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ABSTRACT 

Multi-state models are considered in the field of survival analysis for modelling illnesses that evolve 

through several stages over time. Multi-state models can be developed by applying several 

techniques, such as non-parametric, semi-parametric and stochastic processes, particularly Markov 

processes. When the development of an illness is being analysed, its progression is tracked 

periodically. Medical reviews take place at discrete times, and a panel data analysis can be formed. In 

this paper, a discrete-time piecewise non-homogeneous Markov process is constructed for modelling 

and analysing a multi-state illness with a general number of states. The model is built, and relevant 

measures, such as survival function, transition probabilities, mean total times spent in a group of 

states and the conditional probability of state change, are determined. A likelihood function is built to 

estimate the parameters and the general number of cut-points included in the model. Time-dependent 

covariates are introduced, the results are obtained in a matrix algebraic form and the algorithms are 

shown. The model is applied to analyse the behaviour of breast cancer. A study of the relapse and 

survival times of 300 breast cancer patients who have undergone mastectomy is developed. The 

results of this paper are implemented computationally with MATLAB and R. 
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1. Introduction 

In survival analysis, it is usual to model the progression of a disease that can occupy several states or 

‘stages’ over time (e.g., alive without disease, local recurrence, distant metastasis, death). Studies 

analysing complex disease behaviour often use multi-state models that have been extensively 

developed over the last few decades (Andersen and Keiding, 2001; Hougaard, 1999; Putter et al., 

2007; Meira-Machado et al., 2009). Several methodologies have been used to analyse parametric and 

non-parametric multi-state models. In a multi-state framework, Cortese and Andersen (2010) 

presented some approaches for estimating cumulative incidences and survival probabilities when 

internal time-dependent covariates are included. Chen et al. (2010) were concerned with the analysis 

of data from progressive multi-state disease processes in which individuals are scheduled to be seen 

at periodic, pre-scheduled assessment times. Farewell and Tom (2014) showed that the multi-state 

modelling approach provides a convenient framework for handling a wide variety of medical 

applications characterized by multiple events and longitudinal data. Recently, flexible multi-state 

models for serial hospital admissions and death in heart failure of patients who are able to 

accommodate important features of disease progression, such as multiple ordered events and the 

competing risks of death and hospitalization, were proposed by Ieva et al. (2015). 

Several methodologies have been considered to study multi-state models. The usefulness of 

Markov modelling techniques to analyse multi-state models has previously been demonstrated. 

Several papers have described disease progression over time using a multi-state model that introduces 

assumptions of homogeneity. This hypothesis assumes that the transition rates between any two 

different states of an illness are constant over time. Pérez-Ocón et al. (1998) analysed the evolution 

of breast cancer using a continuous-time homogeneous Markov model. Jackson (2011) reviewed 

Markov models and their extensions, which can be fitted to panel-observed data. The homogeneity 

hypothesis sometimes appears unrealistic, however, given that the evolution of the disease is not 

constant over time. To overcome this problem, Pérez-Ocón et al. (2001) proposed a non-

homogeneous approach using a piecewise Markov process, with the transition intensity functions 

being step functions. The authors also analysed the survival evolution of different groups of patients 

by introducing covariates into the model. Commenges and Joly (2004) considered a multi-state 

model, with five states, for jointly modelling dementia, institutionalization and death to analyse the 

relationships between these factors through a non-homogeneous Markov model. 

Continuous-time Markov models have found wide application in medicine and social sciences for 

studying data that record life history events for individuals (Kalbfleisch and Lawless, 1985; Jackson 

et al., 2003). Santamaría et al. (2009) considered a homogeneous Markov model to analyse the 
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behaviour of bladder carcinoma. The importance of modelling in continuous time is evident in 

survival analysis, but discrete time also plays an important role in biomedical analysis. Many studies 

apply several methodologies to show the importance of discrete time (see, for example, Van Den 

Hout 2016). In general, models in discrete time are treated similarly to models in continuous time, 

with piecewise-constant main probabilistic functions. Moreover, Singer and Willett (2003) developed 

multilevel models for individual change and hazard/survival models for event occurrence (in both 

discrete and continuous time). Bacchetti et al. (2010) considered a discrete-time, multi-state model to 

analyse the progression of liver fibrosis due to hepatitis C following liver transplantation. When the 

development of an illness is being analysed, its progression is tracked periodically form. In this way, 

medical revisions take place at discrete times, and a panel data analysis can be built. It can be 

interesting to know the state of an illness at a certain revision. In addition to continuous time, discrete 

time could then be introduced to analyse the progression of a disease, particularly with discrete-time, 

multi-state models when the evolution passes through different states. The structure of the models 

and the associated measures should be studied with different techniques. 

When the embedded lifetime distributions in the evolution of a disease are complex, such as 

transition times between any two states, intractable expressions sometimes appear in the modelling 

and in the associated measures. It is interesting to work out the modelling and results algorithmically 

and computationally, which enables us to obtain expressions that can be computationally applied and 

more easily implemented. One class of distributions that has a matrix structure and provides an 

algorithmic Markovian methodology is the phase-type distribution (Neuts, 1981). Titman (2014) 

developed an alternative application of phase-type distributions for semi-Markov models to provide a 

computationally tractable approximate likelihood. The matrix structure provided by Markov 

processes makes it possible to express the modelling in this way. A well-structured matrix form 

enables us to express different models in a similar way depending on the inner structure of the 

matrices. The matrix expressions are the same, but different transitions inside the matrices can lead to 

different models. 

This paper provides several novelties from a theoretical and medical point of view. In terms of 

theory, 1) the evolution time of a general disease with a general number of states when it is observed 

in discrete time is analysed by a multi-state model, and a non-homogeneity is introduced in a discrete 

multi-state model through a discrete-time piecewise non-homogeneous Markov process; 2) following 

the good properties of the phase-type distribution class, the model is developed in matrix and 

algorithmic forms to be applied to any general case; 3) a first approximation to time-dependent 

covariate vectors is introduced; 4) the likelihood function for estimating the parameters and cut-

points of the model is built. Both have been estimated jointly by taking into account that the cut-
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points are non-negative integer values; 5) the lifetime distribution and several important associated 

measures, such as the mean total times, first-passage time distributions and conditional probabilities 

of state change, are determined in a well-structured form. 

From a medical point of view, the model developed is applied to a cohort of 300 patients to 

analyse the progress of breast cancer under different treatments with interesting conclusions. All 

patients have similar features (all patients had some axillary nodes affected, and certain basic criteria 

were adopted in the application of treatments) and can move through three different states by time: 

State 1 (patient operated with no signs of disease), the initial state for all patients after mastectomy; 

State 2 (relapse), the state at which the tumour has a local regional recurrence in the same sampling 

location as the initial tumour, at the site of the scar from the initial operation, in the supraclavicular or 

axillary ganglionic regions, or in the internal mammary chain; or State 3, the state of death, reached 

when a patient has died as a consequence of the initial breast cancer (with or without local relapse). 

Initially, all patients are in State 1; the malignant tumour has been removed. From a medical point of 

view, treatment effectiveness is analysed considering the measures developed in this work. New 

prognosis factors, such as the number of infected glands and menopausal state, are included in the 

paper jointly in the treatments. A goodness-of-fit analysis is carried out. It is important to highlight 

that the developed methodology is not an immediate consequence of the continuous case.  

The remainder of this paper is organized as follows. In Section 2, the piecewise Markov model in 

discrete time is presented. Section 3 describes the likelihood function to estimate the parameters of 

the new model, while Section 4 gives some interesting measures associated with the described model. 

In Section 5, the breast cancer data used is described, while in Section 6 the methodology is applied 

to analyse the behaviour of breast cancer. Section 7 contains some concluding remarks. The 

modelling and the results are implemented computationally using MATLAB and R. 

2. The Markov model 

The usefulness of Markov models has been indicated in disease progression modelling. It is common 

in the survival literature to consider that the behaviour of the process is homogeneous over time, i.e., 

the transition probability is the same after each step on the real line. Sometimes this assumption is 

unrealistic, given that a disease behaves differently at different times. In these cases, a non-

homogeneous model should be considered. One approximation of a non-homogeneous model may be 

obtained in the following way. 
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2.1. The piecewise model 

Let {X ;  0} be a discrete-time Markov process with a state space S = {1, 2, ... r, r + 1}, where {1, 

2, ..., r} are transient states of the process and the state r+1 is an absorbing state. Moreover, the 

absorbing state can be changed by an absorbing class. The initial distribution for the transient states is 

denoted by . 

We assume that the progression of a disease varies over time and is observed at discrete times. 

The non-negative real line is partitioned through k−1 positive integer cut-points, 

c0=0 <c1 <…<ck1<ck=∞, 

which define k intervals of time  1, ;  1, ,l l lI c c l k   . The length of each interval is given by 

1;        1, , 1l l la c c l k     . 

We assume that the behaviour of the disease in each time interval can be modelled by a 

homogeneous Markov process. If the l-th interval is considered, the transitions are governed by a 

local transition probability matrix given by 

0

,   1,... ,
0 1

l l

l l k
 

  
 
 

T T
P  

where the matrix Tl contains the transition probabilities between any two transient states in the 

interval Il and 
0

lT  is a column vector whose elements are the probabilities of reaching the absorbing 

state from any transient state inside the interval Il. 

 

2.2. Transition probabilities for the piecewise model 

The transition probability matrix for the proposed piecewise model is built in matrix and algorithmic 

forms from the local transition probability matrices. Given that at time n, the disease is in state i, then 

the probability of being in state j at time m is given by the element (i, j) of the following matrix: 

 

 
   0, ,

,   
0 1

n m n m
n m

 
  
 
 

T T
P .                                                 

 

(1) 

This matrix is also expressed by blocks according to the class of the states. The matrix T(n, m) 

contains the transition probabilities between any two transient states, and T
0
(n, m) is a column vector 

that contains the transition probabilities from a transient state at time n up to an absorbing state at 
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time m. This matrix is calculated by applying the Chapman-Kolmogorov equation at any cut-point 

between n and m and by considering the matrix block structure. Thus, 

                                 

1 1

1 1

1 1 1 1

11 1 2

1 1 2 1 2

1 1

1

2 1

1

; ,

, ; ,

; , , 1.

l l

l l i l

m n

l l

c n m c

l l l l

d
c n a m c

l l i l l l

i

m n I

n m n I m I

n I m I d l l 



 

 


 






 



  

     




T

T T T

T T T

                       (2) 

 

Given that matrix (1) is stochastic, then    0 , ,n m n m T e T e , being e a column vector of ones 

with appropriate order throughout the paper. 

Therefore, the probability that at time m the disease occupies state j, given that it is in state i at 

time n, is given by the element (i, j) of the matrix P(n, m), 

      , , | ,i j m n ij
p n m P X j X i n m    P  . 

The transient distribution vector is given by 

        ,0 0,m i S
m P X i m


  p α P , 

where  is the initial distribution for the transient states. 

 

2.3. Covariates 

We assume that in each interval of time Il, a covariate column vector zl is introduced. A first 

approximation of the time-dependent covariates is introduced as follows. The covariate vector is 

introduced in the piecewise model for the transition between states i and j in the interval Il as 

     'exp l

l l l l ijijij
  T z T z β  , l = 1,…, k; i, j = 1, …, r,  

where l

ijβ  is the column vector of regression coefficients for the transition between states i and j in 

the interval Il and  l ij
T  is the baseline transition probability between states i and j in the interval of 

time Il. Therefore, it follows that  l l ij
  T z  is the transition probability for one step in the interval Il 

for the subjects characterized by the vector zl. The scalar product of vectors ' l

l ijz β  can be interpreted 
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as in the Cox model, where l

ijβ  represents the regression coefficients of the covariates on transitional 

probabilities. Thus, in this interval of time, the probability ratio for items a and b with covariate 

vectors 
a

lz  and 
b

lz , respectively, for the transition ij is given by 

 

 
  

'

exp

a

l l
ij a b l

l l ijb

l l
ij

 
 

 
 
 

T z
z z β

T z
. 

Given the covariate vector zl in the interval of time Il, the transition probability matrix is given by 

 
   0

,   1,..., ,
0 1

l l l l

l l l k
 

  
 
 

T z T z
P z  

 

and from these, the piecewise transition probabilities, depending on the covariate vectors, can be 

worked out similarly to (2). Consequently, 

                              

 
   

1 2 1 2

1 2

0, ; ,..., , ; ,...,
, ; ,...,   

1

l l l l

l l

n m n m
n m

 
 
 
 

T z z T z z
P z z

0
,                           (3) 

and the transition probability between states i at time n and states j at time m is denoted as 

    
1 2 1 2, , ; ,..., , ; ,...,i j l l l l

ij
p n m n mz z P z z , 

where
1 2
 and l ln I m I  . 

 

3. Likelihood function 

The parameters of the model are estimated by maximum likelihood. We assume that n items are 

observed, all beginning in state 1, and item i is observed at mi change times, the last time being death 

or censorship. Given that the item is observed at different change times, then for any item, the value 

of the covariate vector and the corresponding state is observed. Therefore, a sequence of times, states 

and values of the covariate vector is achieved for each item i: ,1 ,2 ,0
ii i i mt t t    , 

11 , ,  
i

i i

mx x  

and 
1
, ,

mi

i i

l lz z , respectively. 
s

i

lz corresponds to the covariate vector for the interval that contains the 

time ,i st for item i and for 1,..., is m . 
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As such, if a patient is observed at times ti,1Il and ti,2Il+a, it contributes to the likelihood function 

with the factor 

       
1 1 1 1 2

1

,1 1 ,2 ,
1

, ; , , ; , 1, ; ,i i i i i

l a
l i l u i u l a i l a l a i

l i l l u u u u i u l a l a l ax x x x x
u l

f c t f c c f t c T
 

  

   

 

   z T β z T β z T β z , 

where  , ; ,q q

x qf t z T β
 
is the sojourn time probability in state x at time t in the interval Il, defined as 

   ,, ; ,
t

q q q

x q x xf t T   z T β z , 

where  ,

q

x yT z is the element (x, y) of the matrix Tq(z). 

The parameters of the model and the cut-points are estimated through maximum likelihood by 

considering that the matrices  i

q qP z  are stochastic matrices for any value of the covariate vector and 

any item i. 

The likelihood function has been built to estimate the parameters and cut-points. It is described in 

Appendix A. 

4. Measures 

Some interesting measures associated with the model described above have been obtained. The 

survival function, mean time to absorption, mean total time in a given state up to a certain time, first-

passage time distribution and some conditional probabilities have been worked out in a matrix 

algebraic form. The measures are introduced without covariates to facilitate the expressions; the case 

with covariates is analogous. 

4.1. Lifetime distribution and mean time up to absorption 

The distribution of time to absorption can be expressed in matrix form by considering the survival 

function. The discrete survival function is the probability that at time m, the disease occupies a 

transient state. It is given by 

   0,S m m αT e ,   m = 0, 1, 2, … 

Given the survival function, the mean time to absorption can be calculated from the expressions 

given in (2) as 
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   

         11

0

12
11 1

1 1 1 1

1 1 1

0

                   .ji i

m

j kk
aa ac

i j j i k

j i i

S m m



 




 

 

  

 

 
        

 

 

 

m=0

α T , e

α I T I T T I T I T T I T e

 

 

4.2. Mean total time in each transient state 

In a multi-state model, a disease can pass through different states over time. The mean total time in 

each transient state up to a certain time  Il can be determined in matrix form as 

   

           1 11

0

12
11 1 1

1 1 1 1

1 1 1

0,

.ji i l

m

j ll
aa a cc

i j j i l l

j i i

G m






 




   

 

  



 
         

 



 

α T

α I T I T T I T I T T I T I T

 

 

If  tends to infinity, then the mean total time in each transient state before absorption is equal to 

         11

12
11 1

1 1 1 1

1 1 1

ji i

j kk
aa ac

i j j i k

j i i




 

 

  

 
        

 
 G α I T I T T I T I T T I T . 

 

4.3. First-passage time distribution 

Another interesting distribution that should be estimated is the first-passage time, defined as the 

probability that the disease occupies the transient state j for the first time at a given time m. In the 

progression of a disease, which can pass through several transient states before absorption, it is 

important to calculate the probability that the disease progression enters at a determinate level at a 

certain time. 

The probability mass function of the first-passage time for the transient state j at time m is given 

by 

   * ( )0, 1 j

j j j lf m m  α T T , for j = 1,…, r, and mIl, 

 

where the vector jα is the initial distribution without the j-th element, 
( )j

lT  is the j-th column of the 

matrix lT without the j-th row and  * ,j  T is given by 



 

10 

 

  1 1

1 11

1, 1

*

1, 2, 2

2

1, 1, ,

1

;

0, ;

; , 2,i s

k

j

c k c

j j j

s
a k cc

j i j s j s

i

k I

k k I

k I s 





  




   




 


 

  




T

T T T

T T T

 

where the matrix Tl,j is the matrix Tl without the j-th row and column. This is a defective 

distribution given that the probability of reaching transient state j is lower than one (in other words, 

the absorption can have occurred previously). 

If m tends to infinity, then this measure is the probability of reaching state j, and it is given by 

         

 

11

2
1 1

1, 1, , 1, 1,

1 1 1

1
1

( )

, ,

1

              .

i s

i

sk
a ac

j j j j i j s j s j

m s i

k
a j

i j k j l

i

f m 

 
 

       

  




 




     




  



 



α I T I T T I T I T

T I T T

 

 

5. Application to breast cancer: description of the data set. 

 

The Department of Radiology at the Hospital Clínico of Granada (Spain) supplied a data set on a 

cohort of patients who underwent surgical treatment for breast cancer. A total of 300 patients were 

seen every month between December 1973 and December 1995. All patients were diagnosed and 

underwent mastectomy in the Hospital Clínico of Granada. Each patient entered the study the month 

after undergoing mastectomy. They were observed periodically at discrete times; the unit of time 

considered in this application is one month. The last observed time for each patient is either a 

censoring time or a completion time. If the patient was alive at the end of the study time (December 

1995), the patient is considered censored. All 300 patients were selected because they shared similar 

characteristics and had at least one axillary node affected. After surgery, these patients might have 

undergone different forms of treatment: radiotherapy (RT), hormonal therapy (HT), chemotherapy 

(CT) or combinations of the three. Initially, the treatments were preventive, and all patients with 

similar symptoms had the same type of treatment. Thus, hormonal therapy was given only to patients 

with positive oestrogen receptors. Patients receiving chemotherapy reatment were administered three 

different injected drugs: cyclophosphamide, methotrexate, and 5-fluorouracil. Thirty-nine patients 

(13% of the total) received all three types of treatment, while 22 patients (7.33%) received a 

combination of RT and HT. The largest group was the 110 patients (36.67%) receiving RT and CT, 
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while the smallest was the group of 7 patients (2.33%) who received only HT. Table 1 shows the 

complete distribution of the 300 patients by treatment. 

The patients could potentially pass through three states: State 1, no relapse (operation with no 

signs of disease), State 2, relapse (local regional recurrence of tumours), and State 3, death (as a 

result of the original disease). A censored patient is a patient who died as a result of other causes (not 

related to the original tumour), with whom contact had been lost, or who was still alive at the end of 

the observation period (December 1995). The initial state for all patients is state 1. The mean age of 

the patients was 52.48, with a standard deviation of 11.02. The minimum and maximum values 

observed were 25 and 80, respectively; the first quartile was 45, and the third quartile was 60. The 

total number of censored patients was 122 (40.67%), 110 from no relapse and 12 from relapse. 

Previously, with Markovian analysis, the behaviour of breast cancer was analysed by using several 

methodologies: parametric, non-parametric and semi-parametric (Cox model). The behaviour of the 

empirical and cumulative hazard functions from State 1 to relapse and death and from relapse to 

death were studied. Figure 1 shows the empirical cumulative hazard rate to death. We can observe 

that the behaviour of breast cancer is different at the beginning after surgical treatment, during the 

middle period and at the end of the follow-up period. This fact was analysed with the medical team, 

and it was concluded, without formal estimation, that the behaviour of the illness could be divided 

into three different periods. The cut-points of this division will be formally estimated by the 

maximum likelihood method in Section 6.2. 

 

Figure 1. Cumulative hazard rate to death 
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6. The Markov model 

Here, the methodology developed in Section 4 for any number of states and cut-points has been 

applied to analyse the behaviour of breast cancer. The cut-points and parameters were estimated with 

the maximum likelihood method by applying the likelihood function described in the Appendix. The 

model was built and used to determine some interesting measures. 

The progression of breast cancer has been modelled using a piecewise Markov model with two 

cut-points. The Markov assumption was tested using a Cox model (Kalbfleisch and Prentice, 1980). 

The p-value calculated from the data set was 0.1119; thus, there is no empirical evidence for rejecting 

the null hypothesis of the Markov assumption. This disease can pass through two transient states: 

state 1, no relapse, and state 2, relapse. The state space is S = {1, 2, 3}, where state 3 is the absorbing 

state, death. The death state was reached if a patient died as a result of the initial breast cancer. The 

possible transitions between any two states are given in Figure 2. This figure also shows the number 

of patients in each transition and the number of patients censored in each state. 

 

Figure 2. Transitions among states in the piecewise Markov model 

 

In the analysis of the model, the treatments are introduced through a covariate three-vector z’=(RT, 

HT, CT), with zh as a dichotomous variable for h = 1, 2, 3 equal to 1 if the corresponding treatment is 

not applied and 0 if it is. In this case, the vector z is time-independent, zl = z for l = 1, ..., k. The effect 

of treatment h on the transition ij is measured in each interval of time by the coefficient vector l

ijβ  

for l = 1, 2, 3. The transition probability matrix for each interval of time is given by 
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for l = 1, 2, 3, and the transition probabilities,  , ;n mP z , are obtained by considering (3). As shown 

in Section 2.3, the transition probabilities can be interpreted as in the Cox model. The baseline 

transition probability can also be interpreted as follows. When the baseline transition probability 

matrix is considered, i.e., all treatments are applied, z = (0, 0, 0)’, and the transition probabilities ij 

with i  j can be interpreted as 

 
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The transition probability ij in the interval Il is l

ij

 

times the probability of no occurrence of this 

transition. 

The power in k of the matrix  lT z  for l = 1, 2, 3 can be expressed in algorithmic form to optimize 

the procedure: 
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The probability that at time m, the disease occupies state j, given that the disease is in state i at time 

n, when a covariate vector z is present is given by 

    , ; , ;ij ij
p n m n mz P z  . 

The remaining measures can be determined by considering their corresponding covariates in a similar 

way. 

6.1. Estimates of cut-points 

A crucial part of the analysis is represented by the value of the cut-points. As reported in Section 5, 

the medical team hypothesized that the behaviour of the illness could be divided into three different 

periods by investigating the cumulative hazard rate to death. This assumption was formally estimated 



 

14 

 

using the Cox phase-type distribution (Faddy, 1998) at the times to death, which estimated three 

phases. Moreover, the models were estimated for every combination of times, ultimately resulting in 

 
   
 

        models estimated by using the likelihood function described in Appendix A. The 

best model (and consequently the value of the optimum cut-points) was detected using the log-

likelihood values of the models. The estimated cut-points were 19 and 93 months.  

6.2 Estimates of the model with treatments as covariates 

Looking at the effects of treatments, it is possible to state that RT treatment was essential in order to 

avoid relapse. This treatment was applied to 221 patients (73.67%); only 31 (14.03%) underwent a 

relapse: 9 of them within 18 months, 18 between 18 and 90 months, and 4 after 90 months. These 

values can be compared with the patients who were not treated with RT. In this case, we had 79 

patients with 45 relapses (56.96%): 31 of them before 18 months, 13 between 18 and 90 months, and 

1 after 90 months. In this analysis, other treatments were, of course, applied jointly with RT, but 

when only RT was considered (50 patients, 16.67%), 13 of them had a relapse (26%). Table 1 shows 

a summary of the data by period and risk group. 

To estimate the parameters for the model in equation (3), the likelihood function described in 

Appendix A was implemented computationally with MATLAB, and the results with their standard 

errors are shown in Table 2. In this case the parameters estimated are the cut-points, the regression 

covariate vectors and the parameters inside in matrices Tl, that is, 12 13 23 12 13 23 1 2, , , , , ,  and i i i i i i c c   β β β for 

i = 1, 2, 3. 

The cut-points were estimated to be 19 and 93 months, and the log-likelihood value was 

1419.9795. The regression parameter vector can be interpreted through the hazard ratio in a similar 

way to the Cox model by considering the transition probabilities. 

We can observe that the standard error associated with RT treatment in transition 13 in the third 

period of time is very high. For this reason, in this period, RT treatment might not make sense. This 

fact was contrasted by using the likelihood-ratio test, obtaining p-value=0.1911. The null hypothesis 

was not rejected, and a new model was estimated. The new estimates for the third period are given in 

Table 3. 
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  Survivors in  

state 1 

Death  

from state 1 

Censored 

in state 1 

Treatment Total J1 J2 J1 J2 J3 J1 J2 J3 

RT-HT-CT 

RT-HT 

RT-CT 

HT-CT 

RT 

HT 

CT 

No treatment 

39 

22 

110 

12 

50 

7 

13 

47 

35 

18 

106 

7 

43 

5 

10 

22 

21 

7 

57 

2 

16 

3 

5 

4 

2 

3 

2 

1 

3 

0 

0 

3 

11 

6 

40 

2 

16 

2 

1 

12 

3 

1 

5 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

4 

2 

0 

3 

0 

0 

0 

17 

6 

50 

2 

14 

3 

5 

3 

 

 Relapse Survivors in  

state 2 

Death  

from state 2 

Censored in  

state 2 

Treatment J1 J2 J3 J1 J2 J1 J2 J3 J1 J2 J3 

RT-HT-CT 

RT-HT 

RT-CT 

HT-CT 

RT 

HT 

CT 

No treatment 

2 

1 

2 

4 

4 

2 

3 

22 

2 

1 

7 

3 

8 

0 

4 

6 

1 

0 

2 

0 

1 

0 

0 

1 

1 

1 

2 

4 

3 

2 

2 

19 

1 

1 

2 

1 

0 

0 

0 

5 

1 

0 

0 

0 

1 

0 

1 

3 

2 

1 

7 

6 

11 

2 

6 

20 

0 

0 

1 

1 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

1 

3 

0 

1 

0 

0 

5 

 

Table 1. Survivors, death and censored patients for each period of time (J1[0, 18), J2[18, 90), J3 

[90, )) and risk group 

 

 



 

16 

 

Parameters I
1
[0, 19) I

2
[19, 93) I

3
[93,) 

12

l   
0.0017 0.0010 0.0003 

(s.e.) (0.0007) (0.0005) (0.0001) 

13

l  
0.0024 0.0062 0.0007 

(s.e.) (0.0013) (0.0014) (0.0001) 

23

l  
0.0406 0.0368 0.00005 

(s.e.) (0.0457) (0.0134) (0.00000) 

12

l
β  (2.3521, 0.0128, 0.6938) (1.1477, 0.7097, 0.3621) (0.8288, 0.2252, 1.5149) 

(s.e.) (0.3892, 0.3668, 0.3600) (0.3963, 0.4878, 0.3813) (0.9498, 0.7379, 0.8634) 

13

l
β  (0.0396, 0.6451, 1.1945) (0.2815, 0.1181, 0.2680) (22.5351, 0.6529, 0.5781) 

(s.e.) (0.5970, 0.5282, 0.5586) (0.2765, 0.2363, 0.2209) (55564.5, 0.3902, 0.6498) 

23

l
β  (0.9735, 0.8986, 0.7378) (0.2819, 0.2672, 0.1133) (5.2433, 4.7289, 5.7713) 

(s.e.) (0.8609, 1.1614, 0.9198) (0.2885, 0.3583, 0.3054) (0.4908, 0.4908, 0.6774) 

Table 2. Maximum-likelihood estimates and standard errors of baseline transition probabilities and 

regression coefficients in each interval of time 

 

Parameters I
3
[93,) 

12

l   
0.0003 

(s.e.) (0.00005) 

13

l  
0.0006 

(s.e.) (0.00007) 

23

l  
0.00005 

(s.e.) (0.00000) 

12

l
β  (0.8270, 0.2253, 1.5151) 

(s.e.) (0.9499, 0.7379, 0.8635) 

13

l
β  

(0, 0.6426, 0.3552) 

(s.e.) (, 0.3937, 0.6316) 

23

l
β  (5.2435, 4.7291, 5.7715) 

(s.e.) (0.4908, 0.4908, 0.6774) 

Table 3. Maximum-likelihood estimates and standard errors of baseline transition probabilities and 

regression coefficients in the third interval of time for the reduced model 
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The conversion factor, if a covariate vector z is applied with respect to the risk group with no 

treatments, is therefore given by e
[z(1,1,1)]’

. Table 4 shows the estimated conversion factor with 

respect to no treatments for each interval of time and each transition according to the type of 

treatment. We can observe the importance of radiotherapy for avoiding a relapse in the first period, 

which is essential for survival, and chemotherapy for preventing death from state 1 (no relapse). 

Therefore, the probability of a relapse at any time in the first interval of time decreases when only 

radiotherapy is applied with respect to the no treatment case by 90.48%. 
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z I1[0, 19) I2[19, 93) I3[93,) I1[0, 19) I2[19, 93) I3[93,) I1[0, 19) I2[19, 93) I3[93,) 

RT 0.0952 0.3174 0.4366 10.404 0.7546 ---- 26.472 13.256 0.0053 

HT 10.129 0.4918 12.525 19.061 0.8886 0.5206 0.4071 0.7656 0.0088 

CT 0.4997 0.6962 0.2198 0.3029 0.7649 0.5610 20.913 11.200 320.9651 

RT-HT 0.0964 0.1561 0.5468 19.832 0.6705 ---- 10.778 10.148 0.00005 

RT-CT 0.0476 0.2210 0.0960 0.3151 0.5772 ---- 55.361 14.846 16.956 

HT-CT 0.5061 0.3424 0.2753 0.5773 0.6797 0.2920 0.8515 0.8574 28.362 

RT-HT-CT 0.0482 0.1087 0.1202 0.6006 0.5129 ---- 22.540 11.366 0.0150 

No treatment 1 1 1 1 1 1 1 1 1 

Table 4. Conversion factors with respect to no treatment for each interval of time and transitions 12, 13 and 23 according to the type of treatment. 
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Based on the piecewise Markov model, the estimated transition probability from no relapse to relapse 

depending on treatment is illustrated in Figure 3. These plots show that radiotherapy is essential in 

order to avoid local relapse. When radiotherapy is present, the probability of relapse decreases 

considerably. 

 

Figure 3. Estimated probability of being in the relapse state versus time according to the type of 

treatment 

 

In Figures 4 and 5, the estimated survival functions for RT, RT-CT, RT-HT-CT and No treatment 

according to the piecewise Markov model are compared to the survival function by considering the 

estimated product limit. A period of 120 months is plotted, and the dashed lines are the confidence 

bands for the Kaplan-Meier estimate with a confidence level of 95%. 

 

Figure 4. Estimated survival function for only RT and for RT-CT (circles) and the product limit 

(continuous line) 
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Figure 5. Estimated survival function for RT-HT-CT and for No treatment (circles) and the product 

limit (continuous line) 

 

6.2.1 Goodness of fit 

The goodness of fit was performed using several methods. First, the performances of the 

homogeneous model and the piecewise model were compared by using empirical estimates. 

Moreover, a Pearson-type goodness-of-fit test for the multi-state Markov model was applied to the 

homogeneous and piecewise models. Then, the goodness of fit of the piecewise multi-state model 

was evaluated using the Hollander and Proschan test (Hollander and Proschan, 1979). 

Figures 4 and 5 show the 95% confidence intervals of the Kaplan-Meier estimates for RT and RT-

CT and for RT-HT-CT and No treatment, respectively. The piecewise non-homogeneous model fits 

all cases better than the homogeneous model. Moreover, the estimated homogeneous survival curve 

from the fitted multi-state model for the RT-CT and No treatment group goes outside the confidence 

limits of the Kaplan-Meier estimates; this may be taken as informal evidence of a lack of fit. To 

measure the difference between the Kaplan-Meier curve and the estimated survival curves for a 

homogeneous and a piecewise model, we performed the following calculation: 

    
2

0KMS t S t ,  

where SKM (t) is the value of the Kaplan-Meier estimate at time t and S0(t) is the survival function 

obtained from the model at time t. The results are reported in Table 5. 
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Treatments Piecewise Homogeneous No. of patients 

HT 0.20424 0.25178 7 

RT 0.02970 0.27217 50 

CT 0.40446 0.46479 13 

HT-CT 0.14277 0.32417 12 

RT-HT 0.05888 0.07382 22 

RT-CT 0.18620 0.55041 110 

RT-HT-CT 0.05715 0.23182 39 

No treatment 0.04543 0.48377 47 

 

Table 5. Results for the difference between the Kaplan-Meier curve and the estimated survival curve 

for a homogeneous and a piecewise model. 

 

The results show a better fit for the piecewise model, as all of its values are smaller than the 

corresponding value from the homogeneous model. 

Applying the Pearson-type goodness-of-fit test for the multi-state Markov model (Titman and 

Sharples, 2010), the value of the statistic was 481.888 for the homogeneous model and 29.914 for the 

piecewise model. The asymptotic null distribution is a    with 49 degrees of freedom
a
 with 

              , indicating that the fit of the homogeneous model is poor, whereas the piecewise 

model seems to fit the data adequately. In Appendix B, we report the contingency tables for the 

observed and estimated counts for homogeneous (Table 11a) and piecewise models (Table 11b). 

The second step in determining goodness of fit is to apply the Hollander and Proschan test for a 

multicensored data set. The experimental statistics are denoted by Zexp and are normally distributed 

under the null hypothesis H0: S(t)=S0(t), where S(t) is the underlying survival function and S0(t) is the 

survival function obtained from the piecewise model. Table 6 shows the results obtained by applying 

the test. In most cases, the model seems to fit adequately: the null hypothesis is accepted at a level of 

0.05. For chemotherapy and hormone-chemotherapy treatments, the null hypothesis can be 

rejected if a lower significance level is assumed. 

 

 

 

                                                 
a
 The degree of freedom is given by 7 possible transitions (11, 12, 13 1C, 22, 23, 

2C), 3 periods, 8 groups of patients divided by treatment regimen and 35 estimated parameters: 

(71) x (31) x (81)35=8435=49. 
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Treatment Zexp p-value No. of patients 

HT 0.120 0.904 7 

RT 1.410 0.159 50 

CT 2.418 0.0156 13 

HT-CT 2.524 0.012 12 

RT-HT 1.684 0.092 22 

RT-CT 1.669 0.0950 110 

RT-HT-CT 1.025 0.305 39 

No treatment 1.072 0.170 47 

Table 6. Values of the statistic Zexp of the Hollander and Proschan test and the p-value for the survival 

fit to the treatments for the piecewise model. 

 

6.3 Estimates of the model with treatments and endogenous factors (infected axillary glands 

and menopausal status) as covariates 

 

Multiple endogenous factors associated with the patients were analysed. Some of them are specific to 

the patient, such as age and menopausal state, and others are prognostic factors, such as the number 

of infected axillary glands. Previous non-parametric and semi-parametric methods were used, and 

conclusions about these factors were reached. For each patient, the number of infected axillary glands 

and the menopausal state were observed, the second at the moment of diagnosis. The first factor was 

partitioned into three significant groups: one, two and more than two infected axillary glands. The 

mean times to death when the number of infected axillary glands for these three groups were 169.11 

months, 97.33 months and 78.49 months, respectively (calculated from the product-limit estimator). 

Similarly, menopausal status was registered for each patient. Two groups were considered:  pre- and 

perimenopause and postmenopause. Additionally, the mean time to death was determined from the 

product limit estimator. For the first group, it was equal to 140.83 months (130 patients, 62 

censored), and for the second group, it was 96.25 months (170 patients, 60 censored). One of the 

main problems when more variables are considered is the number of patients in each subgroup. The 

mean time from the prognosis as a function of treatment and the number of infected axillary glands or 

menopausal status is shown in Table 7. 
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 RT HT CT RT-HT RT-CT HT-CT RT-HT-

CT 

No 

treatment 

1 infected 

axillary 

gland 

112.65 

(35) 

___ 

(3) 

111.43 

(7) 

91.22 

(9) 

160.82 

(38) 

___ 

(2) 

141.09 

(11) 

119.56 

(16) 

2 infected 

axillary 

glands 

38.33 

(12) 

35.5 

(4) 

60 

(4) 

165.23 

(10) 

93.65 

(59) 

78.6 

(5) 

110.60 

(20) 

50.96 

(23) 

>2 infected 

axillary 

glands 

29.67 

(3) 

___ 

(0) 

46.50 

(2) 

26 

(3) 

117.26 

(13) 

41.20 

(5) 

118.13 

(8) 

34.5 

(8) 

Pre- and 

perimenopause 

105.06 

(11) 

74.67 

(3) 

114.8 

(5) 

180.5 

(6) 

134.79 

(51) 

97 

(6) 

112.26 

(27) 

78.38 

(21) 

Post-

menopause 

86.23 

(39) 

76.75 

(4) 

63.5 

(8) 

85.81 

(16) 

106.8 

(59) 

58 

(6) 

119,07 

(12) 

57.04 

(26) 

Table 7. Mean time to death and number of patients (in brackets) according to treatment and number 

of infected glands and menopausal status  

 

We assumed a discrete-time Markov model similar to the model developed in Section 6.2 but with 

two new covariates: menopausal status (ME) and number of infected axillary glands (INF). The 

menopausal status covariate takes a value of one when the patient is in a post-menopausal status and 

zero otherwise. The number of infected axillary glands covariate is partitioned into three different 

groups (1, 2 and more than 2 infected axillary glands). To include this covariate in the model, two 

dummy covariates are introduced. The baseline for the model is a patient with 1 infected axillary 

gland with a menopausal status before postmenopause and all treatments applied. The dummy 

covariates for the number of infected glands are 2 infected axillary glands and more than 2 infected 

axillary glands, which take the value of 1 when the number of infected glands is certain and 0 

otherwise. The number of patients with one infected axillary gland was 121, while 137 patients had 

two infected axillary glands and 42 patients had more than two infected axillary glands. 

The parameters were estimated with a maximum likelihood function; Table 8 shows these values 

(the order of the covariates is RT, HT, CT, Menopausal status, 2 infected axillary glands, and more 

than 2 infected axillary glands). For the last period of time, none of the patients had more than 2 

infected axillary glands; therefore, this covariate was removed for this period of time. 



 

24 

 

Parameters I1[0, 19) I2[19, 93) I3[93,) 

12

l
  0.0008 0.0006 0.0001 

(s.e.) (0.0004) (0.0003) (0.0003) 

13

l
 0.0008 0.0024 0.0000 

(s.e.) (0.0007) (0.0008) (0.0000) 

23

l
 0.0281 0.0220 0.0000 

(s.e.) (0.0460) (0.0111) (0.0005) 

12

l
β

 
(2.2168, 0.0373, 0.8168, 

0.1057, 1.1011, 1.3114) 

(1.1308, 0.7214, 0.5033, 0.2746, 0.5952, 

0.9183) 

(0.9944, 0.1961, 1.3787, 0.9166, 0.6763, 

11.2480) 

(s.e.) (0.4009, 0.3762, 0.3756, 0.3097, 

0.4065, 0.4748) 

(0.4080, 0.4911, 0.4146, 0.3836, 0.3957, 

0.5955) 
(1.3059, 1.2649, 1.4050, 1.1520, 1.2372) 

13

l
β

 
(0.2613, 0.4467, 1.5089, 

0.0958, 1.3061, 1.5179) 

(0.2698, 0.2571, 0.5824, 0.1669, 1.0314, 

1.2614) 

(13.7257, 1.4645, 1.5560, 1.0581, 

3.1020, 10.2250) 

(s.e.) (0.6276, 0.5458, 0.5919, 0.5498, 

0.6828, 0.8355) 

(0.2861, 0.2425, 0.2462, 0.2169, 0.2428, 

0.3443) 

(1018.05, 1.3155, 1.1118, 0.8991, 

1.2657, 653.776) 

23

l
β

 
(0.7974, 0.8359, 0.7959, 

0.0330, 0.5100, 0.0277) 

(0.3171, 0.4436, 0.2133, 0.7890, 

0.1713, 0.3553) 

(4.8182, 4.7228, 5.0444, 11.9300, 

0.7900, 0) 

(s.e.) (1.0023, 1.2996, 0.9642, 0.8579, (0.2948, 0.3953, 0.3111, 0.3051, 0.3390, (15.0588, 15.0378, 15.1323, 947.881, 
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1.1554, 1.5840) 0.4352) 1.4229, ---) 

Table 8. Maximum likelihood estimates and standard errors of baseline transition probabilities and regression coefficients for the extended model 
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From the standard error, we can conclude that the covariate RT for the transition 13 and the 

covariate ME for the transition 23 can be removed for the last period of time. 

The parameters were estimated for this reduced model, and these estimates and their standard errors 

for the last period I3 are shown in Table 9. 

 

Parameters I
3
[93,) 

12

l   
0.0001 

(s.e.) (0.0002) 

13

l  
0.0000 

(s.e.) (0.0001) 

23

l  
0.0000 

(s.e.) (0.0004) 

12

l
β  (1.0401, 0.1305, 1.5219, 0.9035, 0.7933, 0) 

(s.e.) (1.2933, 1.2673, 1.3294, 1.2378, 1.3188, ---) 

13

l
β  

(0, 1.2269, 1.3085, 0.9941, 3.0917, 0) 

(s.e.) (---, 1.2428, 1.0306, 0.8993, 1.1936, ---) 

23

l
β  (4.7713, 4.7297, 5.1266, 0, 0.9198, 0) 

(s.e.) (13.2052, 13.181, 13.2977, ---, 1.4386, ---) 

Table 9. Maximum likelihood estimates and standard errors of baseline transition probabilities and 

regression coefficients in the third interval of time for the extended model 

 

 

From these estimates, the estimated survival functions with respect to treatment, number of infected 

axillary glands and menopausal status are plotted in Figures 6-11, illustrating the effectiveness of 

treatments according to the different endogenous factors. 
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Figure 6. Estimated survival probability according to treatment for the one infected axillary gland and 

before post-menopause risk group 

 

 

Figure 7. Estimated survival probability according to treatment for the two infected axillary glands 

and before post-menopause risk group 
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Figure 8. Estimated survival probability according to treatment for the more than two infected 

axillary glands and before post-menopause risk group 

 

Figure 9. Estimated survival probability according to treatment for the one infected axillary gland and 

post-menopause risk group 
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Figure 10. Estimated survival probability according to treatment for the two infected axillary glands 

and post-menopause risk group 

 

Figure 11. Estimated survival probability according to treatment for the more than two infected 

axillary glands and post-menopause risk group 
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6.4 Comparing the models 

Here, we compare the models estimated in Sections 6.2 and 6.3. Table 10 reports the values of the 

log-likelihood, AIC and BIC for the models. 

 

Model 
Log-

likelihood 

No. of 

parameters 
AIC BIC 

Without covariates -1469.807 9 2957.613 2961.907 

Full model (with only 

treatments) 
-1419.979 36 2911.959 2929.135 

Reduced model (with 

only treatments) 
-1420.834 35 2911.668 2928.367 

Full model (with 

treatments and 

endogenous factors) 

-1385.346 66 2902.691 2934.181 

Reduced model (with 

treatments and 

endogenous factors) 

-1388.444 61 2898.888 2927.992 

Table 10. Comparison among the estimated models. 

 

As shown in Table 10, using both AIC and BIC values, the best model is the reduced model with 

treatments and endogenous factors. 

7. Conclusions 

In this paper, a general, discrete-time piecewise Markov process was developed to model the 

behaviour of a multi-state illness . The model and the likelihood function for two cases (cut-points 

known and unknown) were built in a matrix algorithmic form to facilitate their computational 

implementation. A first approximation of time-dependent covariate vectors was introduced, and the 

lifetime distribution and several important associated measures were worked out for several risk 

groups. This model was applied to analyse the progression of breast cancer from a data set of a cohort 

with 300 patients. The Markov hypothesis was tested; therefore, we assume that the Markov model is 

appropriate. This dataset was use by Pérez-Ocón et al. (1998, 2001) in order to analyse the evolution 
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of breast cancer with continuous-time homogeneous and non-homogeneous Markov models. 

A discrete-time homogeneous Markov model was considered initially to analyse the behaviour of 

this illness; however, the fits obtained for different risk groups were not sufficient. Consequently, the 

homogeneity of the data was tested, and we found no empirical evidence against the non-

homogeneity of the data. An initial approximation of a non-homogeneous Markov model was 

developed as a piecewise model in this paper. Previous studies (investigating non-parametric and 

semi-parametric methods) led us to consider a model with two cut-points: 18 and 90 months. The 

likelihood function for estimating the parameters and the cut-points of the model was also built from 

the probability mass function. Two cut-points were estimated, 19 and 93 months. The remaining 

parameters were estimated, and the model and associated measures were subsequently determined. 

The main analysis was developed to study the evolution of the illness using the treatments as 

covariate, similar to the models developed in continuous cases. The effect of treatments on the 

evolution of the survival probabilities and the relapse times were determined. Relapse is very 

important in the progression of breast cancer, and here it has been examined in detail with respect to 

different risk groups associated with treatment. The empirical survival function was compared with 

the estimated survival functions for the homogeneous and piecewise non-homogeneous Markov 

models and different risk groups. 

A goodness-of-fit study was carried out, which proved that the discrete piecewise model improves 

the discrete homogeneous model. Furthermore, the fit of this discrete model improves upon those of 

the continuous-time cases; both the homogeneous case (Pérez-Ocón et al., 1998) and the non-

homogeneous case with a cut-point (Pérez-Ocón et al. (2001). Thus, the expected survival time and 

other measures from the discrete-time non-homogeneous model with two cut-point are more reliable 

than the others described. Conditional probabilities of relapse and death were estimated and shown at 

certain units of time. 

Finally, these models were extended by introducing endogenous factors through covariates. This 

extension was not included in previous works. Multiple factors were analysed through non-

parametric and semi-parametric methods. We observed that age was not a significant factor if the 

patient’s menopausal status was available, while the number of infected axillary glands was a 

significant factor. A new discrete model with treatments, menopausal status and number of infected 

axillary glands was built through dummy covariates. The effectiveness of the treatments was shown 

from the estimated survival probability according to different risk groups (different numbers of 
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infected axillary glands and menopausal status). As expected, the risk increased with the number of 

infected axillary gland. 

The results were implemented computationally using the MATLAB and R programs. 
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APPENDIX A 

The parameters of the model are estimated by a maximum likelihood function. These parameters are 

the matrices Tu (or parameters inside these matrices), the regression covariate vectors 
u
, for u = 1,..., 

k and the cut-points, all of them estimated jointly. We assume that n items are observed, all beginning 

in state 1, and item i is observed at mi change times, the last time being death or censorship. Given 

that the item is observed at change times, then for any item, the value of the covariate vector and the 

corresponding state is observed. Therefore, a sequence of times, states and values of the covariate 

vector is achieved for each item i: ,1 ,2 ,0
ii i i mt t t    , 

11 , ,  
i

i i

mx x  and 
1
, ,

mi

i i

l lz z , respectively. 

s

i

lz  corresponds to the covariate vector for the interval that contains the time ,i st for item i and for 

1,..., is m . 

We assume k1 unknown positive integer cut-points, c0=0 <c1 <…<ck1<ck=∞. The likelihood 

function for estimating the parameters is given by 

   
11

1 1 , 1 ,,
1 2

, , , , , 1,..., , , 1,..., , , , ,
i

i i
s ss s

mn
u u i i

k u u i s i s l lx x
i s

L c c u k h u k t t


 

 

  T β T β z z . 

For the calculations, we define the intervals 
1 1, ; , ,  1,...,q q q q q qI c c J c c j k 

         . Let 

 , ; ,q i q

x q qf t z T β
 
be the sojourn time probability in state x at time t calculated by using the matrix 

 i

q qP z . Given that the state at any cut-point is known, then the factors in the likelihood function 

have the following expressions, 

i) If ti,s1 and ti,s belong to intervals Ij and Jj, respectively, 

     
11 1 1

, 1 , , , 1,
, , , , , 1, ; ,i i i i i

s ss s s s s

j i i j i j j i

j i s i s l l i s i s j j jx x x x x
h t t f t t T

  
   T β z z z T β z . 

ii) If ti,s1 and ti,s belong to interval Ij1, Jj, respectively, 

   

   
11 1

1 1

1 1

, 1 , 1 , 1 1 1,

, 1 ,

, , 1, , , , , , ; ,

                                                                       1, ; , .

i i i
s ss s s

i i i
s s s

u i i j i j

u i s i s l l j i s j jx x x

j i j j i

i s j j j jx x x

h u j j t t f c t

f t c T

 

 

 

    



   

  

T β z z z T β

z T β z
 

iii) If , 1 , and  with 2i s j i s qt I t J q j     , 

   

 

11 1

1 1

, 1 , , 1,

1

1 ,

1

, , ,..., , , , , , ; ,

                                                                     , ; , 1,

i i i
s ss s s

i i
s s

u i i j i j

u i s i s l l j i s j jx x x

q
u i u q i

u u u u i s q qx x
u j

h u j q t t f c t

x f c c f t c

 

 

 





 

  

  

T β z z z T β

z T β z   
1 ,

; , .i i
s s

q q i

q qx x
T



T β z
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The likelihood function is maximized by considering several restrictions. The matrices qP  and 

 i

q qP z associated with the model should be stochastic matrices for any covariate vector 
i

qz . This 

restriction will not allow probabilities less than zero or greater than one for any values of the 

parameters. 

Then, the cut-points are estimated, and the optimum values 1 1, , kc c   are the values that verify 

    1 1 1 1 1 1 1 1, , , , , , , ,

1 1 1 1 1 1
ˆ ˆˆ ˆ, ,  such that , , , , , 1,..., max , , , , , 1,...,k k k k

j

c c c c v v v v

k k u u k u u
v

c c L c c u k L v v u k   

     T β T β , 

subject to 10  for 1,..., 2j jv v j k    and  1 ,max
ik i m

i
v t  , where vj belongs to the set of natural 

numbers for any j with the corresponding restrictions.   1 1 1 1, , , ,ˆˆ , , 1,...,k kv v v v

u u u k  T β  are the maximum 

likelihood estimates of  , , 1,...,u u u kT β  for 
1 1, , k  

. 

The likelihood function has been implemented computationally with Matlab and it is maximized by 

using the function fmincon of this programme. This function is used to find the minimum of a 

constrained nonlinear multivariable function by using the interior-point algorithm.  
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APPENDIX B 

F
ir

st
 p

er
io

d
: 

[0
,1

9
] 

RT 
Observed 42 0 3 0 5 0 0 0 

Expected 42.0006 0 1.8601 0 6.1393 0 0 0 

HT 
Observed 5 0 2 0 0 0 0 0 

Expected 4.7696 0 1.2585 0 0.9719 0 0 0 

CT 
Observed 10 0 2 0 1 0 0 0 

Expected 9.9059 0 1.5631 0 1.5310 0 0 0 

RT-HT 
Observed 18 0 1 0 3 0 0 0 

Expected 18.7979 0 0.6549 0 2.5472 0 0 0 

RT-CT 
Observed 106 0 2 0 2 0 0 0 

Expected 98.6228 0 2.1036 0 9.2736 0 0 0 

HT-CT 
Observed 6 0 5 0 1 0 0 0 

Expected 9.6254 0 1.1872 0 1.1874 0 0 0 

RT-HT-CT 
Observed 35 0 1 0 3 0 0 0 

Expected 35.2960 0 0.6064 0 3.0976 0 0 0 

No 

treatment 

Observed 21 0 19 0 7 0 0 0 

Expected 29.0528 0 10.2311 0 7.7161 0 0 0 

S
ec

o
n

d
 p

er
io

d
: 

(1
9

,9
3
] 

RT 
Observed 16 3 0 0 23 0 0 3 

Expected 17.9361 3.3630 2.4381 0 18.2628 0.4273 0 25727 

HT 
Observed 3 0 0 0 2 0 0 2 

Expected 1.1221 0 1.3578 0 2.5201 0.6838 0 13162 
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CT 
Observed 5 0 0 0 5 0 0 2 

Expected 3.4692 0 1.4724 0 5.0585 0.2246 0 17754 

RT-HT 
Observed 7 4 1 0 6 0 0 1 

Expected 6.2075 3.5472 1.0753 0 7.1702 0.2986 0 0.7014 

RT-CT 
Observed 53 3 4 0 46 0 0 2 

Expected 65.5726 3.7117 3.1534 0 33.5623 0.1700 0 18300 

HT-CT 
Observed 2 0 1 0 3 0 0 5 

Expected 2.5420 0 1.0251 0 2.4329 1.2892 0 37108 

RT-HT-CT 
Observed 18 1 1 0 15 0 0 1 

Expected 22.4797 1.2489 1.0934 0 10.1781 0.2172 0 0.7828 

No 

treatment 

Observed 4 0 2 0 15 3 0 16 

Expected 3.2253 0 4.6706 0 13.1041 3.3701 0 156299 

T
h

ir
d

 p
er

io
d

 (
9

3
, 
la

st
 t

im
e 

o
b

se
rv

ed
] 

RT 
Observed 0 14 0 1 1 0 0 0 

Expected 0 7.1358 0 0.8850 7.9792 0 0 0 

HT 
Observed 0 3 0 0 0 0 0 0 

Expected 0 1.3377 0 0.7901 0.8722 0 0 0 

CT 
Observed 0 5 0 0 0 0 0 0 

Expected 0 1.8632 0 0.7608 2.3760 0 0 0 

RT-HT 
Observed 0 6 0 0 1 0 1 0 

Expected 0 1.9400 0 0.3396 4.7203 0 0.0795 0.9205 

RT-CT Observed 0 49 0 0 4 0 3 1 
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Expected 0 29.3247 0 1.4445 22.2308 0 0.1294 3.8706 

HT-CT 
Observed 0 2 0 0 0 0 0 1 

Expected 0 0.5389 0 0.2951 1.1660 0 0.1262 0.8738 

RT-HT-CT 
Observed 0 17 0 1 0 0 1 0 

Expected 0 10.5343 0 0.5655 6.9002 0 0.1219 0.8781 

No 

treatment 

Observed 0 3 0 1 0 0 4 1 

Expected 0 0.0714 0 0.2421 3.6864 0 0.1216 4.8784 

Table 11a. Contingency table of observed and expected counts for the homogeneous model. 

 
  

11 11C 12 12C 13 22 22C 23 

F
ir

st
 p

er
io

d
: 

[0
,1

9
] 

RT 
Observed 42 0 3 0 5 0 0 0 

Expected 43.3841 0 1.9887 0 4.6271 0 0 0 

HT 
Observed 5 0 2 0 0 0 0 0 

Expected 3.0346 0 3.0446 0 0.9208 0 0 0 

CT 
Observed 10 0 2 0 1 0 0 0 

Expected 9.0789 0 2.6324 0 1.2888 0 0 0 

RT-HT 
Observed 18 0 1 0 3 0 0 0 

Expected 17.7601 0 1.0785 0 3.1614 0 0 0 

RT-CT 
Observed 106 0 2 0 2 0 0 0 

Expected 104.0731 0 1.5761 0 4.3508 0 0 0 

HT-CT 
Observed 6 0 5 0 1 0 0 0 

Expected 8.1708 0 2.9521 0 0.8771 0 0 0 

RT-HT-CT Observed 35 0 1 0 3 0 0 0 
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Expected 36.0999 0 0.8595 0 2.0407 0 0 0 

No treatment 
Observed 21 0 19 0 7 0 0 0 

Expected 22.067 0 18.8432 0 6.0898 0 0 0 

S
ec

o
n

d
 p

er
io

d
: 

(1
9

.9
3

] 

RT 
Observed 16 3 0 0 23 0 0 3 

Expected 14.5674 2.7314 1.5034 0 23.1978 0.131 0 2.869 

HT 
Observed 3 0 0 0 2 0 0 2 

Expected 1.622 0 0.3973 0 2.9807 0.3332 0 1.6668 

CT 
Observed 5 0 0 0 5 0 0 2 

Expected 3.1561 0 0.7861 0 6.0579 0.1432 0 1.8568 

RT-HT 
Observed 7 4 1 0 6 0 0 1 

Expected 5.6735 3.242 0.4599 0 8.6246 0.0921 0 0.9079 

RT-CT 
Observed 53 3 4 0 46 0 0 2 

Expected 51.705 2.9267 2.7436 0 48.6246 0.0595 0 1.9405 

HT-CT 
Observed 2 0 1 0 3 0 0 5 

Expected 2.5988 0 0.3572 0 3.044 0.67 0 4.33 

RT-HT-CT 
Observed 18 1 1 0 15 0 0 1 

Expected 19.525 1.0847 0.6298 0 13.7605 0.0688 0 0.9312 

No treatment 
Observed 4 0 2 0 15 3 0 16 

Expected 4.3573 0 2.0811 0 14.5616 1.8127 0 17.1873 

T
h

ir
d

 p
er

io
d

 

(9
3

. 
la

st
 t

im
e 

o
b

se
r
v

ed
] RT 

Observed 0 14 0 1 1 0 0 0 

Expected 0 11.9575 0 1.2539 2.7886 0 0 0 

HT 
Observed 0 3 0 0 0 0 0 0 

Expected 0 2.6664 0 0.3334 0.0002 0 0 0 
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CT 
Observed 0 5 0 0 0 0 0 0 

Expected 0 4.8249 0 0 0 0 0 0 

RT-HT 
Observed 0 6 0 0 1 0 1 0 

Expected 0 4.7707 0 1.1591 1.0702 0 1 0 

RT-CT 
Observed 0 49 0 0 4 0 3 1 

Expected 0 45.3907 0 0.8756 6.7337 0 2.3183 1.6817 

HT-CT 
Observed 0 2 0 0 0 0 0 1 

Expected 0 1.859 0 0.0889 0.0521 0 0.3669 0.6331 

RT-HT-CT 
Observed 0 17 0 1 0 0 1 0 

Expected 0 16.3407 0 0.4932 1.1661 0 0.9953 0.0047 

No treatment 
Observed 0 3 0 1 0 0 4 1 

Expected 0 2.752 0 0.9703 0.2777 0 3.0447 1.9553 

Table 11b. Contingency table of observed and expected counts for the piecewise model. 
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