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Simple Summary: The cellular mechanisms of drug resistance prevent the correct efficacy of the
therapies used in various types of cancer and nanotechnology has been postulated as a possible
alternative to avoid them. This review focuses on describing the different mechanisms of drug
resistance and dis-covering which nanotechnology-based therapies have been used in recent years to
evade them in colon (CRC) and pancreatic cancer (PAC). Here we summarize the use of different
types of nanotechnology (mainly nanoparticles) that have shown efficacy in vitro and in vivo in
preclinical phases, allowing future in-depth research in CRC and PAC and its translation to future
clinical trials.

Abstract: The development of drug resistance is one of the main causes of cancer treatment failure.
This phenomenon occurs very frequently in different types of cancer, including colon and pancreatic
cancers. However, the underlying molecular mechanisms are not fully understood. In recent years,
nanomedicine has improved the delivery and efficacy of drugs, and has decreased their side effects.
In addition, it has allowed to design drugs capable of avoiding certain resistance mechanisms of
tumors. In this article, we review the main resistance mechanisms in colon and pancreatic cancers,
along with the most relevant strategies offered by nanodrugs to overcome this obstacle. These
strategies include the inhibition of efflux pumps, the use of specific targets, the development of
nanomedicines affecting the environment of cancer-specific tissues, the modulation of DNA repair
mechanisms or RNA (miRNA), and specific approaches to damage cancer stem cells, among others.
This review aims to illustrate how advanced nanoformulations, including polymeric conjugates,
micelles, dendrimers, liposomes, metallic and carbon-based nanoparticles, are allowing to overcome
one of the main limitations in the treatment of colon and pancreatic cancers. The future development
of nanomedicine opens new horizons for cancer treatment.

Keywords: drug resistance; colon cancer; pancreatic cancer; nanomedicine; cancer stem cells; PARP;
miRNA; tumor microenvironment

1. Introduction

According to the latest epidemiological data, colorectal cancer (CRC) and pancreatic
cancer (pancreatic adenocarcinoma or PAC) rank third and eleventh in cancer incidence
worldwide, respectively. In terms of cancer mortality, they are the second and seventh
leading causes, respectively. Despite its low incidence, PAC has the highest mortality rate
of all cancers, with a 5-year survival rate of only 9% [1,2]. On the other hand, CRC has
a better prognosis in the initial stages of the disease, but in stage IV (i.e., metastatic) its
mortality is also very high, with 5-year survival rates of only 13% [3]. In both PAC and
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stage IV CRC, current therapies only result in a slight increase in survival, mainly due to
the phenomenon of drug-resistance.

Drug-resistance can be classified into innate or acquired (generated after treatment) [4].
Innate resistance usually results from pre-existing mutations in genes involved in cell
growth or apoptosis [5]. For instance, the p53 mutation abolishes the function of this
protein, facilitating resistance to standard medications used in colon and pancreatic tumors,
such as gemcitabine (GEM) (antimetabolites), doxorubicin (DOX) (anthracyclines), or
cetuximab (EGFR-inhibitor) [6]. Genes involved in DNA repair systems (e.g., MMR)
may be altered in these tumors [7]. These systems are responsible for failure to standard
neoadjuvant chemotherapy with 5-fluorouracil (5-FU)/oxaliplatin (OXA) and 5-FU-based
adjuvant chemotherapy [8]. Another source of innate resistance is the activation of cellular
pathways involved in the elimination of toxic elements or in damage prevention. These
pathways can be exploited by tumor cells to protect themselves from anti-tumor drugs [5].
Examples of these are the transporter pumps, such as the ATP binding cassette (ABC)
family members, including MDR1 or P-glycoprotein-P-GP- (ABCB1), Multidrug Resistance-
Associated Protein 1 (MRP1) and Multidrug Resistance-Associated Protein 3 (MRP3) or
Breast Cancer Resistance Protein (BCRP), which promote drug transport outside the cell in
tumor pathology [9]. These existing pathways also include DNA repair enzymes such as
poly(ADP-ribose) polymerase-1 (PARP-1), which allows cells to survive the DNA damage
caused by both intrinsic and extrinsic factors, thus promoting drug resistance [10]. PARP-1
inhibition has been linked to the better response to therapy in various cancers, including
PAC [11]. Finally, another source of innate resistance lies in the heterogeneity of the tumor,
which may contain pre-existing cell subpopulations insensitive to treatment, including
cancer stem cells (CSCs). Numerous trials have demonstrated the importance of CSCs in
tumor resistance, since these cells are selected after chemo and radiotherapy [12], and may
be resistant even to novel therapies, such as immunotherapy.

The resistance developed after antitumor treatment is known as acquired resistance
and causes a gradual reduction of the anticancer efficacy of drugs. This resistance may
result from the development of new mutations (which may affect new proto-oncogenes
or modify treatment targets) or from alterations in the tumor microenvironment (TME)
during treatment, leading to decreased antitumor efficacy of drugs. An example of modifi-
cation of the treatment targets are mutations of the EGFR ectodomain, which have been
shown to generate secondary resistance to anti-EGFR monoclonal antibodies (mAbs) (i.e.,
rituximab) in CRC [13,14]. Regarding TME-related acquired resistance, the TME promotes
the survival and migration of cancer cells, conferring resistance to chemo, radio and im-
munotherapy treatments [15]. In sum, resistance phenomena involve complex and diverse
resistance mechanisms that can occur simultaneously during tumor development and
treatment. Therefore, it is essential to search for new therapeutic alternatives to overcome
these mechanisms.

Nanomedicine is based on the use of nanomaterials, taking advantage of their different
physicochemical properties to develop innovative applications in the field of medicine.
The use of these materials has allowed significant improvements in antitumor treatment
through the generation of nanoparticles (NPs) capable of transporting and releasing the
drug in tumor cells more efficiently. In addition, NPs can be conjugated with different lig-
ands on their surface to specifically damage tumor cells and reduce drug toxicity in healthy
tissues [16]. Remarkable advantages of these molecules include their ability to passively
accumulate in tumors via enhanced permeability and retention (EPR) effect, which results
from increased disorganization of the vasculature and impaired lymphatic drainage of
tumors, and their stability in blood due to improvements such as pegylation [17]. In this
review, we will examine the different drug-resistance mechanisms of tumours and how the
use of nanomedicine and, specifically, NPs can improve the treatment of CRC and PAC.
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2. Increased Efflux of Drugs
2.1. Efflux Pump P-Glycoprotein and Drug Resistance

One of the most relevant resistance mechanisms of cancer cells is P-GP, a membrane
protein which pumps out the drugs from the inside of cells to the extracellular space,
reducing their therapeutic effect [18]. This protein, also known as ATP-binding cassette
subfamily B member 1 (ABCB1) or ABC transporters, comprises a superfamily of efflux
pump proteins with different members that may be involved in the MDR phenotype of tu-
mor cells. In addition to P-GP, other members from this superfamily play an important role
in the MRD phenotype in CRC and PAC, such as MDR-associated proteins (MRPs/ABCCs)
and breast cancer resistance protein (BCRP/ABCG2) [9,19] and MDR1 [20,21]. P-GP is a
170 kD protein normally present in a variety of cells of the digestive system (e.g., common
bile duct of the liver and pancreatic ducts), being highly expressed in the apical surface
of epithelial cells [20]. However, the overexpression of P-GP in cancer cells is usually
associated with a low therapeutic efficacy [22–27] especially in CRC. In this context, many
nanoformulations have been designed to overcome the P-GP-mediated MDR phenotype in
CRC and PAC (Table 1).

Table 1. Nanoformulations used to overcome the MDR phenotype mediated by efflux pumps in colorectal and
pancreatic cancers.

Nanoformulation Drug/Cargo Efflux pump CRC/PC Mechanism to overcome MDR Ref.

Gold nanorod coated with three
layers: mSiO2, PHIS and TPGS DOX P-GP CRC PHIS to escape the endocytic

pathway and TPGS to inhibit P-GP [28]

Liposomes loaded with ACF DOX P-GP CRC
ACF inhibits HIF-1, leading to

downregulation of P-GP in hypoxic
environment

[29]

Hydrogel with PEG-coated gold
nanorods and TPGS-coated PTX

nanocrystals
PTX P-GP CRC TPGS inhibits P-GP [30]

Vitamin E
succinate-grafted-chitosan
oligosaccharide with RGD

and TPGS

BU P-GP CRC TPGS and BU inhibits P-GP [31]

Lignin NPs functionalized with
hyaluronic acid

transporting quercetin
IRI P-GP CRC Quercetin inhibits P-GP [32]

Nanovectors derived from
grapefruit lipids with the LA1

aptamer and siRNA
DOX P-GP CRC Downregulation of P-GP expression [33]

Microbubbles transformable
into NPs for PDT and imaging CPT ABCG2 CRC Reduction of ABCG2 expression [34]

PEG-PLGA NPs SN38 ABCG2 CRC Reduced mRNA expression level [35]

Curcumin loaded in HP-β-CD DOX P-GP CRC Curcumin nanoformulation
overcomes DOX resistance [36]

Polymeric NPs with PEG
and PEI Ce6 ABCG2 PC NPs reduce the ABCG2 efflux

of Ce6 [37]

pHPMA-b-pDMAEMA NPs ODNs P-GP CRC
Decreased P-GP expression by

modulation of NF-κB
signalling pathway

[38]

Poly (aspartic acid) with TAT
peptide and PEG DOX P-GP CRC Inhibition of P-GP efflux activity by

size exclusion-effect [39]

Nanomicelles with SMA PTX P-GP CRC Enhance of drug antitumor effect
with oral administration [40]

Liposomes for PDT with
benzoporphyrin derivate IRI ABCG2 PC Sinergy of PDT and IRI: PDT

reduces the efflux of ABCG2 [41]

PLGA NPs functionalized with
Pluronic F127 and chitosan CPT P-GP CRC Pluronic F127 and chitosan

downregulate MDR1 expression [42]
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Table 1. Cont.

Nanoformulation Drug/Cargo Efflux pump CRC/PC Mechanism to overcome MDR Ref.

Liposomes coated with
hyaluronic acid

Imatinib
mesylate P-GP CRC Nanosystem P-GP modulation [43]

Pegylated liposomes ASOs
and/or EPR

MDR1,
MRP1, MRP2 CRC Reduced expression of MDR1,

MRP1 and MRP2 [44]

Hybrid lipid NPs with AL-HA
polymer IRI P-GP CRC Disruption of ATPase activity and

reduction of MDR1 gene expression [45]

Inactive phenolato–titanium
(IV) complexes - P-GP CRC Same toxicity in sensitive and

resistant tumor cells [46]

Liposomes functionalized with
specific phage fusion proteins DOX P-GP PC

Same drug accumulation in tumor
cells in presence and absence

of verapamil
[47]

Liposomes NitDOX P-GP, MRP1 CRC
Efflux activity reduction by

nitration of P-GP and MRP1 with
NO released by NitDOX

[48]

Liposomes with PEG PTX P-GP CRC
Similar antitumor activity in vivo

between mice bearing resistant
tumor and non-resistant tumor

[49]

NPs of PEG-PLA functionalized
with K237 peptide PTX P-GP CRC

NPs target endothelial cells for
antiangiogenic and antitumor

activity in resistant tumors
[50]

Pegylated liposomes ASOs and/or
EPR

P-GP,
MRP1,MRP2 CRC Similar antitumor activity in

resistant and non-resistant tumors [51]

PLGA NPs and liposomes GEM NS PC Increase in GBC cytotoxicity in
resistant tumor cell lines [52]

Anionic liposomal NPs DOX P-GP CRC
Nanosystems change the amount of
P-GP lipid rafts and inhibit efflux

activity (glycine 185)
[53]

PRA nanodrug coated with
hyaluronic acid - P-GP CRC Generation of holes in resistant cells

makes them more sensitive to DOX [54]

Mesoporous silica (mSiO2); pH responsive polyhistidine (PHIS); acriflavine (ACF); hypoxia-inducible-factor-1α (HIF-1α); d-α-
tocopherol polyethylene glycol 1000 succinate (TPGS); doxorubicin (DOX); P-glycoprotein (P-GP); colorectal cancer (CRC); pancreatic
cancer (PAC); photothermal therapy (PTT); poly lactic-co-glycolic acid (PLGA); nanoparticles (NPs); verapamil (VER); polyethy-
lene glycol (PEG); paclitaxel (PTX); arginine-glycine-aspartic acid (RGD); bufalin (BU); hydroxypropyl-β-cyclodextrin (HP-β-CD);
polyethylenimine (PEI); chlorin e6 (Ce6); ATP-binding cassette subfamily G member 2 (ABCG2); NF-κB decoy oligodeoxynucleotides
(ODNs); photodynamic therapy (PDT); poly[N-(2-hydroxypropyl)methacrylamide]-poly(N,N-dimethylaminoethylmethacrylate)
(pHPMA-b-pDMAEMA); antisense oligonucleotides (ASOs); camptothecin (CPT); epirubicin (EPR); alendronic acid and hyaluronic
acid (AL–HA); irinotecan (IRI); nitric oxide-releasing DOX (NitDOX); polyethyleneimine/all-trans retinoic acid conjugates (PRA);
poly(styrene-co-maleic acid) (SMA); gemcitabine (GEM); not specified (NS).

Despite the fact many P-GP inhibitors have been developed (e.g., verapamil, tariq-
uidar, 11C-laniquidar, natural alkaloids or herbal natural products) [55–59], most of them
showed significant limitations (systemic toxicity, insolubility, short blood half-life or rapid
metabolization) [21,58,60,61]. The use of nanoformulations could overcome these draw-
backs (Figure 1A). Recently, bufalin (BU), an antitumor drug that blocks P-GP-mediated
resistance in CRC [62], was associated with vitamin E succinate-grafted-chitosan oligosac-
charide with RGD peptide (arginine-glycine-aspartic acid) and TPGS. Compared to free
BU, this combination showed improved antitumor activity (43% tumor volume reduction),
pharmacokinetic profile and toxicity in resistant-CRC (LoVo/ADR cells)-bearing nude
mice [31]. Moreover, the nanoformulation alone (i.e., without P-GP inhibitors) can over-
come the P-GP-mediated MDR. For instance, treatment of PANC-1, a PAC cell line that
overexpresses P-GP with DOX-loaded liposomes modified with phage fusion proteins for
specific targeting, showed similar drug accumulation in presence and absence of vera-
pamil [63,64]. Accordingly, this nanoformulation avoided P-GP-mediated expulsion and
increased cytotoxicity of DOX (IC50 10-fold lower) [47]. Pan, et al. [65] overcame MDR
mediated by P-GP in HCT8/ADR resistant cells using a large nanoformulation consisting
of DOX-loaded poly(aspartic acid) NPs functionalized with TAT peptide and PEG, which
is not a substrate of the efflux pump. In other cases, multifunctional NPs that combine
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several strategies at the same time to overcome the MDR phenotype have been used.
For example, DOX-loaded gold nanorods coated with mesoporous silica (mSiO2) used
in CRC photothermal therapy (PTT) and chemotherapy have been improved by using
pH-responsive polyhistidine (PHIS) and D-α-tocopherol PEG 1000 succinate (TPGS) to
induce endocytic pathway escape and to inhibit P-GP, respectively [28]. These nanorods
showed excellent results in male athymic nude mice bearing SW620/Ad300 cells, achieving
a significant reduction in tumor volume (~3-fold) with low systemic toxicity. Interestingly,
resistant CRC has also been treated with local PTT using gold nanorods coated with PEG
and paclitaxel (PTX) nanocrystals coated with TPGS (all of them combined into a hydrogel).
Promising results were obtained in the SW620/Ad300 cell line in vitro (~178-fold decrease
in the IC50 of PTX) and in male athymic nude mice bearing SW620/Ad300 tumors [30].
The use of phosphatidylserine (PS) lipid nanovesicles with encapsulated PTX showed a
synergistic effect against the chemoresistant HCT15 cell line overexpressing the MDR1
gene product P-GP, both in vivo an in vitro. These NPs induced cell cycle arrest at G2/M
phase, downregulated ki-67, Bcl-2, and CD34, upregulated caspase 3, reduced the systemic
toxic effects of PTX and no inflammatory response was reported [66].
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to overcome resistance mediated by RAS mutations in PAC cells. PAC cells overexpress EGFR, 
which can be targeted by NPs conjugated with mAbs (Cetuximab/Panitumumab) (see below). This 
enables increased internalization of the chemotherapy drugs, thus leading to cellular apoptosis, 
even in RAS-mutated cancer cells. 
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tyrosine kinase inhibitors and methotrexate) and inhibitors (e.g, imatinib or poloxamines) 
compared to P-GP [67]. Although BRCP/ABCG2 is usually highly expressed in hemato-
logical cancers, it has also been found to be overexpressed in CRC and PAC [68,69]. In 
fact, 72% of pancreatic cell lines from the Cancer Cell Line Encyclopedia (CCLE) overex-
pressed this protein [69]. Nanoformulations such as irinotecan-loaded liposomes with 
benzoporphyrin derivative for photodynamic therapy (PDT) were able to overcome 
ABCG2-mediated resistance, decreasing tumor volume from 70% to 25% in mice bearing 
pancreatic tumors [41]. PDT has also been used with polymeric NPs with PEG and poly-
ethylenimine (PEI) in pancreatic cells with variable expression levels of ABCG2 (+AsPC-1 
and -MIA PaCa-2 and induced +MIA PaCa-2), increasing the intracellular concentrations 
of the photosensitizer through reduction of its efflux by ABCG2 [37]. On the other hand, 
pegylated poly-lactic-co-glycolic acid (PLGA) NPs with verapamil and SN38 (active form 
of CPT) showed no significant differences in drug cytotoxicity in HT29 CRC cells, but a 
significant decrease in ABCG2 mRNA expression (2.277-fold) in comparison with the free 

Figure 1. Representative scheme of nanomedicine strategies against drug resistance in pancreatic
cancer. (A) Interactions of nanoformulations with MDR mechanism in pancreatic cancer (PAC)
cells. Drugs carried by NPs may overcome MDR mechanisms of PAC cells mediated by efflux
pumps via the inhibition of drug efflux, decrease in the expression of the transporter proteins, and
increased accumulation of drug inside the tumor cells. (B) Exploiting the overexpression of EGFR to
overcome resistance mediated by RAS mutations in PAC cells. PAC cells overexpress EGFR, which
can be targeted by NPs conjugated with mAbs (Cetuximab/Panitumumab) (see below). This enables
increased internalization of the chemotherapy drugs, thus leading to cellular apoptosis, even in
RAS-mutated cancer cells.

2.2. Other Efflux Pumps

Breast cancer resistance protein (BCRP/ABCG2), also known as mitoxantrone resis-
tance protein (MXR) or placenta ABC protein (ABC-P), is a small member of the ABC
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superfamily (~75 KDa) with a more limited number of substrates (e.g., amptothecin [CPT],
tyrosine kinase inhibitors and methotrexate) and inhibitors (e.g, imatinib or poloxamines)
compared to P-GP [67]. Although BRCP/ABCG2 is usually highly expressed in hematologi-
cal cancers, it has also been found to be overexpressed in CRC and PAC [68,69]. In fact, 72%
of pancreatic cell lines from the Cancer Cell Line Encyclopedia (CCLE) overexpressed this
protein [69]. Nanoformulations such as irinotecan-loaded liposomes with benzoporphyrin
derivative for photodynamic therapy (PDT) were able to overcome ABCG2-mediated resis-
tance, decreasing tumor volume from 70% to 25% in mice bearing pancreatic tumors [41].
PDT has also been used with polymeric NPs with PEG and polyethylenimine (PEI) in
pancreatic cells with variable expression levels of ABCG2 (+AsPC-1 and -MIA PaCa-2 and
induced +MIA PaCa-2), increasing the intracellular concentrations of the photosensitizer
through reduction of its efflux by ABCG2 [37]. On the other hand, pegylated poly-lactic-
co-glycolic acid (PLGA) NPs with verapamil and SN38 (active form of CPT) showed no
significant differences in drug cytotoxicity in HT29 CRC cells, but a significant decrease
in ABCG2 mRNA expression (2.277-fold) in comparison with the free drug (4.793-fold)
was observed [35]. In addition, microbubbles containing porphyrin/CPT-floxuridine for
chemotherapy, PDT and imaging, generated NPs suitable for tumor therapy after exposure
to ultrasound. This treatment significantly reduced the expression of ABCG2 in HT29 cells
by increasing the concentration of CPT, inducing an in vivo growth inhibition (90%) of the
tumor without recurrence [70].

On the other hand, the MRP1/ABCC1 and MRP3/ABCC3 proteins, which have a
similar molecular weight (~190 KDa) and structure, contain a different n-terminal region
in relation to P-GP [71–73]. Drug substrates of MRP1 and P-GP are similar except for
taxanes, which are only P-GP substrates [73]. The spectrum of molecules transported
by MRP3 is limited [74] In fact, MRP1 is the protein mostly involved in the therapeutic
failure resulting from MDR [75]. Some nanoformulations have been designed to specifically
overcome efflux pumps, including MRP. Nitric oxide-releasing DOX (NitDOX) was loaded
in liposomes to treat HT29 cells resistant to DOX mediated by MRP1 and P-GP. Nitration
of both proteins significantly reduced their activity [48]. In addition, pegylated liposomes
loaded with epirubicin and antisense oligonucleotides (ASOs) against MDR1, MRP1 and
MRP2 increased the antitumor activity of the drug in mice bearing CRC (CT26 cells), while
administration of ASOs alone did not show significant differences between resistant and
non-resistant tumors [51].

3. Alteration of Drug Target

Targeted therapy uses drugs that damage tumor cells and specific targets such as
genes, proteins, or the environment of cancer-specific tissues, all of which contribute to
cancer growth and survival. However, cancer cells can develop resistance by altering these
pharmacological targets, either through genetic mutations or via changes in epigenetic
gene expression [76].

3.1. Epidermal Growth Factor Receptor (EGFR) Pathway

The epidermal growth factor receptor (EGFR), also known as ErbB1 or HER1, is a
transmembrane glycoprotein of the tyrosine kinase family with the epidermal growth
factor as a ligand. Although present in the majority of cells, this protein is a target for
cancer therapy because of its overexpression, amplification and mutation in a wide variety
of solid tumors [5,77]. EGFR-targeting agents clinically used in malignancies include mAbs
against the extracellular domain of the receptor, and small molecules (tyrosine kinase
inhibitors). However, EGFR mutations, such as EGFRvIII, which is characterized by the
loss of part of the extracellular ligand binding domain due to deletion of exon 2-7, may
generate resistance to treatment [78,79].

Although CRC and PAC rarely show EGFR mutations, both cancers overexpress
this receptor and have been treated with cetuximab or panitumumab and erlotinib, re-
spectively [80]. However, overexpression of EGFR does not imply dependence of cancer
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cells on this receptor for oncogenic signaling. In fact, KRAS-mutated cancer cells do not
require EGFR activation. Therefore, this mutation predicts resistance to EGFR-targeted
therapy [81–83]. As described by Van Emburgh, et al. [84], 60% of patients with resistance
to cetuximab or panitumumab showed the KRAS mutation. In this context, nanoformula-
tions loading anticancer agents and mAbs have been developed, with the nanoconjugation
design being a critical step for therapy (Figure 1B). For instance, Khan, et al. [85] used
gold NPs associated with cetuximab against PAC cells. More recently, McDaid, et al. [86]
used polymeric NPs loaded with camptothecin and conjugated with cetuximab against
cetuximab-resistant PAC cells with mutated KRAS. This treatment produced a greater re-
duction in tumor growth than each of the drugs alone in mice, demonstrating the potential
applicability of this therapeutic strategy. Functionalization of NPs with anti-EGFR anti-
bodies was another solution to transport new non-water soluble anti-cancer compounds.
Parvifloron D, isolated from a plant extract, is a hydrophobic drug with significant antitu-
mor activity. Its conjugation with albumin NPs functionalized with anti-EGFR antibodies
(erlotinib and cetuximab) made possible the treatment of PAC cells [87]. In CRC, gold NPs
loaded with 5-FU and functionalized with cetuximab induced more apoptosis than the
free drug in HCT-116 and HT-29 CRC cells [88]. These results were supported by those of
Leve, et al. [89]) in HCT-116 CRC cells using similar nanoconjugates.

Finally, some peptides such as GE11 have been used to target the EGFR. GE11 con-
jugated with NPs loaded with GEM and olaparib was used against PAC with mutated
BRCA2, obtaining favorable results both in vitro and in vivo [90]. Similarly, a significant
increase in cytotoxicity was obtained using PLGA gelatin NPs functionalized with an
EGFR-targeting peptide and loaded with GEM in an orthotopic PAC animal model [91]. As
is the case with PAC, polyamino acid NPs with GE11 peptide have been used to transport
evodiamine, an indolequinone alkaloid which is highly effective against CRC but with
low solubility. This nanoformulation induced a significant increase in drug cytotoxicity
in vivo, along with a drastic reduction of metastases and GFR, VEGF and MMP protein
expression [92].

3.2. Vascular Endothelial Growth Factor Pathway

The vascular endothelial growth factor (VEGF), a promoter of tumor angiogenesis
and, consequently, and inductor of metastasis and proliferation, has been used as a target to
reduce tumor growth. The use of NPs may improve the antiangiogenic effect of treatments.
For instance, Leng, et al. [93] obtained excellent in vitro and in vivo results in CRC through
the functionalization of calcium phosphate NPs loaded with 5-fluorocystone and with
genetic sequences that inhibit the expression of VEGF (Lovo cell line). Lee, et al. [94]
exposed a system of theragnostic nanoplatforms functionalized with small interfering RNA
(siRNA) which located and blocked the cells that produce this factor in large quantities. The
incorporation of campothecin (SN-38) to these NPs allowed a selective effect in CRC cells.

4. Enhanced DNA Damage Repair

The development of small mutations in essential genes involved in cellular regula-
tion, such as tumor suppressor genes (e.g., p53) and chromosomal instability are among
the primary reasons underlying the formation of new tumors [95]. Genomic stability is
maintained by highly efficient replication and damage repair mechanisms [96]. However,
these mechanisms may be related to drug resistance. In fact, the inhibition of DNA repair
pathways has also been advocated to increase the efficacy of treatment in various types of
cancer. In this context, the PARP family and MMR, involved in the repair of DNA damage,
have been explored to avoid MDR using nanotechnology.

4.1. PARP Related Mechanisms

One of the first events produced after DNA damage is the recruitment of the PARP1
enzyme, a protein capable of binding poly-ADP ribose to different proteins, including itself.
This binding allows the recruitment and stabilization of protein complexes involved in
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DNA damage repair through different pathways, namely single-strand break repair (SSBR),
nucleotide excision repair (NER) and base excision repair (BER). Furthermore, PARP is in-
volved in the repair of double-strand breaks in DNA via homologous and non-homologous
end joining (NHEJ), and also participates in the modulation of the structure of chromatin,
which implies a great influence on the regulation of important cellular processes [97]. The
relevance of PARP1 in all these processes has prompted the development of several in-
hibitors to avoid efficient repair of DNA damage which, together with mutations produced
in other repair pathways, can prevent resistance to pharmacological treatment.

The use of PARP1 inhibitors associated with NPs has been assayed in some can-
cers such as hepatocellular carcinoma (arsenite and DOX) [98], prostate cancer (nano-
olaparib) [99], ovarian cancer (NPs loaded with olaparib and cisplatin) [100] and, especially,
breast cancer. Regarding the last group, the use of nanoliposomes loaded with a PARP
inhibitor (talazoparib) in BRCA-negative breast cancer [101] and the use of talazoparib-
loaded solid lipid NPs (LPNs) in triple negative breast cancer [102] demonstrated enhanced
therapeutic efficacy (Figure 2). Moreover, PAC has also been associated with BRCA1/2
mutations and there are ongoing early-phase studies using PARP1 inhibitors in this cancer.
In fact, talazoparib was studied in patients with advanced PAC [103]. Recently, NPs loaded
with GEM and Olaparib were used to specifically target BRCA2-negative cells that overex-
press EGFR. Encapsulation and functionalization of NPs allowed to increase the half-life
in blood of drugs and their accumulation within the tumor tissue [90]. The use of PARP
inhibitors with NPs in CRC has not been exploited. In fact, early-phase clinical studies
using PARP1 inhibitors (specifically Olaparib) in metastatic CRC showed no significant
efficacy. Authors leave open the possibility of using PARP inhibitors together with chemo-
or radiotherapy with the aim to improve the effectiveness of treatment [104]. It is still
necessary to determine the influence of PARP on drug resistance in CRC, in addition to
the development of new NPs that allow an efficient transport of new inhibitors. Therefore,
further studies are required in this type of cancer.
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Figure 2. Nanoformulations to fight against drug resistance induced by PARP1. PARP1 modulates
DNA damage repair by single-chain (SSBR, BER and NER) and double-chain (HR and NHEJ) repair
pathways. PARP inhibitors are used to avoid drug resistance by limiting PARP1 functions in the
different DNA repair pathways in which this protein is involved and therefore nanoformulations
containing PARP inhibitors have been designed for different types of cancer. (A) The simultaneous
entry of nanoparticles containing PARP1 inhibitors together with the genotoxic drug causes the
inactivation of PARP1, necessary for the efficient repair of DNA damage through all the routes in
which it is involved. This causes that the damages produced by the genotoxic agent in the DNA are
not repairable, inducing cellular apoptosis.; (B) Entry of the genotoxic agent into the cell produces
easily repairable DNA damage through DNA repair pathways where PARP1 acts as an important
effector, leading to cell survival. Abbreviations: homologous recombination (HR).
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4.2. MMR Based Mechanisms

The MMR system is responsible for repairing errors generated by DNA polymerases
during the process of DNA replication and recombination. Proteins such as MLH1, MHS2,
MHS6 and PMS2 interact as heterodimers in this process in order to recognize mismatches
and insertion-deletion errors, eliminating the erroneous DNA fragment and resynthe-
sizing the correct strand [105]. The MMR system repairs damage caused by both en-
dogenous and exogenous factors (ionizing and UV radiation, chemical agents, toxins,
chemo/radiotherapy, or environmental stress) [106]. It has been demonstrated that muta-
tions of certain genes involved in these pathways (e.g., BRCA1, BRCA2, PALB2 and MSH2)
lead to lower DNA repair in the tumor, increasing the efficiency of drugs and the survival
of patients [107].

The MMR system has been associated with CRC. For instance, epigenetic changes of
germline MMR genes (MSH2, MLH1, MSH6 and PSM2) have been correlated with Lynch
syndrome (1/35 cases of CRC) [108]. In addition, CRC cell lines with MLH1 mutations
showed a higher sensitivity to treatment with irinotecan, increasing DNA damage. The
addition of PARP inhibitors increases the damage produced, leading to extensive apoptosis
in the population of tumor cells [109]. The use of iron particles reduced the expression
of two MMR genes (PMS1 and MSH2) in lung cancer, inducing defective DNA repair.
However, the employment of nanotechnology to inhibit the MMR pathways is anecdotal in
tumor pathology, including CRC [110]. Although the mechanisms of DNA damage repair
based on MMR and other pathways have been extensively studied, further research on new
inhibitors is needed to increase the sensitivity of chemo/radiotherapy in cancer, in addition
to the development of NPs that allow the correct function and efficient distribution of
these inhibitors.

5. Pro- and Anti-Apoptotic Genes: Evasion and Overexpression

Cancer cells develop strategies to decrease the activity of pro-apoptotic proteins or
increase the activity of anti-apoptotic proteins [111], avoiding programmed cell death and
generating resistance. NPs have been used with the aim to modulate the Bcl-2 protein
family, which includes both anti-apoptotic (e.g., Bcl-2, Bcl-XL, Mcl-1) and pro-apoptotic
members (e.g., BAX, Bak), among others [112]. Metal NPs such as silver NPs (AgNPs)
have been reported to cause downregulation of anti-apoptotic genes (Bcl-2 and Bcl-XL),
and upregulation of pro-apoptotic genes (Bax, Bad and Bak) in HCT116 and CaCo2 CRC
cells, and in HT-29 lung cancer cells [113–117]. In addition, these NPs led to an increased
expression of the p53 and p21 genes and to higher levels of caspase 3, inducing p53-
mediated apoptosis [114,117]. A similar effect was observed in PANC-1 cells with the use
of AgNPs, which decreased the expression of Bcl-2 while increased that of Bax, p53 and
autophagy proteins (RP-1, RIP-3, MLKL and LC3-II) [118]. In addition, a nanoemulsion
system incorporating lycopene (LP) and gold NPs (AN) reduced proliferation in HT-29
cells mediated by a significant decrease in the expression of procaspases 8, 3, 9, PARP-1
and Bcl-2, whereas the Bax expression increased [119]. Magnetic gold NPs loaded with
siRNA have been used to decrease the expression of Bag-1, another anti-apoptotic gene
highly expressed in colon cancer cells (LoVo cells) [120]. Furthermore, copper oxide NPs
(CuO-NPs) inhibited the proliferation of HT-29 and SW620 cancer cells by decreasing the
expression of Bcl-2 and Bcl-xL [121]. Finally, copper cysteamine (Cu-cy) NPs activated
by X-rays have been used against SW620 CRC cells, producing apoptosis by autophagy
due to the increased expression of Bax, LC3B-II and p62, and the decreased expression of
Bcl-2 [122].

On the other hand, certain toxic anticancer agents that influence the expression of
pro-apoptotic or anti-apoptotic proteins were conjugated with NPs to tackle this resistance
mechanism. Accordingly, arsenic trioxide encapsulated in an ethylene glycol/poly D,L-
lactide copolymer and conjugated with anti-CD44v6 led to decrease Bcl2 and increased
caspase 3 levels in PANC-1 PAC cells [123]. In Caco2 and HeLa cancer cells, orthorhombic
tungsten oxide NPs decreased cell viability by 65% and 73%, respectively, by reducing
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the expression of Bcl-2 and MMP7 [124]. Motawi, et al. [125] reported that cromolyn
chitosan NPs led to a decreased expression of Bcl-2, NF-kβ and an increased expression
of Bax in dimethylhydrazine-induced CRC in rats. Finally, some natural products from
marine or plant resources associated with NPs can also affect the expression of apoptotic
proteins. Fucoxanthin (FUCO), a marine carotenoid, in combination with nanogels (NG)
of chitosan (CS) and glycolipids (GL), reduced the expression of Bcl-2 and increased the
activity of Bax, ROS and caspase 3 in Caco-2 cells [126]. Gambogic acid, another natural
compound extracted from gamboge, conjugated with magnetic NPs (MN-Fe304), induced
the modulation of Bcl-2, iBax, and caspases 9 and 3 in Capan-1 PAC [127]. In addition, a
dendrosomal curcumin nanoformulation increased the expression of BAX, Noxa and p21
and decreased that of Bcl-2 in p53-mutant SW480 colon cancer cells. Moreover, curcumin-
loaded magnetic NP formulations were tested in HPAF-II and PANC-1 cells, decreasing
cell proliferation, both in in vitro and in vivo models. Also, these NPs reduced the tumor
volume and downregulated Bcl-XL, Mcl-1, PCNA, MUC1 and collagen I, and upregulated
the expression of β-catenin [128].

6. RNAs in Drug Resistance

In recent years, the importance of the non-coding portion of the genome in the devel-
opment of diseases has been recognized. Non-coding RNA (ncRNA) comprises different
members such as piRNAs, snoRNAs or lincRNAs. However, two ncRNAs, namely lncRNA
and miRNA, are known to have the highest incidence in pathologies. Dysregulation of
their expression levels can cause drug resistance in various types of cancer [129]. LncRNAs
play an important role in regulating mRNA stability, in RNA splicing and in genetic regu-
lation of miRNAs. In PAC, various lncRNAs have been linked to epithelial mesenchymal
transition (EMT) processes, regulation of CSCs, cellular hypoxia, modulation of epigenetic
modifications, chemo-resistance, and regulation of the tumor microenvironment [130,131].
In CRC, deregulation of the XIST lncRNA decreased DOX resistance through its influ-
ence on the regulation of miR-124 and SGK1 protein expression [131]. Other lncRNAs
such as UCA1 and CACS15 confer resistance to 5-FU and OXA, respectively, through
the regulation of relevant miRNAs and genes involved in damage resistance pathways
(miR-204-5p, miR-145 and the ABCC1 protein) [132,133]. On the other hand, miRNAs,
the most studied ncRNAs, are involved in the regulation of approximately 30% of human
genes (cell cycle regulation, proliferation, and stress tolerance), including those related
to drug resistance in different cancers such as breast, ovarian, colorectal, pancreatic and
gastric, among others [134]. Specifically, the deregulation of 16 miRNAs has been described
in CRC, and the analysis of patients with MDR tumors determined that some of these miR-
NAs were overexpressed in exosomes obtained from the blood serum of the said patients.
Nanotechnology and miRNAs may be the basis to develop new therapeutic options to
improve cancer prognosis [135] (Table 2).

Table 2. Nanoformulations including mi-RNA to overcome resistance in colorectal and pancreatic cancers.

CRC/PAC Name Status Nanotransporter Effect Ref.

DR

CRC miR-375-3p Lipid-coated calcium carbonate with 5-FU Inhibit TS and enhance chemosensitivity to
5-FU [136]

miR-200 Peptide-modified liposomes including solid lipid NPs
encapsulating IRI

Increase cytotoxity of irinotecan and suppress
Wnt/β-Catenin, MDR and EMT pathways [137]

miR-204-5p Mesoporous silica NPs assembled with OXA and
PEE/HA

Generate a synergisti effect with OXA due to an
increased internalization via CD44 receptor [138]

PEGylated polymer NPs Inhibit cell proliferation and promote cell
apoptosis [139]

miR-145 PEGylated polymer NPs
Produce arrest cell cycle in GO/G1 phase,

reduce tumour proliferation, migration and
increase apoptosis by supressing c-MYC

[140]

miR-139 Lipid polymeric NPs including Afatinib
Induce apoptosis, inhibit migration and

resistance of cells via suppression of pan-HER
tyrosine kinase

[141]
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Table 2. Cont.

CRC/PAC Name Status Nanotransporter Effect Ref.

DR

UR

miR-21 Fluorescent nanodiamond
Activates PDCD4 and TIMP3 genes resulting in

a decrease of cell invasion, migration an
induction of apoptosis

[142]

miR-155 Mesoporous silica NPs with polymerized dopamine
and AS1411 aptamer

Decrease tumour growth by targeting AS1411
target (Nucleolin) [143]

PAC miR-150 poly (D, L-lactide-co-glycolide)-based
nanoformulation

Supress tumour growth, motility and invasion
by decreasing MUC4 and HER2 expression [144]

miR-145 Magnetic NP formulation
Inhibit cell proliferation, migration and

invasion by reducing MUC13, HER2 and pAKT
expression

[145]

miR-216b Palmityl-oleyl-phosphatidylcholine liposomes
conjugated with cell penetrating peptide

Engage AGO2 to promote the silencing of
KRAS which decrease the cell proliferation and

the capacity of colony formation
[146]

miR-211 Chimeric peptide with Plectin-1 target peptides Decrease USP99X expression and enhance DOX
induced apoptosis and autophagy [147]

miR-9 Chimeric peptide with plectin-1 target peptides
Improve the effect of DOX through

downregulating eIF2 expression which induce
apoptosis

[148]

miR-873 Nanoliposomes
Suppress cell proliferation, migration, invasion

and tumorigenesis by inhibiting the
KRAS/ERK/PI3K pathways

[149]

miR-634 Lipid NPs Decrease the cellular proliferation by inducing
apoptosis through targeting XIAP, APIP, BIRC5 [150]

UP

miR-210 Cholesterol NPs with CXCR4 antagonist Modulation of tumour microenvironment and
inhibition of metastasis [151]

miR-21 PEG-PE magnetic iron oxide NPs delivered with GEM
and coated of anti-CD44v6

Inhibit proliferation and metastasis by
increasing PDCD4 and PTEN gene expression [152]

miR-21-5P Tumour penetrating NPs Decrease the proliferation and induce apoptosis
by targeting KRAS gene [153]

Downregulated (DR); upregulated (UR); reference (Ref); nanoparticles (NPs); 5-fluorouracil (5-FU); oxaliplatin (OXA); gemcitabine
(GEM); MDR (multidrug resistance); EMT (epithelial-mesenchymal transition); polyethyleneimine/hyaluronic acid (PEE/HA);
irinotecan (IRI); Programmed Cell Death 4 protein (PDCD4); Metallopeptidase Inhibitor 3 (TIMP3); nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB); polyethylene glycol-polyethyleneimine (PEG-PEE); C-X-C Motif Chemokine Receptor 4
(CXCR4); thymidylate synthase enzyme (TS); mucin 4 (MUC4); human epidermal frowth factor receptor 2 (HER2); mucin 3 (MUC13);
AKT Serine/Threonine Kinase 1 (pAKT1); argonaute-2 (AGO2); eukaryotic initiation factor 2 (EIF2); x-linked inhibitor of apoptosis
(XIAP); APAF1 interacting protein (APIP); Baculoviral IAP repeat containing 5 (BIRC5); phosphatase and tensin homolog (PTEN);
cellular transforming proto-oncogene (KRAS).

6.1. miRNAs in Colorectal Cancer

miR-375-3p targets the thymidylate synthase (TYMS) enzyme, which regulates drug
resistance to 5-FU. The expression of TYMS was found to be increased in HCT116 cells and
in the 5-FU-resistant cell line HCT-15/Fu. miR-375-3p was downregulated in the colon
cancer cell lines SW480, HCT116, HT29 and Caco2 compared to the non-tumor colon cell
line NCM460. Xu, et al. [136] demonstrated that miR-375-3p associated with 5-FU and
loaded in calcium carbonate and lipid-coated NPs improved chemo-sensitivity to 5-FU
and inhibited cell proliferation, both in vitro and in vivo. A similar effect was described
using miR-200 associated with Irinotecan-loaded liposomes coated with PEG peptides,
which reduced the growth of HCT116 colon cancer cells. This effect was also observed
in tumor-bearing mice through the suppression of EMT, MDR, B-catenin and apoptosis
signaling pathways [137].

Other miRNAs associated with a nanosystem were assayed in colon cancer treat-
ment, including miR-204-5p, miR-145, miR-139, miR-21 and miR-155. The miR-204-5p, an
important tumor suppressor factor, is downregulated in colon cancer. This miRNA was
incorporated in pegylated polymer NPs, showing an antiproliferative effect in HCT-116
colon and HT-29 lung cancer cells in a tumor xenograft model [139]. miR-145, also down-
regulated in colon cancer cells, and PLGA/PEI/HA nanocomplexes were used to increase
the expression of miRNA-145 in the tumor tissue of a xenograft model from HCT-166 colon
cancer cells. This treatment induced cell cycle arrest in the G0/G1 phase, decreased tumor
proliferation and migration, and increase apoptosis [140]. As mentioned above, EGFR is
known to be overexpressed in colon cancer. miR-139 was combined with afatinib, an oral
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tyrosine kinase and EGFR inhibitor, into lipid polymeric NPs conjugated with a targeting
ligand and a pH-sensitive penetrating peptide (Afa/LPN-HR). The results showed that
these NPs induced apoptosis, inhibited cell migration and decreased drug resistance to
Afatinib in Caco-2 cells by modulating the EGFR, HER, Ras, Akt, Stat4, Mapk, EMT and Bcl
pathways [141]. Finally, some systems have been developed to inhibit oncogenic miRNAs.
A nanosystem consisting of fluorescent nanodiamond and antisense RNA was used to
eliminate the oncogenic microRNA-21 in CT-26 colon cancer cells. The effect was the
activation of the PDCD4 and Timp3 tumor suppressor genes, resulting in a decrease in
cell invasion, migration and induction of apoptosis [142]. In addition, a nanoplatform
consisting of anti-miR-155 loaded in mesoporous silica NPs (MSNs-anti-miR-155-PDA-Apt)
was used to reduce the expression of miR-155 in SW480 cells and in in vivo experiments.
This nanoplatform exhibited an antiproliferative effect due to the active targeting of the
AS1411 aptamer and passive targeting of the EPR effect. In addition, they re-sensitized
5-FU-resistant tumors by reducing p-GP [143].

6.2. miRNAs in Pancreatic Cancer

Nanoformulations using miRNAs (e.g., miR-145, miR-21, miR-216b, miR-210, miR-
634, miR-211 or miR-210) to overcome drug resistance have also been tested in PAC.
HPAF-II and AsPc-1 PAC cells showed downregulation of the miR-145 tumor suppressor
miRNA. In addition, a magnetic NP formulation (miR-145-MNOF) was able to restore and
increase miRNA expression, reducing the levels of MUC13, HER2 and pAKT, and inhibiting
cell proliferation, migration and invasion [145]. Li, et al. [152] used miR-21 antisense
oligonucleotides (ASO-miR-21) and GEM associated with PEG-polyethylenimine-magnetic
iron oxide NPs and an anti-CD44v6 single-chain variable fragment against PANC-1 and
MIA PaCa-2 PAC cells. This system decreased the expression of miR-21 and increased the
expression of the PDCD4 and PTEN tumor-suppressor genes. In the same two cell lines,
single-stranded (SS) miR-216b included into palmityl-oleyl phosphatidylcholine (POPC)
liposomes conjugated with two palmityl chains and a cell penetrating peptide (TAT) was
able to restore the expression of miR-216b, which was downregulated. Moreover, this
system suppressed the oncogenic KRAS and inhibited colony formation in both PANC-1
and MIA PaCa-2 cell lines [146]. KRAS is a proto-oncogene frequently mutated in pancreatic
ductal adenocarcinoma (PDAC). The possibility of blocking oncogenic pathways involving
KRAS-induced ERK/AKT signaling is a promising therapeutic strategy. Mokhlis, et al. [149]
overexpressed miR-873 in Capan-2, Mia Paca-2, PANC-1 and BxPc-3 pancreatic cell lines
and in an orthotopic xenograft mouse model to induce apoptosis. In addition, dual
targeting of miR-21 (anti-miR-21) and KRAS (siKRAS or mimic-217) packaged into the
tumor-penetrating NPs decreased tumor growth in in vivo models generated from PANC-
1 and D8-175 PDAC cell lines [153]. The administration of si-KRAS and anti-miR-210
loaded in cholesterol NPs in an in vivo model modulated the TME, led to a delay of tumor
growth and inhibition of metastasis, and prolonged survival [154]. microenvironment
is especially relevant in PADC due to its lack of vascularization and the presence of a
dense stroma. On the other hand, the enforced expression of some miRs such as miR-634
can induce apoptosis in cancer cells by modulating the expression of genes associated
with anti-apoptotic signaling, mitochondrial homeostasis, cytoprotective processes and
autophagy. In this context, LNPs harboring miR-634 showed therapeutic potential against
a xenograft tumor from BxPC-3 PAC cells in mice [150].

Finally, peptides targeting plectin (PL-1), a novel biomarker for PAC, have shown high
specificity for PDAC in in vivo experiments. A chimeric peptide (PL-1) associated with
miR-211 in supramolecular NPs decreased the expression of USP99X and enhanced the
effect of DOX (apoptosis and autophagy) on CFPAC-1, CAPAN-1, PAN-198 and PANC-1
PAC cells [147]. A similar system using miR-9 improved the anticancer effect of DOX by
downregulating the expression of Eif5a2 in CFPAC-1, CAPAN-1, PAN-198 and PANC-1
cells and in a PAC patient-derived xenograft model [148]
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7. Epigenetic Alterations

Although many diagnosed tumors are caused by genetic factors, these do not explain
all of the cases. Epigenetics studies have shown that the methylation of essential genes
involved in an adequate regulation of cells (e.g., p53, APC, RAS, PTEN or Wnt) gives rise
to genetic instability, which ends up causing the development of CRC [155]. Similarly,
epigenetic dysregulations related to the p16, PTEN and RAS genes, among others, can be
found in certain cases of aggressive PAC [156,157]. In this context, epigenetic modifications
and the existence of non-coding regulatory RNAs in our genome may influence drug
resistance, becoming a potential target to improve cancer treatment.

There is a wide variety of epigenetic modifications that can occur in the DNA, histones
and in nucleosome remodelling, but the most studied are methylation and acetylation.
DNA methylation can inactivate genes which are necessary for the maintenance of the
basal state of tissues, causing deregulation of tumor suppressor genes and leading to
the development of CRC and PAC [158]. Cell lines resistant to 5-FU showed epigenomic
changes in the expression of genes influencing the process of resistance [159]. Other epi-
genetic modulations that induce downregulation of the PCAF acetyltransferase increased
resistance to 5-FU in colon cancer by reducing drug-induced apoptosis [160]. In addition,
the overexpression of the arginine methyltransferase 3 (PRMT3) protein, which allows the
expression of the ABCG2 gene, increased chemoresistance in PAC cell lines [161].

Since DNA methylation is one of the modifications most frequently involved in
cancer (including CRC and PAC), several treatment strategies focused on this epigenetic
process have been designed. Accordingly, Gd-metallofullerenol nanomaterials were able to
inhibit the interaction between histone deacetylase I (HDAC1) and metastasis-associated
protein (MTA1), suppressing cell invasion and metastasis in PAC [162]. Valproic acid, an
HDAC2 inhibitor, was encapsulated in polysaccharide NPs, allowing its hemocompatibility
and avoiding toxicity [163]. In addition, other HDAC inhibitors, such as vorinostat and
quisinostat, were associated with PLGA-lecithin-PEG NPs to increase the radiosensitization
of these tumors [164]. More recently, Kularatne, et al. [165]) developed polycaprolactone
polymer NPs associated with 4-phenylbutyric acid, an HDAC inhibitor, to enhance DOX-
based therapy in CRC, while Busi, et al. [166] developed keratin NPs loaded with 9-
hydroxystearic acid, another HDAC1 inhibitor, which induced cell cycle arrest and cell
death in CRC lines.

8. Drug Resistance and Tumor Microenvironment

The TME is a highly complex and heterogeneous set made up not only of cancer
cells, but also of immune system and epithelial cells, in addition to the substances which
these secrete. The feedback between tumor cells and their environment allows reciprocal
adaptations in order to overcome stressful situations and increase tumor survival [167].
Most tumors contain hypoxic areas in which the hypoxia-inducible factor 1 alpha (HIF-1α)
is overexpressed. This factor is responsible for the transcription of numerous genes related
to altered metabolism, angiogenesis, or metastatic progression [168,169]. HIF-1α can lead
to an accumulation of pyruvate and nicotinamide adenine dinucleotide (NADH) and
induction of the expression of lactate dehydrogenase A (LDHA), increasing the levels of
lactate in the extracellular medium (ECM), with its subsequent acidification [168]. Hypoxia
can also induce angiogenesis in the surrounding endothelial cells by releasing the VEGF-A,
or promote myofibroblast differentiation through the expression of transforming growth
factor-β (TGF-β) [169–171]. Thus, hypoxic areas favor the expression of drug resistance
factors that lead to decreased effectiveness of treatments. Some strategies based on the use
of NPs focus on hypoxic-related conditions, pH status or neovacularization to improve the
action of drugs and avoid resistance (Figure 3). Javan, et al. [172] based their approach on
the development of a hypoxia-sensitive system. The authors created a vector composed
of shRNAs for β-catenin and Bcl-2 driven by the promoter for carcinoembryonic antigen
(CEA) and VEGF, loaded in PEI/Thiolated-chitosan NPs. In hypoxia conditions, this
system inhibited the expression of Bcl-2 and β-catenin by 51% and 56%, respectively,
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and increased the rates of apoptosis by 40% in HT29 CRC cells. In addition, hypoxia-
sensitive systems have been assayed in CRC to increase the oxygen levels, reducing
hypoxia and, consequently, drug resistance. In fact, Meng, et al. [173] functionalized
human serum albumin (HSA)-PTX-NPs with MnO2, increasing the concentration of O2
and destabilizing HIF-1α (58.93% reduction) in mice bearing CT26 tumors. Subsequent
radiation of the tumor achieved a synergistic effect due to increased tumor oxygenation,
inhibiting tumor growth by 96.57%. Furthermore, gold nanocages functionalized with
MnO2 and hyaluronic acid (HA) eliminated hypoxic areas and boosted O2 production
after near-infrared (NIR) irradiation in CRC [174]. Aljabali, et al. [175] used piceatannol
(resveratrol analog) associated with bovine serum albumin (BSA) to reduce the expression
of HIF-1α and p62 in CRC (Caco-2 and HT29 cells).
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Figure 3. Nanoparticle-based strategies to exploit the characteristics of the tumor microenvironment
(TME). (A) Systems that focus on the presence of hypoxic areas are based on the generation of
oxygen, increasing its local levels and, therefore, eliminating the stress situation which results from
hypoxia. Reversal of the hypoxic state blocks the expression of HIF-1α and, consequently, reduces the
acidification of the extracellular medium and the expression of pro-angiogenic factors. (B) Medium
acidification can be exploited by using pH-sensitive nanoplatforms with the aim of both achieving a
controlled release of their load and buffering the medium to reestablish the pH. (C) Some strategies
also focus on the active targeting of the neo-vasculature through the use of NPs that specifically
recognize it by means of antibodies and the application of radiation. (D) In addition, some cellular
components of the TME can be reprogrammed by using certain drugs, or inactivated by vehiculation
of siRNA.
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In PAC, iRGD-functionalized pegylated polymersomes associated with azobenzene
improved the release of GEM in hypoxic conditions, both in vitro and in vivo [176]. In
addition, Chen, et al. [177] aimed to overcome the limitations of hypoxia in PAC by using
a fluorocarbon-functionalized hollow mesoporous organosilica NPs. These NPs acted
as O2 scavengers and included the IR780 sonosensitizer to improve the effectiveness of
ultrasound irradiation. Co-treatment with NPs and ultrasound irradiation produced a
significant increase in the concentration of oxygen and reactive oxygen species (ROS).
This led to increased and maintained partial pressure of oxygen in the tumor in PANC-1
tumor-bearing mice, reversing the hypoxic state of the TME, increasing the survival rate
and inhibiting tumor growth.

Finally, some cell types present in the TME, such as macrophages, fibroblasts, and
stellate cells, can promote drug resistance in the tumor due to the excessive release of
cytokines and components of the ECM, such as collagen or fibronectin. Accordingly, these
components have also been the target of NP-based therapeutic strategies aimed at reducing
drug resistance. Tumor-associated macrophages (TAMs), which exhibit a phenotype similar
to M2 polarized macrophages, limit the performance of lymphocytes and natural killers.
Taking advantage of the overexpression of matrix metalloproteinases (MMPs) and esterases
in the TME, Liu, et al. [178] synthesized ruthenium-based nanoplatforms functionalized
with triglyceride monostearates (TGMs) for a controlled release of iBLZ-945, an inhibitor of
the CSF-1/CSF-1R pathway. These nanocomplexes reversed the TAM M2 phenotype to a
pro-inflammatory M1 phenotype. In fact, in CRC (CT26 cells)-bearing mice, co-treatment
with these nanoplatforms and photodynamic irradiation achieved a 1.4-fold increase in
CD8+ T lymphocyte infiltration. These results were explained by the reversal of the TAM
phenotype to M1 resulting from the elevation of ROS levels after PDT [178]. TAMs were
also used by Cao, et al. [179] to design a system based on PEG-PLGA NPs functionalized
with the YI peptide to improve PTX administration. The YI peptide specifically recognizes
legumarin, a surface marker of TAMs, and the ANXA1 protein present in the vasculature
of the tumor. The administration of these nanoplatforms in HT-29 tumor-bearing mice
resulted in high accumulation within the tumor (~3-fold) and in increased concentration of
PTX (~5-fold).

The accessibility of treatments to the tumor is hindered in PAC due to the presence of a
particularly dense tumor stroma (desmoplasia), which promotes resistance. This abnormal
stroma results from an excessive production of cytokines and ECM proteins, caused by
the altered activity of pancreatic stellate cells (PSCs) and cancer-associated fibroblasts
(CAFs). Accordingly, PSCs are another target in PAC treatment. Xie, et al. [151] synthetized
multifunctional nanoplatforms, including PCX (CXCR4 antagonist), anti-miR-210 (which
inactivates PSCs) and siKRASG12D (KRAS inhibitor) (PCX/(anti-miR-210+siKRASG12D).
The intraperitoneal administration of these nanoplatforms in KPC8060 (mutant KRASG12D
and p53) orthotopic tumor-bearing mice effectively decreased the expression of miR-210
(76%), Ki77+ cells (74%) and KRASG12D (74%), and reduced the expression of collagen
and αSMA in PSCs. In addition, this treatment led to a greater infiltration of CD8+ T cells
and a decrease in TAMs at the tumor site. By contrast, Han, et al. [180] tried to “re-educate”
PSCs by using PEG-PEI-AuNPs to administer all-trans retinoic acid (ATRA) and siHSP47
(heat shock protein 47) (Au@PP/RA/siHSP47). The authors reported a 55% reduction
in the expression of HSP47 in PANC-1/PSC tumor xenografts, and a lower expression
of fibronectin and collagen in the ECM. In addition, co-treatment with GEM allowed to
reduce the tumor weight (~60%) compared to GEM alone.

9. Cancer Stem Cells and Drug Resistance

CSCs, a small subset of tumor cells with self-renewal capacity and tumorigenicity, are
currently considered one of the primary causes of chemo- and radioresistance [167,181].
The main strategies developed to specifically target CSCs and eliminate resistance to
treatment take advantage of the overexpression of pluripotency markers or molecules
related to cell cycle alterations and cell survival.
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In CRC, most of the alternatives studied involve the use of HA due to its specific
binding to CD44, a marker overexpressed in this tumor. Recently, 6-mercaptopurine
and thiolated HA hydrophobic based polymeric micelles selectively enhanced the effect
of DOX in HCT116 colon cancer cells, showing no toxicity in normal L929 fibroblast
cells [182]. Li, et al. [183] developed a multifunctional nanoplatform using RRPH (HA-
PEG polymer) conjugated with the R8-RGD tandem peptide to efficiently and selectively
transfect CSCs with the tumor necrosis factor (TNF)-related apoptosis-inducing ligand
(TRAIL) gene associated with PF33 (fluorinated polymer). In vivo assays showed that
nanoplatforms carrying the TRAIL gene were able to escape endosomes and accumulate in
the nucleus of HCT116 CRC cells, significantly reducing their volume without altering other
organs or modifying the blood chemistry profile. The CSC marker CD133 was the main
target of the nanoplatform designed by Zahiri, et al. [184] to deliver DOX encapsulated in
dendritic mesoporous silica NPs functionalized with an RNA aptamer against CD133. This
nanosystem increased the toxicity of DOX in HT29 colon cancer cells as a result of greater
cellular internalization. Moreover, a nanoplatform based on the ability to self-assemble of
the diphtheria toxin together with the CXCR4 ligand T22 associated with 5-FU or OXA,
eliminated the proliferative potential of CSC from mice tumors derived from CRC patient
cells [185]. Finally, the polymeric micelles designed by Montero, et al. [186] loaded with
anti-structural maintenance of chromosomes protein 2 (SMC2) antibodies and 5-FU were
capable of overcoming resistance to 5-FU in HCT116 cells.

In PAC, the most recent studies used metal-based nanoplatforms such as titanium,
iron, gold and copper to target pancreatic CSCs. Wang, et al. [187] designed a nano-platform
for PTT based on black TiO2 loaded with Gd-DOTA and targeted with anti-CD133mAb,
achieving a higher and selective death of CSCs. Additionally, AuNPs [188] or curcumin-
loaded superparamagnetic iron oxide NPs (SPIONs-CUR) [189] reduced resistance to GEM.
AuNPs not only decreased the ability to form colonies (2D or 3D) in PAC cells, but also
led to exponential decrease in the IC50 of GEM. Moreover, these NPs downregulated the
expression of pancreatic CSC markers (CD24, CD44, Epcam, CXCR4, DCLK1, nestin, CD133,
c-Met, ALDH and Tspan8), N-cadherin and vimentin, and upregulated E-cadherin [188].
On the other hand, SP-CUR combined with GEM, at doses at which this drug alone is not
effective, selectively reduced the viability of pancreatic CSCs by 50% due to the inhibition
of factors such as Nanog, Sox-2, CD133 and Oct-4 [189]. Also, copper-based nanoplatforms
have been shown to selectively cause toxicity in CSCs by generating high levels of oxidative
stress (ROS). In fact, Marengo, et al. [190] developed HA-functionalized PEG-liposomes
loaded with copper complexes (Cu(DDC)2) and formed by the diethyldithiocarbamate
(DDC) present in disulfiram (DSF), which reduced the DSF IC50 (2-fold) in PANC-1 CSCs.
This same author used LipoCu(DDC)2–2%PEG3%HA17000 NPs to achieve a 17.5-fold
reduction in the IC50 of DDC, in addition to inhibiting the ability of CSCs to form tu-
morspheres. Recently, Azmi, et al. [191] co-administered Selinexor and nab-PTX+GEM,
improving the cytotoxic effect of the drugs and inhibiting the ability of CSCs to form
tumors. In fact, a phase Ib trial using this combined therapy achieved 40% partial response
and 40% disease stability rates in patients with PAC (Figure 4).
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10. Conclusions

Gastrointestinal cancers, including CRC and PAC, frequently develop drug resistance
mechanisms, preventing adequate treatment and leading to poor prognosis. Most patients
with CRC, especially in metastatic stages, develop acquired drug resistance. Despite the
identification of several resistance mechanisms, this phenomenon is extremely complex
because it continues to develop during tumorigenesis, is dependent on the administered
therapy and can be induced by several mechanisms simultaneously. Although preclinical
studies combining conventional treatments with drugs such as ABC transporter inhibitors,
EGFR inhibitors or autophagy inducers, have reduced drug resistance, clinical trials have
not been successful. On the other hand, PAC, a refractory disease with high mortality, is
also known to develop resistance, preventing drugs from exerting their antitumor effects.
In this case, multiple molecular mechanisms related to resistance have been described, such
as inhibition of DNA repair pathways or down-regulation of miRNA, but the development
of a dense hypovascularized stroma is the essential factor underlying this phenomenon.
Despite the most recent advances, clinical trials using strategies to avoid resistance have
failed, although there are currently some studies in preliminary phases that try to avoid
this phenomenon (Table 3). In this context, the use of novel nanoformulations seeks to
provide systems that not only increase drug circulation time and accumulation in tumor
tissue, but also the ability to transport therapeutic combinations with potential to overcome
MDR. Of note, the development of these nanodrugs is based upon knowledge of resistance
mechanisms. Accordingly, in addition to transporting drugs commonly used for colon or
pancreatic cancer treatment, they allow to inhibit efflux proteins, modulate the expression of
miRNA or increase the selectivity for hypoxic environments. In summary, drug resistance
continues to be an obstacle for the effective application of chemotherapy. The development
of new nanodrugs will undoubtedly represent an excellent therapeutic strategy to eliminate
or minimize resistance in CRC and PAC.
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Table 3. Clinical trials using NPs designed against CRC and PAC to overcome multidrug resistance.

Identifier Drug/Cargo Clinical Phase PAC/CRC

NCT02178436 Selinor + GEM + nab-paclitaxel Phase Ib PAC

NCT02010567 CRLX101-capecitabine +
radiotherapy Phase I/II CRC

NCT00081549 Aroplatin (liposomal NDDP) + GEM Phase I/II PAC
NCT00043199 Aroplatin (liposomal NDDP) Phase II CRC
NCT00081536 Aroplatin + capecitabine Phase I/II CRC
NCT03883919 IRI+5-FU/LV + paricalcitol Pilot Study PAC

NCT03337087 Liposomes transporting IRI, 5-FU,
LV and rucaparib Phase I/II PAC and CRC

Gemcitabine (GEM); bis-neodecanoate diaminocyclohexane platinum (NDDP); irinotecan (IRI); 5-fluorouracil
(5-FU); leucovorin (LV).
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