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Let M and N be complex unital Jordan-Banach algebras, and let M−1 and N−1

denote the sets of invertible elements in M and N , respectively. Suppose that M ⊆
M−1 and N ⊆ N−1 are clopen subsets of M−1 and N−1, respectively, which are 
closed for powers, inverses and products of the form Ua(b). In this paper we prove 
that for each surjective isometry Δ : M → N there exists a surjective real-linear 
isometry T0 : M → N and an element u0 in the McCrimmon radical of N such 
that Δ(a) = T0(a) + u0 for all a ∈ M. Assuming that M and N are unital JB∗-
algebras we establish that for each surjective isometry Δ : M → N the element 
Δ(1) = u is a unitary element in N and there exist a central projection p ∈ M and 
a complex-linear Jordan ∗-isomorphism J from M onto the u∗-homotope Nu∗ such 
that

Δ(a) = J(p ◦ a) + J((1 − p) ◦ a∗),

for all a ∈ M. Under the additional hypothesis that there is a unitary element ω0
in N satisfying Uω0 (Δ(1)) = 1, we show the existence of a central projection p ∈ M
and a complex-linear Jordan ∗-isomorphism Φ from M onto N such that

Δ(a) = Uw∗
0
(Φ(p ◦ a) + Φ((1 − p) ◦ a∗)) ,

for all a ∈ M.
© 2021 The Author. Published by Elsevier Inc. This is an open access article under 
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The topological properties of the invertible subgroup, A−1, of an associative unital Banach algebra 
A are not enough to distinguish A from another associative unital Banach algebra. Actually, there are 
examples of associative unital complex Banach algebras A and B which are not isomorphic as real algebras 
while the invertible groups A−1 and B−1 are homeomorphically isomorphic as topological groups (see 
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[31, Remark I.7.8]). After the aforementioned counterexample it was clear that, in order to identify two 
associative unital Banach algebras by a bijective mapping between their invertible groups, we must assume 
additional properties on this bijection. Henceforth all algebras will be assumed to be complex algebras. A 
very natural hypothesis is to assume that the bijection preserves the distances induced by the norms of 
the Banach algebras. This was first confirmed by O. Hatori who proved in [12] that, for each surjective 
isometry Δ from an open subgroup of the group of invertible elements in an associative unital semisimple 
commutative Banach algebra A onto an open subgroup of the group of invertible elements in an associative 
unital Banach algebra B, the mapping Δ(1)−1Δ is an isometric group isomorphism. Consequently, Δ(1)−1Δ
extends to an isometric real-linear algebra isomorphism from A onto B.

In the non-commutative setting, let A and B be associative unital Banach algebras and suppose that 
A and B are open multiplicative subgroups of A−1 and B−1, respectively. Another remarkable result, also 
due to O. Hatori, asserts that for each surjective isometry Δ : A → B there exist a surjective real-linear 
isometry T0 from A onto B and an element u0 in the Jacobson radical of B for which the identity

Δ(a) = T0(a) + u0

holds for every a ∈ A (see [13, Theorem 3.2]). O. Hatori and K. Watanabe concretized this description 
in the most favorable case of surjective isometries between open multiplicative subgroups of the invertible 
elements of two unital C∗-algebras (see [16]). The result reads as follows:

Theorem 1.1. ([16, Theorem 2.2]) Let A and B be unital C∗-algebras, and let A and B be open subgroups of 
A−1 and B−1, respectively. Suppose Δ is a bijection from A onto B. Then Δ is an isometry if and only if 
Δ(1) is unitary in B and there are a central projection p in B, and a complex-linear Jordan ∗-isomorphism 
J from A onto B such that

Δ(a) = Δ(1)pJ(a) + Δ(1)(1 − p)J(a)∗, for all a ∈ A.

Furthermore, the operator Δ(1)pJ(·) +Δ(1)(1−p)J(·)∗ defines a surjective real-linear isometry from A onto 
B.

O. Hatori and L. Molnár considered subtle variants of the above problem on non-linear preservers (see 
[14,15]). These authors achieved fascinating conclusions by showing, for example, that for each surjective 
isometry Δ between the unitary groups U(A) and U(B) of two unital C∗-algebras A and B, then Δ maps 
the set eiAsa onto the set Δ(1)eiBsa , and there exists a central projection p ∈ B and a Jordan ∗-isomorphism 
J : A → B satisfying

Δ(eix) = Δ(1)(pJ(eix) + (1 − p)J(eix)∗), (x ∈ Asa)

(cf. [15, Theorem 1]). As a consequence, they also proved that every surjective isometry between the unitary 
groups of two von Neumann algebras admits an extension to a surjective real-linear isometry between these 
algebras (see [15, Corollary 3]).

There is no direct connection between the results on surjective isometries between open subgroups of 
invertible elements in unital C∗-algebras A and B in [13,16] and those about surjective isometries between 
the unitary groups of A and B in [15], none of them seems to be deducible from the other. Despite in the 
case of von Neumann algebras both results lead to the same conclusion.

The reader has probably realized the strong connections of the above commented result with the Jordan 
structure underlying associative Banach algebras and C∗-algebras. It was I. Kaplansky who first suggested a 
definition of a suitable Jordan analogue of C∗-algebras, which later materialized in the notion of JB∗-algebra 
(see sections 2 and 4 for the concrete notions and basic references). At this stage we shall simply recall that 
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a Jordan-Banach algebra is a (non-necessarily associative) algebra M whose product is abelian and satisfies 
the so-called Jordan identity: (a ◦ b) ◦ a2 = a ◦ (b ◦ a2) (a, b ∈ M), and is equipped with a complete norm, 
‖.‖, satisfying ‖a ◦ b‖ ≤ ‖a‖ ‖b‖ (a, b ∈ M). If M is unital, with unit 1, we shall also assume ‖1‖ = 1. Every 
associative Banach algebra A is a Jordan-Banach algebra with respect to the natural Jordan product given 
by a ◦ b = 1

2 (ab + ba). It is worth to note that, even in the case of associative Banach algebras, invertible 
elements are not stable under Jordan products, what constitutes a real handicap when working with Jordan 
structures. However, an expression of the form Ua(b) = 2(a ◦ b) ◦ a − a2 ◦ b defines and invertible element in 
M if and only if a and b are invertible (see [6, Theorem 4.1.3]). A JB∗-algebra is a complex Jordan-Banach 
algebra M equipped with an algebra involution ∗ satisfying ‖Ua(a∗)‖ = ‖a‖3, a ∈ M .

The category of C∗-algebras is a strict subclass of that given by all JB∗-algebras. In a recent collaboration 
with M. Cueto-Avellaneda we generalized the mentioned Hatori-Molnár theorem to the setting of unital JB∗-
algebras, and we prove, among other things, that every surjective isometry between the sets of unitaries of 
two (unital) JBW∗-algebras admits a (unique) extension to a surjective real-linear isometry between them 
(see [8, Theorem 3.9]). In the category of Jordan algebras, we lack of a good description of those surjective 
isometries between certain subsets of invertible elements in two unital Jordan-Banach algebras. This paper 
is aimed to throw some new light to those questions which remain unsolved in the setting of Jordan-Banach 
algebras.

Let M and N be unital Jordan-Banach algebras, and let M−1 and N−1 denote the sets of invertible 
elements in M and N , respectively. Suppose that M ⊆ M−1 and N ⊆ N−1 are clopen subsets of M−1 and 
N−1, respectively, which are closed for powers, inverses and expressions of the form Ua(b). In Theorem 3.5
we establish that for each surjective isometry Δ : M → N, there exist a surjective real-linear isometry 
T0 : M → N and an element u0 in the McCrimmon radical of N such that Δ(a) = T0(a) +u0 for all a ∈ M. 
That is, every surjective isometry between certain subsets of invertible elements in unital Jordan-Banach 
algebras can be extended to a surjective real-linear isometry between these algebras up to a translation by 
an element in the McCrimmon radical.

JB∗-algebras constitute a subclass of complex Jordan-Banach algebras, which is the best known and 
studied. In Jordan theory, JB∗-algebras play the role performed by C∗-algebras in the category of associative 
Banach algebras. We shall devote our final section 4 to prove a more concrete description of those surjective 
isometries between certain subsets of invertible elements in two unital JB∗-algebras M and N . If we assume 
that M ⊆ M−1 and N ⊆ N−1 are clopen subsets of M−1 and N−1, respectively, which are closed for 
powers, inverses and expressions of the form Ua(b), and Δ : M → N is a surjective isometry, we show that 
Δ(1) = u is a unitary element in N and there exist a central projection p ∈ M and a complex-linear Jordan 
∗-isomorphism J from M onto the u∗-homotope Nu∗ such that

Δ(a) = J(p ◦ a) + J((1 − p) ◦ a∗),

for all a ∈ M. If we additionally suppose that there exists a unitary ω0 in N such that the identity 
Uω0(Δ(1)) = 1 holds, then there exist a central projection p ∈ M and a complex-linear Jordan ∗-isomorphism 
Φ from M onto N such that

Δ(a) = Uw∗
0 (Φ(p ◦ a) + Φ((1 − p) ◦ a∗)) ,

for all a ∈ M (see Theorem 4.1).
It should be observed here that not only the results possess their own interest and independence from the 

previous contributions in the associative setting, but we also present a completely new strategy based on a 
better understanding of this kind of surjective isometries on particular convex subsets to apply a celebrated 
result by P. Mankiewicz in [21] (cf. Lemma 3.4). That is, the proofs here also provide a new independent, 
and perhaps shorter, strategy to rediscover Hatori’s theorem in [13], where the arguments are based on a 
technical result inspired by the new proof of the Mazur–Ulam theorem given by Väisälä in [28].
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In order to conclude the description of this note’s structure, we add that section 2 is devoted to present 
the McCrimmon radical of a Jordan-Banach algebra together with its main properties and characterizations.

2. McCrimmon radical in Jordan-Banach algebras

During the thirties of the twentieth century, P. Jordan, J. von Neumann, E. Wigner and some other 
authors introduced the notion of Jordan algebra as a mathematical model for quantum mechanics. A complex 
(respectively, real) Jordan algebra M is a (non-necessarily associative) algebra over the complex (respectively, 
real) field whose product is abelian and satisfies the so-called Jordan identity: (a ◦b) ◦a2 = a ◦ (b ◦a2) (a, b ∈
M). A normed Jordan algebra is a Jordan algebra M equipped with a norm, ‖.‖, satisfying ‖a ◦b‖ ≤ ‖a‖ ‖b‖
(a, b ∈ M). A Jordan-Banach algebra is a normed Jordan algebra M whose norm is complete. If M is unital 
with unit 1, we also require ‖1‖ = 1. In the case that M does not possess a unit, it can be always embedded 
in a unital Jordan-Banach algebra. Every real or complex associative Banach algebra is a real or complex 
Jordan-Banach algebra with respect to the Jordan product a ◦ b := 1

2 (ab + ba); Jordan-Banach algebras 
obtained in this way are called special. We shall always assume that our Jordan-Banach algebras are complex 
and unital. A Jordan homomorphism between Jordan-Banach algebras is a linear map preserving Jordan 
products (equivalently, squares of elements). A real-linear Jordan homomorphism is a real-linear mapping 
preserving Jordan products. We shall follow classical notation like in [22–24,17,1]–the reader should be 
warned that our notation might slightly differ from the one employed in the recent monograph [6], where 
for example, the McCrimmon radical is called the Jacobson radical.

Let M be a Jordan-Banach algebra. Two key notions to work with a Jordan algebra M are the (Jordan) 
multiplication operator by an element a ∈ M (denoted by La) defined by La(b) = a ◦ b (b ∈ M), and the 
Ua operator given by

Ua(x) = (2L2
a − La2)(x) = 2(a ◦ x) ◦ a− a2 ◦ x (x ∈ M).

Furthermore, given a, b ∈ M , we shall write Ua,b : M → M for the (complex-)linear mapping on M defined 
by

Ua,b(x) = (a ◦ x) ◦ b + (b ◦ x) ◦ a− (a ◦ b) ◦ x, (x ∈ M).

One of the main identities in Jordan algebras assures that

UaUbUa = UUa(b) (“fundamental formula”), (1)

for all a, b in M (cf. [11, 2.4.18] or [22] or [6, Proposition 3.4.15]).
Henceforth, the powers of an element a in a Jordan algebra M will be denoted as follows:

a1 = a; an+1 = a ◦ an, n ≥ 1.

If M is unital, we set a0 = 1. An algebra B is called power associative if the subalgebras generated by single 
elements of B are associative. In the case of a Jordan algebra M this is equivalent to say that the identity 
am ◦ an = am+n, holds for all a ∈ M , m, n ∈ N. It is known that any Jordan algebra is power associative 
([11, Lemma 2.4.5]).

From a purely algebraic point of view, elements a, b in a Jordan algebra M are said to operator commute
if

(a ◦ c) ◦ b = a ◦ (c ◦ b),
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for all c ∈ M (cf. [11, 4.2.4]). The center of M is, by definition, the set of all elements of M which operator 
commutes with any other element in M , and will be denoted by Z(M). Elements in the center of M are 
called central.

An element a in a unital Jordan-Banach algebra M is called invertible if there exists b ∈ M satisfying 
a ◦ b = 1 and a2 ◦ b = a. The element b is unique and it will be denoted by a−1 (cf. [11, 3.2.9] and [6, 
Definition 4.1.2]). We know from [6, Theorem 4.1.3] that an element a ∈ M is invertible if and only if Ua

is a bijective mapping, and in such a case U−1
a = Ua−1 . The set M−1 of all invertible elements in M is 

open (see [6, Theorem 4.1.7]), and hence M−1 is locally connected and its connected components are open. 
An element of the form Ux(y) is invertible if and only if both x and y are (cf. [6, Theorem 4.1.3(vi)]), and 
then (Ux(y))−1 = U−1

x (y−1); consequently, (x−1)2 = (x2)−1 = x−2. The reader should be warned that the 
Jordan product of two invertible elements is not, in general, an invertible element. However, the square and 
the n-th power (n ∈ N) of each invertible element is an invertible element.

The spectrum of an element a of a complex Jordan-Banach algebra M , Sp(a), is the set of all λ ∈ C

for which a − λ1 is not invertible. As in the setting of associative Banach algebras, Sp(a) is a non-empty 
compact subset of the complex plane (see [6, Theorem 4.1.17] where even a Jordan version of the famous 
Gelfand-Beurling formula is stated). Moreover the mapping a 	→ Sp(a) is upper semi-continuous on M . The 
symbol ρ(a) will stand for the spectral radius of a, that is, the greatest modulus of spectral values.

An element a in a unital Jordan-Banach algebra M is quasi-invertible with quasi-inverse b ∈ M if 1 − a

is invertible with inverse 1− b. A subset of M is called quasi-invertible if all its elements are quasi-invertible 
in M .

An outer ideal of a Jordan-Banach algebra M is a subspace J such that UM (J) ⊆ J ; an inner ideal or 
a strict inner ideal is a subspace I satisfying UI(M) ⊆ I and I2 ⊆ I (if M is unital the second condition 
clearly follows from the first one). An ideal J is a subspace that is both an outer and a strict inner ideal (i.e. 
J2 ⊆ J). It is known that if J is an ideal or an inner ideal, then the quasi-inverse w of any quasi-invertible 
element z ∈ J also belongs to J (see [23, page 672]).

Let us recall the notion of radical in the Jordan setting. For each Jordan algebra M there exists a unique 
maximum quasi-invertible ideal Rad(M) of M , called the McCrimmon radical of M , which contains all 
quasi-invertible ideals (see [23, Theorem 1]). In [6] and in the original paper by K. McCrimmon [23], the 
McCrimmon radical is called the Jacobson radical (cf. [6, Proposition 4.4.11 and Definition 4.4.12]). If M is 
a special Jordan-Banach algebra the McCrimmon radical coincides with the usual Jacobson radical (cf. [6, 
Theorem 3.6.21]). L. Hogben and K. McCrimmon proved in [17, Theorem 1.1] that the McCrimmon radical 
of a unital Jordan algebra coincides with the intersection of all maximal inner ideals. A Jordan-Banach 
algebra M is called Jordan-semisimple or simply J-semisimple if Rad(M) = {0}.

B. Aupetit established in [1] several characterizations of the Jacobson and McCrimmon radicals of asso-
ciative Banach algebras and Jordan-Banach algebras, respectively. The next result has been borrowed from 
the just quoted reference.

Theorem 2.1. [1, Theorem 2, Corollaries 1 and 2] Let a be an element of a Jordan-Banach algebra M . Then 
the following statements are equivalent:

(a) a is in the McCrimmon radical of M ;
(b) sup{ρ(x + αa) : α ∈ C} < ∞, for every x ∈ M ;
(c) ρ(Ux(a)) = 0, for every x in M ;
(d) There exists C ≥ 0 such that ρ(x) ≤ C‖x − a‖ for all x in a neighborhood of a.

Let A be a unital associative Banach algebra with unit 1, whose subgroup of invertible elements is denoted 
by A−1. Let A−1

1 denote the principal component of A−1. The next result was proved by O. Hatori in [13].
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Lemma 2.2. [13, Lemma 3.1] Let A be a unital (associative) Banach algebra and a ∈ A. Suppose that 
ρ(ba) = 0 for every b in the principal component of A−1. Then a lies in the Jacobson radical of A.

Our next goal is a Jordan version of the previous result. As we have already commented, the left and right 
multiplication operations have no direct Jordan analogue, and the set of invertible elements in a Jordan-
Banach algebra M is not, in general, closed under Jordan products; however Ua(b) is invertible if and only 
if a and b are (cf. [6, Theorem 4.1.3(vi)]).

As pointed out by Aupetit in [2, Theorem 2.3], since the closed subalgebra of a unital Jordan-Banach 
algebra M generated by 1 and an element a is an associative Banach algebra, the standard holomorphic 
functional calculus in Banach algebras can be extended to the situation of Jordan-Banach algebras. Beside 
the properties stated in [2, Theorem 2.3] we shall employ the detailed construction developed in [6, Theorems 
4.1.88 and 4.1.93]. Suppose Ω is an open neighborhood of Sp(a), and let h0 stand for the inclusion mapping 
Ω ↪→ C. Then there is a unique continuous unit-preserving algebra homomorphism f 	→ f(a) from the 
complex algebra H(Ω), of all complex-valued holomorphic functions on Ω, into M taking h0 to a and 
satisfying the following properties:

(i) f(a) = 1
2πi

∫
Γ

f(λ)(λ1 − a)−1dλ, for any positively orientated curve included in Ω and surrounding 

Sp(a);
(ii) f(a) is contained in the smallest closed strongly associative subalgebra of M containing 1 and a;

(iii) (Spectral mapping theorem) For each f ∈ H(Ω) we have Sp(M, f(a)) = f(Sp(M, a));
(iv) The set

MΩ := {x ∈ M : Sp(M,x) ⊆ Ω}

is a non-empty open subset of M , and the mapping f̃ : x 	→ f(x) from MΩ to M is holomorphic (i.e. 

there exists a bounded linear operator T : M → M such that lim
h→0

‖f(x + h) − f(x) − T (h)‖
‖h‖ = 0 for 

any x ∈ MΩ).

Henceforth, given a Banach space X, the open (respectively, closed) ball of radius ρ and center a ∈ X

will be denoted by B
X

(a, ρ) or by B(a, ρ) (respectively, B
X

(a, ρ)).

Proposition 2.3. Let M be a unital Jordan-Banach algebra and a ∈ M . Then the following statements are 
equivalent:

(a) a is in the McCrimmon radical of M ;
(b) ρ(Ux(a)) = 0, for every x in M ;
(c) ρ(Ub(a)) = 0, for every b in M−1;
(d) ρ(Ub(a)) = 0, for every b in the principal component M−1

1 of M−1.

Proof. The equivalence (a) ⇔ (b) is given by Theorem 2.1. The implications (b) ⇒ (c) ⇒ (d) are clear.
To prove the implication (d) ⇒ (a) we shall show how to adapt and modify an argument from Aupetit’s 

paper [1]. Fix an arbitrary y ∈ M and μ ∈ C with |μ| > ρ(y). Let us observe that y − t μ
|μ|1 ∈ M−1, 

equivalently, − |μ|
μt y + 1 ∈ M−1, for all t ∈ [|μ|, +∞). The mapping γ : [0, 1] → M−1, γ(s) = −sμ−1y + 1

gives a continuous curve connecting 1 and −μ−1y + 1. Since for each α ∈ C\{0} we can easily find a 
continuous path in M−1 connecting 1 and α1 (actually if a ∈ M−1 is connected by a continuous path in 
M−1 with 1, the same holds for αa), it follows that y − t μ 1 ∈ M−1

1 , for all t ∈ [|μ|, +∞).
|μ|
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Let us make some observations on the spectrum of the elements of the form y − t μ
|μ|1 ∈ M−1

1 , with 
t ∈ [|μ|, +∞). Since for t ∈ [|μ|, +∞) we have

Sp
(
y − t

μ

|μ|1
)

= Sp(y) − t
μ

|μ| ⊆ ρ(y)BC(0, 1) − t
μ

|μ| = BC(−t
μ

|μ| , ρ(y))

and

Sp
(

1 − |μ|
t
μ−1y

)
= −|μ|

t
μ−1Sp

(
y − t

μ

|μ|1
)

⊆ {z ∈ C : 
e(z) > 0} = Ω.

Consider the holomorphic function f : Ω → C, f(λ) = 1√
λ

–where we work with the principal branch of 

the square root– and the holomorphic functional calculus to compute 
(
1 − |μ|

t μ−1y
)− 1

2 = f
(
1 − |μ|

t μ−1y
)

with t ≥ |μ|. By the continuity of the holomorphic functional calculus, the mapping γ : [|μ|, ∞) → M−1, 

γ(t) =
(
1 − |μ|

t μ−1y
)− 1

2 is continuous, and clearly satisfies γ(|μ|) =
(
1 − μ−1y

)− 1
2 and limt→+∞ γ(t) = 1. 

Therefore the element x =
(
1 − μ−1y

)− 1
2 lies in M−1

1 , and hence βx ∈ M−1
1 for all β ∈ C\{0}.

We know from the hypothesis that ρ(Uβx(a)) = 0 for all non-zero β ∈ C. In this case

Ux(1 − μ−1y − β2a) = 1 − Uβx(a) is an invertible element for all β ∈ C\{0}.

But the same conclusion trivially holds for β = 0. We therefore deduce that the element Ux(1−μ−1y +αa)
is invertible for all α ∈ C, and by the fundamental identity

UUx(1−μ−1y+αa) = UxU1−μ−1y+αaUx, and 1 − μ−1y + αa both are invertible for all α ∈ C.

In particular,

−μ1 + y − αa = −μ(1 − μ−1y + αμ−1a) ∈ M−1,

for all α ∈ C. We thus deduce that μ /∈ Sp(y − αa) for all α ∈ C. This proves that for each ε > 0,

C\BC(0, ρ(y) + ε) ⊆ C\Sp(y − αa),

equivalently, Sp(y−αa) ⊆ BC(0, ρ(y) + ε), and thus ρ(y−αa) ≤ ρ(y) + ε, for all α ∈ C. We can clearly let 
ε → 0. It can be easily deduced that for each z in M taking y = z − a we have

ρ(z) = ρ(y + a) ≤ ρ(y) ≤ ‖y‖ = ‖z − a‖,

and Aupetit’s Theorem 2.1 implies that a lies in the McCrimmon radical of M . �
It is perhaps worth to remark several of the properties employed in the proof above. The reader will 

probably feel more comfortable with some references in the Jordan setting. A more detailed exposition is 
presented in the next remark.

Remark 2.4. Let M be a unital Jordan-Banach algebra and let M−1
1 denote the principal component of 

M−1. Then the following properties hold:

(1) If b ∈ M−1
1 and α ∈ C\{0}, the element αb lies in M−1

1 ;
(2) If y ∈ M and μ ∈ C with |μ| > ρ(y), the elements (y ± μ1) and (y ± μ1)−2 belong to M−1

1 ;
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(3) If a ∈ M−1 then its square is also in M−1. Furthermore, defining a−n := (a−1)n for n > 0 and a0 := 1, 
then ak ◦ al = ak+l for all integer numbers k, l. The element an is invertible for every natural n, and 
(an)−1 = (a−1)n for all integer number n;

(4) The inverse of every element in the principal component M−1
1 lies in M−1

1 .

Statements (1) and (2) have been explicitly justified in the proof of the previous result. Statement (3) is 
proved in [6, Theorem 4.1.3(v)]. The final statement follows from the fact that the mapping M−1 → M−1, 
a 	→ a−1 is a homeomorphism (cf. [6, Proposition 4.1.6]) with 1 = 1−1.

In order to review some additional properties of the principal component of the set of invertible elements 
in a Jordan-Banach algebra M , we shall recall the exponential function in this setting. For each element 

a in M , the series exp(a) =
∞∑

n=0

an

n! is uniformly convergent on bounded subsets of M . Furthermore, the 

mapping a 	→ exp(a) defines an analytic mapping on M . It is known that the Jordan-Banach subalgebra 
C of M generated by an element a is a commutative associative subalgebra with respect to the inherited 
Jordan product [18, 1.1]. If an associative Banach algebra A is regarded as a Jordan-Banach algebra, for 
each a ∈ A, exp(a) is just the usual exponential series in the usual sense for associative Banach algebras. 
It follows that exp(a) has its usual meaning in C, and consequently exp(sa) exp(ta) = exp((s + t)a) for all 
s, t ∈ C. We also have Ua(b) = a2 ◦ b for a, b ∈ C, which yields

Uexp(tx)(exp(−tx)) = exp(tx), and Uexp(tx)(exp(−tx)2) = 1.

It follows, for example from [18, 1.6.1], that exp(tx) is invertible in M with inverse exp(−tx).
A well known result in the theory of associative Banach algebras proves that for each unital Banach alge-

bra A, the least subgroup of A−1 containing exp(A) is the principal component of A−1 (cf. [3, Propositions 
8.6 and 8.7]). The description of the principal component of the invertible elements in a Jordan-Banach 
algebra was an open problem for many years. The final answer was obtained by O. Loos in [20], where it is 
shown that for each unital Jordan-Banach algebra M the principal component of M−1 is the set

M−1
1 =

{
Uexp(a1) · · ·Uexp(an)(1) : ai ∈ M, n ≥ 1

}
,

in particular, M−1
1 is open and closed in M−1. It follows from this that each connected component of M−1

is analytically arcwise connected [20, Corollary]. It should be noted that in Loos’s theorem the norm is not 
required to satisfy ‖x ◦ y‖ ≤ ‖x‖ ‖y‖ and ‖1‖ = 1.

The subset of invertible elements in a unital Jordan-Banach algebra M lacks stability under the Jordan 
product. However, we have

UM−1(M−1) = {Ua(b) : a, b ∈ M−1} ⊆ M−1.

This motivates us to introduce the following notion. A subset M of M−1 will be called a quadratic subset
if UM(M) ⊆ M.

Lemma 2.5. Let M be a unital Jordan-Banach algebra. Then the principal component of M−1 is precisely 
the least quadratic subset of M−1 containing exp(M). As a consequence, for each integer number n and 
each a ∈ M−1

1 the element an lies in M−1
1 .

Proof. Let us first show that M−1
1 is a quadratic subset of M−1 (clearly, M−1

1 contains exp(M)). 
For this purpose, by Loos’ theorem [20], we take two elements a = Uexp(a1) · · ·Uexp(an)(1) and b =
Uexp(b1) · · ·Uexp(bm)(1) in M−1

1 . By the fundamental formula
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Ua(b) = UUexp(a1)···Uexp(an)(1)(Uexp(b1) · · ·Uexp(bm)(1))

= Uexp(a1) · · ·Uexp(an)U1Uexp(an) · · ·Uexp(a1)Uexp(b1) · · ·Uexp(bm)(1) ∈ M−1
1 .

Given a ∈ M−1
1 , it follows from the above that a2 = Ua(1) ∈ M−1

1 , a3 = Ua(a) ∈ M−1
1 , and by an induction 

argument an = Ua(an−2) ∈ M−1
1 for all n ≥ 3. We have seen in Remark 2.4(3) that the inverse of every 

element in M−1
1 also lies in M−1

1 . Therefore the previous arguments also show that an ∈ M−1
1 for all 

a ∈ M−1
1 and every integer number n.

Suppose M is a quadratic subset of M−1 containing exp(M). Since, clearly 1 ∈ M, we have Uexp(a)(1) ∈ M. 
Suppose that Uexp(an) · · ·Uexp(a1)(1) ∈ M for n ≥ 2, ai ∈ M . Then, by the assumption on M, we have

Uexp(an+1)Uexp(an) · · ·Uexp(a1)(1) ∈ UM(M) ⊆ M.

It follows by induction and Loos’ theorem that M−1
1 ⊆ M. �

Remark 2.6. Let A be a unital (associative) Banach algebra. Let A be an open subgroup of A−1. It is well 
known that under these assumptions A is closed, and consequently A contains the principal component of 
A−1. The proof of this result employs the left or right multiplication operations in A, operations which have 
no direct Jordan analogue. For a Jordan-Banach algebra M , it would be interesting to know if every open 
quadratic subset M of M−1 containing the unit must be also closed, and hence M−1

1 ⊆ M.
Furthermore, since A−1 is open (and hence locally connected and its connected components are all open), 

and A is clopen, a classic result in topology (see, for example, [26, Theorem 5]) asserts that A must coincide 
with the union of some connected components of A−1 (but not necessarily all of them).

The main component A−1
1 of A−1 is a subgroup of A (see [3, Proposition 8.6]). If C is another connected 

component of A−1 and we pick b ∈ C, it is easy to see that C = bA−1
1 = A−1

1 b (just apply that the left 
and right multiplication operators by b are homeomorphisms mapping 1 to b). If we replace the product 
of A with the one defined by x ·b−1 y = xb−1y, we get another associative complete normed algebra Ab−1 , 
called the b−1-homotope of A, with unit b. The main connected component of Ab−1 is precisely C, which is 
therefore a subgroup of Ab−1 .

3. Surjective isometries between subsets of invertible elements in Jordan-Banach algebras

The lacking of left and right multiplication operators in the Jordan setting increase the difficulties to 
get similar conclusions to those in the previous Remark 2.6 for Jordan-Banach algebras. As in previous 
contributions, passing to an homotope is in some sense a substitute for the left multiplication by an invertible 
element in an associative Banach algebra. We recall the notion of isotope [18, 1.7] (also called homotope by 
McCrimmon in [24]): Suppose c is an invertible element in a unital Jordan-Banach algebra M then the vector 
space M becomes a Jordan-Banach algebra Mc with unit element c−1, Jordan product a ◦c b := Ua,b(c), 
and quadratic operators U (c)

a = UaUc, for all a, b ∈ M .
Henceforth we shall consider two unital Jordan-Banach algebras M and N . Let M−1

1 and N−1
1 denote 

the principal components of M−1 and N−1, respectively. We shall consider two clopen subsets M ⊆ M−1

and N ⊆ N−1 which are quadratic subsets of M−1 and N−1, respectively, and are closed for powers and 
inverses. In particular M and N coincide with the union of some connected components of M−1 and N−1, 
respectively. It is easy to see that M (respectively, N) contains the unit of M (respectively, the unit of N). 
Namely, given b ∈ M, b−1, b−2 and 1 = Ub(b−2) belong to M. By applying that M and N are clopen sets 
we obtain M−1

1 ⊆ M and N−1
1 ⊆ N. We observe that the sets M−1

1 = M and N−1
1 = N satisfy the stated 

hypotheses.
As in Remark 2.4(1) if a is an element in a connected component, C, of M−1 and α ∈ C\{0}, then 

αa ∈ C. In particular (C\{0})M = M.
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Our goal is to determine the structure of every surjective isometric mapping Δ : M → N. The result will 
be derived after a series of lemmata and propositions.

Let D be a convex subset of a Banach space X. We shall say that a mapping F from D into another 
Banach space Y is real affine or simply affine if for each t ∈ [0, 1], and x, y ∈ D we have F (tx + (1 − t)y) =
tF (x) + (1 − t)F (y). We begin with an observation on the local affine behavior of Δ. We state next an easy 
observation, which combined with a powerful result of Mankiewicz asserting that every surjective isometry 
between convex bodies in two arbitrary normed spaces can be uniquely extended to an affine function 
between the spaces (see [21, Theorem 5]), provides an useful tool for our goals.

Lemma 3.1. Let Δ : M → N be a surjective isometry. Then Δ is a local affine mapping, concretely, for each 
a ∈ M there exists a positive δa, depending on a, such that B(a, δa) ⊆ M, B(Δ(a), δa) ⊆ N, Δ(B(a, δa)) =
B(Δ(a), δa) and there exists a surjective affine isometry Fa,δa : M → N such that Δ|B(a,δa) = Fa,δa |B(a,δa)
(is an affine mapping). Furthermore, suppose that γ : [0, 1] → M is a continuous path. Then there exists 
a surjective affine isometry F : M → N and an open neighborhood U of γ([0, 1]) such that U ⊆ M and 
F |U = Δ.

Proof. Since Δ is a surjective isometry, for each δ > 0, a ∈ M, we have

Δ (B(a, δ) ∩M) = B(Δ(a), δ) ∩N.

Since M and N are open we can find δa > 0 satisfying B(a, δa) ⊂ M, B(Δ(a), δa) ⊂ N and Δ(B(a, δa)) ⊆
B(Δ(a), δa). Since Δ|B(a,δa) : B(a, δa) → B(Δ(a), δa) is a surjective isometry, the final conclusion follows 
from a celebrated result due to P. Mankiewicz (see [21, Theorem 2]).

For the final statement, let us take a continuous path γ : [0, 1] → M. For each t ∈ [0, 1], by the first part 
of the proof, there exist δt > 0 and a surjective affine isometry Ft : M → N satisfying B(γ(t), δt) ⊆ M, 
B(Δ(γ(t)), δt) ⊆ N, Δ(B(γ(t), δt)) = B(Δ(γ(t)), δt), and Δ|B(γ(t),δt) = Ft|B(γ(t),δt). By applying that 
γ([0, 1]) is compact we deduce the existence of t0 = 0 < t1 < . . . < tn−1 < tn = 1 such that γ([0, 1]) ⊆
n⋃

k=0

B(γ(tk), δtk). We claim that Ftk = Ftl for all k, l ∈ {0, . . . , n}. We observe that two surjective affine 

isometries from M onto N coinciding on an open subset must be the same. If the open set B(γ(tk), δtk) ∩
B(γ(tl), δtl) is non-empty we clearly have Ftk = Ftl , otherwise, by the connectedness of γ([0, 1]), we can 
find a finite collection tk = tj1 , . . . , tjm = tl ∈ {t0 = 0, t1, . . . , tn−1, tn} such that

B(γ(tjk), δtjk ) ∩B(γ(tjk+1), δtjk+1
) �= ∅,

for all k ∈ {1, . . . , m − 1}. It then follows that Ftk = Ftj1
= Ftj2

= . . . = Ftjm
= Ftl , which gives the desired 

statement. Therefore the mapping F = Ft0 : M → N is a surjective affine isometry, U =
n⋃

k=0

B(γ(tk), δtk)

is an open neighborhood of γ([0, 1]) and F |U = Δ|U because Δ|B(γ(tk),δtk ) = Ftk |B(γ(tk),δtk ) = F |B(γ(tk),δtk )
for all 0 ≤ k ≤ n. �

We continue with a proposition showing that, as in the case of associative Banach algebras [13], each 
surjective isometry between the sets M and N admits a limit at zero and this limit is precisely an element 
in the McCrimmon radical of the Jordan-Banach algebra N .

Proposition 3.2. Let Δ : M → N be a surjective isometry. Then the limit lim
M�a→0

Δ(a) exists, and its value 

is an element u0 in the McCrimmon radical of N .
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Proof. Let (an)n be a sequence in M converging to 0. By applying that Δ is an isometry, we can easily prove 
that (Δ(an))n is a Cauchy sequence in N , therefore there exists ua ∈ N , depending on (an)n, such that 
(Δ(an))n → ua. If (bn)n is any other null sequence in M, we can similarly prove that (Δ(bn))n converges 
to some ub ∈ N . The hypotheses on Δ assure that

‖Δ(an) − Δ(bn)‖ = ‖an − bn‖ → 0,

and hence ua = ub.
We shall finally prove that u0 ∈ Rad(N). Since M is a quadratic subset of M−1 and exp(M) ⊂ M, given 

c ∈ M and α ∈ C\{0}, by taking β ∈ C\{0} with β2 = α we deduce that αc = Uβ1(c) ∈ M.
Fix an arbitrary b ∈ N−1

1 ⊆ N and λ ∈ Sp(Ub(u0))\{0}. Since −λb−2 ∈ N−1
1 ⊆ N (cf. Lemma 2.5 and 

Remark 2.4), by the surjectivity of Δ there exists (a unique) cλ ∈ M such that Δ(cλ) = −λb−2.
As we have mentioned several times before, tcλ ∈ M for every t ∈ R\{0}. Fix an arbitrary 0 < s < 1

2
in R, by applying Lemma 3.1 to the continuous path γ(t) = tscλ + (1 − t)(1 − s)cλ, we can find an open 
neighborhood U of γ([0, 1]) with U ⊆ M and a surjective affine isometry F : M → N such that Δ|U = F |U . 
Since F is affine on U and γ([0, 1]) ⊆ U we deduce that

Δ
(cλ

2

)
= F

(
1
2scλ + 1

2(1 − s)cλ
)

= F ((1 − s)cλ) + F (scλ)
2

= Δ((1 − s)cλ) + Δ(scλ)
2 .

Since s was an arbitrary real number in (0, 12), by taking lim
s→0+

in the above identity and applying that 
Δ is continuous and the first part of this proof, we get

Δ
(cλ

2

)
= Δ(cλ) + u0

2 = −λb−2 + u0

2 .

Evaluating the mapping Ub at both sides of the previous equality, and having in mind that N is a quadratic 
set, we deduce that

−λ1 + Ub(u0) = −λUb(b−2) + Ub(u0) = 2Ub

(
Δ

(cλ
2

))
∈ UN(N) ⊆ N ⊆ N−1,

witnessing that λ /∈ Sp(Ub(u0)) and leading to a contradiction. We have therefore shown that Sp(Ub(u0)) =
{0}. The arbitrariness of b ∈ N−1

1 ⊆ N and Proposition 2.3 guarantee that u0 belongs to Rad(N). �
Lemma 3.3. Let N be a unital Jordan-Banach algebra, and let N ⊆ N−1 be a clopen subset which is a 
quadratic subset of N−1 and is closed for powers and inverses. Then for each element u0 in the McCrimmon 
radical of N the identity N − u0 = N holds.

Proof. Let us begin with an observation. Fix b ∈ N. Let Nb be the homotope algebra with unit b−1 ∈ N. 
By [24, Proposition 3] we have

Rad(Nb) = {z ∈ N : Ub(z) ∈ Rad(N)},

and consequently Ub−1(u0) = U−1
b (u0) ∈ Rad(Nb). It follows that

ρ
Nb

(U (b)
x (Ub−1(u0))) = 0, for all x ∈ Nb (cf. Theorem 2.1).

In particular ρ
N

(tU (b)
−1(Ub−1(u0))) = 0, and thus
b b
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tU
(b)
b−1(Ub−1(u0)) + b−1 ∈ N−1

b ,

for all t ∈ R+
0 . Having in mind that b−1 is the unit of the homotope Nb, we deduce that U (b)

b−1 is the identity 
mapping, and hence tUb−1(u0) +b−1 ∈ (Nb)−1 = N−1, for all t ∈ R+

0 . Therefore Ub−1(u0) +b−1 is connected 
with b−1 by a continuous path contained in N−1

b = N−1. It then follows that Ub−1(u0) + b−1 is in the 
connected component of N−1 containing b−1, and thus the element

u0 + b = Ub(Ub−1(u0) + b−1)

is in the connected component of N−1 containing b, and hence u0 + b ∈ N. The arbitrariness of b and the 
fact that −b = Uib(b−1) ∈ N give the desired conclusion. �

The next technical result might be known, it is included here due to the lacking of a concrete reference.

Lemma 3.4. Let X be a Banach space. Suppose G : C → X is a continuous mapping satisfying:

(a) G(0) = 0;
(b) The restriction of G to each segment not containing zero is an affine map.

Then G is real-linear.

Proof. We begin by proving that

G(−λ) = −G(λ) for all λ ∈ C. (2)

We can clearly assume that λ �= 0. Since for n big enough 0 /∈ [λ +iλn , −λ +iλn ], it follows from the hypothesis 
that

G

(
i
λ

n

)
= 1

2G
(
λ + i

λ

n

)
+ 1

2G
(
−λ + i

λ

n

)
.

Taking limit n → +∞ and applying that G is continuous we derive 0 = G(0) = G(λ) + G(−λ).
We shall next show that

G is affine (i.e., real-linear) on every segment of the form [0, λ] with λ �= 0. (3)

Namely, given 0 < t ≤ 1, we need to show that G(t0 + (1 − t)λ) = G((1 − t)λ) = tG(0) + (1 − t)G(λ) =
(1 −t)G(λ). Pick an arbitrary s with 0 < s < t. We observe that (1 −t)λ = r(sλ) +(1 −r)λ for r = t

1−s ∈ (0, 1). 
By applying that G|[sλ,λ] is affine we get

G((1 − t)λ) = G(r(sλ) + (1 − r)λ) = rG(sλ) + (1 − r)G(λ)

= t

1 − s
G(sλ) + 1 − s− t

1 − s
G(λ).

Since s was an arbitrary element in (0, t), and G is continuous, we can take limit s → 0 in the above identity 
to deduce that G((1 − t)λ) = (1 − t)G(λ) as desired.

It is now easy to check that

G(αλ) = αG(λ) for all α ∈ R, λ ∈ C. (4)
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We can assume that λ �= 0, and by (2) that α > 0. Indeed, if 0 < α < 1, since G is affine on [0, λ] we have 
G(αλ) = G(αλ + (1 − α)0) = αG(λ) + (1 − α)G(0). If α > 1, by applying that G is affine on [0, αλ] we get 
G(λ) = G( 1

ααλ + (1 − 1
α )0) = 1

αG(αλ). The case α = 1 is clear.
Suppose next that 0 lies in a segment of the form [−αλ, βλ] for some α, β > 0 and λ ∈ C\{0}. Given 

t ∈ (0, 1) we want to prove that G(t(−αλ) +(1 −t)βλ) = tG(−αλ) +(1 −t)G(βλ). Suppose −tα+(1 −t)β = 0. 
The left-hand-side term in the desired equality is G(0) = 0, while in the right-hand-side we have

tG(−αλ) + (1 − t)G(βλ) = (by (4)) = −tαG(λ) + (1 − t)βG(λ) = 0.

Assume next that −tα + (1 − t)β �= 0. In this case we have

G(t(−αλ) + (1 − t)βλ) = (−tα + (1 − t)β)G(λ) = −tαG(λ) + (1 − t)βG(λ)

= tG(−αλ) + (1 − t)G(βλ),

where in the first and third equality we applied (4).
We have proven that G is real homogeneous and affine on every segment. Finally, given λ, μ ∈ C, it is 

easy to see from these properties that

G(λ + μ)
2 = G

(
λ + μ

2

)
= 1

2(G(λ) + G(μ)). �
Let us briefly equip the reader with some basic notions on numerical ranges. A (real or complex) numerical 

range space is a pair (X, u), where X is a (real or complex) Banach space X and u is a fixed element in the 
unit sphere of X. The state space of (X, u) is the set

D(X) = D(X,u) = {φ ∈ X∗ : ‖φ‖ = φ(u) = 1}.

The numerical range of an element x ∈ X is the non-empty compact and convex set defined by

V (X,x) = V (x) = {φ(x) : φ ∈ D(X,u)}.

The numerical radius of x ∈ X is the number given by

v(x) = max{|λ| : λ ∈ V (x)},

while the numerical index of X is defined by

n(X,u) = n(X) = inf{v(x) : x ∈ X, ‖x‖ = 1}

= max{α ≥ 0 : α‖x‖ ≤ v(x) for all x ∈ X}.

The element u is called a geometrically unitary element of X if and only if n(X, u) > 0. The celebrated 
Bohnenblust–Karlin theorem asserts that if A is a norm-unital Banach algebra with unit 1, then the nu-
merical radius is a norm on A which is equivalent to the original norm of A, furthermore n(A, 1) ≥ 1

e

and thus v(a) ≤ ‖a‖ ≤ e v(a) for all a ∈ A (cf. [27, Theorem 2.6.4]). It is known that the requirement 
concerning associativity of A in the previous result can be relaxed. Namely, suppose M is a norm-unital 
(non-necessarily associative) normed complex algebra. Then n(M, 1) ≥ 1

e , and thus v(a) ≤ ‖a‖ ≤ e v(a) for 
all a ∈ M (see [6, Proposition 2.1.11]).

We can establish next a Jordan version of the result proved by O. Hatori in [13, Theorem 3.2].
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Theorem 3.5. Let M and N be unital Jordan-Banach algebras. Suppose that M ⊆ M−1 and N ⊆ N−1

are clopen quadratic subsets of M−1 and N−1, respectively, which are closed for powers and inverses. Let 
Δ : M → N be a surjective isometry. Then for each w0 in the McCrimmon radical of N the mapping 
a 	→ Δ(a) − w0 is a surjective isometry from M to N. Furthermore, there exist a surjective real-linear 
isometry T0 : M → N and an element u0 in the McCrimmon radical of N such that Δ(a) = T0(a) + u0 for 
all a ∈ M.

Proof. The first statement follows from Lemma 3.3 and the fact that the translation by a fixed vector is a 
surjective isometry.

Let u0 ∈ Rad(N) be the element given by Proposition 3.2. We deduce from the first conclusion that the 
mapping Δ0 : M → N, Δ0(a) = Δ(a) − u0 is a surjective isometry. Clearly, lim

M�a→0
Δ0(a) = 0.

We claim that for each a ∈ M the mapping

λ 	→ G(λ) = Δ0(λa) for λ ∈ C\{0}, and G(0) = 0, is real-linear. (5)

Clearly G is continuous, and if [λ, μ] is a segment in C not containing zero, by applying Lemma 3.1 to the 
continuous path γ : [0, 1] → M, γ(t) = tλa + (1 − t)μa we can deduce that Δ|[λa,μa] is an affine mapping 
because [λa, μa] is convex. Lemma 3.4 proves the statement in (5).

Suppose a, b ∈ M satisfy that [a, b] ⊂ M. Lemma 3.1 can be applied to deduce that Δ|[a,b] is affine. 
Combining this property with (5) we obtain

1
2Δ0(a + b) = Δ0

(
a + b

2

)
= Δ0(a) + Δ0(b)

2 , ∀a, b ∈ M with [a, b] ⊂ M. (6)

Alike in the proof of the associative version of our result (see [13, proof of Theorem 3.2]), we consider 
the open convex subset

Ω =
⋃
α>0

B(α1, α) = {x ∈ M : ‖x− α1‖ < α for some α > 0} ⊆ M−1
1 ⊂ M.

We claim that Δ0(Ω) is convex. Namely, combining that Ω ⊂ M is convex, (5) and (6) we deduce that given 
a, b ∈ Ω and t ∈ [0, 1], we have tΔ0(a) + (1 − t)Δ0(b) = Δ(ta + (1 − t)b) ∈ Δ(Ω), which proves the claim.

The mapping Δ0|Ω : Ω → Δ0(Ω) is a surjective isometry between two open convex sets. A celebrated 
result by P. Mankiewicz [21, Theorem 5 and Remark 7] assures the existence of a surjective affine isometry 
T0 : M → N such that Δ0|Ω = T0|Ω.

It is easy to see that for each a ∈ Ω and each t ∈ R+ the element ta lies in Ω too. Therefore, Δ0(ta) =
T0(ta). Taking limit t → 0 we get 0 = T0(0), which in particular assures that T0 is a surjective real-linear 
isometry.

We shall finally prove that T0|M = Δ0. To this end pick an arbitrary a ∈ M. Since ‖ ±a +2‖a‖1−2‖a‖1‖ =
‖a‖ < 2‖a‖, we deduce that ±a + 2‖a‖1 ∈ Ω and hence T0(±a + 2‖a‖1) = Δ0(±a + 2‖a‖1). Now, having in 
mind that T0 is a surjective real-linear isometry and that Δ0 is an isometry, we compute

2‖a‖ = ‖a + 2‖a‖1 − a‖ = ‖Δ0(a + 2‖a‖1) − Δ0(a)‖ = ‖a + 2‖a‖1 − T−1
0 Δ0(a)‖, (7)

and by (5)

2‖a‖ = ‖ − a + 2‖a‖1 + a‖ = ‖Δ0(−a + 2‖a‖1) − Δ0(−a)‖
= ‖ − a + 2‖a‖1 − T−1

0 Δ0(−a)‖ = ‖ − a + 2‖a‖1 + T−1
0 Δ0(a)‖.

(8)

Let us take a state φ ∈ D(M, 1) = {φ ∈ M∗ : ‖φ‖ = φ(1) = 1}. By applying (7) and (8) it follows that
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|2‖a‖ ± φ(a− T−1
0 Δ0(a))| = |φ(2‖a‖1 ± (a− T−1

0 Δ0(a)))|
≤ ‖2‖a‖1 ± (a− T−1

0 Δ0(a))‖ = 2 ‖a‖,

witnessing that φ(a −T−1
0 Δ0(a)) = 0. The arbitrariness of φ proves that the numerical radius of a −T−1

0 Δ0(a)
is zero, that is, v(a − T−1

0 Δ0(a)) = 0. Finally, as we commented before this theorem, ‖a − T−1
0 Δ0(a)‖ ≤

e v(a − T−1
0 Δ0(a)) = 0 (see [6, Proposition 2.1.11]), and thus a = T−1

0 Δ0(a), which concludes the proof 
because Δ(a) = T0(a) + u0 for all a ∈ M. �
Corollary 3.6. Let M and N be unital Jordan-Banach algebras with N Jordan-semisimple. Suppose that 
M ⊆ M−1 and N ⊆ N−1 are clopen quadratic subsets of M−1 and N−1, respectively, which are closed for 
powers and inverses. Let Δ : M → N be a surjective isometry. Then there exists a surjective real-linear 
isometry T0 : M → N such that Δ(a) = T0(a) for all a ∈ M.

Remark 3.7. We would like to note that the arguments given in the proof of Theorem 3.5 are completely 
independent from those given by O. Hatori in the proof of the same result for associative unital Banach 
algebras in [13, Theorem 3.2], and the prior study for unital semisimple commutative Banach algebras by 
the same author in [12]. The proof of [13, Theorem 3.2] relies on some technical results [13, Lemmata 2.1 
and 2.2] based on the new proof of the Mazur–Ulam theorem given by Väisälä [28]. The proof here, which 
is also valid for associative unital Banach algebras, does not depend on the commented technical results 
but on an analysis of the local convex properties of Δ and an application of a celebrated result due to 
Mankiewicz [21]. The arguments seem a bit shorter here than in the commented references.

Remark 3.8. The reader should be warned about a non-fully convincing argument in the final part of 
the proof of [13, Theorem 3.2]. More concretely, suppose A is a unital Banach algebra and A is an open 
multiplicative subgroup of A−1. As in the proof of Theorem 3.5 the set

ΩA = {x ∈ A : ‖x− α1‖ < α for some α > 0} ⊆ A−1
1 ⊂ A

is an open convex subset, and a + 2‖a‖1 ∈ ΩA for all a ∈ A. However the element −2i‖a‖1 does not belong 
to ΩA. This produces subtle difficulties in the statements in [13, pages 89, 90] affirming that elements of 
the form t(a + 2‖a‖1) + (1 − t)(±2i‖a‖1) belong to ΩA for every 0 ≤ t ≤ 1. So, the final paragraphs in 
the proof of [13, Theorem 3.2] are affected by these obstacles. The proof is clarified and simplified in the 
demonstration we gave above by an argument which is also valid in the associative setting. In a private 
communication O. Hatori indicated to us that the just commented difficulties in the proof of [13, Theorem 
3.2] can be also avoided by just observing that for each a ∈ A we have

∥∥∥∥ 1
2(t± (1 − t)i)‖a‖ (t(a + ‖a‖1) + (1 − t)(±2i‖a‖1)) − 1

∥∥∥∥ < 1,

and hence

1
2(t± (1 − t)i)‖a‖ (t(a + ‖a‖1) + (1 − t)(±2i‖a‖1)) ∈ ΩA ⊆ A−1

1 ⊂ A.

Therefore t(a + ‖a‖1) + (1 − t)(±2i‖a‖1) ∈ A for all 0 ≤ t ≤ 1.

3.1. Surjective isometries preserving the quadratic structure

We recall, once again, that the set of invertible elements in a unital Jordan-Banach algebra M is not, in 
general, stable under Jordan products. So, contrary to what is done by O. Hatori in [13, §4] for surjective 
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isometries which are also group isomorphisms between open subgroups of associative unital Banach, the 
problem of studding surjective isometries preserving Jordan products between subsets of invertible elements 
in unital Jordan-Banach algebras does not make any sense. Instead of that, we explore surjective linear 
isometries preserving the quadratic expressions of the form Ua(b).

Proposition 3.9. Let M and N be unital Jordan-Banach algebras. Suppose that M ⊆ M−1 and N ⊆ N−1

are clopen quadratic subsets of M−1 and N−1, respectively, which are closed for powers and inverses. Let 
Δ : M → N be a surjective isometry and set u = Δ(1). We shall also assume that Δ satisfies the following 
property:

Δ(Ua(b)) = UΔ(a)(Δ(b)), for all a, b ∈ M. (9)

Then there exists a real-linear isometric Jordan isomorphism T0 : M → Nu such that Δ(a) = T0(a) for all 
a ∈ M, where Nu stands for the u-homotope of N .

Proof. By observing that (Nu)−1 = N−1, the mapping Δ : M ⊆ M−1 → N ⊆ (Nu)−1 can be regarded as 
a surjective isometry between clopen subsets of M−1 and (Nu)−1 satisfying the same hypotheses. To see 
this statement, let us take a, b ∈ N. It is known that if a−1 denotes the inverse of a in N , then Uu−1(a−1)
is the inverse of a in the u-homotope Nu and lies in N. Furthermore, by definition U (u)

a (b) = UaUu(b) ∈ N, 
because Uu(b) ∈ N.

We claim that, in this case, Δ also satisfies property (9) for the Jordan product in the u-homotope. 
Namely, by the assumptions,

U
(u)
Δ(a)(Δ(b)) = UΔ(a)UΔ(1)(Δ(b)) = UΔ(a)Δ (U1(b))

= UΔ(a)Δ (b) = Δ (Ua(b)) ,
(10)

for all a, b ∈ M, which proves the claim. Therefore Δ : M ⊆ M−1 → N ⊆ (Nu)−1 is a unital mapping 
satisfying the same hypotheses. By applying Theorem 3.5 to the latter mapping, we deduce the existence 
of a surjective real-linear isometry T0 : M → N and an element u0 in the McCrimmon radical of Nu such 
that Δ(a) = T0(a) + u0 for all a ∈ M.

Pick a ∈ M with Δ(a) = 2u−1. For each norm-null sequence (an)n in M, it follows from Proposition 3.2
and (10) that

u0 = lim
n

Δ (Ua(an)) = lim
n

U
(u)
Δ(a)(Δ(an)) = lim

n
U

(u)
2u−1(Δ(an)) = lim

n
4Δ(an) = 4u0,

which implies that u0 = 0, and thus Δ(a) = T0(a) for all a ∈ M.
Next, we focus on the real-linear isometry T0 : M → Nu. Fix an arbitrary a ∈ M . Since for r ∈ R with 

|r| large enough we have a + r1 ∈ M−1
1 ⊆ M, we deduce from (9) and the conclusions in the previous 

paragraphs that

U
(u)
T0(a+r1) (T0(a + r1)) = U

(u)
Δ(a+r1) (Δ(a + r1)) = Δ (Ua+r1(a + r1))

= T0 (Ua+r1(a + r1)) .
(11)

By expanding the extreme terms in the previous identity we get

U
(u)
T0(a+r1) (T0(a + r1)) = U

(u)
T0(a)+ru (T0(a) + ru) = U

(u)
T0(a) (T0(a)) + rU

(u)
T0(a)(u)

+ r2T0(a) + r3u + 2rU (u)
T0(a),u(T0(a)) + 2r2U

(u)
T0(a),u(u)

= U
(u) (T (a)) + 3rT (a) ◦ T (a) + 3r2T (a) + r3u
T0(a) 0 0 u 0 0
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and

Ua+r1(a + r1) = Ua(a) + 3ra2 + 3r2a + r31,

which combined with (11) gives

U
(u)
T0(a) (T0(a)) + 3rT0(a) ◦u T0(a) + 3r2T0(a) + r3u

= T0(Ua(a)) + 3rT0(a ◦ a) + 3r2T0(a) + r3u.

Now, we apply that T0(b) = Δ(b) for all b ∈ M , (9) and (10) on the first terms to conclude that

T0(a) ◦u T0(a) = T0(a ◦ a), for all a ∈ M.

It is well known that in this case T0 is an isometric Jordan isomorphism. �
4. The case of JB∗-algebras

After Hatori’s studies on surjective isometries between groups of invertible elements in associative unital 
Banach algebras (cf. [12,13]), it was determined that each surjective isometry between open subgroups of 
the groups of all invertible elements in unital semisimple Banach algebras extends to a surjective real-linear 
isometry between the underlying Banach algebras. The conclusion is even better if the Banach algebras 
are commutative, because in such a case the real-linear extension is in fact a real isomorphism followed by 
multiplication by some element. In 2012, O. Hatori and K. Watanabe completed the description in the case 
of unital C∗-algebras by establishing the result that we commented at the introduction (see Theorem 1.1).

JB∗-algebras are the Jordan alter ego of C∗-algebras. These structures are Jordan-Banach algebras satis-
fying a geometric axiom. Concretely, a JB∗-algebra is a complex Jordan-Banach algebra M equipped with an 
algebra involution ∗ satisfying ‖ {a, a, a} ‖ = ‖a‖3, a ∈ M (where {a, a, a} = Ua(a∗) = 2(a ◦a∗) ◦a −a2 ◦a∗). 
A well known result in Jordan theory proves that the involution of every JB∗-algebra is an isometry (cf. 
[30, Lemma 4]).

Given a JB∗-algebra M we shall consider the following triple product on M

{a, b, c} = (a ◦ b∗) ◦ c + (c ◦ b∗) ◦ a− (a ◦ c) ◦ b∗ (a, b, c ∈ M). (12)

This triple product permits to see every JB∗-algebra inside the wider class of JB∗-triple introduced in [19], 
however we shall not make any use of this general structures.

A JBW∗-algebra is a JB∗-algebra which is also a dual Banach space. The bidual, M∗∗, of every JB∗-
algebra M is a JBW∗-algebra with respect to a Jordan product and an involution extending the original 
ones in M (cf. [11, 4.1.1, Theorems 4.4.3 and 4.4.16]).

A Jordan ∗-homomorphism between JB∗-algebras M and N is a Jordan homomorphism J : M → N

satisfying J(a∗) = J(a)∗ for all a ∈ M . A real-linear mapping J : M → N preserving Jordan products such 
that J(a∗) = J(a)∗ for all a ∈ M will be called a real-linear Jordan ∗-homomorphism. An element p in a 
JB∗-algebra M is called a projection if p = p∗ = p2. The reader is referred to the monographs [11] and [6]
for the basic notions and results in the theory of JB∗-algebras.

Elements a, b in a C∗-algebra A are called orthogonal (a ⊥ b in short) if ab∗ = b∗a = 0. This is equivalent 
to say that {a, a, b} = 0 (⇔ {b, b, a} = 0 ⇔ {a, b, x} = 0 for all x ∈ A, where the triple product is defined by 
{x, y, z} = 1

2 (xy∗z+zy∗x), see for example [5, comments in page 221]). In the wider setting of JB∗-algebras, 
elements a, b in a JB∗-algebra M are said to be orthogonal if {a, b, x} = 0 for all x ∈ M , which is precisely 
the definition of “being orthogonal” in the JB∗-triple given by M with the triple product in (12) (cf. [5, 
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Lemma 1] for additional details). It is worth to comment that if p, q are projections in a JB∗-algebra M , 
p ⊥ q if and only if p ◦ q = 0.

Thought these mathematical models are widely known and studied in physics and mathematics, the 
definitions can be better understood by the most natural examples: every C∗-algebra A is a JB∗-algebra 
when equipped with its natural Jordan product a ◦ b = 1

2 (ab + ba) and the original norm and involution. 
Norm-closed Jordan ∗-subalgebras of C∗-algebras are called JC∗-algebras.

We recall for later purposes that every JB∗-algebra is Jordan-semisimple (cf. [6, Lemma 4.4.28(iii)]).
In the frame of unital JB∗-algebras we have an undoubted advantage with the notion of unitary. An 

element u in a JB∗-algebra M is called unitary if it is invertible in the Jordan sense and its inverse coincides 
with u∗ (cf. [11, 3.2.9] and [6, Definition 4.1.2]).

As well as in the associative context Hatori’s study on surjective isometries between open subgroups of 
invertible elements in two Banach unit algebras [13] was particularized and detailed to unital C∗-algebras 
by Hatori and Watanabe [16], our next goal is to determine a more concrete conclusion for Theorem 3.5 in 
the case of unital JB∗-algebras.

Theorem 4.1. Let M and N be unital JB∗-algebras. Suppose that M ⊆ M−1 and N ⊆ N−1 are clopen 
quadratic subsets of M−1 and N−1, respectively, which are closed for powers and inverses. Let Δ : M → N

be a surjective isometry. Then Δ(1) = u is a unitary element in N and there exist a central projection 
p ∈ M and a complex-linear Jordan ∗-isomorphism J from M onto the u∗-homotope Nu∗ such that

Δ(a) = J(p ◦ a) + J((1 − p) ◦ a∗),

for all a ∈ M.
If we additionally assume that there exists a unitary ω0 in N such that the identity Uω0(Δ(1)) = 1 holds, 
then there exist a central projection p ∈ M and a complex-linear Jordan ∗-isomorphism Φ from M onto N
such that

Δ(a) = Uw∗
0 (Φ(p ◦ a) + Φ((1 − p) ◦ a∗)) ,

for all a ∈ M.

Proof. By Theorem 3.5, or by Corollary 3.6, there exists a surjective real-linear isometry T0 : M → N such 
that Δ(a) = T0(a) for all a ∈ M. By [9, Corollary 3.2] (or by [10, Corollary 3.4]) the mapping T0 is a triple 
isomorphism, that is, T0 preserves triple products of the form {a, b, c} = (a ◦ b∗) ◦ c +(c ◦ b∗) ◦ a − (a ◦ c) ◦ b∗
(a, b, c ∈ M). The element u = T0(1) satisfies {u, u, u} = T0({1, 1, 1}) = T0(1) = u. Moreover, by the 
surjectivity of T0, for each z in N we can find x ∈ M with T0(x) = z. Therefore, {u, u, z} = T0({1, 1, x}) =
T0(x) = z (z ∈ N), that is, u is a unitary tripotent in N in the sense employed in [4]. We know from [4, 
Proposition 4.3] that this is equivalent to say that u is a unitary in N .

By [6, Lemma 4.2.41] the u∗-homotope Nu∗ becomes a unital JB∗-algebra with unit u for its natural 
Jordan product x ◦u∗ y := Ux,y(u∗) = {x, u, y} and the involution ∗u given by x∗u := Uu(x∗) = {u, x, u}. 
Since

T0(x ◦ y) = T0({x, 1, y}) = {T0(x), T0(1), T0(y)} = T0(x) ◦u∗ T0(y)

and

T0(x∗) = T0({1, x, 1}) = {T0(1), T0(x), T0(1)} = T0(x)∗u , (x, y ∈ M),

we deduce that T0 : M → Nu∗ is an isometric real-linear unital Jordan ∗-isomorphism.
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By a more careful reading of [9, Corollary 3.2] we deduce the existence of two JB∗-subalgebras M1 and M2
of M such that M is the (orthogonal) direct sum M = M1 ⊕�∞ M2, T0|M1 : M1 → Nu∗ is a complex-linear 
triple homomorphism and T0|M2 : M2 → Nu∗ is a conjugate-linear triple homomorphism. Let p denote the 
unit of M1. Clearly, p is a central projection in M and 1 − p is precisely the unit of M2. The arguments 
in the previous paragraphs show that T0|M1 : M1 → Nu∗ is a complex-linear Jordan ∗-monomorphism and 
T0|M2 : M2 → Nu∗ is a conjugate-linear Jordan ∗-monomorphism. Furthermore, bearing in mind that M1
and M2 are orthogonal in M and that T0 : M → Nu∗ is a real-linear Jordan ∗-isomorphism, we deduce that 
N1 = T0(M1) and N2 = T0(M2) are orthogonal JB∗-subalgebras of Nu∗ with Nu∗ = N1 ⊕�∞ N2. Moreover, 
the mapping J : M → Nu∗ ,

J(x) = T0(p ◦ x) + T0((1 − p) ◦ x)∗u = T0(p ◦ x) + T0((1 − p) ◦ x∗) (x ∈ M)

is a complex-linear Jordan ∗-isomorphism (just apply that x 	→ p ◦ x and x 	→ (1 − p) ◦ x are the natural 
projections of M onto M1 and M2, respectively), and the identity

Δ(a) = J(p ◦ a) + J((1 − p) ◦ a∗),

holds for all a ∈ M.
Suppose, finally, that we can find a unitary w0 ∈ N such that Uw0(Δ(1)) = 1. The mapping Uw0 : N → N

is a surjective complex-linear isometry and a triple isomorphism mapping u to 1 (cf. [6, Theorem 4.2.28]), 
therefore Uw0 : Nu∗ → N is a complex-linear Jordan ∗-isomorphism. Let p ∈ M and J : M → Nu∗ be 
the central projection and the complex-linear Jordan ∗-isomorphism given by our first conclusions. Clearly, 
Φ = Uw0 ◦ J : M → N is a Jordan ∗-isomorphism and the equality

Δ(a) = Uw−1
0

(Φ(p ◦ a) + Φ((1 − p) ◦ a∗)) = Uw∗
0 (Φ(p ◦ a) + Φ((1 − p) ◦ a∗)) ,

holds for all a ∈ M. �
Remark 4.2. It should be remarked that Theorem 4.1 can be also deduced, via an alternative argument, 
from the conclusions in the recent papers [7,8]. Let Δ : M → N be a surjective isometry in the conditions 
of the just quoted theorem. Let T0 : M → N be the surjective real-linear isometry given by Theorem 3.5 or 
by Corollary 3.6. Let ∂e(BM ) and ∂e(BN ) denote the sets of all extreme points of the closed unit ball of M
and N , respectively. Clearly T0 maps ∂e(BM ) onto ∂e(BN ).

Let w be an extreme point of the closed unit ball of a unital JB∗-algebra M ′. Theorem 3.8 in [7] proves 
that w is a unitary if and only if the set

M′
w = {e ∈ ∂e(BM ′) : ‖w ± e‖ ≤

√
2}

contains an isolated point. Let U(M) and U(N) denote the sets of unitary elements in M and N , respectively. 
The just quoted result and the observations in the previous paragraph show that T0(U(M)) = U(N), and 
hence T0|U(M) : U(M) → U(N) is a surjective isometry. In particular, u = T0(1) is a unitary in N . Let 
U(Nu∗) stand for the set of unitaries in the u∗-homotope of N . It is known that U(Nu∗) = U(N) (cf. [6, 
Lemma 4.2.41(ii)] or [4, Proposition 4.3]). We therefore conclude that T0|U(M) : U(M) → U(Nu∗) is a 
surjective isometry. By [8, Corollary 3.5] there exist a central projection p in M and an isometric Jordan 
∗-isomorphism J : M → Nu∗ such that

T0(w) = J(p ◦ w) + J((1 − p) ◦ w∗), (13)

for all w ∈ exp(iMsa) ⊆ M−1
1 ⊆ M.
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On the other hand, the Russo-Dye type theorem for unital JB∗-algebras proved by J.D.M. Wright and M. 
Youngson in [29, Corollary 2.4] (see also [6, Corollary 3.4.7]) asserts that the closed unit ball of M coincides 
with the closed convex-hull of the set exp(iMsa). Since the maps T0 and x 	→ J(p ◦ x + (1 − p) ◦ x∗) are 
real-linear and continuous, we deduce from (13) that T0(x) = J(p ◦ x) + J((1 − p) ◦ x∗), for all x ∈ M , and 
consequently, Δ(a) = J(p ◦ a) + J((1 − p) ◦ a∗), for all a ∈ M. The rest follows from the arguments given 
in the final part of the proof of Theorem 4.1.

Remark 4.3. In the same way that in Remark 4.2 we have given an alternative proof of Theorem 4.1 from 
[7, Theorem 3.8], [8, Corollary 3.5] and an appropriate version of the Russo-Dye theorem for unital JB∗-
algebras, the C∗- version of our Theorem 4.1 in [16, Theorem 2.2] can be also derived from [25, Lemma 3.1]
and [15, Theorem 1].
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