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Abstract

Brain networks can be defined and explored through their connectivity. Here, we analyzed the re-

lationship between structural connectivity (SC) across 2,514 regions that cover the entire brain and

brainstem, and their dynamic functional connectivity (DFC). To do so, we focused on a combination

of two metrics: the first assesses the degree of SC-DFC similarity –i.e. the extent to which the dy-

namic functional correlations can be explained by structural pathways–; and the second is the intrinsic

variability of the DFC networks over time. Overall, we found that cerebellar networks have a smaller

DFC variability than other networks in the brain. Moreover, the internal structure of the cerebellum

could be clearly divided in two distinct posterior and anterior parts, the latter also connected to the

brainstem. The mechanism to maintain small variability of the DFC in the posterior part of the cerebel-

lum is consistent with another of our findings, namely, that this structure exhibits the highest SC-DFC

similarity relative to the other networks studied, i.e. structure constrains the variation in dynamics. By

contrast, the anterior part of the cerebellum also exhibits small DFC variability but it has the lowest

SC-DFC similarity, suggesting a different mechanism is at play. Because this structure connects to

the brainstem, which regulates sleep cycles, cardiac and respiratory functioning, we suggest that such

critical functionality drives the low variability in the DFC. Overall, the low variability detected in

DFC expands our current knowledge of cerebellar networks, which are extremely rich and complex,

participating in a wide range of cognitive functions, from movement control and coordination to

executive function or emotional regulation. Moreover, the association between such low variability

and structure suggests that differentiated computational principles can be applied in the cerebellum as

opposed to other structures, such as the cerebral cortex.

Introduction

Understanding the relationship between different classes

of connectivity is fundamental in network neuroscience [1].

To date, different strategies exist to obtain structural con-

nectivity (SC) matrices from magnetic resonance imaging

(MRI), where each entry to the matrix represents the number

of white-matter streamlines between pairs of brain regions

obtained from diffusion-weighted images (DWIs) [2]. Simi-

larly, there is considerable information as to how to construct

functional connectivity (FC) matrices, obtained by assessing

the similarity in the dynamics of given pairs of brain regions

from a sequence of functional images employing diverse met-

rics, e.g., pairwise Pearson correlations or synchronization

measures [2]. However, despite these significant advances,

a protocol to define or predict one connectivity class from

another remains to be defined.
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One issue that complicates matching SC to FC is the fact

that they involve very different time scales even though they

deal with network connectivity between the same brain re-

gions. Hence, SC is practically invariant in the period over

which the FC is calculated (typically a maximum of 10 min-

utes), the latter known to vary over short time scales of even a

few seconds, exhibiting a rich dynamic repertoire (see [3] and

references therein). When considering short time scales, the

simplest manner to assess and quantify the temporal variation

in "dynamic functional connectivity" (DFC) is by consider-

ing a sliding window analysis, where the total window length

is divided in several intervals of a fixed duration. One FC

is then calculated for each time window and in this way, the

DFC is represented as a time ordered sequence of FC matri-

ces.

Importantly, it has been shown that the SC can be inferred

from the DFC when the time window to calculate it is in-

finitely large [4]. In other words, pairwise correlations –when
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averaged over sufficiently long time periods– merely reflect

the underlying SC matrix (see also [5]). This fact has become

even clearer through the observation that functional networks

in the resting state can be derived from the spectrum of eigen-

modes –or harmonics– of the SC matrix (actually, from its

associated Laplacian matrix [6]). By contrast, when func-

tional networks are obtained over much shorter time windows,

the dynamics of the brain operating on a fixed SC network

generates a large repertoire of different varying functional

networks. However, how such dynamic patterns are related

to the brain’s function and disease remains largely unclear,

despite the substantial advances achieved over recent years

[4, 7–11].

The relationship between the temporally-invariant SC

and the highly temporal-sensitive DFC can be assessed by

comparing the two graphs at the level of individual links, a

strategy which requires –for symmetrical matrices–  2∕2

comparisons (where  is the number of nodes in the net-

work). Alternatively, here we follow another and more ef-

ficient strategy that involves establishing a comparison at

a modular or community level [12]. In particular, using a

standard algorithm for community detection [13, 14], mod-

ules can be identified from either structural and/or functional

matrices, and the two types of networks are then compared

using the same module-representation for the two classes of

networks. Our hypothesis is that if we assume that segregated

functions are associated with distinct structural modules, vi-

sualizing the functional modules in terms of the structural

ones should help define and highlight how strongly structural

constraints affect function, and vice versa.

In this study, we assessed how SC constraints affect DFC

at the module level, and we found that DFC cerebellar mod-

ules were much less variable than those in the cerebrum. We

show that the small variability found is driven by two differ-

ent mechanisms, one mediated by the constraint imposed by

the SC and the other, possibly related to external influences

that affect function. The small variability in the cerebellar

DFC networks detected in this study might reflect that differ-

ent computational principles are active in the cerebellum as

opposed to other brain circuits.

Materials and methods

Participants
A population of healthy subjects ( = 48) were recruited

from the general population in the vicinity of Leuven and

Hasselt (Belgium) through advertisements on websites, an-

nouncements at meetings and the use of flyers at visits of

organizations and public gatherings (PI: Stephan Swinnen).

The participant’s ages ranged between 20 and 51 years (mean

33.9 and standard deviation 9.79), and none of the participants

had a history of ophthalmological, neurological, psychiatric

or cardiovascular diseases that could potentially influence the

imaging or clinical measures. All the participants provided

their informed consent before enrollment on the study, in

agreement with the local ethics committee for biomedical

research.

Image acquisition
Anatomical data: A high-resolution T1 image was ac-

quired with a 3D magnetization prepared rapid acquisition

gradient echo (MPRAGE): repetition time (TR)= 2, 300 ms,

echo time (TE)= 2.98 ms, voxel size = 1×1×1.1 mm3, slice

thickness = 1.1 mm, field of view (FOV)= 256 × 240 mm2,

160 contiguous sagittal slices covering the entire brain and

brainstem.

Diffusion weighted imaging (DWI): A DWI SE-EPI (dif-

fusion weighted single shot spin-echo echo-planar imaging

[EPI]) sequence was acquired with the following parameters:

TR= 8, 000ms, TE= 91ms, voxel size= 2.2×2.2×2.2mm3,

slice thickness = 2.2 mm, FOV = 212 × 212 mm2, 60 con-

tiguous sagittal slices covering the entire brain and brainstem.

A diffusion gradient was applied along 64 non-collinear di-

rections with a b value of 1, 000 s/mm2. Additionally, one set

of images was acquired without diffusion weighting (b = 0

s/mm2).

Resting state functional data: Acquired with a gradient

EPI sequence over a 10 min session using the following pa-

rameters: 200 whole-brain volumes with TR/TE = 3, 000∕30

ms, flip angle = 90◦, inter-slice gap = 0.28 mm, voxel size

= 2.5 × 3 × 2.5 mm3, 80 × 80 matrix, slice thickness = 2.8

mm, 50 oblique axial slices, interleaved in descending or-

der.During resting state acquisition, all participants received

the instructions to keep their eyes open and to not think of

anything in particular.

Image preprocessing
Diffusion images: We applied a pre-processing pipeline

similar to that employed previously [15–22] using the FSL

(FMRIB software Library v5.0) and the Diffusion Toolkit.

First, an eddy current correction was applied to overcome

the artifacts produced by variation in the direction of the

gradient fields in the MR scanner, together with the artifacts

produced by head movements. Specifically, the participant’s

head movement was extracted from the transformation ap-

plied at the step of eddy current correction. The movement

information was also used to correct the gradient directions

prior to tensor estimation. From the corrected data, a local

fitting of the diffusion tensor per voxel was obtained using the

dtifit tool incorporated into FSL and finally, fiber assignment

was achieved with a continuous tracking algorithm [23]. We

then computed the transformation from the Montreal Neu-

rological Institute (MNI) space to the individual-participant

diffusion space and chose the network nodes to calculate the

SC using a functional partition (see below).

Functional images: We applied a pre-processing pipeline

similar to previous work [15–18, 24–26] using FSL AFNI

(http://afni.nimh.nih.gov/afni/). A slice-time correction was

first applied to the fMRI data set and then, the each volume

was aligned to the middle volume to correct for head move-

ment artifacts. After intensity normalization, we regressed

out the movement time courses, the average cerebrospinal
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fluid (CSF) signal, the average white matter signal and the

global signal1. A bandpass filter was then applied between

0.01 and 0.08 Hz [27], and the preprocessed functional data

were spatially normalized to the MNI152 brain template,

with an isotropic2 voxel size of 3 mm. All the voxels were

then spatially smoothed with a 6 mm full width at half maxi-

mum isotropic Gaussian kernel. Finally, and in addition to

head movement correction, we performed scrubbing, through

which time points with a frame-wise displacement> 0.5were

interpolated with a cubic spline [28]. We finally removed the

effect of head movement using the global frame displacement

as a covariate.

Calculation of SC and DFC
Both the SC and DFC were built using  = 2, 514 nodes,

identified after running an unsupervised method to cluster

the functional data [29]. On average, each cluster –which in

this study coincides with one node in the network– contained

about 20 voxels of 3× 3× 3 mm3. One SC matrix of 2,514 ×

2,514 dimensions was obtained for each subject by counting

the number of white matter streamlines connecting all possi-

ble 2,514 × 2,514 pairs of nodes. Thus, the element matrix

(i, j) of SC is given by the streamline number between nodes

i and j, with i, j = 1,… , . Given the lack of directionality

of the streamlines the SC is a symmetric matrix. To calculate

the population SC matrix, denoted by pSC, we first binarized

the individual SC matrices and then took the overall average

of the participants.

With respect to the functional networks, after averaging

all the voxel time series within each network node, we ex-

tracted a single time series for each of the 2,514 nodes. By

dividing the total time series length  in  non-overlapping

windows of length �, we obtained  × matrices, where

 is the number of participants and  the number of time

windows. DFC ≡
{
FCw

}
w=1

was defined as the temporal

sequence of squared matrices FCw, each one of dimension

 × and calculated over a fixed window w by assessing

the pairwise Pearson correlation coefficient between all-node

time series within the time window w. The population DFCs,

denoted by pDFC, were built by averaging each one for all

the participants. Note that the DFC is a tensor, although

we can also refer to the two objects DFC and FCw at the

module level, simply extracting from them the within the

module contributions, which we will denote as DFCm and

FCm
w, respectively. The former is another tensor composed

of a sequence of matrices of dimensions m ×m and the

latter is a squared matrix of dimension m ×m. For both

cases,
∑M

m=1Nm = N .

1We also repeated our analyses without global signal regression.
2Notice that although the original functional voxel was not isotropic,

however, the processed images are transformed into the MNI152 template,

where voxels are now isotropic with a size of 3 mm.

Adapting high-pass filtering for very short time

windows
Conventional FC approaches typically work with long-

time series. However, for relatively short time windows, the

calculation of the FCw matrix requires adapting the lowest

bound (LB) used for band-pass filtering of the time series

using the equation LB−1 = � × TR, where � is the window

length [30]. For example, for � = 8 and TR=3 seconds (as

used here), the high-pass filter has to be adapted by taking

LB = 0.042 rather than 0.01, as used here in the pipeline to

pre-process the functional data.

Structural modules used as a template for

reordering DFC
Maximizing the modularity of the pSC matrix by employ-

ing the algorithm described in [31], we obtained a subdivision

of the structural network into  non-overlapping modules

that maximizes the number of within-module connectivity

whilst minimizing that between modules [14]. We next used

this partition to reorder the elements of the functional matri-

ces, and to assess the link-to-link —or pairwise— similarity

between the SC and FCw matrices. This comparison was

repeated for all the functional matrices obtained in the differ-

ent windows. In this way, we achieved a common structural

organization of the modules, which was used as a template

to reorder all the functional matrices. As found previously

[12], this is a very convenient strategy to highlight the simi-

larities and differences between both types of networks at a

"mesoscopic" level.

Assessment of SC-DFC similarity
After reordering all the functional networks using the

structural modules, the SC-DFC similarity was assessed at

the level of the modules. As such, we first extracted the 

squared matrices pSCm and pFCm
w from the original pSC

and pFCw matrices. For each module and window w we

calculated the Pearson correlation as a similarity measure:

rmw = �(⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗pSCm, ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗pFCm
w), where ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗pSCm and ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗pFCm

w represent the

vector-wise representation of matrices pSCm and pFCm
w, re-

spectively. Finally, we averaged the similarity over windows

of the same size, i.e.: rm =< rmw >w.

Assessment of DFC variability
For a given window length, we obtained a series of con-

secutive pFCm
w matrices using the  structural modules.

For each of the m = 1,… , modules and w = 1,… ,

windows, we assessed the variability over the different time

windows by calculating their pairwise spectral distance [32]:

Δm
w,w′ =

m∑

u=1

|||�u(pFC
m
w) − �u(pFC

m
w′ )

||| , (1)

wherew,w′ = 1,… , are two generic windows, and �1(G) ≤

�2(G) ≤ �3(G) ≤ ... ≤ �Nm
(G) of the two graphs G =

{pFCm
w, pFCm

w′} are the sets of eigenvalues.
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Note that other metrics can be used to assess the DFC

variations, such as the temporal variance of the connectiv-

ity matrix across the time windows [33, 34] or its temporal

standard deviation [35, 36]. Here, our choice relies on the

spectral properties of the graphs, namely that the eigenvalues

of the two isomorphic graphs are identical. Thus, Eq. (1) is

one possible way to quantify the isomorphic-separability in

pairs of graphs.

Labelling of the anatomical regions
The anatomical identification of each module (cf. Tables

1 and S1) was achieved by calculating the percentage overlap

between each module and each region in the bi-lateralized

automated anatomical labeling (AAL) brain atlas [37], pool-

ing the left and right sides of each anatomical structure in

the original atlas into the same region. Only regions with an

overlap above 5% were reported.

Cerebellar projections towards resting state

networks
To further understand the functional roles of the cere-

bellar modules, we projected them onto a highly specialized

cerebellar atlas [38, 39], containing information about the

projections from each cerebellar region in the atlas towards

each resting-state network. We finally calculated the per-

centage overlap between our modules and each region in the

cerebellar atlas.

SC matrices using probabilistic tractography
We also calculated the SC matrices using probabilistic

tractography, as implemented in FSL. We first estimated a

probabilistic model to compute the fiber orientation using bed-

post [40]. We then calculated the connectivity matrices (one

per subject) using the probtrackx2 function and 100 pathways

per voxel. Connectivity matrices were calculated by defining

a threshold for the probability to define a non-zero connec-

tion such that both matrices, the population-deterministic one

used for all the other analyses and the population-probabilistic

one, had approximately the same number of non-zero ele-

ments, i.e.: the two matrices achieved the same link-density

as when 97.6% of all probabilistic connections were fixed to

zero.

Overlapping time-windows for the calculation of

DFC
Although the results presented here considered non-overlapping

time windows for the calculation of DFC, we also assessed

DFC using sliding windows with an overlap of 96% between

them [41].

Templates for Resting State Networks
We also calculated the two metrics analyzed here (DFC

variability and SC-DFC similarity) for classic resting state

networks (RSNs). In particular, we made use of the tem-

plates developed previously [42] for the four following RSNs:

Default Mode Network (DMN), Ventral Attention Network

(VAN), Dorsal Attention Network (DAN) and Somato-Motor

Network (SMN).

Synchronization metrics for DFC
In addition, to assess DFC by calculating the pairwise

Pearson’s correlation between node time series, we also es-

tablished synchronization metrics. These were calculated by

first obtaining the Hilbert transformation of the node time se-

ries x(t) represented by x̂(t) ≡ {x}(t) to build the complex

analytical signal as x(t)+ix̂(t), represented asA(t) exp (i�(t)),

whereA(t) and �(t) represent the instantaneous amplitude and

the instantaneous phase of the analytical signal, respectively.

We then obtained the FCw matrices in two more different

forms: (1) calculating the pairwise Pearson’s correlation be-

tween the time series of the instantaneous amplitude along

different time windows; and (2) by calculating the phase lock-

ing value (PLV) [43–46], defined for any pair of nodes i and

j as:

PLVw(i, j) =
1

�

|||||

∑

t∈w

ei(�i(t)−�j (t))
|||||
, (2)

where the average is taken in a time window of length r, and

| ⋅ | indicates the modulus of a complex number. The PLV

takes values in the interval [0,1], with 0 corresponding to the

case where there is no phase synchrony and 1 whenever the

two phases of the two signals are always identical.

Results

A population of young healthy participants ( = 48) was

studied here, acquiring diffusion and resting-state images for

each participant (see pipeline in figure 1). We first divided the

population SC matrix, represented by the pSC, through mod-

ularity maximization, resulting in  = 14 non-overlapping

modules (see figure 2) with a modularity index of 0.7324.

Modules 6 and 13 had 2 and 1 regions, respectively, and

therefore, neither of these modules were considered in the

following quantitative analyses.

After calculating one pFCw matrix per time window w,

we reordered all of them according to the structural modules

and calculated the link-to-link correlation for all the modules

separately, rmw , as a measure of the similarity between the

pSCm and the different pFCm
w (figure 2). In particular, we

first considered � = 8, equivalent to a time duration of 24

seconds, and averaged the measurement across all the time

windows.

Moreover, we studied the variability in pFCw across the

time windows, in this case measuring the pairwise spectral

distance Δm
w,w′ within each module m for the time windows

w and w′, and averaging this over all pairs (w,w′). The anal-

ysis of the SC-DFC similarity across the different modules

revealed the existence of an outlier, module 1, which had a

similarity value of rm > 0.7, contrasting with the rest of the

modules whose similarity was less than 0.55 (figure 3). The

anatomy of module 1 is shown in Table 1 and strikingly, it

is mainly formed by posterior cerebellar structures. By con-

trast, the lowest SC-DFC similarity was reported for module

14, with rm < 0.4 for all time-windows. Importantly, this
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module is formed by a different part of the cerebellum (its

anterior part: see Table 1), together with other non-cerebellar

structures like the brainstem, the fusiform nucleus and part

of the lingual cortex.

In addition to the SC-DFC similarity, we quantified the

amount of DFC variability and found that module 11 exhib-

ited the highest variability over time (Table 1), a module

composed of several cortical structures that include the cal-

carine, middle and inferior temporal, lingual and precuneus.

By assessing both metrics simultaneously, rm and Δm,

modules 1 and 14 had considerably smaller Δm values than

module 11 (figure 3A), indicating that the cerebellar struc-

tures displayed much less DFC variability over time than other

structures in the cerebrum (figure 3A shows the mean values

across windows and the histograms of all the possible values

are shown in figure 3B). Several brain slices from these three

modules are shown in Figure 3C and the anatomical compo-

sition of the rest of the modules analyzed is given in Table S1.

To further demonstrate the robustness of our findings,

that cerebellar modules 1 and 14 fulfil a differentiated role

in terms of DFC variability and SC-DFC similarity, we per-

formed several control-analyses under different conditions

that included varying some image-preprocessing steps, or

using different parameters in our modelization or different

metrics to calculate the DFC (see Methods for details). First,

we repeated the same analysis but considering probabilistic

rather than deterministic tractography (figure S1A). Second,

we performed a sliding window analysis to calculate the DFC

using 96% overlapping windows rather than non-overlapping

windows (figure S1B). Third, we preprocessed all the func-

tional images without global signal regression and repeated

the same analyses (figure S1C). Finally, we calculated dif-

ferent metrics to assessing DFC variability but based on the

analytical signal, which is therefore more closely related to

standard synchronization studies. In particular, we assessed

the DFC by calculating the pairwise correlations between

time series of instantaneous amplitude (figure S1D) and in-

stantaneous phase (figure S1E), that is, the PLV. Indeed, a

similar equivalence between different ways to construct func-

tional matrices has been also reported elsewhere [47]. In all

these situations, both cerebellar modules 1 and 14 preserved

their differential role relative to the other modules in the cere-

brum.

We also asked whether our findings obtained for a win-

dow of � = 8 were robust when varying the length of the

window (figure 4). Specifically, we obtained all the mea-

surements again for the following window lengths: � =

{4, 5, 7, 8, 10, 25}, and also for � =  , equivalent to a single

time window with a length equivalent to the entire time series.

In this latter case, we only addressed the SC-DFC similarity

because DFC variability could not be assessed in a single

time window (see Table S2). Overall, we found two cere-

bellar modules that preserved their roles irrespective of the

window length chosen and of other control conditions (figure

S1), modules 1 and 14 in the posterior and anterior part of

the cerebellum, respectively. By contrast, when we looked at

module 11 over different window lengths, the module with

the highest DFC variability, we noticed that this behavior was

more variable across time windows and that modules 2 and

11 interchanged their positions.

We next asked which brain areas in modules 1 and 14

were structurally and functionally connected (Table 2), and

we found strong mutual-connectivity between the anterior

and posterior parts of the cerebellum, as seen previously

[48, 49]. Moreover, the anterior region also projects to the

motor cortex, as has been well established [50–52]. By quan-

tifying the overlap of modules 1 and 14 with the cerebellar

regions projecting to different RSNs (see Methods), we found

that module 1 projected towards the DMN (22.8%) and the

frontoparietal network (19.2%), while module 14 did so to-

wards the SMN (17.7%). Moreover, both modules projected

similarly to the VAN, with a 13.3% overlap for module 1

and 10.5% for module 14. Thus, these results show in a dif-

ferent manner that both cerebellar modules are different yet

complementary to each other, with module 1 participating in

high order cognitive networks and module 14 in somatomotor

networks, while both participate in multimodal integration

networks like those associated with ventral attention [53].

Finally, we assessed the SC-DFC similarity and DFC

variability in classical RSNs [42, 54–56]. In particular, we

analyzed the DMN, SMN, VAN and DAN networks (figure 5),

which all had much less SC-DFC similarity than our modules.

This probably reflects the fact that the RSNs were built purely

from functional data, whereas we combined functional and

structural data together to obtain the final modules. Moreover,

we also found that the DMN had the highest DFC variabil-

ity when compared with the other RSNs and also with our

modules.

Discussion

We have assessed here the relationship between SC and

DFC by combining structural and functional brain networks,

and assessing their modular organization. We have built net-

works with high spatial resolution, covering the entire brain,

using 2, 514 nodes that each have an average size of 0.54

cm3. Through modularity maximization of the population

SC matrix, we obtained 14 non-overlapping structural mod-

ules that were used to reorder the functional matrices. This

was done under the assumption that if segregated functions

are associated with distinct structural modules, visualizing

the functional matrices following their structural fingerprints

would clarify how SC constrains function, a fundamental

question that has yet to be resolved.

We analyzed the SC-DFC similarity in combination with

the amount of DFC variability over time for all the previously

identified modules, and characterized each module in terms

of these two metrics. This allowed us to identify three ex-
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treme cases: 1, a fully cortical module with the highest DFC

variability; 2, a module in the posterior cerebellum that had

the highest SC-DFC similarity while maintaining low DFC

variability; 3, a module in the anterior cerebellum connected

to the brainstem that had the lowest SC-DFC similarity but

also, that retained small DFC variability. Therefore, cerebel-

lar networks appear to have small DFC variability. Module

1, located at the posterior cerebellum, has about twice the

similarity between SC and DFC than the rest of the modules,

indicating that structure constrains the dynamic connectivity

[57, 58].

However, how module 14 associates weak SC-DFC simi-

larity with low DFC variability is more challenging to under-

stand. On the one hand, module 14 includes the brainstem

in addition to the anterior part of the cerebellum, the former

having strong connectivity to many other parts of the brain

and body through major tracts like the corticospinal, lemnis-

cus and spinothalamic tracts [59]. Thus, by looking at the

intra-module similarities between SC and DFC, as performed

here, it is possible that we ignored relevant aspects of con-

nectivity from this module to the rest of the brain, thereby

underestimating the intra-module SC-DFC similarity. More-

over, it is well known that the brainstem plays a critical role

in regulating sleep cycles, as well as cardiac and respiratory

function. Perhaps, such critical functions are not compatible

with large DFC variability, as occurs in cortical networks,

although future research will be needed to fully explain these

observations. Future studies should also verify our results on

larger sample sizes.

It is important to emphasize that in terms of SC-DFC

similarity, our unsupervised method identifies two divisions

within the cerebellum, the posterior and anterior regions.

This turns out to be a well-known and standard anatomical

and functional division of the cerebellum in humans and ani-

mals [48]. Moreover, while the classical cerebellum division

grouped the anterior lobules from 1 to 5 [52], our results

include lobule 6 in both the anterior and posterior cerebel-

lum, in agreement with functional MRI studies that indicated

cerebellar lobules 4-6 participate in sensorimotor tasks [60].

We found that module 1, the posterior cerebellum, par-

ticipated in high-order cognitive functions, as reflected by a

strong overlap with the DMN and the frontoparietal network,

in agreement with previous data [61]. This is also consis-

tent with the fact that the cerebellum areas Crus 1 and 2,

included in module 1, connect to the thalamus and then, to

prefrontal areas. In relation to module 14, the anterior part of

the cerebellum, we found projections towards the somatomo-

tor network, in agreement with [61]. Moreover, both these

modules projected to multimodal integration hubs like the

VAN [53].

In the resting state, the DFC is dominated by the DMN,

together with attentional and sensory networks [62, 63]. We

show here that DMN variability was indeed the highest of all

the modules and networks studied, which might suggest why

different DFC patterns in the DMN can encode multiple brain

states [64], and also why the DFC is more limited in several

pathological conditions [65]. Although our results were ob-

tained in the resting state and therefore, the participants were

not performing any specific task in the MRI scanner, these

findings might also explain that when a motor task is more

difficult to perform or it is simply a new task for the subject,

posterior cerebellar activation occurs together with prefrontal

activity to enhance cognitive monitoring of the individual’s

performance [60, 66–69].

It is well-known that cerebellar networks have an ex-

tremely rich and complex anatomy and functionality [70],

connecting to the brainstem and cerebral hemispheres, and

participating in a large variety of cognitive functions like

movement coordination, bimanual coordination performance

[71], executive function, visual-spatial cognition, language

processing and emotional regulation [72, 73]. However, as

far as we know the small variability of the DFC within the

cerebellum has not been reported previously.

Finally, the extraordinary constraint of the DFC to the SC

in cerebellar module 1 might indicate distinct operational and

computational principles in the cerebellum. Classically, cere-

bellar architecture has been modeled in a feedforward manner,

unlike the highly recurrent circuits found in the cerebral cor-

tices (see [74] and references therein). This phenomenon

enables the cerebellum to linearly integrate different inputs

from other systems in order to generate outputs according to

previously learned information patterns, following feedfor-

ward error-correction computations [75, 76]. Perhaps, such

computational machinery makes the cerebellum’s informa-

tion processing more reliable, in accordance with the low

variability in its DFC, although further research is needed to

shed light on these findings.
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List of Tables and Figures

Table 1
Brain anatomy for the three most relevant modules. Module 1, formed by posterior cerebellar structures, had the
highest SC-DFC similarity independent of the window lengths. Module 11 was one of the modules with higher DFC
variability across different windows, formed by several cortical regions. Module 14, with a relative DFC variability
across time windows, provided the lowest SC-DFC similarity independent of the window lengths and included the
anterior cerebellar structures, brainstem and cortical regions. For these three modules, we only reported overlapping
percentages bigger than 5%.

Module 1 Module 11 Module 14

Cerebelum_Crus1 (%21.879) Calcarine (%19.2356) BrainStem (% 15.718)
Cerebelum_8 (%19.1888) Temporal_Mid (%15.601) Cerebelum_6 (%15.2804)
Cerebelum_Crus2 (%15.4499) Lingual (%14.3722) Fusiform (%14.2614)
Cerebelum_9 (%7.8111) Temporal_Inf (%10.07) Cerebelum_4_5 (%14.031)
Cerebelum_6 (%7.0914) Precuneus (%8.6727) Lingual (%10.1075)

Cuneus (%6.1875)

Table 2
Functional and structural connectivity of modules 1 and 14 to the rest of the brain. Note that the two modules
connect both functionally and structurally to one another. Module 14 is also connected bilaterally to the anterior part
of the paracentral lobule (2.65% of overlapping index), which is part of the supplementary motor cortex (see figure 5).

FC (Module 1) SC (Module 1)

Temporal_Inf (% 14.1851) Temporal_Inf (% 12.9084)
Fusiform (% 12.2463) Fusiform (% 11.7059)
Lingual (% 10.1058) Lingual (% 9.4173)
Occipital_Mid (% 8.9656) Cerebelum_6 (% 8.6846)
Cerebelum_6 (% 8.4921) BrainStem (% 7.8873)
Cerebelum_4_5 (% 6.1129) Cerebelum_4_5 (% 7.3657)
BrainStem (% 5.9853) Temporal_Mid (% 6.8572)
Occipital_Inf (% 5.6888) Occipital_Inf (% 5.5512)

FC (Module 14) SC (Module 14)

Cerebelum_8 (% 7.0071) Cerebelum_8 (% 7.5645)
Cerebelum_Crus1 (% 6.6914) Cerebelum_Crus1 ( % 7.3713 )
Temporal_Inf (% 5.8074) Cerebelum_Crus2 (% 6.0049)
Calcarine (% 5.6633) Temporal_Inf (% 5.3522)
Cerebelum_Crus2 (% 5.5094) Temporal_Sup (% 5.08981)
Lingual (% 5.0259)
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Table S1
Brain anatomy for modules 2-10, and 12-13. As in Table 1, we only report overlapping percentages above 5%.

Module 2 Module 3 Module 4

Temporal_Sup (%7,869) Parietal_Inf (%17,751) Frontal_Mid (%28,969)
Insula (%6,666) Postcentral (%16,609) Precentral (%21,321)
Frontal_Inf_Orb (%5,346) Precuneus (%14,837) Postcentral (%15,076)

Parietal_Sup (%12,303) Frontal_Sup (%11,633)
Precentral (%7,360) SupraMarginal (%6,204)
Occipital_Sup (%5,961) Frontal_Inf_Tri (%5,553)
Cuneus (%5,796)

Module 5 Module 6 Module 7

Supp_Motor_Area (%31,390) Temporal_Sup (%80,328) Frontal_Sup_Medial (%35,326)
Cingulum_Mid (%26,442) Temporal_Mid (%17,213) Frontal_Mid (%22,417)
Precentral (%12,536) Frontal_Sup (%20,520)
Frontal_Mid (%8,967) Cingulum_Ant (%13,832)
Frontal_Sup (%7,7866)
Paracentral_Lobule (%5,678)

Module 8 Module 9 Module 10

Precuneus (%19,252) Frontal_Inf_Tri (%10,092) Temporal_Inf (%14,276)
Angular (%11,769) Rectus (%8,978) Temporal_Mid (%9,564)
Parietal_Sup (%10,814) Frontal_Med_Orb (%8,673) Temporal_Pole_Sup (%7,899)
Occipital_Mid (%9,191) Frontal_Sup_Orb (%7,864) Insula (%7,663)
Parietal_Inf (%9,073) Frontal_Inf_Orb (%7,612) Hippocampus (%6,684)
Occipital_Sup (%7,324) Cingulum_Ant (%5,630) ParaHippocampal (%6,195)
SupraMarginal (%6,579) Frontal_Mid (%5,590) Fusiform (%6,061)
Postcentral (%6,002) Temporal_Sup (%5,082)
Cuneus (%5,642)

Module 12 Module 13

Temporal_Mid (% 27,226) Temporal_Inf (%73,469)
Occipital_Mid (%14,608)
Temporal_Sup (%13,273)
SupraMarginal (% 6,720)
Postcentral (%5,376)
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Table S2
SC-DFC similarity for � =  , considering only one time-window
with a length equal to the entire time-series. In this case, the DFC
variability could not be calculated, as it was defined by averaging
different window pairs. Note that for � =  , modules 1 and 14
also had extreme values with respect to SC-DFC similarity.

Module SC-DFC similarity, rm

14 0.42
10 0.53
5 0.53
9 0.55
2 0.56
4 0.60
7 0.60
3 0.61
8 0.62
11 0.66
12 0.67
1 0.77
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Figure 1: Neuroimaging preprocessing pipeline. Three acquisitions were obtained for each subject: High-resolution anatomical
images (T1), functional images at rest (fMRI) and diffusion tensor imaging (DTI). Following a state-of-the-art neuroimaging
preprocessing pipeline (summarized in footnotes 1-3), we obtained time series of the blood oxygenation level-dependent (BOLD)
signal for each network node, defined by a functional partition of 2,514 regions covering the entire brain and brainstem. Using the
same network nodes, we also built structural connectivity matrices by counting the number of streamlines between pairs of nodes,
thereby obtaining one connectivity class per subject that we averaged to achieve population matrices (pSC, pFC). Finally, for
the comparison of pSC and pFC, we re-ordered the latter according to the results after modularizing pSC. Here, pFC refers to
any generic time-window. Abbreviations: FD = Frame Displacement; CSF = Cerebrospinal Fluid; WM = White Matter; GSR =
Global Signal Regression; BBR = Boundary-Based Registration; NLR = Non-Linear Registration.
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Figure 2: Scheme to assess SC-DFC similarity and DFC variability at the level of the modules. For each participant p, we
obtained one SC matrix and a sequence of W matrices of FCw, that were averaged to obtain the population pSC and pFC matrices.
After maximization of modularity in pSC, we obtained M=14 modules, marked by different colored squares and represented in the
brain with one representative slide. All pFCw matrices were reordered using the structural modules and then, the SC-DFC similarity
was estimated within each module m separately, by calculating the Pearson correlation between vector-wise representations of
the pSCm and pFCm

w
matrices, and finally averaging over the windows w. The DFC variability along different time windows was

assessed by calculating the pairwise spectral distance between matrices FCm
w

and FCm
w′ , and finally averaging over window pairs w

and w′. Modules 1, 5, 7, 9, 11 and 14 were bilateral; Modules 2, 4, 6, 8 and 13 were mainly located in the right hemisphere;
Modules 3, 10 and 12 were mainly located in the left hemisphere. The sizes of the modules Nm, measured in number of network
nodes per module, were 176, 404, 197, 168, 180, 2, 171, 191, 251, 191, 262, 189, 1 and 131, respectively.
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Figure 3: The amount of DFC variability and SC-DFC similarity define three different module-scenarios. A: For all modules,
we plotted their representation in the plane (rm,Δm), from which we detected three different scenarios: Module 1 (with the highest
rm value, red), module 11 (with the highest Δm value, green) and module 14 (with the lowest rm, blue). The points represent the
average values of rm over the time windows. Similarly, Δm is the average of the window pairs. B: Probability distribution of all the
rm and Δm values obtained for the different windows. C: Anatomical representation of three modules, where x, y, z represents the
slice number in each axis. A,B,C: Results for a window length of �=8, which for non-overlapping windows and a total number of
200 time points resulted in 25 different windows over which the matrices FCm

w
were calculated.
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Figure 4: Robustness of the three relevant module-scenarios for different window lengths. The characteristics of modules 1 and
14 have the highest and lowest value of rm, respectively, whilst keeping low Δm, preserved independently on the value of window
length �. However, module 11 in figure 3 had the highest Δm value and when changing �, the roles switch between module 2 and
11. Importantly, the two invariant modules 1 and 14 are both parts of the cerebellum. The window length � is given in time
points, each one corresponding to a time duration of TR = 3 sec.
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Figure 5: Structure-function modules vs classical resting state networks (RSNs). Modules m1-m14 were obtained from the
structural connectivity matrix. By contrast, RSNs are purely functional modules, as reflected by the weak SC-DFC similarity (pink).
Moreover, the DMN had the largest DFC variability, which suggests different computational principles for this network (not really
constrained to brain structure). Abbreviations: Default Mode Network (DMN), Ventral Attention Network (VAN), Somatomotor
Network (SMN), Dorsal Attention Network (DAN).
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Figure S1: The roles of modules 1 and 14 are preserved in different control conditions, when calculating SC matrices by
probabilistic tractography (A), with 96%-overlapping sliding windows (B), without GSR removal (C), and calculating FC matrices
using the instantaneous amplitude of the complex analytical signal (D), and the instantaneous phase, also known as the phase
locking value (E). (A-E): In all panels, module 1 had the highest SC-DFC similarity and low DFC variability values, while module
14 had the lowest SC-DFC similarity value and also low DFC variability values. Strikingly, module 1 and 14 were localized in the
posterior and anterior parts of the cerebellum, respectively. (C,E): * different scale.
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