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We present the multiple particle identification (MPID) network, a convolutional neural network for
multiple object classification, developed by MicroBooNE. MPID provides the probabilities that an
interaction includes an e−, γ, μ−, π�, and protons in a liquid argon time projection chamber single readout
plane. The network extends the single particle identification network previously developed by Micro-
BooNE [Convolutional neural networks applied to neutrino events in a liquid argon time projection
chamber, R. Acciarri et al. J. Instrum. 12, P03011 (2017)]. MPID takes as input an image either cropped
around a reconstructed interaction vertex or containing only activity connected to a reconstructed vertex,
therefore relieving the tool from inefficiencies in vertex finding and particle clustering. The network serves
as an important component in MicroBooNE’s deep-learning-based νe search analysis. In this paper, we
present the network’s design, training, and performance on simulation and data from the MicroBooNE
detector.

DOI: 10.1103/PhysRevD.103.092003

I. INTRODUCTION

A series of liquid argon time projection chamber
(LArTPC) detectors have been or are being deployed at
Fermilab as part of the short-baseline neutrino (SBN)
program [1] along the booster neutrino beam line (BNB)
[2] and as part of the long-baseline program of the deep
underground neutrino experiment (DUNE) [3]. The
MicroBooNE experiment [4], part of the Fermilab SBN
program, has been operating since 2015, collecting data
accumulated during beam-on and beam-off time periods.
MicroBooNE operates a 170 ton (85 ton active) LArTPC

placed 470 m from the BNB target at Fermilab. The
LArTPC is 10.4 m long, 2.6 m wide, and 2.3 m high.
The detector has three readout wire planes with 2400
readout wires on the two induction planes and 3456 readout
wires on the collection plane [5]. Wires are installed with

two induction planes oriented at �60° with respect to the
vertical collection plane at a wire pitch of 3 mm. An array
of 32 photomultiplier tubes (PMTs) are installed behind the
collection plane to detect the scintillation light from argon
ionization caused by charged final-state particles from
neutrino interactions [6]. The time projection chamber
(TPC) readout time window is 4.8 ms and is digitized into
9600 readout time ticks. Charged particles in liquid argon
produce ionization electrons, which drift to the readout
wire planes in an electric field of 273 V=cm. It takes 2.3 ms
for an ionization electron to drift across the full width of the
detector.
The MicroBooNE LArTPC continuously records charge

drifted and its arrival time on each wire. A software trigger,
based on PMT signals, records an event triggered by the
BNB beam spill if the interaction light detected by the PMT
array is above a set threshold. Each event consists of data
collected from 1.6 ms before the trigger and 3.2 ms after the
trigger. Therefore, each event has three sets of TPC data for
each wire on all three planes. A truncation of the wire
readout is performed around the trigger results so that the
two induction planes have resolutions of 2400 wires ×
6048 readout ticks, while the collection plane has a
resolution of 3456 wires × 6048 readout ticks. Wire and
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time data can be converted into an image format (charge on
each wire versus drift time) using the software toolkits
LArSoft [7] and LArCV [8] while maintaining high resolution
in wire, time, and charge amplitude space. These informa-
tion-rich LArTPC images are suitable for applying deep
learning tools. In consideration of computing resources,
images for deep learning tools are compressed along the
time tick axis by a factor of 6. Pixel values are merged by a
simple sum. Images become 2400 wires × 1008 ticks and
3456 wires × 1008 ticks for the induction and collection
planes, respectively. This corresponds to an effective
position resolution of 3.3 [9] and 3 mm [5] along the time
tick and wire number directions, respectively.
Convolutional neural networks (CNNs), deep learning

networks commonly applied to image processing applica-
tions, are currently used across neutrino and high-energy
physics experiments [10]. For accelerator neutrino experi-
ments, NOνA has applied a CNN as a neutrino event
classifier [11] in its νμ → νe oscillation measurement
[12,13] and its neutral-current (NC) coherent π0 production
measurement [14]. NOνA has also demonstrated a context-
enriched particle identification network [15]. MINERvA
has developed CNN tools to determine neutrino interaction
vertices and study possible biases due to models used in the
large simulated training sample [16]. The Neutrino
Experiment with a Xenon TPC experiment has also used
a CNN classifier to perform particle content studies at
candidate neutrinoless double beta decay vertices [17].
A variety of deep learning techniques has been used in

neutrino LArTPC experiments. In MicroBooNE, a CNN
for assigning probabilities of particle identities for single
particles in the MicroBooNE LArTPC has been demon-
strated on simulated data in Ref. [18]. A semantic seg-
mentation network for LArTPC data [19,20] has been used
for π0 event reconstruction [21], vertex finding, and track
reconstruction [22]. The DUNE has recently presented an
updated long-baseline neutrino oscillation sensitivity study
incorporating a CNN for neutrino event selection and
background rejection [23].
In this article, we present our study in developing and

applying a multiple particle identification (MPID) network
with the task of multiple binary logistic regression problem
solving in MicroBooNE. It is the first demonstration of the
performance of a CNN on LArTPC data including sys-
tematic uncertainties, and the first particle identification
network applied to LArTPC datasets. The MPID network
extends the functionality of MicroBooNE’s previously
described single PID CNN network [18]. It does not
require preprocessing of image data to identify and filter
selected pixels in an image assumed to be produced by a
specific particle. The network provides simultaneous pre-
diction scores for particle existence probabilities in the
same image among five different particle species: electrons
(e−), photons (γ), muons (μ−), charged pions (π�), and
protons (p). The network is a particularly useful tool for

data analysis of particle interactions in LArTPC detectors,
since the region of an interaction vertex often contains
many particles.
The MPID algorithm can take as input a LArTPC image

with a fixed 512 × 512 pixel scale. A detailed description
of the network design and training for MPID is given in
Sec. II. When used in MicroBooNE’s deep-learning-based
low-energy excess νe (LEE 1e-1p) search analysis, the
MPID network is primarily applied to images that contain
candidate reconstructed neutrino interaction vertices as well
as all reconstructed topologically connected activity. MPID
predictions are derived based on the full information of all
energy depositions topologically connected to the vertex,
particularly the first few centimeters of final-state particles’
trajectories, which are critical for particle identification. In
the νe search, the network is also applied to more inclusive
images roughly cropped around the interaction vertex. This
is a new feature compared with the single PID network,
which takes as input only images containing filtered,
reconstructed hits. Cropping around the interaction vertex
allows reevaluation of charge missing from the former
topologically connected image, but is nonetheless present
near the vertex, such as photon showers from final-state
π0’s. This feature of the MPID network can help
MicroBooNE suppress important photon backgrounds to
a LEE search, as observed by MiniBooNE [24]. We
demonstrate this feature’s robustness against the presence
of LArTPC activity such as cosmic ray tracks that are
uncorrelated with signal features of interest.
In this paper, we are not prepared to show full perfor-

mance in the context of a physics analysis, but we can
present some specific measures of network performance.
Section III shows the efficiency of the different particle
scores on idealized events containing e−, μ−, and p; Sec. IV
shows data-simulation agreement on samples highly
enriched in certain signal topologies; and Sec. V shows
efficiency and background rejection performance for νe and
some specific backgrounds.

II. MULTIPLE PARTICLE CONVOLUTIONAL
NEURAL NETWORK

A. Network design

The MPID network applies a typical CNN [25] structure
for the task of multiple object classification, which is
summarized in block diagram form in Fig. 1. Input images
have a resolution of 512 × 512 (1.5 × 1.5 m) pixels, which
generally matches the size of neutrino-induced activity in
MicroBooNE. A series of ten convolutional layers is
applied to the image for extracting high-level features.
The first convolutional layer has a stride (shift unit of the

convolution calculation) of two with the goal of reducing
the LArTPC images’ sparsity and increasing feature abun-
dance at the beginning of the algorithm. Following con-
volutional layers have a stride of one, a block of two
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convolution layers with a kernel size of three, followed by a
pooling layer that is repeated five times. An average
pooling layer is applied at every other convolutional layer
to contract the spatial dimension. Then following the
pooling layer is a rectifier activation function [26] for
adding nonlinearities to the network, as well as a group
normalization operator [27] to avoid early overfitting.
Two fully connected layers with 192 × 8 × 8 nodes and

192 × 8 nodes are applied to combine the features derived
by convolutional layers. Output of the fully connected
layers is a vector with five floating point numbers, each
representing a confidence score for a target particle type to
be present in an image. The score is interpreted as a
normalized probability after applying a sigmoid function
[28]. The algorithm is optimized by minimizing the sum of
binary cross entropy loss [29] across target particle types.
In this way the prediction categories are not exclusive
between particles.
Figure 2 shows one example of the input and output of

the MPID network during inference. In this case, the input

image has one e− and one p concatenated at the same
vertex, a typical signal interaction topology for an inter-
action-channel-exclusive 1e-1p search, as implemented in
the MicroBooNE deep-learning-based LEE analysis. The
MPID network calculates as output the five floating point
numbers described in the previous paragraph, or “particle
scores,” that correspond to the inferred probability to have
each type of particle present in the image. In this example,
high scores of 0.99 and 0.98 are given for p and e− in the
image and low scores of 0.06, 0.01, and 0.02 are provided
for γ, μ−, and π�.
Figure 3 shows another example of the input and output

for the network during inference. The input image has one
γ, one e−, and one p produced at same vertex, which would
in principle be rejected in an exclusive 1e-1p search.
Again, the MPID calculates scores that correspond to
containing each particle in the image. High scores of
0.89, 0.95, and 0.85 are for p, e−, and γ in the image
and low scores of 0.02 and 0.08 are found for μ− and π� in
the image. We also note for total clarity that the photon
particle score is indicative not of the predicted total number
of photons in the image, but rather the probability that any
photons are present in the image. The former judgement, as
well as the capability to identify the particle content of
specific subfeatures within an image, is not within the
scope of the MPID algorithm.

FIG. 2. MPID example of a 1e-1p topology with a tabulated
output of particle scores. This image is generated by concatenat-
ing a p and an e− at the same vertex. Scores indicate high
probabilities of having a p and e− in the image. The image
applied to MPID has 512 × 512 pixels. An enlarged image of
250 × 250 pixels is shown for visualization.

FIG. 1. MPID network scheme. The output has five numbers.
Each of the values is between 0 and 1, representing the
probabilities of corresponding particles in the given LArTPC
image.
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B. Training and test samples

Training and test samples for the MPID CNN are
produced with a customized event generator that uses
LArSoft [7] and LArCV [8]. Detector processes are simulated
with the GEANT4 [30–32] simulation tool.
The first generator step produces a 3D vertex uniformly

distributed in the MicroBooNE LArTPC. The second step
generates a random number of particles from e−, γ, μ−, π�,
and p options. All particles are generated at the vertex from
the first step with isotropic directions. The multiplicities for
the total number of particles allowed in each image are
randomly distributed between two and four. The multiplic-
ity for each particle type is allowed to vary randomly
between zero and two. Such a configuration will include as
a subset final-state interaction vertex topologies that we
are searching for or trying to reject in MicroBooNE
analyses, such as 1e-1p, 1μ-1p, and 1γ-1p, as well as
nonsignal ones, such as 2μ or 2e. This generation stra-
tegy purposefully does not rely on any of the standard
neutrino final-state generators [33] to avoid possible bias-
ing the MPID network via inclusion of possibly incorrect
kinematic or multiplicity information provided by the
generator. Moreover, this training model will produce
a more robust particle identification tool capable of
producing unbiased results for a much broader range of

vertex-generating physics processes. Finally, high multi-
plicity topologies generated in these randomized training
samples help the network to activate more nodes and learn
more parameters for classification.
Each particle is generated with a single particle simu-

lation package, where no neutrino interaction model
kinematics are assumed. For 80% of the training and test
samples, particles are simulated with kinetic energies
between 60 and 400 MeV for protons and between
30 MeV and 1 GeV for other particles. For the other
20% of the training and test samples, particles are simulated
with kinetic energies between 40 and 100 MeV for protons
and between 30 and 100 MeV for other particles. Particles
are generated with a flat energy distribution. Energy ranges
are chosen based on the BNB neutrino energy distribution
and the analysis priority toward the lower energy range. We
generated 60,000 simulated events for training and 20,000
images for testing. The images are intentionally generated
without overlaying cosmic rays on simulated images to
retain separation capabilities for μ−. Images used for

FIG. 3. MPID example of a 1e-1γ-1p topology with a tabulated
output of particle scores. This image is generated by concatenat-
ing three particles at the same vertex. Scores indicate higher
probabilities of having p, e−, and γ in the image. The image
applied to MPID has 512 × 512 pixels. An enlarged image of
250 × 250 pixels is shown for visualization.

FIG. 4. Top: losses of training and test events during training
(top). Bottom: accuracies of training and test events during
training.
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training, testing, and inference are from the better perform-
ing collection plane only [34], similar to networks
described in Refs. [18,19]. This choice serves to reduce
the network’s reliance on upstream reconstruction steps,
such as the matching of pixels from different wire planes.

C. Network training

The loss of the network is defined using the
BCEWithLogitsLoss [29] function in PyTorch taking
the output layer (five floating point number) as input.
The BCEWithLogitsLoss function combines a sigmoid [28]
operator with the binary cross entropy calculation. During
training, we applied an initial learning rate of 0.001. Batch
sizes of 32 and 16 are chosen for the training and test

processing. Training is processed with one single NVIDIA
1080 Ti graphics card. Regularization methods of dropout
[35] and group normalization [27] are applied to avoid
early overfitting during training.
An accuracy is calculated while the training is monitored

for loss. Accuracy is defined as the fraction of predicted
labels matching the truth labels with a threshold value of
0.5 per event. MPID training curves of accuracies and
losses are shown in Fig. 4. After epoch 29, the test curve
continues to improve but does not keep up with the training
curve. With the consideration of not introducing bias
from the training sample, we checked weights around
epoch 29 and selected the one with best accuracy on the
test sample.

FIG. 5. Top: simulated 1e-1γ-1p final-state event example. Bottom left: p score map, p scores decrease as occluded region crosses the
p pixels. Bottom right: γ score map, γ scores decrease as pixels in the trunk region of the γ shower are occluded and increase as the trunk
region of the e-shower are occluded.
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D. MPID occlusion analysis

We applied an occlusion analysis [36] to determine
whether the MPID network has calculated its predictions
using image features associated with underlying physics,
for example, dE/dx at the first pixels of a particle (referred
as the trunk region of a particle), as opposed to other
extraneous features in the image. The strategy is to feed the
network an image partially masked to check how the MPID
responds to the masked image. The occlusion analysis
places a 9 × 9 pixel box in the top left corner of the image,
which masks all pixels in the occlusion box with zero
values. With this box placed, we then apply the MPID
network to the masked image and plot at that center pixel
the produced score value. This process is then repeated for
each pixel as the occlusion box scans along the x and y axis
of the image. Figure 5 shows an example of the occlusion
box placed on the image. After scanning the whole image,
we obtain score maps showing the MPID responses to each
occlusion box placement location. A lowered score for a
particular pixel in occlusion images indicates that the
masked region contains topological information valuable
for determining the identity of that particular particle.
A simulated interaction image with one e−, one γ, and

one p at the same vertex, shown in Fig. 5, is chosen to
demonstrate the occlusion analysis. The bottom left panel
in Fig. 5 shows the p scores from the occlusion study on the
input image. The p score drops significantly as the proton
track’s Bragg peak region, where strong p dQ/dx features
exist, is masked. This indicates that the MPID network is
properly identifying and leveraging features associated
with the p’s unique energy deposition density profile. It
can also be seen that a few pixels in the circle with very
high pixel values in the pictured shower are mildly
misinterpreted as p-like features.

The bottom right panel in Fig. 5 shows the γ scores
from occlusion analysis of the same input image. From
the occlusion image, it is clear that a few key physics
features of γ-containing images have been properly
learned by the MPID network. There are two critical
features in the particle trunk region for e−=γ separation:
the projected trunk region dE/dx difference and the
presence or absence of a gap between the trunk and
the interaction vertex. One can see the γ score drops to
near 0.3 when the trunk region of the γ (rather than the
gap region between γ and vertex) is masked. We also
applied an occlusion analysis to images with single γ
images to confirm that γ scores drop and e− scores

FIG. 7. Simulated 1π-1p (top) and 1μ-1p (bottom) events.
MPID predicts a high μ− score at 0.93 and a low π� at 0.10 for the
1π−-1p event where no kink is present (top). MPID predicts a
high π� score at 0.97 and a low μ− score at 0.27 for a 1μ-1p event
(low) where the muon scatters and has a kink on its track
trajectory.

FIG. 6. MPID score distributions for the probabilities of p, μ−,
e−, γ, π� on the 1μ-1p validation sample.
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increase as the γ trunk region is masked. We observe in
this example that the γ score also increases to near 1
when nearby pixels connecting the p and e− are
masked, since this produces more gaps between differ-
ent particles. The e− score does not change much as we
move the occlusion box around since there are over-
whelming e−-like features in the image from both the e−

and γ. This observation indicates that consideration of
both e− and γ scores is likely important in attaining
good e− and γ separation with the MPID network.

III. PERFORMANCE ON SIMULATION

To provide a first look at the capabilities of the trained
MPID algorithm, we present particle score results returned
from the test images generated using the same method
applied in producing training images. This section is
divided into discussions of individual final-state vertex
and particle topologies of interest to MicroBooNE physics
analyses, with occasional reference to a larger set of
complimentary final-state particle combinations located
in the Appendix.
We primarily focus on two generated test samples with

particles 1μ-1p and 1e-1p in the final state, which are not
used in training. 10,000 events are generated in each
sample. These samples are generated with the same
customized event generator described in Sec. II B.
Vertices are uniform in the detector with one proton and
one corresponding lepton. Kinetic energies of the protons
are between 50 and 400 MeV, while kinetic energies of
leptons are generated between 50 MeV and 1 GeV. The
1e-1p final-state dataset has a similar final state as the
target events of MicroBooNE’s deep-learning-based LEE
1e-1p analysis. The 1μ-1p dataset has a final state similar
to a MicroBooNE νμ selection analysis, described in
Sec. IVA, that will be used to constrain the beam-intrinsic
backgrounds in the LEE search. For complimentary final-
state particle combinations located in the Appendix, gen-
erated protons, muons, and electrons are generated with
similar requirements as given above, while pions and
gammas follow requirements similar to those of muons
and electrons, respectively. For completeness, the
Appendix includes descriptions of MPID performance with
all combinations of the five considered final-state particle
types, excepting the 1μ-1p and 1e-1p sets described in this
section.

A. 1μ-1p simulated sample

Figure 6 shows stacked MPID scores of five particle
hypothesis for the 1μ-1p simulated test dataset. A similar
plot showing a complementary inverted final-state con-
figuration (Ne-Nγ-0μ-Nπ-0p) is shown in Fig. 35 in the
Appendix. One can see between Fig. 6 and Fig. 35 the
MPID network provides good separation between track-
and showerlike particles with p and μ− scores concentrated

near one and e− and γ piled up near zero and vice versa in
the complementary sample.
The plot also shows a good separation between μ− and

π� using MPID, with a low score distribution for π�.
Separation between μ− and π� comes from the fact that π�
have higher rates of nuclear scattering than the μ, and the
π� can have a kink point where they decay as noted in
Ref. [18]. The network is likely keying primarily off of
visible kinks in a particle’s trajectory in order to identify π�
and the absence of visible kinks in a particle trajectory to
identify μ−. By checking MPID over a hand scanning of
images from a 1π�-1p sample, we notice MPID predicts
high π� score and low μ− score when the kink is visible,
and vice versa when the kink is not visible. Figure 7 shows
examples of predicting a high μ− score for a 1π�-1p event
where no kink is present and predicting a high π� score for
a 1μ-1p event where the muon scatters and has a kink on its
track trajectory.

FIG. 8. MPID passing fractions for tracklike particles (top) of
p, μ−, and π� on the 1μ-1p validation sample. MPID passing
fractions for showerlike particles (bottom) of e− and γ on the
1μ-1p validation sample.
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To perform particle identification as part of a neutrino
event selection analysis, a set of selections are usually
applied to particle score variables; these cuts will have
associated impacts on total signal selection efficiencies.
Figure 8 shows the passing fractions for tracklike particles
in the 1μ-1p dataset. Similar plots of the complementary
configuration (Ne-Nγ-0μ-Nπ-0p) are shown in Fig. 35 in
the Appendix. Passing fraction is defined as the percentage
of events with a MPID particle score above a specified
value; a tested set of events will have a passing fraction
calculated for each particle type. The cut value for each
particle score is varied between 0 and 1 with a step size of
0.01. For example the blue dotted line shows the passing

fraction of p in the image at each p score cut value.
Figure 8 also shows the passing fractions for showerlike
particles in the 1μ-1p dataset. The passing fractions are
extremely low for either in the 1μ-1p sample. Figure 35
shows low passing fractions for μ− and p and high passing
fractions for the other three particles in images with the
final state of Ne-Nγ-0μ-Nπ-0p.
Figure 9 shows the correlation between μ−=π� scores

and the μ− kinetic energy using the same 1μ-1p simulation
of 10,000 events. One can see that when the μ− particles
have low kinetic energy and produce fewer μ−-like pixels in
the image, the μ− score is decreased. Meanwhile, π� scores
for the same dataset appear to be comparatively low across
all tested muon energies.

B. 1e-1p simulated sample

Figure 10 shows stacked MPID score distributions for
the simulated 1e-1p dataset. A similar plot for a comple-
mentary configuration (0e-Nγ-Nμ-Nπ-0p) is shown in
Fig. 30 in the Appendix. MPID correctly calculates high
scores for signal particles of p and e−. One can see between
Fig. 10 and Fig. 30, the network shows good separation
between track particles in deriving low scores for μ− and
π�. The MPID CNN also shows good separation between
showerlike particles when e−’s are present in the image:
derived scores for γ are clustered close to zero, while e−-
like scores are clustered around unity.
The passing fractions over MPID scores for

tracklike particles in the 1e-1p dataset are given in
Fig. 11. Similar plots of the complementary configuration
(0e-Nγ-Nμ-Nπ-0p) are shown is shown in Fig. 30 in the
Appendix. The passing fraction for p in the image are much
higher than the fractions for μ− or π�. The capability to
discriminate between p and μ− appears to be particularly

FIG. 10. MPID score distributions for the probabilities of p, μ−,
e−, γ, π� on the 1e-1p validation sample.

FIG. 9. Muon score vs muon kinetic energy (top) and charged
pion score vs muon kinetic energy (bottom) for the 1μ-1p
simulation. Red dots indicate the average score in the vertical bin.
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high, while p=π� separation also remains high. This
difference in performance between μ− and π� should not
be too surprising given the level of π�-μ− passing fractions
demonstrated in the previous section. Figure 11 also shows
the passing fractions for the showerlike particles in the
1e-1p dataset. Figure 30 shows low passing fractions for e−

and p and high passing fractions for the other three
particles in images with the final state of 0e-Nγ-Nμ-Nπ-0p.
Figure 12 shows the correlation between e−=γ scores and

e− kinetic energy. One can see the MPID network has an
overall high e− score until the e− kinetic energy approaches
its critical energy in liquid argon and becomes less shower-
like. In a related sense, μ− scores for low-energy 1e-1p
interactions are found to be slightly higher than high-
energy ones. Meanwhile, the γ score for these events has a
positive correlation with e− kinetic energy, since high-
energy e− are more likely to experience substantial
amounts of radiative energy loss.

IV. COMPARISON OF DATA/SIMULATION
PERFORMANCE

We prepared two different MicroBooNE LArTPC data
samples to validate the performance of the MPID network
on data. The MPID network was not employed in the
selection of these data samples. The first data sample is a
1μ-1p-enriched selection that uses a hybrid selection of a
series of reconstruction algorithms [22] and MicroBooNE’s
semantic segmentation network [19]. This dataset is
intended to be used in a MicroBooNE LEE 1e-1p analysis
to provide a data-based constraint on the BNB neutrino
beam’s intrinsic νe contamination. The second sample

FIG. 11. MPID passing fractions for tracklike particles (top) of
p, μ−, and π� on the 1e-1p validation sample. MPID passing
fractions for showerlike particles (bottom) of e− and γ on the
1e-1p validation sample.

FIG. 12. Electron score vs electron kinetic energy (top) and
photon score vs electron kinetic energy (bottom) for the 1e-1p
simulation. Red dots indicate the average score in the vertical bin.
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contains νμ charged current (CC) interactions with a final-
state π0 (νμCCπ0) as defined in Ref. [21]. In this section we
demonstrate that the MPID network works well on real
LArTPC images. We show good agreement in MPID scores
between data and simulation for the selected datasets.
To enable data/simulation comparisons for these two

event classes, we simulate neutrino interactions using the
GENIE v3.0.6 [33] neutrino Monte Carlo generator. To
accurately include on-surface cosmogenic backgrounds
present in all MicroBooNE LArTPC images, beam-off
data containing only cosmic rays are overlayed on simu-
lated neutrino interaction images. Beam-off data are taken
with cosmic ray triggers. An overlay sample is a combi-
nation of GENIE simulated beam events and cosmic data
events. This ensures that the reported particle score dis-
tributions for data and simulated images will be equally
affected by the presence of cosmic rays.
In the study of the 1μ-1p dataset, we apply the MPID

network to processed images containing only wire signal
activity associated with particles reconstructed at a candi-
date neutrino interaction vertex. In the study of νμCCπ0

dataset, we instead apply the MPID network to images
made with all pixels near the reconstructed vertex; in this
case, particle scores are completely independent of any
previous reconstruction. We show that the network can
purify the desired particle content while maintaining good
data-simulation agreement in both the “cleaned” (input
images containing only the reconstructed interactions) and
potentially “polluted” (input images also containing cosmic
rays) input images.

A. 1μ-1p-enriched data

The 1μ-1p-enriched dataset is selected from a set of
MicroBooNE beam-on data corresponding to 4.4 × 1019

protons on target (POT) in the BNB beam. These events
consist of exactly two reconstructed particles—ideally one
p and one μ−—at the candidate interaction vertex. The
selection consists of two steps. The first step involves a set
of preliminary cuts based on optical information and
interaction topology cuts. Candidate 1μ-1p interactions
are required to have more than a threshold number of
photoelectrons recorded in the beam trigger window to be a
signal. Interaction topology selections require candidates to
be located inside the TPC with exactly two fully contained
reconstructed tracks. Topology selections also require an
opening angle greater than 0.5 rad. The second step
involves two boosted decision trees (BDTs) to make a
final 1μ-1p selection. The first BDT is trained to separate
1μ-1p from the cosmic backgrounds using a simulated νμ
sample and a beam-off cosmic-ray-only dataset. The
second BDT is trained to separate 1μ-1p from nonsignal
neutrino interactions i.e., νμ interactions that are not
charged current quasielastic (CCQE), off-vertex νμ inter-
actions, and interactions missing more than 20% energy in

reconstruction) using a simulated νμ sample. Details of
preliminary selection and BDT selections will be docu-
mented in detail in future publications. The selection of the
dataset described above produces 478 data and 466
simulated input images for processing by the MPID net-
work. In the simulated dataset, 94% of these images contain
true neutrino interactions. Among these, 314 (67% of total
images) events contain solely one reconstructable final-
state p and μ−.
We produce the input images in three steps. First, the

interaction vertex is located and any associated tracklike
particles are reconstructed using algorithms described in
Ref. [22]; two and only two reconstructed tracks are
required. Next, a 512 × 512 image is produced, centered
at the pixel-weighted center of the reconstructed 1μ-1p
event from a flat weight for nonzero pixels. Finally, to
address noise-related features, a threshold is placed on the
images with a minimum and maximum pixel value of 10
and 500, respectively. This procedure removes effects from
pixels from unrelated interactions near the neutrino inter-
action vertex. Figure 13 shows an example of a 1μ-1p
image fed into the MPID network. The image is from the
collection plane.
Figure 14(a) shows the p score for the selected candidate

1μ-1p interactions, broken down into the true physics
process of each imaged vertex. The simulation predicts that
true 1μ-1p charged-current neutrino interactions should
cluster at high p score, with background processes (par-
ticularly cosmic processes) more evenly distributed across

FIG. 13. Example of the input data image from 1μ-1p selection.
The image is centered at the nonzero pixel weight center. The
image has 512 × 512 pixels. An enlarged image of 250 ×
250 pixels is shown for visualization.
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the score axis. In the data, a distinct peak is present at high
p score, providing a strong indication of proton(s) being
present in most of the images.
Figure 14(b) shows the ratio of data and simulation

versus the p score. We note that, as we are primarily
concerned with understanding the agreement in the dis-
tribution of scores from 0 to 1, discussion of the level of
absolute agreement in normalization between data and
simulation is beyond the scope of this study. For each
point, the data’s statistical uncertainty is shown, along with
the systematic uncertainty associated with flux and cross
section uncertainties. Beam flux uncertainties are evaluated

by reweighting events according to the properties of the
hadrons that decay to produce the neutrinos. Cross section
uncertainties are evaluated by reweighting events according
to the properties of the neutrino’s interaction with an argon
nucleus. Detector uncertainties are in development and are
expected to not have a dominant systematic effect on MPID

FIG. 14. MPID proton score distribution (top) and muon score
distribution (bottom) for selected 1μ-1p interactions. Simulation-
predicted score distributions show satisfactory agreement with
those realized in the 1μ-1p selection applied to MicroBooNE
data. Plot error bars indicate data statistical errors, while hatched
bands indicate statistical and/or systematic uncertainties in the
simulated dataset. The χ2 calculation incorporates contributions
from systematic and statistical uncertainties. The breakdown of
interaction type is based on the predicted event classification for
the initial neutrino interaction. MEC: meson exchange current,
MC: Monte Carlo, and NDF: number of degrees of freedom.

FIG. 15. Charged pion score distribution (top), electron score
distribution (middle), and photon score distributions (bottom) for
selected 1μ-1p interactions. Score distributions agree with the
1μ-1p selection. Data and simulation agree well. χ2 calculation
include systematic and statistical uncertainties.
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scores for 1e-1p events. Good agreement is found between
the data and simulation across the full range of p scores
with flux and cross section uncertainties. This level of
agreement was quantified by calculating the χ2 between the
data and simulation distributions in Fig. 14(a). This χ2

includes both statistical and systematic uncertainties in the
data and simulation. A χ2=NDF of 32.4=20 is found,
indicating a comparable performance of the MPID on both
data and simulation.
Figure 14 also shows the μ− score distribution for the

same selected 1μ-1p interactions. A majority of events are
found in the higher score region, indicating that the MPID
algorithm has correctly identified the presence of μ− in
these images. Figure 14(d) shows the ratio of data to
simulation in the μ− score distribution; systematic error
bars are similarly defined as for the simulated p score
distribution. A χ2=NDF of 9.9=20 is found between the two
distributions, indicating good MPID data-simulation agree-
ment for μ− score.
Figure 15 shows the score distributions for particle types

expected to be absent from or contained in limited
quantities in the selected 1μ-1p dataset: π�, e−, and γ.
For γ and e−, the score distributions are peaked very close
to zero, since input images have only tracklike particles,
and because, as demonstrated in Sec. III, discrimination
between tracklike μ− and p particles and showerlike γ and
e− particles is expected to be high. Scores for tracklike π�
particle scores are also clustered toward zero, but with a
broader overall width; this result also matches the expect-
ations of Sec. III. The χ2=NDF of 22.0=20, 27.0=20, and
15.8=20 for data/simulation comparisons for γ, π�, and e−

indicate comparable performances of MPID on data and
simulation.
The MPID network appears to provide similar perfor-

mance on both data and simulated neutrino interaction
images containing primarily tracklike final-state particles.
This similarity in performance is achieved despite the input
image’s reliance on other reconstruction algorithms to
“remove” pixel content not related to final-state particles
connected to the candidate neutrino interaction vertex. This
indicates that not only the MPID algorithm, but also the
upstream reconstruction algorithms, treat data and simu-
lated LArTPC images on an equal footing.

B. νμCCπ0-enriched data

A study of π0-producing charged current νμ (νμCCπ0)
interactions is useful in providing a similar data/simulation
agreement validation for images that also contain shower-
like objects, as is expected from charged-current νe
interactions. For this study, we select events from the same
dataset used in MicroBooNE’s previous νμCCπ0 measure-
ment [21]. The primary reconstruction toolkits used to
develop selection metrics for these events are PANDORA

[37] and SSNet [19]. Selected events are primarily required

to have two showers close to the interaction vertex. This
requirement makes this dataset distinct from a 1e-1p
selection, where one and only one shower is allowed,
which must be directly attached to the vertex. In this way, in
studying MPID performance on the νμCCπ0 data sample,
we demonstrate not only data/simulation performance, but
also show how the network can help to reduce a major
intrinsic background to the νe channel: π0-producing
interactions.
Input images from νμCCπ0 candidates are generated by

cropping a 512 × 512 square image centered at the recon-
structed interaction vertex, rather than at the image’s pixel-
weighted center as in the 1μ-1p images. To ensure that π0

decay γ’s are not scrubbed from the image, no additional
pixel “cleaning” is applied. This means that cosmic rays
and other interactions unrelated to the vertex remain in
input images, presenting an additional challenge to the
MPID network’s performance. The same noise filtering
metric, as described for the 1μ-1p dataset, is applied to the
images. Figure 16 shows an example of a νμCCπ0-con-
taining image fed into the MPID network. The image is
from the collection plane.
The selection and dataset described above produces

2051 data and 2011 simulated input images for processing
by the MPID network. According to the simulation, 41% of
total events have νμCCπ0 interactions and 60% of events
contain π0-including interactions (including the νμCCπ0

interactions).

FIG. 16. Example of the input data image from the νμCCπ0

selection. The image is centered at the reconstructed vertex. The
image has 512 × 512 pixels. An enlarged image of 250 ×
250 pixels is shown for visualization.
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Figure 17 shows the score distribution for having any e−

in the images cropped from the νμCCπ0 sample. The score
indicates a generally low probability of having e−-like
features in the data and simulated images. As a comparison,
Fig. 17 also shows the score distribution for having any γ
rays in the images. One can see a much higher score
distribution for the γ existence case, as expected based on
the event filtering criteria described above. Figure 18 shows
the score distribution for having any μ− in the νμCCπ0

images. The score generally indicates a high probability of
having μ−-like features in data and simulation. In particular,
it shows a difference between the CC- and NC-π0 events in
the low μ− score region.
The bottom panels of Figs. 17 and 18 show the ratio of

data to simulation versus e−, γ, and μ− scores following an
area-only comparison. Systematic uncertainties are also
included in the same manner as described for the 1μ-1p

dataset. Good comparable performance can be seen
between data and simulation with χ2=NDFs of 43.6=39
for e− score, 42.8=39 for γ score, and 24.0=39 for μ− score.
Thus, this study demonstrates that, for a subset of π0-
containing neutrino interactions, the MPID algorithm can
reliably identify shower-related particle content in images
without introducing biases between neutrino data and
simulation predictions. This is achieved despite the pres-
ence of additional incidental pixel activity being present in
interaction candidate images.

V. USE OF MPID IN A LOW-ENERGY EXCESS
MEASUREMENT

In the two previous sections, we have demonstrated the
MPID network’s utility in particle identification for both
track and shower topologies in LArTPC images, as well as
its equivalent performance on both data and simulated
events. We will now apply the trained MPID network to
simulated BNB νe and νμ interactions overlayed with
beam-off cosmic event images to demonstrate the ability
of the MPID network to aid in event selection for
MicroBooNE’s deep-learning-based 1e-1p low-energy
excess search.

A. Simulated intrinsic νe vs νμCCQE and νμπ0

We generated simulated neutrino events to evaluate the
performance of MPID in the 1e-1p selection in identifying
beam-intrinsic backgrounds originating from νμCCQE and
neutrino interactions with one or more π0’s in the final state
(νμπ0). Samples for these three datasets are produced using
the standard GENIE v3.0.6 [33] neutrino interaction generator
and filtered using truth-level information. In these samples,
we require the lepton kinetic energy be greater than

FIG. 17. Electron score distribution (top) and photon score
distribution (bottom) for selected νμCCπ0 interactions. Score
distributions agree with the νμCCπ0 selection. Data and simu-
lation agree well. χ2 calculation include systematic and statistical
uncertainties. Out. fid. vol.: out of fiducial volume.

FIG. 18. Muon score distribution for selected νμCCπ0 inter-
actions. Score distributions for data and simulation agree well
using the νμCCπ0 selection. χ2 calculation includes systematic
and statistical uncertainties.
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35 MeV and p kinetic energy greater than 60 MeV. The
minimum kinetic energy thresholds were set in order to
choose events whose lepton and p trajectories are long
enough to be reconstructed by our deep-learning-based
vertex finding and particle reconstruction algorithms [22].
Samples are then processed using the reconstruction
algorithms to identify candidate interaction vertices and
nearby related particles. Finally, input images are generated
with pixels from only the reconstructed interaction final-
state particles; each interaction is required to have two
particles at this stage. Images are centered at the pixel-
weighted center of reconstructed interactions. No other
selection cuts beyond the truth-level filtration described
above are applied to the samples.
Figure 19 shows the e− score distribution of recon-

structed events from νe and νμπ
0 datasets. A good sepa-

ration is visible between these two event classes. For
example, with only an e− cut score of 0.5, 83% of
νμNCπ0 and 86% of νμCCπ0 events are rejected, while
81% of true 1e-1p events are selected. It seems likely that
further gains in background rejection could be achieved by
also considering scores for other particles and by using
differing input pixel image inclusion settings.
Previous discussion from the occlusion analysis pre-

sented in Sec. III provides some level of insight into the
causes of the substantial discrimination shown in Fig. 19. In
particular, νe interactions will contain a showerlike object
with a trunk directly connected to another particle, a feature
that was clearly noticed by the MPID network. This is not
the case for most γ rays present in νμπ

0 interactions.
Another critical parameter for separating e−- and π0-
including events is the energy deposition density, dE/dx,

along this vertex-connected shower trunk; the trunk region
information is usually well reconstructed, since it is almost
always directly attached to neutrino candidate vertex. Some
of the discrimination in Fig. 19 may thus also arise from the
network’s ability to discriminate a high trunk dE/dx for
vertex-connected showers from quickly converting
π0 γ rays.
The e− score can also be applied to separate 1e-1p and

1μ-1p events. The separation is shown in Fig. 20. The νe and
νμCCQE events are well separated using the e− score
calculated by the MPID network. For example, with only
an e− cut score of 0.2, 91%of true 1e-1p events are selected,
while 95% of νμCCQE events are rejected. This discrimi-
nation ability almost certainly arises from the lack of
showerlike topologies in the νμCCQE interaction images.

B. Simulated intrinsic νe vs cosmic event

Due to the lack of substantial overburden and the long
readout time, cosmic rays could provide a substantial
background to a BNB-based 1e-1p νe measurement in
MicroBooNE. As most of this cosmic ray activity is
induced by μ−, it is expected that the presence of a p in
the signal’s final state will aid in distinguishing the two
categories. To test the MPID network’s ability to discrimi-
nate the signal’s p particle content, we generated a
simulated intrinsic νe dataset with cosmic data overlay,
in addition to another event set consisting purely of beam-
off cosmic triggers. For both datasets, we applied the vertex
finding and particle reconstruction algorithms developed
for two-track events, as described in Ref. [22]; in particular,
each image is required to have exactly two reconstructed

FIG. 19. Electron score of νe intrinsic events and νμπ
0 events.

Both datasets are generated with the GENIE neutrino generator and
filtered using truth-level information. Presented events have a
reconstructed vertex.

FIG. 20. Electron score between νe intrinsic events and νμ
CCQE events. Both datasets are generated with the GENIE

neutrino generator and filtered using truth-level information.
Presented events have a reconstructed vertex.
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particles connected to the candidate neutrino interaction
vertex. As in the subsection above, no selection cuts are
applied beyond truth-level event filtration.
Figure 21 shows the p score distributions on images

from the intrinsic νe dataset with cosmic overlay and the
pure cosmics dataset. One can see that the majority of pure
cosmic dataset events reconstructed as two-particle signal
events have p scores below 0.2. Meanwhile, the majority of
reconstructed νe intrinsic events have p scores near 1. For
example, with only a p cut score of 0.5, 81% of true 1e-1p
events are selected, while 79% of cosmic events are
rejected.
Investigation of information from prior reconstruction

stages and hand scanning of event displays indicates that
the small peak in p score close to zero in the νe intrinsic
dataset is due to inefficiencies in p reconstruction as shown
in Fig. 21(a) of Ref. [22]. Similar investigations show that
the small peak of p score close to 1 in the cosmic sample is
introduced by cosmics with small incident angles relative to
the collection plane; these non- p tracks are often topo-
logically compressed by reconstruction algorithms, giving
them the appearance of short tracks with a protonlike Bragg
peak. Thus, future improvements in lower-level signal
processing and particle reconstruction is likely to further
improve the cosmic discrimination shown in Fig. 21.

VI. CONCLUSION

We have developed a CNN-based multiple particle
identification network, MPID, and applied it to images

of event interactions in MicroBooNE data. This is the first
demonstration of the performance of a CNN that incorpo-
rates systematic uncertainties in LArTPC data, and the first
use of CNNs to perform particle identification on real
LArTPC data. The network takes a 512 × 512 LArTPC
image and calculates the probability scores for any particle
in the image as p, e−, γ, μ−, and π�. The training images are
generated with a customized event generator that concat-
enates particles at the same vertex. The code for making the
network and training sample are made available in MPID
[38] and LArSoft [7].
10,000 1e-1p and 1μ-1p images are used to benchmark

the network performance on simulated interactions. Pass
fractions of particles present in the images are found to
surpass those not present in the input images.
Satisfactory agreement in all score distributions is found

between data and simulation despite the many complexities
of the MicroBooNE liquid argon TPC response, including
inactive wire regions [39], electronics noise [39], signal
processing [40,41], and space charge effects [42].
We also demonstrated the metrics and performance of

applying the MPID network on BNB beam data from
MicroBooNE, which also illustrated the MPID network’s
clear capabilities in particle discrimination. When we take
reconstructed vertex activity as input in filtered 1μ-1p
candidate event images, MPID score distributions are
indeed high for p and μ− and low for e−, γ, and π�.
When we instead take all pixel activity as input in filtered
images containing π0-produced γ rays, we see large
differences between obtained e− and γ scores. By applying
these demonstrated particle identification capabilities to
simulated BNB νe and νμ interactions, we have shown that
this validated tool can play an important role in achieving a
successful low-energy electronlike excess measurement in
MicroBooNE.
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APPENDIX: MPID SCORES FOR ALL PARTICLE
COMBINATIONS

This section serves to supplement Sec. III in providing a
complete description of the performance of the MPID
network on a variety of simulated final-state particle
combinations. In this section we present the network
performances on the full set of different samples over all
possible final particle state particle combinations. There are
32 different combinations regarding the five considered
particle types. However, cases involving none of the
particle types, as well as all five particle types, were not
included in the training or test samples. The remaining
30 combinations are presented in this paper. For each

combination we present a stacked distribution similar to
Fig. 6 and a passing fraction plot similar to Fig. 8 for
each of the five type of particles. We present the 30
combinations in 15 pairs, with each pair having two
complementary configurations, for example, the network
performances over the final states of Ne-0γ-0μ−-0π�-0p
and 0e-Nγ-Nμ−-Nπ�-Np as shown in Fig. 22. Other
configurations are presented in Figs. 23–36. The data are
generated using the same configuration for the test sample
described in Sec. II B. For 80% of the sample, particles are
simulated with kinetic energies between 60 and 400 MeV
for protons and between 30 MeV and 1 GeV for other
particles. For the other 20% of the sample, particles are
simulated with kinetic energies between 40 and 100 MeV
for protons and between 30 and 100 MeV for other
particles. Particles are generated with a flat energy
distribution.

FIG. 22. MPID score distributions and MPID passing fractions on a complementary set of Ne-0γ-0μ-0π-0p and 0e-Nγ-Nμ-Nπ-Np.
N is randomly one or two in each event.
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FIG. 23. MPID score distributions and MPID passing fractions on a complementary set of 0e-Nγ-0μ-0π-0p and Ne-0γ-Nμ-Nπ-Np.
N is randomly one or two in each event.
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FIG. 24. MPID score distributions and MPID passing fractions on a complementary set of 0e-0γ-Nμ-0π-0p and Ne-Nγ-0μ-Nπ-Np.
N is randomly one or two in each event.
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FIG. 25. MPID score distributions and MPID passing fractions on a complementary set of 0e-0γ-0μ-Nπ-0p and Ne-Nγ-Nμ-0π-Np.
N is randomly one or two in each event.
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FIG. 26. MPID score distributions and MPID passing fractions on a complementary set of 0e-0γ-0μ-0π-Np and Ne-Nγ-Nμ-Nπ-0p.
N is randomly one or two in each event.
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FIG. 27. MPID score distributions and MPID passing fractions on a complementary set of Ne-Nγ-0μ-0π-0p and 0e-0γ-Nμ-Nπ-Np.
N is randomly one or two in each event.
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FIG. 28. MPID score distributions and MPID passing fractions on a complementary set of Ne-0γ-Nμ-0π-0p and 0e-Nγ-0μ-Nπ-Np.
N is randomly one or two in each event.
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FIG. 29. MPID score distributions and MPID passing fractions on a complementary set of Ne-0γ-0μ-Nπ-0p and 0e-Nγ-Nμ-0π-Np.
N is randomly one or two in each event.
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FIG. 30. MPID score distributions and MPID passing fractions on a complementary set of Ne-0γ-0μ-0π-Np and 0e-Nγ-Nμ-Nπ-0p.
N is randomly one or two in each event.
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FIG. 31. MPID score distributions and MPID passing fractions on a complementary set of 0e-Nγ-Nμ-0π-0p and Ne-0γ-0μ-Nπ-Np.
N is randomly one or two in each event.
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FIG. 32. MPID score distributions and MPID passing fractions on a complementary set of 0e-Nγ-0μ-Nπ-0p and Ne-0γ-Nμ-0π-Np.
N is randomly one or two in each event.
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FIG. 33. MPID score distributions and MPID passing fractions on a complementary set of 0e-Nγ-0μ-0π-Np and Ne-0γ-Nμ-Nπ-0p.
N is randomly one or two in each event.
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FIG. 34. MPID score distributions and MPID passing fractions on a complementary set of 0e-0γ-Nμ-Nπ-0p and Ne-Nγ-0μ-0π-Np.
N is randomly one or two in each event.
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FIG. 35. MPID score distributions and MPID passing fractions on a complementary set of 0e-0γ-Nμ-0π-Np and Ne-Nγ-0μ-Nπ-0p.
N is randomly one or two in each event.
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