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Abstract: In 1971, Prof. L. Chua theoretically introduced a new circuit element, which exhibited
a different behavior from that displayed by any of the three known passive elements: the resistor,
the capacitor or the inductor. This element was called memristor, since its behavior corresponded
to a resistor with memory. Four decades later, the concept of mem-elements was extended to the
other two circuit elements by the definition of the constitutive equations of both memcapacitors and
meminductors. Since then, the non-linear and non-volatile properties of these devices have attracted
the interest of many researches trying to develop a wide range of applications. However, the lack of
solid-state implementations of memcapacitors and meminductors make it necessary to rely on circuit
emulators for the use and investigation of these elements in practical implementations. On this basis,
this review gathers the current main alternatives presented in the literature for the emulation of
both memcapacitors and meminductors. Different circuit emulators have been thoroughly analyzed
and compared in detail, providing a wide range of approaches that could be considered for the
implementation of these devices in future designs.

Keywords: emulator; gyrator; memcapacitor; meminductor; memristor

1. Introduction

Prof. Leon L. Chua presented in 1971 the theoretical definition of the two terminal
device which defined the relation between the time-integral of its input voltage (φ, flux)
and its electric charge (q) [1]. This element was called memristor given that its behavior
corresponds to a nonlinear resistor in which the current through its terminals at an in-
stant t1 depends not only on the input voltage at t1, but also on the input voltage from
t = −∞ to t = t1 (i.e., a resistor whose resistance depends on the history of its input). It
was also demonstrated that this element was passive and that, contrary to capacitors and
inductors, it cannot store energy. Therefore, as a manifestation of these characteristics, the
current of the memristor is zero whenever the input voltage is zero and, for a periodic
current input, the memristive systems show a “closed pinched hysteretic loop” in their i-v
characteristic [2].

However, until 2008 the investigation into the memristor concept was very limited
due to the lack of a solid-state implementation of this device [3–6]. However, it was in 2008
that a group of researchers of Hewlett Packard Labs announced the first solid-state device
fulfilling the theoretical definition of the memristor [7], which constituted a turning point
in the research of memristors and its applications. Since then, thanks to its non-volatility
and non-linear behavior, the memristor is expected to play a disruptive role in diverse
fields, such as neuromorphic circuits and neural networks [8–12], analog programmable
circuits and arithmetic circuits [13–16], logic gates [17], crossbar classifiers [18–20], adaptive
filters [21], chaotic circuits [22,23] and non-volatile memories [24–26]. This had led to
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intensive studies of the memristive behavior in a wide range of materials, such as transition
metal oxides (e.g., NiO and TaOx) [27,28], polymers [29], 2D materials [30] or graphene
oxide [31–33], among others. The success of the memristor led Di Ventra, Pershin and
Chua to extended the concept of the memory circuit elements to capacitive and inductive
systems, thus defining the memcapacitor and the meminductor, respectively [34]. In this
way, together with the memristor, they established the electrical relations between the
time-integral of the charge (σ) and the flux (φ) with the memcapacitor; and between the
time-integral of the flux (ρ) and the charge (q) with the meminductor (see Figure 1).
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Figure 1. Mem-elements definition on the basis of their fundamental physical magnitudes (units
are presented in brackets). Memristor: relation between the charge (q) and the time-integral of the
voltage (φ); memcapacitor: relation between time-integral of the charge (σ) and the time-integral of
the voltage (φ); meminductor: relation between time-integral of the flux (ρ) and the charge (q) [35].

As in the case of memristors, memcapacitors and meminductors also present a memory
ability manifested through a closed pinched hysteresis loop in the characteristic of their
two constitutive variables; with the additional advantage of being capable of storing energy
in capacitive and inductive forms, respectively [36]. These devices are expected to be the
key for the emergence of a new form of computation called neuromorphic computing,
since their essential properties are envisaged to allow them to mimic biological computing.
Thanks to their ability to both store and process information simultaneously, computers
based on these mem-elements would offer capabilities and power consumption comparable
to those of the human brain [37–39]. However, the lack of solid-state implementations of
memcapacitors and meminductors hinders the exploitation of the prominent features of
these devices in practical implementations. Due to this, in recent years there has been an
emerging line of research dedicated to the development of emulators of these devices, i.e.,
circuits that satisfy the constitutive equations of the emulated mem-element.

In this context, this work reviews the different models and practical memcapacitor
and meminductor emulators presented in the literature. Thus, the different approaches
followed for the emulation of the memory effect and nonlinear behavior of these devices
have been analyzed in detail and in a comparative way. The manuscript is structured
as follows: after this introduction, Section 2 presents the concept of memcapacitance as
well as the different approaches proposed for the emulation of memcapacitors. Similarly,
Section 3 introduces the concept of meminductive system and the different alternatives
adopted for the emulation of meminductors. Moreover, those circuits that based on the
same design are able to emulate either a memcapacitor or a meminductor with minimal
changes in their design have been grouped in Section 4. Finally, the main conclusions of
the different emulation approaches are drawn in Section 5.

2. Memcapacitor Emulators

The general memcapacitance (CM) is defined as the nth-order system that establishes
a nonlinear relation between the charge of the device (q) and its input voltage (v) [34]. It
can be either voltage-controlled or charge-controlled depending on its constitutive input
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variable. Therefore, an nth-order voltage-controlled memcapacitive system can be defined
by Equation (1):

q(t) = CM

(→
xN, v, t

)
·v(t) (1)

whereas the nth-order charge-controlled memcapacitance systems are defined by Equation (2):

v(t) = C−1
M

(→
xN, q, t

)
·q(t) (2)

being
→
xN a vector that represents the n internal state variables of the system.

The memcapacitor is a particular case of memcapacitive system with one single state
variable; the voltage in the case of voltage-controlled memcapacitors, Equation (3), or the
charge in the case of charge-controlled memcapacitors, Equation (4).

q(t) = CM

[∫ t

t0

v(τ)dτ

]
·v(t) (3)

v(t) = C−1
M

[∫ t

t0

q(τ)dτ

]
·q(t) (4)

In the previous equations, the initial instant of time, t0, may be selected to ensure that∫ t0
−∞ v(τ)dτ = 0 and

∫ t0
−∞ q(τ)dτ = 0, respectively.

Therefore, the memcapacitors are nothing but capacitors whose capacitance depends
on the history of the constitutive variable that acts as input (either charge or voltage) and
whose q-v characteristic presents a closed-pinched hysteresis loop in which v = 0 whenever
q = 0 (and vice versa) for bipolar sine wave-like excitations. In this way, the memcapacitor
emulators must be able to monitor the control variable (q or v) and then change its input
capacitance according to the history of this variable. Therefore, the memcapacitor emulators
can also be either voltage- or charge-controlled.

An example of charge-controlled memcapacitor emulator is the one proposed by
Fouda and Radwan in Ref. [40], and shown in Figure 2. This circuit is based on the
mathematical model of charge-controlled memcapacitance introduced by Biolek et al. [41],
which is given by Equation (5):

1
CM(t)

=
1

C0
+ k′

∫ t

0
q(τ)τ (5)

where C0 corresponds to the initial capacitance and k′ is the mobility factor.
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This emulator is designed to achieve the behavior indicated in Equation (5) from the
input current of the circuit, then:

vIN(t) = 1
CIN

∫
iIN(t)dt + vFB(t) =

q(t)
CIN

+ vFB(t) =
q(t)
CIN

+ k′q(t)
∫ t

0 q(τ)dτ

= q(t)
CIN

+ q(t)
RC2C2

1

∫ t
0 q(τ)dτ

(6)

Note that this circuit requires implementing a copy of the injected current in order
to obtain the input charge and its integration; besides, it is limited for the emulation of
grounded memcapacitors. The circuit of Figure 2 was simulated using SPICE, demonstrat-
ing that it certainly behaves as a charge-controlled memcapacitor for a frequency of 10 Hz
resulting in a good agreement with the mathematical derivation. However, there is a lack
of physical implementation of this design demonstrating its actual performance.

A similar approach, but without the drawback of requiring a copy of the input current,
was proposed by Sah et al. in Ref. [42] and it is presented in the circuit of Figure 3 which,
following the same principle than the previous design, can be modelled as follows:

vIN(t) = 1
C1

∫
iIN(t)dt− vFB(t) =

q(t)
C1
− vFB(t) =

q(t)
C1
− k′q(t)

∫ t
0 q(τ)dτ

= q(t)
C1

+ q(t)
RC2C2

1

∫ t
0 q(τ)dτ

(7)
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Their authors validated this proposal through both SPICE simulations and exper-
imental results, demonstrating that this model is able to emulate a charge-controlled
memcapacitor at input frequencies ranging from 0.1 Hz to 25 Hz. Hence, this circuit was
able to provide a similar behavior to the previous one with a simplified design.

Another alternative to emulate grounded memcapacitors was proposed by Romero
et al. in Ref. [43], although in this case for voltage-controlled memcapacitors. This emulator
was implemented by relating the memcapacitance concept with the Miller effect, which
accounts for the amplification of the feedback capacitance in inverting voltage amplifiers
Equation (8).

ZIN =
VIN
IIN

=
VIN

jωC1(VIN − VOUT)
=

1
jωC1(1 + A)

=
1

jωCIN
(8)

On the basis of Equation (8), the authors proposed a gain, A, which depends on the
time-integral of the input voltage (i.e., the flux). To do so, they used a voltage-controlled
resistor, as shown in Figure 4a, to change the amplifier’s voltage gain according to the
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flux, hence satisfying the definition of the voltage-controlled memcapacitor, as derived in
Equation (9).

dσIN
dt = qIN(t) =

∫
iIN(t)dt

=
∫

C1
dvC1(t)

dt dt = C1(vIN(t)− vout(t)) = C1(1 + A(φ))vin(t)
= CM(φ)vIN(t)

(9)
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In the case of the implementation shown in Figure 4a, the resulting memcapacitance
is given by:

CM(φ) = C1

(
2 +

R1

RV(φ)

)
(10)

Additionally, having a voltage-controlled resistor whose value changes according
to the input flux (which is actually the time-integral of its input) makes also feasible the
implementation of this circuit by means of a memristor, as depicted in Figure 4b. In
this case, the memcapacitance could be expressed as indicated in Equation (11). Circuits
such as this one are considered as electrical mutators since, according to Equation (9) and
Equation (11), they transform the constitutive equation of the memristor (RM = dφ

dq ) into a

memcapacitor with its own constitutive relation (CM = dσ
dφ ).

CM(φ) = C1

(
2 +

R1

RM(φ)

)
(11)

The feasibility of this implementation was demonstrated by SPICE simulations for
different input waveforms at a frequency of 50 Hz, as well as by means of its physical imple-
mentation in a field-programmable analog array (FPAA) using a controlled-gain amplifier.

Actually, the use of mutators is a common approach for the implementation of mem-
capacitor emulators. Another example of this kind is the design proposed by Wang et al. in
Ref. [44] to emulate voltage-controlled memcapacitors. In this work, the authors relied on
the use of two commercially available second-generation current conveyors (CCII) AD844
in combination with a memristor, as shown in Figure 5a.
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In this circuit, the capacitor C1 and the first CCII are used to obtain a voltage propor-
tional to the integration of the input current (i.e., proportional to the charge). After that, the
second CCII allows to convert that voltage to current, given that IZ = −I− and V− = V+:

i2(t) = IZ2 =
−vout1

R1
=

1
R1C1

∫ t

t0

iIN(τ)dτ =
q(t)
R1C1

(12)

Therefore, the relation between the current and the voltage across the memristor can
be expressed as follows:

RM(φ) =
vIN(t)

i2
=

vIN(t)R1C1

q(t)
(13)

As seen, from the constitutive equation of the memristor we can get the equivalent
memcapacitance of this circuit, which is given by Equation (14).

CM(φ) =
R1C1

RM(φ)
(14)

Moreover, the authors presented in this work a novel approach for dealing with both
voltage-dependent resistors and/or voltage-controlled memristors (see Figure 5b). This
approach is based on a LED optically coupled with a LDR (light-dependent resistor) and,
as it will be shown later, it has been adopted for other authors for the implementation of
their emulators. However, it is important to highlight that this approach limits the upper
frequency of the emulator, since the LDRs usually suffer from a slow time-response.

The use of current conveyors to implement mutators was theoretically introduced by
Pershin and Di Ventra in Ref. [45], and since then it has been adopted by many authors
in the literature. One of the benefits of using current conveyors relies on the possibility to
implement floating memcapacitors, as shown in Figure 6.
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In the circuit of Figure 6, the current through the memristor corresponds to the current
through the inductor L1, and therefore:

vL1(t) = −iIN(t)·R1 = L1·
d
(
iRM (t)

)
dt

=
L1

RM(φ)
·d(v2(t)− v1(t))

dt
=
−L1

RM(φ)
·d(vIN(t))

dt
(15)

which indicates that this circuit emulates a voltage-controlled memcapacitor whose mem-
capacitance is given by Equation (16).

CM(φ) =
L1

R1RM(φ)
(16)

A similar approach to the one proposed in this work was followed by Yu et al. for the
implementation of a practical emulator based on this model [46]. However, their proposal
presents the drawback of requiring the use of a custom implementation of memristor
emulator, which does not guarantee the equality between the input and output current of
its two terminals.
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There are additional works that also make use of current conveyors for the practical
implementation of emulators without the requirement of including any memristor or
memristor emulator. This is the case of the grounded memcapacitor emulator presented by
Yesil and Babacan in Ref. [47] and schematized in Figure 7.
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In this emulator, the memcapacitance can be derived from the input current, which
can be expressed as:

iIN(t) = C1

d
(

vIN(t)− q(t)
R1C2

2C3

∫
q(t)dt

)
dt

(17)

and, therefore, the equivalent charge-controlled memcapacitance corresponds to the fol-
lowing expression (see Equation (5)):

1
CM(q)

=
1

C1
+

1
R1C2

2C3

∫ t

t0

q(t)dt (18)

Moreover, this emulator could also be implemented by replacing the second CCII with
an operational transconductance amplifier (OTA), as shown in Figure 7b. In that case, the
resulting memcapacitance would be given by:

1
CM(q)

=
1

C1
+

gm

C2
2C3

∫ t

t0

q(t)dt (19)

where gm is the OTA’s transconductance gain.
The experimental results obtained using off-the-shelf components demonstrated that

the circuits of Figure 7 was able to emulate a grounded charge-controlled memcapacitor at
frequencies up to 48 Hz.

The emulation of mem-elements using OTAs-based circuits is also common in the liter-
ature. For instance, in Ref. [48] Vista and Ranjan presented a memcapacitor emulator using
a dual X current conveyor differential input transconductance amplifier (DXCCDITA).

Their emulator is based on a DXCCDITA modeled as indicated in Figure 8.
On this basis, the memcapacitance can be derived from the voltage at the three different

passive elements, R1, C1 and C2 as:
vC1 = vZ− = 1

C1

∫ t
t0

iC1(t)dt = 1
C1

∫ t
t0

iZ−(t)dt = α
C1

∫ t
t0

iX−(t)dt = αqIN(t)
C1

vC2(t) = VO+(t) = VBO−
(t) = 1

C2

∫ t
t0

iO+(t)dt = gm
C1

∫ t
t0

VZ−(t)dt = αgm
C2C1

∫ t
t0

qIN(t)dt

VY(t) =
VX+ (t)

β =
−VX− (t)

β = VO−(t) = IO−(t)R1 = −gmVZ−(t)R1 = −gmαqIN(t)R1
C1

(20)

being α and β the current transfer gain and voltage transfer gain, respectively. On the other
hand, the transconductance (gm) can be expressed as gm = K

(
VBO−

+ VDD −Vt

)
, where
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VDD is the positive supply voltage and both Vt and K are parameters that depend on the
CMOS technology used.
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being ߙ and ߚ the current transfer gain and voltage transfer gain, respectively. On the 
other hand, the transconductance (݃௠ ) can be expressed as ݃௠ = )ܭ ஻ܸೀష

+ ஽ܸ஽ − ௧ܸ) , 
where ஽ܸ஽ is the positive supply voltage and both ௧ܸ and ܭ are parameters that depend 
on the CMOS technology used. 
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Therefore, the constitutive equation of this charge-controlled memcapacitor can be
obtained as:

vin(t) = VX−(t)−VX+(t) = −2βVY =
2αβKR1

C1
·q(t)·

(
VDD −VT +

αgm

C1C2

∫ t

t0

qIN(t)dt
)

(21)

Hence, the charge-controlled memcapacitance is given by:

1
CM(q)

=
2αβKR1

C1
·
(

VDD −VT +
αgm

C1C2

∫ t

t0

qIN(t)dt
)

(22)

The feasibility of this floating charge-controlled memcapacitor model has been verified
by means of SPICE simulation, and additionally, the practicability of this model is examined
in an adaptative neuromorphic structure [48].

Finally, a brief comparison of the different memcapacitor emulators presented in this
section is summarized in Table 1. The comparison has been carried out in terms of their
key components and mode of operation (grounded or floating), among other parameters.

Table 1. Comparison of the different memcapacitor emulators presented in this review.

Reference Mutator Configuration Control Variable Key Components Experimental

Fouda and
Radwan [40] No Grounded Charge

Op amps
Analog multiplier
Copy of the input

current

No

Sah et al. [42] No Grounded Charge Op amps
Analog multiplier Yes

Romero et al.
[43] Yes Grounded Voltage Op amps

Memristor 1 Yes

Wang et al.
[44] Yes Grounded Voltage Current conveyors

Memristor 1 Yes

Pershin and Di
Ventra [45] Yes Floating Voltage

Current conveyors
Inductor

Memristor
No

Yesil and
Babacan [47] No Grounded Charge

Current conveyor
OTA

Analog multiplier
Yes

Vista and
Ranjan [48] No Floating Charge Custom

DXCCDITA No

1 Or memristor emulator (applicable in all cases).
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3. Meminductor Emulators

The meminductance (LM) is defined as the nth-order system that establishes a non-
linear relation between the current across the terminal of the device (I) and its input flux
(φ) [34]. It can be either current-controlled or flux-controlled depending on its constitutive
input variable. Therefore, the nth-order current-controlled meminductive systems are
defined by Equation (23), whereas the flux-controlled ones are defined by Equation (24).

φ(t) = LM

(→
xN, I, t

)
·I(t) (23)

I(t) = L−1
M

(→
xN, φ, t

)
·φ(t) (24)

being
→
xN a vector which represents the n internal state variables of the system.

The meminductor is a particular case of meminductive system with one single state
variable; the current in the case of current-controlled meminductors (Equation (25)) or the
flux in the case of flux-controlled meminductors (Equation (26)):

φ(t) = LM

[∫ t

t0

I(τ)dτ

]
·I(t) (25)

I(t) = L−1
M

[∫ t

t0

φ(τ)dτ

]
·φ(t) (26)

where the initial instant of time, t0, may be selected to ensure that
∫ t0
−∞ I(τ)dτ = 0 and∫ t0

−∞ φ(τ)dτ = 0, respectively.
Therefore, the meminductance of meminductors depends on either the current or

the flux depending on whether they are current-controlled or flux-controlled, respectively.
In addition, their i-φ characteristic presents a closed-pinched hysteresis loop in which
i = 0 whenever φ = 0 (and vice versa) for bipolar sine wave-like excitations. The usual
approaches followed to implement meminductors emulators are quite similar to those used
to emulate memcapacitors. One of these common approaches employs mutators in order
to transform memristors into meminductors in both grounded and floating configurations.
This is the case of the grounded meminductor shown in Figure 9, which was proposed by
Wang in Ref. [49].
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In this circuit, the input current can be expressed as follows:

iIN(t) = iR1 + iR′1 = vIN(t)·
(

1
R′1
− R2

R1R′2

)
+

φIN(t)
2R2RM(φ)C1

·
(

R2

R′2
+ 1
)

(27)

As seen, Equation (27) can be directly related to the constitutive equation of a flux-
controlled meminductor with the condition of cancelling the term associated with the input
voltage, i.e., with R′1 = R1 and R′2 = R2. In that case, the resulting input current can
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be expressed as indicated in Equation (28) and, therefore, the circuit would emulate the
behavior of a flux-controlled meminductance modelled by Equation (29).

iIN(t) =
φIN(t)

R2RM(φ)C1
(28)

LM(φ) = R2RM(φ)C1 (29)

This simple model was verified by means of simulations; however, it was studied
neither in the frequency-domain nor with an experimental implementation.

Another example of mutator, based on a gyrator, was presented by Romero et al. upon
the design of the Antoniou’s circuit, as depicted in Figure 10 [35].
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In this case, the meminductance can be derived from the current through R5, given
that iR5 = iC4 . Therefore:

vIN(t)

R5
=

C4RMR3

R2
·d(it(t))

dt
→ iIN(t) = φIN(t)·

R2

RM(φ)R3R5C4
(30)

which indicates that the circuit behaves as a flux-controlled meminductor whose value is
given by Equation (31).

LM(φ) =
RM(φ)R3R5C4

R2
(31)

This circuit was validated using SPICE simulations for various input signals and
frequencies. For the simulations, the memristor was implemented by means of a LDR, as
shown in previous implementations. In addition, the practicability of the meminductor
model was also exhibited with a long-term potentiation (LTP) and long-term depression
(LTD) example [35]. However, this circuit also presents the disadvantage of being restricted
to grounded configurations.

Following the same approach, Romero et al. also presented a floating meminductor
emulator based on the Riordan gyrator. In this case, the meminductor emulator is based on
the schematic shown in Figure 11.

In order to emulate a floating meminductor, the input current at the first terminal
must be equal to the output current of terminal two, therefore:

IIN = −IOUT = VIN ·
Z2Z4

Z5ZMZ1
= −VIN ·

(
Z7

Z8Z6
+

Z2Z4Z7

ZMZ5Z6Z8
− 1

Z5

)
(32)
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Thus, the circuit of Figure 11 needs to fulfill the following condition:

1
Z5

=
1

Z1
=

Z7

Z6Z8
(33)

where Zi represents the impedance of the passive element i. On this basis, considering
R1 = R2 = R5 = R7 = R6 = R8 = R, Equation (32) can be expressed as given in
Equation (34).

IIN =
VIN

s
· 1
RC4RM(φ(s))

(34)

Finally, the constitutive equation of this floating meminductor emulator can be ob-
tained by transforming Equation (34) to the time domain:

iIN(t) = φIN(t)·
1

RC4RM(φ)
= φIN(t)·

1
LM(φ)

(35)

Therefore, with this implementation we can avoid the drawback of being subject to
grounded configurations when implementing a meminductor emulator. The feasibility of
this circuit was proved by a practical implementation, besides, an example of application
in which the emulator is used in an adaptative low-pass filter was also shown.

As in the case of memcapacitor emulators, some authors also rely on the use of current
conveyors for the implementation of their emulators. An example of this practice is the
model proposed by Sah et al. in Ref. [51], whose schematic is shown in Figure 12.
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In this circuit, the current relations iC1 = iR1 and iR2 = iR3 allow extracting the
constitutive equation of the equivalent flux-controlled meminductor:

iIN(t) = φIN(t)·
R2

C1R1R3RM(φ)
(36)

which results in the following meminductance:

LM(φ) =
C1R1R3RM(φ)

R2
(37)

as it was demonstrated by means of both SPICE and experimental results for different input
frequencies. Alternatively, in Ref [52] the same authors presented an equivalent circuit
based on two current conveyors (see Figure 13).
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In this emulator, the meminductance can be derived from the relation between the
current passing through the different passive elements, resistor, capacitor and memristor:

iC1 = iR1 = C1RM
diIN(t)

dt
=

vIN(t)
R1

(38)

Therefore, the flux-controlled meminductance is given by Equation (39), as demon-
strated experimentally by the authors.

iIN(t) =
φIN(t)

R1RM(φ)C1
=

φIN(t)
LM(φ)

(39)

Another example of mutator based on current conveyors was the circuit proposed by
Liang et al. [36] to emulate floating flux-controlled meminductors (Figure 14).

As it is shown, the equivalent input meminductance of this mutator can be extracted
from the current through the memristor:

iRM (t) = iR2(t) =
φIN(t)

R1C1RM
=

iIN(t)R3

R2
(40)

Thus, the flux-controlled meminductance can be calculated as:

LM(φ) =
R2

R1C1R3RM(φ)
(41)
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Figure 14. Floating meminductor emulator circuit based on current conveyors proposed by Liang
et al. [36].

Contrary to others practical mutators, in this work, the authors opted for the use of an
analog multiplier rather than a LDR for the implementation of the memristor with the goal
of achieving a better control over its memristance. Their proposed circuit was validated
experimentally using a sinusoidal input voltage for two different frequencies, 28.3 Hz and
36.9 Hz. A similar approach to the followed in this latter work was presented in Ref. [53]
by the same authors, and by Sozen and Cam in Ref. [54], although in this latter case the
authors made use of an OTA instead of a current conveyor to obtain the input flux.

All the meminductor emulators presented so far require the use of either a memristor
or a memristor emulator for their practical implementations. An alternative also based
on current conveyors, but without the need of implementing a memristor, can be found
in Ref. [55], in which Fouda and Radwan proposed the circuit depicted in Figure 15 to
emulate grounded current-controlled meminductors.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 21 
 

 

Another example of mutator based on current conveyors was the circuit proposed by 
Liang et al. [36] to emulate floating flux-controlled meminductors (Figure 14).  

 
Figure 14. Floating meminductor emulator circuit based on current conveyors proposed by Liang 
et al. [36]. 

As it is shown, the equivalent input meminductance of this mutator can be extracted 
from the current through the memristor: 

݅ோಾ(ݐ) = ݅ோమ(ݐ) =
߶ூே(ݐ)

ܴଵܥଵܴெ
=

݅ூே(ݐ)ܴଷ

ܴଶ
 (40)

Thus, the flux-controlled meminductance can be calculated as: 

(߶)ெܮ =
ܴଶ

ܴଵܥଵܴଷܴெ(߶) (41)

Contrary to others practical mutators, in this work, the authors opted for the use of 
an analog multiplier rather than a LDR for the implementation of the memristor with the 
goal of achieving a better control over its memristance. Their proposed circuit was 
validated experimentally using a sinusoidal input voltage for two different frequencies, 
28.3 Hz and 36.9 Hz. A similar approach to the followed in this latter work was presented 
in Ref. [53] by the same authors, and by Sozen and Cam in Ref. [54], although in this latter 
case the authors made use of an OTA instead of a current conveyor to obtain the input 
flux. 

All the meminductor emulators presented so far require the use of either a memristor 
or a memristor emulator for their practical implementations. An alternative also based on 
current conveyors, but without the need of implementing a memristor, can be found in 
Ref. [55], in which Fouda and Radwan proposed the circuit depicted in Figure 15 to 
emulate grounded current-controlled meminductors.  

 
Figure 15. Meminductor emulator circuit based on current conveyors proposed by Fouda and
Radwan [55].

This circuit is designed to fulfill the constitutive equation of the current-controlled
meminductors as defined in Equation (25) [56]:

φ(t) = (L0 + kq(t))·i(t) (42)

being L0 the initial inductance and k the mobility factor.
Therefore, considering that iR3 = iC2 , we can obtain:

φIN(t) =

(
R1R3C2 +

R2
1R3C2

C1R2
qIN(t)

)
·iIN(t) (43)
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By comparing the two previous equations, the current-controlled meminductance can
be expressed as indicated in Equation (44), which was demonstrated by SPICE simulations
and a circuit implementation at a frequency of 10 Hz.

LM(q) = L0 + kqIN(t) = R1R3C2 +
R2

1R3C2

C1R2
qIN(t) (44)

Moreover, as in the case of the memcapacitors emulators, some authors resorted to the
use of custom CMOS-based circuits to implement memristor-less meminductor emulators.
Some examples of these circuits are the works presented by Konal and Kacar in Ref. [57],
where the authors proposed a CMOS realization of multi-output OTAs for the emulation
of grounded meminductors; or the work presented by Vistan and Ranjan in Ref. [58],
where a voltage difference transconductance amplifier (VDTA) implemented with CMOS
technology is revealed to be also used for the emulation of grounded meminductors.

Finally, a brief comparison of the different meminductor emulators presented in this
section is given in Table 2. The comparison has been carried out in terms of their key
components and mode of operation (grounded or floating), among other parameters.

Table 2. Comparison of the different meminductor emulators presented in this work.

Reference Mutator Configuration Control Variable Key Components Experimental

Wang [49] Yes Grounded Flux Op amps,
Memristor 1 No

Romero et al.
[35] Yes Grounded Flux Op amps,

Memristor No

Romero et al.
[50] Yes Floating Flux Op amps,

Memristor Yes

Sah et al.
[51] Yes Grounded Flux

Current conveyor,
Op amps,

Memristor 1
Yes

Sha et al.
[52] Yes Grounded Flux Current conveyors,

Memristor No

Liang et al.
[36] Yes Floating Flux

Current conveyor,
Op amps,

Memristor
Yes

Fouda and
Radwan [55] No Grounded Current

Current conveyor,
Analog multiplier,

Adder
No

1 Or memristor emulator (applicable in all cases).

4. Universal Emulators: Memcapacitors and Meminductor

In this section, we select some of the remarkable circuits available in the literature that
are able to emulate either a memcapacitor or a meminductor by minor changes in their
structure or by a proper configuration of their passive elements. For instance, the circuits
shown in Figure 16a,b were proposed by Babacan for the emulation of memcapacitors and
meminductors, respectively [59]. In the first case, the memcapacitance behavior is achieved
by the feedback provided by the capacitors connected to the outputs of the OTA:

iIN(t) = C1

d
(

vIN(t)−
qIN(t)

∫
qIN(t)dt

C2
2

)
dt

(45)

and therefore, the equivalent input charge-controlled memcapacitance can be derived as:

CM(q) =
1

C1
+

∫ t
t0

qIN(τ)dτ

C2
2

(46)
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Similarly, in the circuit depicted in Figure 16b, the feedback provided in the negative
input of the OTA and the combination of the voltage in both R1 and C1 allows to express
the input voltage as follows:

vIN(t) = L1
diIN(t)

dt
+

R1

C1
·d(iIN(t)·qIN(t))

dt
(47)

and therefore, according to Equation (25), the current-controlled equivalent input memin-
ductance of this circuit corresponds to Equation (48).

φIN(t) =
(

L1 +
R1

C1
qIN(t)

)
iIN(t) = LM(q)iIN(t) (48)

The mutation of memristive systems into universal memcapacitive and meminductive
emulators have also been considered by some authors, as the case of Taşkiran et al. [60]. In
this work, the authors proposed a simple current backward transconductance amplifier
(CBTA) to implement a universal mutator based on the scheme exhibited in Figure 17a,
whose equivalent input impedance in the Laplace domain can be expressed as:

ZIN(s) =
VIN
IIN

=
ZW
ZZ
· 1
µW gmα

(49)
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Figure 16. Memcapacitor (a) and meminductor emulator (b) circuits proposed by Babacan [59].

Thus, by means of the substitutions shown in Figure 17b,c, the circuit of Figure 17a
can be used to emulate either a memcapacitor or a meminductor, respectively. In that case,
the equivalent input memcapacitance and meminductance can be derived as follows:

ZINMC (s) =
1

RM(φ(s))C1s
· 1
µW gmα

→ CM(φ) = RM(φ)C1µW gmα (50)

ZINMI (s) =
RM(φ(s))C1s

µW gmα
→ LM(φ) =

RM(φ)C1

µW gmα
(51)

where gm, µW , and α are the transconductance gain and both voltage and current
gains, respectively.
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Figure 17. (a) CBTA-based circuit for the emulation of floating memcapacitors and meminductors
devices proposed by Taşkiran et al. [60]. (b) Mutator for the emulation of memcapacitors, (c) mutator
for the emulation of meminductors.

Similarly, Yu et al. [61] proposed an universal mutator based on commercial current
conveyors for emulating grounded mem-elements (Figure 18a). As in the case of the
circuit proposed by in Ref. [60], this mutator can be used to achieve a straightforward
transformation between a memristor and either a memcapacitor or a meminductor by
just modifying the combination of its different impedances. In both cases, either the
memcapacitor (Figure 18b) or the meminductor (Figure 18c), the constitutive equation of
the emulated device can be derived from the relation between the current and the voltage
in Z1. Thus, for the memcapacitive ciruit:

qIN(t) =
C1

R2R3R4RM(φ)
vIN(t) = CM(φ)·vIN(t) (52)

whereas for the meminductive circuit:

iIN(t) =
R4

R1R2RM(φ)C3
φIN(t) = L−1

M (φ)·φIN(t) (53)
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Recently, Yu et al. [62] revisited this circuit aiming to emulate not only grounded mem-
elements but also their floating configurations, with the additional advantage of avoiding
the inclusion of a memristor (or its emulator) for its implementation. The behavior of these
circuits is derived from the relation between the current through the resistor R2 and the
varactor diode CVD, given that iR2 = iCVD . On this basis, the memcapacitance of the circuit
displayed in Figure 19a can be extracted as:

iR2(t) =
qIN(t)
C1R2

= CVD(φ)
d
(

φIN (t)
R1C2

−VOFFSET

)
dt = CVD(φ)

vIN(t)
R1C2

→ CM(φ) =
C1R2CVD(φ)

R1C2

(54)
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In the same way, the equivalent meminductance of the circuit shown in Figure 19b
can be expressed as:

iVD(t) =
CVD(q)

C1
· dqIN(t)

dt = CVD(q)
C1

iIN(t) =
φIN(t)

R1R2C2

→ LM(q) = R1R2C2CVD(q)
C1

(55)

The feasibility of these circuits has been proved by means of experimental results for
sinusoidal input signals and in a wide range of frequencies (up to 22 kHz).

A similar circuit was proposed recently by Zhao et al. [63] as an alternative of this
latter emulator. The circuit presented by Zhao et al., shown in Figure 20, makes use of an
additional current conveyor and an analog multiplier in order to avoid the inclusion of a
varactor diode, thus also escaping from the necessity of an external offset voltage. In both
cases, memcapacitor emulator (Figure 20a) and meminductor emulator (Figure 20b), the
constitutive equations can be extracted relating the voltage at the output terminal Z of both
current conveyors, U3 and U4. Therefore, for the memcapacitor emulator we can write:

vIN(t) = vIN+ − vIN− = qIN(t)·
(

R4

C0R5
− R2

C0R3
+

R2

C2
0C1R1R3

∫ t

t0

q(τ)dτ

)
(56)

while for the meminductor emulator:

φIN(t) = φIN+ − φIN− = iIN(t)·
(

R0R4C2 − R0R2C0 +
R2

0R2C0

R1C1
qIN(t)

)
(57)
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Therefore, the equivalent charge-controlled memcapacitance and the current-controlled
meminductance of these circuits can be expressed as indicated in Equation (58) and
Equation (59), respectively.

C−1
M (q) =

R4

C0R5
− R2

C0R3
+

R2

C2
0C1R1R3

∫ t

t0

q(τ)dτ (58)

LM(q) = R0R4C2 − R0R2C0 +
R2

0R2C0

R1C1
qIN(t) (59)
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To sum up, Table 3 presents a brief comparison of the main features of the emulators
presented in this section for both memcapacitor and meminductor configurations.

Table 3. Comparison among of the different universal emulators cited in this review.

Reference Emulator Mutator Conf. Control
Variable Key Components Experimental

Babacan
[59]

Memcap.
No Grounded

Charge OTA
Integrator

Differentiator
Multiplier

No
Memind. Current

Taşkiran
et al. [60]

Memcap.
Yes Floating

Voltage Custom CBTA
Memristor 1 No

Memind. Flux

Yu et al.
[61]

Memcap.
Yes Grounded

Voltage Current Conveyor
Memristor Yes

Memind. Flux

Yu et al.
[62]

Memcap.
No Floating

Voltage Current Conveyor
Varactor diode

Subtractor
Yes

Memind. Flux

Zhao et al.
[63]

Memcap.
No Floating

Charge Current Conveyor
Multiplier

Adder
Yes

Memind. Current
1 Or memristor emulator (applicable in all cases).

5. Conclusions

In this work, different approaches proposed in the literature for the emulation of
memcapacitors and meminductors are reviewed in detail. The selected emulator circuits
have been theoretically analyzed to infer their constitutive equations and their equivalent
memcapacitance or meminductance. It has been reported that most of the emulators
presented in the literature are based on mutators, i.e., circuits that transform the constitutive
equation of memristors into the corresponding constitutive equation of the emulated device.
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Moreover, there are also a set of emulators that does not require the use of a memristor
(or its emulator) for their implementation, providing a reliable and simpler alternative to
emulate mem-elements. The main features of the analyzed mem-elements emulators have
been gathered in three tables to offer a complete overview of the technological options. So
that, we firmly consider that this study provides a useful guide for those researchers trying
to choose the appropriate emulator restricted by the requirements and constraints of their
practical implementations.
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