conditions to mimic an infinitely
extended system. In the ME study, we have used a coefficient of res-
titution with dissipative coefficient y, = 0.577 and an appropriate
gamma density function for the initial velocity distribution” to rec-
reate the selected values of a,. Hence, the values of a5 are the ones asso-
ciated with such a distribution. For ME simulations, we have averaged
over 10 trajectories. On the other hand, more computational trajecto-
ries are needed to evince the more subtle KE for some of the values of
7,5 thus, we have averaged over 10* trajectories for each of the reported
dissipative coefficient values, y,, = 0.20 and 0.577.

As a brief description of the DSMC method, one must remem-
ber that the dynamics of the system is determined by the
Boltzmann equation,

0

O+ (VI + 0 (B) = TIF. S (A)

To solve this equation, rather than exactly calculating the out-
come of every impact, the Monte Carlo approach generates colli-
sions stochastically. These are not necessarily real collisions but the
outcome makes the system behavior be correct around mean free
path length scales.””

The standard algorithm (using Bird’s no-time-counter, NTC,
scheme®®) consists of the following steps:

(1) Initialization: As with MD, N particles are randomly created
and distributed (with positions r;) among the simulation vol-
ume. One key difference though is that there is no need to care
for overlapping particles since the computed collisions will not
be physically exact. A large number of particles can be simu-
lated in DSMC, typically from 10* to 10%. However, if the num-
ber of grains is fewer than about 20 per cubic mean free path
the results may not be accurate [ = (\/Enazny in a dilute
gas]. Besides positions, each particle is given an initial velocity
v;, usually extracted from a Maxwellian distribution function.
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(2) Collision: A random number of particles are selected for collid-
ing; this selection method is derived from kinetic theory. For
inhomogeneus systems, particles very distant from each other
should not interact, so the simulation box should be divided
into cells and collisions are evaluated only among particles of
the same subcell (this is not our case, there are no long-range
gradients in our system that require grid subdivision). This set
of random representative collisions is processed at each time
step At (which is set at a value much smaller than the mean
free time); only the magnitude of the relative velocity between
particles is used to evaluate the probability of a collision,
regardless of their positions. Therefore, the probability of a col-
lision between a pair of particles is

Pcol(iyj) = N, 5 (AS)

where N, is the number of particles in that subcell.

Since using previous equation is very inefficient due to the itera-
tion over every particle in the denominator, another method is
used for selecting which collisions to evaluate.

First, a random uniform value r € (0, 1) is generated, then an
aleatory pair of particles i, j is selected. That pair is considered
to undergo a collision if the following condition is met:

\Vij|

Vr,max

>, (A6)

where vy may is the maximum relative speed in the cell. If the pair i,
j is accepted, postcollisional velocities are computed for that pair.
Finally, this algorithm is repeated until a certain number M, of
collisions has been accepted and processed. The value of M, is
costly to calculate; thus, the algorithm should be repeated a number
of times given by M4, for a hard-sphere model,

N276%V, max At

Meana = bXY )
c

(A7)
where V. is the volume of the cell. Special attention must be
paid to the estimation of vy max, which is very computationally
expensive, so usually v, n. is indirectly overestimated by multi-
plying (v) by a certain factor.

These steps are repeated until the system reaches a steady state; to
achieve this, a thermostat has been implemented following the methods
described in Ref. 52. Finally, the viscoelastic behavior of our particles
has been encoded in the operator J[f, f] which defines the outcome of
collisions. In this paper, for DSMC simulations, we have used 100 sta-
tistically independent replicas with N = 2 x 10° particles each, a num-
ber which has proven to yield small errors in other works.””
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The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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