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Abstract—TFETs are in the way to become an alternative to
conventional MOSFETSs due to the possibility of achieving low
subthreshold swing (SS) combined with small OFF current levels
which allows operation at low Vpp. In this work, a non-local
band-to-band tunneling (BTBT) model has been successfully
implemented into a Multi-Subband Ensemble Monte Carlo (MS-
EMC) simulator and applied to ultra-scaled silicon-based n-type
TFETs. We have considered two different criteria for the choice
of the tunneling path followed by the carriers when crossing
the potential barrier, which leads to different distributions of
the generated electron-hole pairs. Subband discretization due
to field-induced quantum confinement has been taken into
account. TCAD simulations accounting for quantization effects
are considered for comparison purposes providing very accurate
agreement with MS-EMC results.

Index Terms—tunnel field—effect transistors, TFET, quantum
confinement, band-to-band tunneling, BTBT, Multi-Subband
Ensemble Monte Carlo, MS-EMC.

I. INTRODUCTION

N recent years, the basic architecture of the conventional

MOSFET has been diversified to improve the device perfor-
mance when transistors approach to the ultimate scaling limits.
At the level of simulation research, two main working areas
may be differentiated in the study of possible alternatives con-
cerning processes and devices. The first one is mainly focused
on novel engineering solutions in order to create enhanced
device architectures. Its development has been conceived to
improve the carrier transport properties and to keep under
control the short channel effects [1], [2]. The second approach
explores new device paradigms based on different injection
mechanisms and the nanometric regime enforced by scaling.

Among some of the most promising solutions in the latter
area, this work deals with one of the devices proposed to reach
sub-60 mV/dec subthreshold swings (SS): the tunnel field-
effect transistor (TFET) [3]. In practice, the best MOSFET
implementations cannot bring SS below 70-80mV/dec, which
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leads to even worse situations [4]-[6] with the subsequent
limitation in the reduction of Vpp. On the other hand, TFETS
should not be constrained by the aforementioned 60 mV/dec
limit and, therefore, arise as potential substitutes for con-
ventional MOSFET in low-power applications. The process
of quantum mechanical tunneling through a barrier between
energy bands, known as band-to—band tunneling (BTBT), gov-
erns the injection of carriers in TFETS, contrary to MOSFETSs
where thermionic emission dominates.

In this work, we present a comparison in the study of ultra-
scaled silicon-based n-type TFETs using two different simu-
lation approaches. The first one is a Multi-Subband Ensemble
Monte Carlo (MS-EMC) simulator specifically designed for
this aim. The second (used for comparison purposes) is a
customized TCAD-based approach including quantum effects
that has extensively been used in the last years [7], [8].
Furthermore, for the MS-EMC, we assess the impact on the
BTBT generation rate distribution of two different tunneling
path choices. The first one estimates dinamically the BTBT
path according to the criterion of the valence band maximum
gradient trajectory; and the second one searches for the path
featuring the minimum length trajectory.

The paper is organized as follows: Section II introduces
the analyzed device, outlines the methodology to account
for field-induced subband discretization, provides a detailed
overview of the BTBT model used in the MS-EMC code and
describes the TCAD-based simulation approach. Simulation
results and discussion are presented in Section III. Finally, the
main conclusions are drawn in Section IV.

II. DEVICE STRUCTURE AND METHODOLOGY
A. Device Structure

The simulated n—type TFET is schematically depicted in
Fig. 1 along with its doping concentrations and dimensions.
The center of the device in the z direction corresponds to
2 = Onm. It features an n—doped drain with Np = 10%cm~3,
a p—type doped source with Ng = 10?°cm™2, and an n-doped
channel with 10'°cm™3, a gate oxide with EOT = 1nm, gate
workfunctions of 4.05eV, and a body thickness ranging from

Ts; = 5nm to Tg; = 7nm.

B. Subband Quantization Corrections

Both simulation techniques contained in this work, the MS-
EMC simulator and the customized TCAD approach, imple-
ment non-local direct and phonon assisted BTBT taking into
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Figure 1: Si n-type TFET analyzed in this work. 1D Schrodinger
equation is solved for each grid point in the transport direction and
BTE is solved by the MC method in the transport plane.
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Figure 2: Quantum corrections included in the MS-EMC for the
conduction and valence bands at Vgs = 0.8V, Vps = 1V and
z = —10nm. Recall that £+ = Onm corresponds to the center of
the device.

account quantum confinement effects through discretization of
conduction and valence bands into energy subbands. Should
this correction be neglected, carriers would continue being
injected at/from the edges of the bands with the subsequent
error that it implies given that those energy levels now become
forbidden states. So as to guarantee that BTBT takes place
between first bound states, both simulators need to include
a band profile modification algorithm allowing the reshaped
conduction and valence bands to match their first subbands,
E.; and Ej;, respectively. Fig. 2 illustrates a particular ex-
ample of band modification obtained from the MS-EMC for a
vertical cut taken at x = —10nm. The specific implementation
of quantum corrections in each of the simulators is outlined
in the following sections along with their detailed description.

C. BTBT Setup in MS-EMC

The BTBT model included in the MS-EMC code is based
on the mode-space approach of quantum transport [9]. The
structure of the device is divided into slices along the confine-
ment direction where the 1D Schrodinger equation is solved,
whereas the 2D Bolzmann Transport Equation (BTE) is solved
in the transport plane for electrons (XY in Fig. 1). The self-
consistency of the solution for these carriers is preserved by
coupling these two equations to the 2D Poisson equation.
However, since holes travel mostly in the low field source
region, a drift-diffusion approach is used to describe them.
This MS-EMC tool has already demonstrated its capabilities
in different scenarios where the performance of advanced
nanodevices has been studied [10], [11]. In spite of the

scattering mechanisms and the quantum effects included in
this code, its reasonable computational effort is one of the
main advantages of this approach with respect to the full-
quantum approach. In addition, the quantum transport effects
can be included in a separate way thanks to the decoupled
approximation [12]. Taking advantage of this, the BTBT model
has been incorporated in additional blocks modifying the MS-
EMC simulator as illustrated in the flowchart represented
in Fig. 3. This BTBT treatment accounts for the tunneling
current contribution through suitable generation rate functions,
GBTBT, for electrons and holes in the conduction and valence
bands, respectively [13]. This approximation simplifies the
treatment of the BTBT phenomena and allows low compu-
tational cost.

If we now focus on the BTBT block of Fig. 3, the first box
corresponds to the aforementioned subband quantization cor-
rections for the conduction and valence bands. This scheme of
operation is necessary because the carriers are initially placed
into subbands and, at a given z, their position distribution in z
is set by the solution of the Schrodinger equation. Therefore,
an adequate mapping procedure between 2D conduction and
valence bands and their respective subbands is required.

Since the 1D Schrodinger equation is solved for electrons,
their first subband, E.1, is known. Then, at every vertical slice
(fixed z), for those points in the conduction band verifying
Ec(z) < E.1, we set Ec(z) = E.1. As for the hole treatment,
the valence band profile can be accurately approximated along
z by a parabolic well [14] as inferred from Fig. 2. Therefore,
for fixed x, the modified valence band would read as

Ev modif(2) = By (2) — AER1(2), (D

where AFE};1(z) is a position dependent quantity that makes
use of the analytical resolution of the parabolic well profile as

By /"“;J — Llk(2)]d? if ABpi(2) >0
0 if AEhl (Z) S 0
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with ¢ the electron charge, k(z) = V" (z) and m} the hole
effective mass. For each vertical slice, d is the distance from
the center of the parabola. Notice how this treatment for holes
is more realistic than simply considering for them a rectangular
well approximation [13].

Once the bands have been appropriately corrected to match
their first subbands, the next step is the determination of the
starting and ending points for the tunneling processes. These
points are estimated by calculating the path followed by the
carriers when they tunnel across the forbidden energy barrier.
One on the main advantages of our MS-EMC code is that
it allows dynamical determination of the 2D tunneling path
according to the up-to-date electrostatic configuration at each
simulation step.

Two different assumptions have been considered here [15]
for calculating the tunneling path in the corresponding box
of Fig. 3. The first one estimates the path following the
criterion of the valence band “maximum gradient trajectory”
(i.e. maximum electric field, Fi,,x). In this case, the tunneling

)

AEhl (Z) = {



n(X’Z) 2D Poisson
Equation
(sma) Fotea
Va(x,2)
‘ Ho}es ] Vn—l(X,Z)
Drift-Diffusion
Transport 1D Schrédinger
Equation in
GBTBT,h (X7Z) Each Slice
Initial Soluti e Ct V,(x,z
b ‘0 ution Monte Carlo Electrons Generation Rate i)
Poisson -+ Transport Generation =~ C tati ! E; ()
Schrédinger (Electrons) omputation :
F.(x,z) |
g G X,7 eVt !
S; BTBT,c( s ) Fh(X7Z) |
Init Particles Scattering RaCe Tunneling 'Path
Computation Calculation

BTBT Block

CB(x,z)
VB(x,z)

Quantum
Corrections

Figure 3: Flowchart of the MS-EMC simulator with the additional blocks of the BTBT code where z is the transport direction, z the
confinement direction, n(x, z) and p(z, z) are the electron and hole concentrations, respectively, V' (x, z) is the potential profile, E;(x) is
the subband energy, ¥;(x, z) are the subband eigenfunctions, S;; are the scattering rates, subscript n stands for the iteration number, At
is the time step where BTBT is calculated, F.(z,z) and Fj(z,z) are the electric fields of electrons and holes associated to the selected
tunneling path, GereT,.(7, 2) and GeraT,K (T, 2) are the electron and hole generation rates, respectively.

path is dynamically computed based on the self-consistent
potential computed during the simulation. It is then easy to
understand that for the Fi,,x method, as the calculated paths
vary with the applied bias, so does the Ggrpr distribution.
The second way of determining the tunneling path follows the
“minimum length” (Ly;y) criterion. If we had to privilege one
of the two assumptions, we would be more tempted to tend
toward the Fi,,x method given that, as the tunneling region
is a zone of high electric field, the valence band electrons
allowed to tunnel would be more likely expected to do it in a
direction equal to the force that is pushing them towards the
potential barrier. For that reason, this tunneling path would
be in principle more probable from a purely physical point of
view. Nonetheless, as the tunneling process is not an intuitive
classical event, it should not be regarded as such. Therefore,
if one considers that carriers could potentially tunnel in many
directions, it could be also reasonable to assume that, for
example, electrons choose a tunneling path in which they jump
from the valence band to the nearest equi-energetic point in
the conduction band (i.e. L,;, method).

The choice of the non-local tunneling path is very relevant
in the calculation of the BTBT rates because we need it
to identify the starting and ending points of the tunneling
process to estimate an “a posteriori” local effective electric
field (whose determination only requires those two points and
the distance between them), which, in turn, is used to mimic
the actual non-local scenario through the utilization of local
equations (later shown). The non-locality is therefore greatly
captured by this method since, by determining our tunneling
path, we are dynamically accounting for the self-consistent
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Figure 4: Some examples of different tunneling paths estimated using
the two criteria considered in our work (Finax and Lmin). Recall that
r = —15nm corresponds to the limit between the source and the
channel.

modification of the conduction and valence bands throughout
the successive Monte Carlo iterations. As an example, Fig. 4
shows some examples of different tunneling paths estimated
using the two criteria considered in our work.

Still in the box corresponding to the tunneling path cal-
culation, notice that two types of electric fields will need
to be considered. One of them for electrons, F.(z,z), and



the other one for holes, Fj(x, z). It is important to highlight
the difference between them, as their corresponding carriers
effectively follow independent paths. In other words, two
generated electrons can reach the same ending point in the
conduction band, whereas their counterpart holes could have
been generated at different starting points in the valence band.
As a result of this, the tunneling generation rates are entirely
dependent on: i) the local electric field at each point, ii) on the
full tunneling barrier profile, and iii) on the selected tunneling
path.

The next step is to obtain Ggrpr for electrons and holes.
Our calculation is based on the Kane’s model applied to the
BTBT generation rate per unit of volume [16]-[18]:

GpraT,c(,2) = A <W>PGXP <_Fe(§,z)’> 3)

F i B
Gprern(v,2) = A <W> P <Fh($72)’> @

where Fyp = 1V/m, P=2.5 for the phonon assisted tunneling
process. The prefactor A and the exponential factor B for
indirect transitions read as [19]
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where g is a degeneracy factor, m. and m, are the con-
duction and valence band density of states effective masses,
respectively, m,. is the reduced tunneling mass, N4 is the
occupation number of the transverse acoustic phonons at
temperature T, D 4 is the deformation potential of transverse
acoustic phonons, and e 4 is the transverse acoustic phonon
energy. The rest of the parameters takes their usual meaning. In
this approach, only the transverse acoustic phonons are taken
into account because they have the highest phonon occupation
number and the smallest phonon energy [20].

Once the tunneling paths and Gprpr are calculated, the
last box inside the BTBT block of Fig. 3 translates them
into generated charges in the MS-EMC in a self-consistent
way [13]. As mentioned above, a drift diffusion approach is
considered to describe the hole transport as they are mainly
generated in the source. They are not treated as individual
particles and thus a correction in the hole concentration is
simply added to account for the generated holes at each time
step (ApBTBT(.’IJ,Z) = GBTBT,h(x,z) - At) following the
explicit expression for this aim extracted from [21] regard-
ing the utilization of the Scharfetter-Gummel discretization
scheme. A different methodology applies for electrons since,
for them, a number of superparticles, N., is generated in
the BTBT process. This /N, generation depends on the time
step, At, the statistical weight, w, and the electron generation
rate GprpT,.(2,2) at the position of the superparticle. The
procedure is as follows: first, these superparticles are generated

in the fundamental subband with randomly chosen z inside
the considered grid cell with a probability distribution given
by P(x) due to the 2D MS-EMC approximation:

Tsi
GBTBT,c (%, 2) dz

P(z) = 0 T .
/ / GerBr,(,2) dr dz
L, JO

Second, the number of particles is calculated taking into
account the corresponding generation rate for the considered
slice z;:

)

At
N, ==
w

Tsi
/ GBrBT,c (i, 2) dz. ¥
0

Note that the fact of determining in a certain way (either
via Flyax Or Lyiy) the BTBT path inside the forbidden energy
barrier implies the consideration of the spatial variation of the
bands across that path. This is why the methodology described
in this section accounts for non-locality phenomena.

In order to optimize the computational load, the time step
At where BTBT is calculated can be chosen independently
of the Monte Carlo time step (¢,). The inclusion of new
superparticles in the MS-EMC increases the simulation time
because we need to solve the free-flight block of each one
regardless of its weight (w). For this reason, it is worth
choosing t,, so as to assign an adequate number of electrons
per superparticle. Finally, a maximum tunneling rejection
length, Ly ax, is also introduced so that, if up to an given
integration step the tunneling length of a particle turns out
to be higher than L,,,y, the calculation of its tunneling path
stops. Lyax has been chosen to match the channel length,
Liax = La = 30nm.

D. TCAD Simulation Approach

The TCAD simulation scheme that we follow using Synop-
sys [19] is similar to that previously discussed and tested in
recent works [7], [22]. However, the nature of the device herein
analyzed allowed us to modify it in order to speed up the
simulations execution. The particularity of this device is that it
features band profiles easily approximable by triangular wells
(for electrons in the conduction band) and parabolic wells (for
holes in the valence band) as observed in Fig. 2. Therefore, we
can replace in this case the Schrodinger-Poisson resolution by
an analytical estimation of the subbands with great accuracy
and significant saving in simulation time.

The analytical handling for holes in this TCAD approach
is exactly the same as that described by Egs. 1 and 2 and is
included in Synopsys through the so-called physical model
interface (PMI) that allows to access and modify certain
models of the simulator by adequate C++ subroutines. As
for electrons, an analogue technique with its corresponding
subroutine can be implemented for each x [23], [24].

Regarding BTBT, we account for it by means of the
dynamic nonlocal BTBT model of Sentaurus [19] which
dynamically calculates the tunneling paths based on the energy
band profiles. The idea is that prior to injecting the carriers,
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Figure 5: Generation rate distributions for holes and electrons. (a)
MS-EMC with tunneling path following the maximum gradient
trajectory, (b) MS-EMC with minimum length tunneling path, (c)
TCAD-based approach with quantum corrections included. All fig-
ures correspond to Tsi = bnm, Vgs = 0.8V, Vpg = 1V. The center
of the device is taken as reference position with = Onm. The color
scale is in cm 357!

we modify the profiles of the conduction and valence bands
(making use of the aforementioned subroutines) which makes
them coincident with their first bound states. By doing so,
we manage BTBT to occur between first subbands, and not
between band edges as it happened semiclassically in the
absence of quantization effects. Other TCAD-based bandgap
widening techniques can also be found in the literature [25]-
[27].

III. RESULTS AND DISCUSSION

As described in Sec. II-C, two different tunneling trajec-
tories have been considered to mimic in a semiclassical way
the quantum mechanical phenomenon of interband tunneling.
Both tunneling paths (the one following the maximum gradient
and the one accounting for the minimum tunneling length) are
an acceptable bet for including in the MS-EMC simulator a
feasible BTBT model. Accepting this premise, the different
spatial distributions of the BTBT generation rates obtained
from each method (Fi,ax and Ly, depicted in Fig. 5(a)
and (b)) should not be interpreted as the evidence of an
inconsistency in the simulation approach, but as the proof of
the conceptual difference between two independent ways of
modeling the mentioned semiclassical trajectories. It is worth
noticing that the L,,;, criterion tends to distribute the electron
generation uniformly inside the channel along the z-direction,
whereas F},,x provides a generation profile more concentrated

towards the gate dielectrics and nearer to the source-to-channel
junction. For the sake of comparison, Fig. 5(c) shows the
mapping of Gprpr obtained for the same biasing and from
TCAD-based simulations.

One important and pertinent question arises in light of
the different Ggrpr profiles obtained in each case: does
this difference in the generation rate distributions entail a
difference in the total number of carriers injected by BTBT?
The answer to this question is given in Fig. 6 where we show
the total number of electrons generated in the channel by
means of BTBT for the MS-EMC (considering both Fi,.x
and Ly;,) and for the TCAD approach. One of the main
advantages of the method implemented in our MS-EMC code
is that it allows to inject in the most probable slice (from Eq. 7)
the number of generated carriers corresponding to that slice
(from Eq. 8), and not the total number of carriers (as done
in [13]). As a result, Fig. 6 is not the BTBT rate multiplied
by a certain time, but the average of the generated electrons.
Observe that overall there is a good matching between the
displayed curves suggesting that our BTBT treatment in the
MS-EMC provides accurate results for this type of devices.

Moreover, as the total number of carriers injected by BTBT
in this TFET device turns out to be mostly negligible in com-
parison with the total carrier distribution inside the channel,
the tunneling path choice does not have a noticeable impact
on the energy profile of the lower subband, E.;. This can be
observed for Vpg = 1V and Vgg = 0.8V in Fig. 7 along
with the corresponding subband profile obtained from TCAD
simulations.

Finally, the transfer characteristics calculated from the inte-
gration of the BTBT generation rate along the selected (most
probable) slice in the MS-EMC simulations are shown in
Fig. 8. Again, the comparison with the results arising from
the TCAD-based approach suggests a good performance of our
MS-EMC even in the low subthreshold region. This confirms
the fact that the Monte Carlo method is also suitable for
assessing this type of devices at very reduced current levels,
which traditionally was known to be a problematic issue. Of
course, the extremely reduced ON currents featured by the
analyzed device are due to the fact that we are dealing with
silicon. Once that the MS-EMC simulator has proven to be
reliable for handling BTBT phenomena, next steps would be
oriented to the consideration of direct materials with lower
bandgaps and alternative geometries like that of the heterogate
EHBTFET or the Fin EHBTFET.

IV. CONCLUSIONS

This work presents the implementation of a non-local BTBT
model inside an existing MS-EMC tool for the study of ultra-
scaled TFETSs allowing a detailed scattering description and
a moderate computational cost. The necessary semiclassical
adaptation of the quantum mechanical process of interband
tunneling led us to develop two alternative methods for defin-
ing the concept of tunneling path inside the forbidden bar-
rier. Quantum corrections associated to subband discretization
phenomena have been considered for both electrons and holes.
Results from TCAD simulations including quantization effects
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Figure 6: Number of electrons generated by BTBT inside the channel
for both tunneling path assumptions in MS-EMC (Fimax and Lmin)
compared to the result obtained from the TCAD-based simulation
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have been used for comparison with the proposed simulation
approach.
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