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Abstract: The spreading of the stationary states of the multidimensional single-particle systems
with a central potential is quantified by means of Heisenberg-like measures (radial and logarithmic
expectation values) and entropy-like quantities (Fisher, Shannon, Rényi) of position and momentum
probability densities. Since the potential is assumed to be analytically unknown, these dispersion
and information-theoretical measures are given by means of inequality-type relations which are
explicitly shown to depend on dimensionality and state’s angular hyperquantum numbers. The
spherical-symmetry and spin effects on these spreading properties are obtained by use of various
integral inequalities (Daubechies–Thakkar, Lieb–Thirring, Redheffer–Weyl, ...) and a variational
approach based on the extremization of entropy-like measures. Emphasis is placed on the uncertainty
relations, upon which the essential reason of the probabilistic theory of quantum systems relies.

Keywords: central potentials; uncertainty relations; integral inequalities; Heisenberg-like uncertainty
measures; entropy-like measures; Fisher information; Shannon entropy; Rényi entropies

1. Introduction

The central field approximation has been successfully applied to investigate the natural
systems not only in the three-dimensional world, but also in multidimensional physics. The
central field model of the atom and the Pauli exclusion principle are the fundamental building
blocks of the construction principle of Mendeleev’s atomic periodic table [1–6]. Multidimen-
sional central potentials with a specific analytical form (e.g., power-law, oscillator, Coulomb,
van der Waals, Morse, Pöschl–Teller, Hulthen, Woods-Saxon, convex, Yukawa, ...) have
been used to interpret a great deal of physical phenomena and chemical processes [7–15].
They have been applied to study the behaviour of nanotechnological systems (e.g., quan-
tum dots and wires) and to explain the experiments of dilute systems in magnetic traps at
extremely low temperatures [16–18], which has allowed for a fast development of a density-
functional theory of independent particles in multidimensional central potentials [11,19].
The D-dimensional scaling method of Dudley R. Herschbach et al. [6], whose starting point
is the high dimensionality limit, is able to describe the physical and chemical properties of
finite many-electron systems with an accuracy similar to the self-consistent Hartree–Fock
approaches; keep in mind that in both Herschbach and Hartree–Fock methods the average
potential which is ultimately diagonalized is spherically symmetric. Moreover, it is com-
monly believed at present that the idea of higher dimensionalities is the best basis to explain
the unification of all forces of physics. Thus, a wealth of physical insight into standard
(three-dimensional) systems is being obtained within a framework of higher dimensions
in many areas ranging from the theory of atoms and molecules [6] to cosmology (see,
e.g., [10]).

In this work we analize the knowledge of the spreading measures of the position and
momentum probability densities of a D-dimensional central potential, which control the
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position-momentum uncertainty of the D-dimensional quantum systems moving under the
action of a central potential. Since the analytical form of the central potential is assumed not
to be known, most of the results of this work are given necessarily by means of inequality-
type relations. Now, the stationary wavefunctions of such a potential factorize into an
unknown radial part and an angular part given by the renowned hyperspherical harmonics
Yl,{µ}(ΩD−1) of degree l on the unit sphere SD−1 [20,21], which is characterized by the
D − 1 angular hyperquantum numbers (l ≡ µ1, µ2, . . . , µD−1) with the integer values
l = 0, 1, 2, . . . , and l ≥ µ2 ≥ . . . ≥ |µD−1| ≥ 0 (see next section for further details).
Then, the spreading/uncertainty measures will be expressed by means of inequality-type
relations which depend on these state’s angular hyperquantum numbers.

Here, we consider the following complementary spreading/uncertainty quantifiers
in both position and momentum spaces: the Heisenberg-like measures (variance, radial
expectation values), the logarithmic measures and the information-theoretical measures of
Fisher [22–24], Shannon [25,26] and Rényi [27–29] types. The Heisenberg-like measures are
the most popular, historically speaking, because of their conceptual simplicity and their
usefulness for the quantum systems with position and momentum densities of unimodal
type (esp. Gaussian and quasi-Gaussian). They quantify the separation of the region(s) of
the probability concentration with respect to a specific point of the system’s domain (usually,
the origin or the mean value); so, they are misleading and not adequate quantifiers for
the quantum uncertainty of numerous physical systems with heavy-tailed and oscillating,
multimodal densities [30–33]. To avoid such drawbacks and since the quantum probability
densities of the potential’s bound states are strongly oscillating, except for a few ones such
as e.g., the S states, the entropy-like measures are much more natural and appropriate to
quantify the position-momentum uncertainty of the system. In addition these measures
(i) characterize numerous fundamental and measurable quantities of physical systems [34],
(ii) are cornerstones of two alternative formulations to classical thermodynamics [35,36],
and (iii) are basic variables of the classical and quantum information theory and quantum
technologies [37,38] since they quantify the classical and quantum information contents as
well as the states’ quantum entanglement.

The Rényi entropies Rq[ρ] provide a family of entropic measures of the density ρ,
depending on a real parameter q, which includes the Shannon entropy S[ρ] as a limiting
case. These entropic measures quantify many spreading facets of the quantum proba-
bility density ρ(r) all over the hyperspace, which encompass the intrinsic disorder and
the geometrical profile of the quantum system. As measures of disorder/uncertainty,
the Rényi entropies (which have very important physico-mathematical properties per
se [31,39–45]) allow for a much wider quantitative range of applicability than Heisenberg’s
measures. This permits, for example, an entropic formulation [46,47] for the uncertainty
principle of quantum physics which is stronger [42,48] than the variance-based Heisenberg
mathematical formulation [49] and its generalizations, the radial expectation values [50].
Additionally, a great deal of practical purposes for the Rényi entropies and their asso-
ciated uncertainty relations abound in numerous scientific fields [31,42,43,47], ranging
from quantum entanglement [51], Brown processes and pattern formation [52,53], chaotic
systems and fractals [39,54,55] to ergodicity [56], quantum phase transition [57], squeezing
of quantum fluctuation [58], Bose-Einstein condensates [59–61] and quantum-classical
correspondence [62], among many other applications.

The translationally invariant Fisher information F[ρ] of the density ρ is a gradient
functional of the density, so that it has a property of locality because of its sensitivity to local
rearrangements/fluctuations of the density. This is opposite to the previous entropy-like
measures which have a global character because they are power-like (Rényi) or logarithmic
(Shannon) functionals of the density. The Fisher information (and its parameter-dependent
form) [22–24] is closely related to the kinetic and Weizsäcker energies [63–65] of the system.
This has allowed it for multiple and diverse scientific, technological and finantial applica-
tions [24], ranging from atomic and molecular physics [66–68], dilute gases [69], chemical
processes [70,71] to quantum information and quantum technologies [72–78].
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The structure of the paper is as follows. In Section 2 we examine the knowledge of
the stationary wave functions (and the associated quantum densities) of the Schrödinger
equation for arbitrary multidimensional central (spherically-symmetric) potentials in both
position and momentum spaces. In Section 3 we analyze the multidimensional spreading
of a single-particle system subject to a general D-dimensional central potential by means
of the dispersion measures of position and momentum types. The associated Heisenberg-
like and logarithmic uncertainty relations are also examined. In Section 4 we discuss
the main properties of the information-theoretical measures (Fisher information [24] and
the Shannon [25] and Rényi [27,28] entropies) of the multidimensional quantum states of
arbitrary central potentials, which are necessarily of inequality type. Emphasis is made
on the associated entropic uncertainty relations. In Section 5 we investigate the combined
balance of the space and spin dimensionality effects on the Heisenberg-like uncertainty
relation of general fermionic systems, and the space, spin and spherical effects on the
Fisher-information-based uncertainty relation of fermionic systems with arbitrary central
potentials. This is done by use of integral inequalities of Daubechies–Thakkar and Lieb–
Thirring type and variational methods based on the extremization of the entropy-like
measures. Finally, in Section 6 some conclusions and open problems are given.

2. The Multidimensional Problem for Central Potentials

In this section we briefly describe in hyperspherical coordinates the wavefunctions
and the associated probability densities for the discrete stationary states of a non-relativistic
D-dimensional (D > 2) single-particle system subject to a spherically symmetric potential
VD(r), where r = |r|, in both position and momentum spaces. Later on, we briefly describe
the associated probability densities for the stationary quantum states of the system. Atomic
units (i.e., h̄ = me = e = 1) are used throughout the paper.

2.1. The Wavefunctions

The stationary states of this system are characterized by the wavefunctions given as

ψ(r, t) = Ψ(r) e−iEt, (1)

where (E, Ψ) are the time-independent solutions of the Schrödinger equation(
−1

2
~∇2

D + VD(r)
)

Ψ(r) = E Ψ(r), (2)

where the position vector r = (x1, . . . , xD) = (r, θ1, θ2, . . . , θD−1) ≡ (r, ΩD−1) in Carte-

sian and hyperspherical units, respectively, so that r ≡ |r| =
√

∑D
i=1 x2

i ∈ [0, +∞) and

xi = r
(

∏i−1
k=1 sin θk

)
cos θi for 1 ≤ i ≤ D and with θi ∈ [0, π), i < D− 1, θD−1 ≡ ϕ ∈ [0, 2π).

Moreover, the symbol ~∇D denotes the D-dimensional gradient operator

~∇D =
∂

∂r
r̂ +

1
r

D−2

∑
i=1

∂

∂θi
θ̂i +

1
r ∏D−2

i=1 sin θi

∂

∂ϕ
ϕ̂, (3)

and its square is a generalized Laplacian operator [20,79,80] which can be expressed as

~∇2
D =

d2

dr2 +
D− 1

r
d
dr
−

Λ2
D−1
r2 (4)

where Λ2 is a partial differential (non-radial) operator on the unit sphere SD−1 (see e.g., [81,82])
given by

Λ2
D−1 = −

D−1

∑
i=1

(sin θi)
i+1−D(

∏i−1
i=j−1 sin θj

)2
∂

∂θi

[
(sin θi)

D−1 ∂

∂θi

]
(5)
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This operator, which denotes the D-dimensional generalization of the square of the angular
momentum, fulfills the eigenvalue equation

Λ2
D−1 Yl,{µ}(ΩD−1) = l(l + D− 2)Yl,{µ}(ΩD−1), (6)

where the D − 1 angular hyperquantum numbers (l, {µ}) ≡ (µ1, µ2, . . . , µD−1) have the
integer values l = 0, 1, 2, . . . , and l ≥ µ2 ≥ . . . ≥ |µD−1| ≡ |m| ≥ 0; note that for D = 2 we
only have one quantum number l ∈ Z. The symbol Yl,{µ}(ΩD−1) denotes the known hyper-
spherical harmonics of degree l on the unit sphere SD−1 which can be expressed [20,21,83] as

Yl,{µ}(Ω) =
1√
2π

eimθD−1
D−2

∏
j=1

Ĉ
(αj+µj+1)
µj−µj+1

(cos θj)
(
sin θj

)µj+1 , (7)

with 2αj = D− j− 1 and Ĉ(λ)
n (x), λ > − 1

2 , denotes the (orthonormal) Gegenbauer or ultra-
spherical polynomial [84] of degree n and parameter λ which satisfies the orthonormality∫ 1

−1
Ĉ(λ)

n (x) Ĉ(λ)
m (x)

(
1− x2

)λ− 1
2 dx = δmn, (8)

These angular hyperfunctions form an orthonormal set which satisfies the orthonomaliza-
tion condition ∫

SD−1

Y∗l′ ,{µ′}(ΩD−1) Yl,{µ}(ΩD−1)dΩD−1 = δl,l′δ{µ},{µ′} (9)

so that ∫
SD−1

∣∣∣Yl,{µ}(ΩD−1)
∣∣∣2dΩD−1 = 1. (10)

Thus, they form a standard basis of the irreducible representations of the rotation group
SO(D) in the space of the D-dimensional unit sphere with the invariant measure

dΩD−1 =

(
D−2

∏
j=1

(sin θj)
2αj dθj

)
dθD−1.

Then, by taking into account Equations (2) and (6), it turns out that the position eigenfunc-
tions of the system are given by

Ψn,l,{µ}(r) = Rn,l(r)×Yl,{µ}(ΩD−1), (11)

where n denotes the radial hyperquantum number, and the angular part of the eigenfunc-
tions are the hyperspherical harmonics Yl,{µ}(ΩD−1). The radial position eigenfunction
Rn,l(r) is known to fulfill the radial equation [21,85][

−1
2

d2

dr2 −
D− 1

2r
d
dr

+
l(l + D− 2)

2r2 + VD(r)
]

Rnl(r) = Enl Rnl(r). (12)

It is often convenient to make the change of variable Rn,l(r) → un,l(r) := r
D−1

2 Rn,l(r),
since then this equation transforms into the reduced radial Schrödinger equation[

−1
2

d2

dr2 + Ve f f

]
un,l(r) = Enl un,l(r), (13)

with the effective potential

Ve f f (r) = VD(r) +
L(L + 1)

2r2 = VD(r) +
l(l + D− 2)

2r2 +
(D− 1)(D− 3)

8r2 (14)
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(with the grand quantum orbital quantum number L = l + D−3
2 ), which can be also

expressed as

Ve f f (r) = VD(r) +
(D + 2l)2 − 4(D + 2l) + 3

8r2 (15)

This Schrödinger equation describes the one-dimensional non-relativistic movement of
the particle subject to the natural force coming from the external potential VD(r) and two
additional forces with different physical origin: the centrifugal force associated with a non-
vanishing hyperangular momentum, and a quantum fictitious force associated to the quantum-
centrifugal potential 1

4 (D− 1)(D− 3) of purely dimensional origin (since it emerges directly
from acting with the D-dimensional Laplacian on the wavefunction (11)). The latter potential
vanishes for D = 1 and D = 3, and it is negative for D = 2 and positive for D ≥ 4. More-
over, the quantum fictitious force exists irrespective of the hyperangular momentum and
has a quadratic dependence on the dimensionality, being attractive (repulsive) for D = 2
(D ≥ 4); see [86–90] for its relevant physical effects. Besides, according to Equation (15), the
effective potential Ve f f depends on D and l through a special (D + 2l)-combination which
explains the Van Vleck’s interdimensional-degeneracy phenomenon [91]; this implies e.g.,
that for an arbitrary potential the energies of the 7-dimensional s states are the same as
those of the 5-dimensional p states or the 3-dimensional d states [6,92].

It is worth to highlight that the D-dimensional Schrödinger equation is formally the
same as the three-dimensional one but with the grand orbital quantum number L = l + D−3

2 .
This shows the existence of an isomorphism [6,93] between the dimensionality and the
hyperangular quantum number, so that D → D + 2 is equivalent to l → l + 1. Note, in
addition, that the physical solutions of the Schrödinger Equation (9) requires that u(r)
tends to zero when r goes to zero and to infinity, and it fulfills∫ ∞

0
|un,l(r)|2dr = 1, (16)

in order that the wavefunctions to be duly normalized:
∫ ∣∣∣Ψn,l,{µ}(r)

∣∣∣2dr = 1, with the

D-dimensional volume element dr = rD−1dr dΩD−1; keep in mind the normalization
to unity of the hyperspherical harmonics given by Equation (10). Thus, the physical
wavefunctions in the hyperspherical coordinate system (r, θ1, θ2, . . . , θD−1) are described
by the D hyperquantum integer numbers (n, l, {µ}) ≡ (n, µ1, µ2, . . . , µD−1).

In momentum space the wavefunctions for a generic stationary state (n, l, {µ}) of
the D-dimensional system are given by ψ̃(p, t) = Ψ̃(p) e−iEt, where the momentum eigen-
function Ψ̃n,l,{µ}(p) can be obtained by means of the Fourier transform of the position
eigenfunction (11),

Ψ̃n,l,{µ}(p) =
∫
RD

e−ip·r Ψn,l,{µ}(r) dr, (17)

giving rise to
Ψ̃n,l,{µ}(p) =Mn,l(p)×Yl,{µ}(ΩD−1), (18)

where p = (p, θ1, . . . , θD−1), and the radial momentum eigenfunction Mn,l(p) of the
system is related to the radial position eigenfunctionRn,l(r) through the Hankel transform

Mn,l(p) = p1− D
2

∫ +∞

0
r

D
2 Rn,l(r) Jl+ D

2 −1(pr) dr, (19)

where Jν(pr) is the Bessel function of the first kind with order ν [84]. Finally, note that∫ ∣∣∣Ψn,l,{µ}(p)
∣∣∣2dp = 1, with the generalized solid angle element dp = pD−1dp dΩD−1.
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2.2. The Probability Densities

The position and momentum probability densities of the D-dimensional stationary
state (n, l, {µ}) are given by the modulus squared of the two corresponding eigenfunc-
tions as

ρn,l,{µ}(r) =
∣∣∣Ψn,l,{µ}(r)

∣∣∣2 = |Rnl(r)|2 × |Yl,{µ}(ΩD−1)|2 (20)

= r1−D |unl(r)|2 × |Yl,{µ}(ΩD−1)|2 (21)

in position space, and

γn,l,{µ}(p) =
∣∣∣Ψ̃n,l,{µ}(p)

∣∣∣2 = |Mn,l(p)|2 ×
∣∣∣Yl,{µ}(Ω̂D−1)

∣∣∣2 (22)

= p1−D |ũnl(p)|2 × |Yl,{µ}(ΩD−1)|2 (23)

in momentum space, where the reduced radial momentum eigenfunction.

ũnl(p) = (−i)l
∫ ∞

0

√
r p Jl+D/2−1(r p) u(r)dr, (24)

is the Hankel transform of the reduced radial position eigenfunction unl(r).
Here, we are interested in the spatial extension of the electronic position and momen-

tum densities of a D-dimensional single-particle system far beyond the variance. This will
be done in the following chapters by means of the dispersion measures (the radial and
logarithmic expectation values), the entropy-like measures of local and global character
(e.g., Fisher’s information, Shannon’s and Rényi’s entropies).

3. Dispersion Measures and Heisenberg-Like Uncertainty for Central Potentials

In this section we first give a number of universally-valid inequality-based properties
fulfilled by the dispersion measures (i.e., the radial and logarithmic expectation values)
of general D-dimensional single-particle systems in position and momentum spaces, and
then we study how they get modified for the systems with an arbitrary central potential
VD(r). The effects of the spherical symmetry of the potential on these quantities and
their properties are explicitly shown by their dependence on the angular hyperquantum
numbers (l, {µ}) of the system’s states.

The radial and logarithmic expectation values of the D-dimensional probability densities
of the stationary state (n, l, {µ}) can be expressed, keeping in mind Equations (20) and (22), as

〈rα〉 :=
∫
RD

rαρn,l,{µ}(~r)d~r =
∫ ∞

0
rα+D−1|Rn,l(r)|2dr (25)

〈ln r〉 =
∫
(ln r)ρn,l,{µ}(~r) d~r =

∫ ∞

0
(ln r)rD−1|Rn,l(r)|2dr (26)

in position space, and

〈pα〉 :=
∫

pαγn,l,{µ}(~p)d~p =
∫ ∞

0
pα+D−1|Mn,l(p)|2dp (27)

〈ln p〉 =
∫
(ln p)γn,l,{µ}(~p) d~p =

∫ ∞

0
(ln p)pD−1|Mn,l(p)|2dp (28)



Entropy 2021, 23, 607 7 of 31

in momentum space. For the second equality we have used the normalization condition (10)
of the hyperspherical harmonics. These radial and logarithmic quantities are often acces-
sible, at least for D = 3, e.g., by electron scattering and from the experimental Compton
profile in position and momentum spaces [94,95] (see also [96] for further references),
respectively. We cannot explicitly calculate these quantities because we do not know the
analytical expression of the corresponding radial eigenfunctions Rn,l(r) andMn,l(p). How-
ever, these spreading measures have a number of inequality-based properties. For example,
Ray et al. [85] found the following three-term recurrence relation

(2L + 1)2C2
n,l δα,−2L =

α− 1
2

[(2L + 1)2 − (α− 1)2]〈rα−3〉

+2 [〈rαV′〉+ 2α〈rα−1V〉 − 2α En,l 〈rα−1〉], (29)

(which holds for α ≥ 2L), where V′ = dV
dr , r2V(r)→ 0 when r → 0, and Cn,l denotes the nor-

malization constant of the radial eigenfunction, which fulfills that Cn,l = limr→0 r−l Rn,l =
1
l!

dl Rn,l
d rl .

In particular, C0 = Rn,0(0) is the value of the radial eigenfunction at the origin. Similar two-
and three-term recursion results (and some extensions to off-diagonal radial matrix elements)
have been obtained by Dong et al. [13,97]; in particular they have found that

〈V′〉 = L(L + 1) 〈r−3〉 (30)

Explicit expressions cannot be obtained unless the analytical form of the potential V(r) is
given, such as e.g., the oscillator-like quadratic and Coulomb-like hydrogenic potentials [96,98].

However, a number of uncertainty-like inequalities fulfilled by the dispersion quan-
tities (25)–(28) have been derived by a variety of methods. Angulo [99], by means of the
maximization method [100] for the position and momentum Shannon entropies of the
system in terms of the radial expectation values, found the inequalities

〈ra〉
2
a 〈pb〉

2
b ≥ D(a, b) =

 e D
2
a Γ

2
D

(
1 + D

2

)
(ae)

2
a Γ

2
D

(
1 + D

a

)
 e D

2
b Γ

2
D

(
1 + D

2

)
(be)

2
b Γ

2
D

(
1 + D

b

)
 (31)

(for a, b ≥ 0) which are universally valid (i.e., they hold for all D-dimenional quantum
systems); they simplify for a = b = 2 to the familiar D-dimensional form of Heisenberg
inequality [101,102] 〈

r2
〉〈

p2
〉
≥ D2

4
(32)

Later, Zozor et al. [50] has improved the uncertainty inequality (31) by using a similar
approach based on the Rényi-entropies, obtaining that

〈ra〉
2
a 〈pb〉

2
b ≥ C(a, b) = max

α∈D
B(α)M(a, α)M(b, α∗) (33)

where α∗ = α/(2α − 1), D =
(

max
(

1
2 , D

D+a

)
; 1
]
, and the functions B(α) and M are

given by

B(α) = α
1

α−1 α∗
1

α∗−1

4e2 for α 6= 1 and B(1) = 1
4

, (34)

and
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M(l, λ) =



2πe

 l

ΩB
(

D
l , 1− λ

λ−1 −
D
l

)
2

D(
D (1− λ)

D(λ− 1) + lλ

)2
l
(

lλ
D(λ− 1) + lλ

) 2
D(λ−1)

,

1− l
l+D < λ < 1

2πe

 l

Ω Γ
(

D
l

)
2

D(
D
le

)2
l
, λ = 1

2πe

 l

Ω B
(

D
l , λ

λ−1

)
2

D(
D(λ− 1)

D(λ− 1) + lλ

)2
λ
(

lλ
D(λ− 1) + lλ

) 2
D(λ−1)

, λ > 1

(35)

respectively, where Ω = 2πd/2

Γ(d/2) and B(x, y) denotes the beta function [84]. The case
b ≥ a > 0 can be treated by means of the symmetry,

arg max
α
B(α)M(a, α)M(b, α∗) = αopt(a, b) = (αopt(b, a))∗ (36)

and C(b, a) = C(a, b). The αopt-symmetry provokes that αopt(a, a) = 1 and thus the optimal
bound from this Rényi-entropy-based approach coincides with the Shannon-entropy-based
bound D(a, b) given by (31) in this case. Unfortunately, except for the case a = b, it does
not seem possible to give an analytical expression for C(a, b). Let us also point out that this
information-theoretical formulation suffers from the fact that the bound is probably not
sharp, and the analytical determination of the minimizers requires a variational approach,
not yet done.

In addition, from the Pitt-Beckner inequality [103,104] we can also show that the
expectation values (〈pα〉, 〈r−α〉) satisfy the uncertainty relations [11]

〈pα〉 ≥ 2α

[
Γ
(

D + α
4
)

Γ
(

D− α
4
)]2〈

r−α
〉
; 0 ≤ α < D (37)

which for α = 2 boils down to〈
p2
〉
≥
(

D− 2
2

)2〈
r−2
〉

; D > 2. (38)

Moreover, we also have the reciprocal uncertainty-like inequality

〈rα〉 ≥ 2α

[
Γ
(

D + α
4
)

Γ
(

D− α
4
)]2〈

p−α
〉
; 0 ≤ α < D (39)

which extends a number of relations previously found [105,106]; and in the limit α→ 0 it
supplies the Beckner’s logarithmic uncertainty sum [104]

〈ln r〉+ 〈ln p〉 ≥ ψ

(
D
4

)
+ ln 2 (40)

where ψ(x) = Γ′(x)/Γ(x) is the psi or digamma function. This uncertainty sum is related to
the logarithmic uncertainty product by means of the logarithmic uncertainty relation [101]

∆(ln r)∆(ln p) ≥
Γ2
(

D
2

)
8π

exp[D− 1− D(〈ln r〉+ 〈ln p〉)], (41)
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(proved in Section 4) where the logarithmic standard deviation is given as

∆(ln r) ≡
(〈

(ln r)2
〉
− 〈ln r〉2

)1/2
, (42)

which illustrates the uncertainty character of the logarithmic sum. In addition, note that
the product of (37) and (39) gives rise to the inequality relation

〈rα〉〈pα〉 ≥ 22α

[
Γ
(

D + α
4
)

Γ
(

D− α
4
)]4〈

r−α
〉〈

p−α
〉

(43)

The universally valid uncertainty inequalities (31)–(43) can be improved for central
potentials as follows. A first way of improvement comes from the observation that for
these potentials we have [107,108] that

〈p2〉 = JR(D) + l(l + D− 2)〈r−2〉 (44)

The symbol JR(D) denotes the radial integral

JR(D) :=
∫ ∞

0

[
dRnl(r)

dr

]2

rD−1dr =
∫ ∞

0

[
dunl(r)

dr

]2

dr +
1
4
(D− 1)(D− 3)〈r−2〉, (45)

where we have used the expression∫ ∞

0
r−1unl(r)

dunl(r)
dr

dr =
1
2

∫ ∞

0
r−2[unl(r)]2dr (46)

and we have assumed that unl(r) ∼ rL+1 for r → 0; the latter occurs for r2V(r)→ 0 when
r → 0, and implies that D ≥ 2. Note that Equation (44) and the non-negativity of JR(D)
allows one to obtain the inequality〈

p2
〉
≥ l(l + D− 2)

〈
r−2
〉
=

[
L(L + 1)− 1

4
(D− 1)(D− 3)

]〈
r−2
〉

(47)

valid for D ≥ 2; and
〈

p2〉 ≥ m4 〈r−2〉 for D = 2. Then, the reciprocity of the position and
momentum spaces allows us to obtain the conjugate inequality〈

r2
〉
≥
[

L(L + 1)− 1
4
(D− 1)(D− 3)

] 〈
p−2

〉
(48)

and
〈
r2〉 ≥ m4 〈p−2〉 for D = 2. Multiplying (47) and (48) one has the following relation

between the Heisenberg-like uncertainty products
〈
r2〉〈p2〉 and

〈
r−2〉〈p−2〉:

〈
r2
〉〈

p2
〉
≥
[

L(L + 1)− 1
4
(D− 1)(D− 3)

]2 〈
r−2
〉〈

p−2
〉

, for D ≥ 2 (49)

Similarly, from Equations (44) and (45), one has that

〈p2〉 =
∫ ∞

0

[
dunl(r)

dr

]2

dr + L(L + 1)
〈

r−2
〉

, (50)

which, together with the nonnegativity of this integral functional, gives rise to the inequality

〈p2〉 ≥ L(L + 1)
〈

r−2
〉

, for D ≥ 3 (51)

and reciprocally,
〈r2〉 ≥ L(L + 1)

〈
p−2

〉
, for D ≥ 3, (52)
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so that it is fulfilled that〈
r2
〉〈

p2
〉
≥ [L(L + 1)]2

〈
r−2
〉〈

p−2
〉

, for D ≥ 3 (53)

which improves the uncertainty relations (47)–(49), respectively.

A further improvement for central potentials is obtained [11] by taking into account (50)
and optimizing the inequality

∫ ∞

0

(
dunl(r)

dr
− λ rβunl(r)

)2

dr ≥ 0 (54)

with respect to λ. Then, one obtains [11] that

〈
p2
〉
≥ L(L + 1)

〈
r−2
〉
+

β2

4

〈
rβ−1〉2〈

r2β
〉 (55)

with β > −L− 3
2 . Then, for β = −1 one obtains that

〈p2〉 ≥
(

L +
1
2

)2
〈r−2〉 =

(
l +

D− 2
2

)2
〈r−2〉 (56)

which improves the universally-valid inequality (38) for any specific value of the orbital
hypyerquamtum number l, and improves the central-potential inequality (47) (and so, (51)
once again). The reciprocal expression

〈r2〉 ≥
(

L +
1
2

)2
〈p−2〉 =

(
l +

D− 2
2

)2
〈p−2〉 (57)

is also fulfilled, which generalizes the inequalities (48) and (52) in a similar manner. More-
over, by working out similarly, it also happens for central potentials [11] that

〈
p2
〉
≥ 1

4
(2L + β + 2)2

〈
rβ−1〉2〈

r2β
〉 (58)

with β > −L− 3
2 and D > 1− β. Then, for β = 0 and 1 one obtains that

〈
p2
〉
≥ (L + 1)2

〈
r−1
〉2

=

(
l +

D− 1
2

)2〈
r−1
〉2

(59)

and [109] 〈
r2
〉〈

p2
〉
≥
(

L +
3
2

)2
=

(
l +

D
2

)2
, (60)

respectively. The last two inequalities extend and improve the universally-valid relation〈
p2〉 ≥ (

D−1
2

)2〈
r−1〉2 of Bialynicki-Birula et al. [89], and the Heisenberg uncertainty

relation (49) to all excited stationary states of D-dimensional central potentials, respectively.
The expression (60) is the best Heisenberg position-momentum uncertainty relation for
central potentials known up until now. See also [110,111] for three-dimensional systems.
Moreover, many other uncertainty-like relations encountered for three-dimensional systems
are particular instances of the previous general inequalities (55) and (58) for D-dimensional
systems (see e.g., [104,112–116].
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In addition, again with the reciprocity property of the position and momentum spaces,
the conjugate expressions of the inequalities (55) and (58) straightforwardly follow; for
example we have that 〈

r2
〉
≥ 1

4
(2L + β + 2)2

〈
pβ−1〉2〈

p2β
〉 (61)

for D > 1− β and β > −L− 3
2 ; for β = 0 and 1 and D > 2 we have the expression (60) and

the inequality 〈
r2
〉
≥ (L + 1)2 〈p−1〉2, (62)

respectively, which generalize to D dimensions various similar three-dimensional inequali-
ties (see e.g., [112,113,116,117]).

Let us now examine the spherical-symmetry effects on the Beckner’s logarithmic-sum
uncertainty (40). Rudnicki et al. [118] have rigorously shown by means of the Omri’s
integral inequality [119] that the Beckner’s relation (40) gets improved as

〈ln r〉+ 〈ln p〉 ≥ ψ

(
D + 2l

4

)
+ ln 2, l = 0, 1, 2, . . . (63)

for central potentials. This inequality allows us not only to improve the logarithmic
uncertainty relation (41) based on the logarithmic standard deviation as

∆(ln r) ∆(ln p) ≥
Γ2
(

D
2

)
8π

exp
[

D(1− ln 2)− 1− D ψ

(
D + 2l

4

)]
(64)

but also to obtain the Shannon-entropy-based uncertainty relation for central potentials in
the next section.

Finally, the previous uncertainty inequalities can be still improved for various broad
relevant classes of central potentials such as e.g., the convex potentials [120–123] and the
power-law or anharmonic potentials [124–129]. This improvement, however, has not yet
been done up until now. Explicit values for the radial and logarithmic expectation values
have been recently obtained for a few central potentials, such as the hydrogenic-like and
the oscillator-like potentials (see e.g., [98,129]).

4. Information–Theoretical Measures and Entropic Uncertainty for Central Potentials

In this section we discuss the position and momentum information-theoretical en-
tropies of Fisher, Shannon and Rényi types (and their associated uncertainty relations) for
ground and excited states (n, l, {µ}) of arbitrary D-dimensional central potentials. They
are denoted by (F[ρn,l,{µ}], S[ρn,l,{µ}], Rq[ρn,l,{µ}]) and (F[γn,l,{µ}], S[γn,l,{µ}], Rq[γn,l,{µ}]),
respectively, where we should keep in mind the expressions (20) and (22) of the quantum
densities of the state in the two conjugated spaces. For each information-theoretical mea-
sure of the multidimensional quantum states we start giving the universally-valid upper
and lower bounds in terms of the radial expectation values and the associated uncertainty
relation. Then we show and discuss the improvement of these inequality-based properties
for the systems with a central potential by giving their explicit dependence on the state’s
angular hyperquantum numbers. The dependence on the radial hyperquantum number
cannot be given, because the radial eigenfunction is not known since the analytical form of
the central potential is assumed to be unknown.

These uncertainty measures are the basic variables of the information theory of quan-
tum systems which constitutes the fundamental pillar of the classical and quantum infor-
mation and computation [24,26,37,38]. They quantify the global and local spreading of the
charge and momentum of the system along the domain of definition of the spherically-
symmetric potential in a much better way that the dispersion measures considered in
the previous section. This is partially because the dispersion measures are measures of
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separation of the region(s) of concentration of the quantum probability cloud from a specific
point of the distribution, rather than measures of the extent to which the distribution is
in fact concentrated [130]. Information theory [24,26] provides more appropriate local
(Fisher information) and global (e.g., Shannon, Rényi and Tsallis entropies) uncertainty
measures which do not depend on any particular point of the multidimensional domain of
the density.

The Fisher information [22,24] is a local uncertainty measure which quantifies the
gradient content of the density, so that it is very sensitive to the fluctuations of the density.
The Shannon and Rényi entropies [25,27,28] are global uncertainty measures which quantify
the various macroscopic, observable aspects of the spatial extension of the density [39,74].

4.1. The Fisher Informations

Here, we begin with the definition of the Fisher information of a multidimensional
quantum state in both position and momentum spaces. Then, we give and discuss their
upper and lower bounds of universal validity in terms of the position and momentum
Heisenberg-like measures. Later the Fisher informations for the quantum states of ar-
bitrary central potentials are considered, and their explicit expressions in position and
momentum spaces are given in terms of pairs of radial expectation values

(〈
p2〉, 〈r−2〉)

and
(〈

r2〉, 〈p−2〉), respectively. Finally, the uncertainty character for the product of the
position and momentum Fisher informations is shown for central potentials. Moreover, the
associated uncertainty relation is rigorously proved for central potentials and for general
D-dimensional quantum states with real-valued position (or momentum) wavefunctions.

The Fisher information for a D-dimensional quantum state with the position probabil-
ity density ρ(r) is defined [24] by

F[ρ] :=
∫
RD

|~∇D ρ(r)|2
ρ(r)

dr = 4
∫

RD

[
~∇D

√
ρ(r)

]2
dr. (65)

This quantity, which is closely related [64,65] to the Weizsäcker energy TW [ρ] = 1
8 F[ρ],

is a local spreading measure of the state’s density so that it quantifies the pointwise
concentration of ρ. Then, the Fisher information controls the localization of the density
around its nodes, appropriately grasping the oscillatory nature of the wavefunctions of
the quantum-mechanical states. This confers it a relevant role in the characterization of
numerous scientific phenomena of standard and non-standard D-dimensional systems.
Moreover, it describes a local uncertainty measure so that the higher this quantity is, the
more localized is the density, the smaller is the uncertainty and the higher is the accuracy in
predicting the localization of the particle. The corresponding quantity for the momentum
density γ(p) is the momentum Fisher information defined as

F[γ] :=
∫
RD

|~∇Dγ(p)|2
γ(p)

dp = 4
∫
RD

[
~∇D

√
ρ(p)

]2
dp. (66)

First, these quantities have been found to be bounded from above [131,132] by the expecta-
tion values

(〈
r2〉, 〈p−2〉) by the Stam uncertainty inequalities

F[ρ] ≤ 4
〈

p2
〉

, F[γ] ≤ 4
〈

r2
〉

(67)

for general quantum systems. Second, the position Fisher information of general D-
dimensional quantum systems has been variationally shown [65] to be bounded from
below as

F[ρ] ≥ D2

〈r2〉 (68)

and also as
F[ρ] ≥ (D− 1)2

〈
r−1
〉2

; F[ρ] ≥ (D− 2)2
〈

r−2
〉

(69)
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Note that expression (68) is the celebrated Crámer-Rao inequality [26,133], valid for all the
stationary states of arbitrary D-dimensional quantum systems, which saturates (i.e., equal-
ity is reached) [134] for the density associated with the ground state of the harmonic oscil-
lator in RD. When the domain of the density ρ(r) is bounded, the minimum value of the
Fisher information is achieved by the ground state of the quantum box described itself by
this domain [134]. The last three inequalities are instances of the general bounds [105,106]

F[ρ] ≥ (β + D− 1)2
〈
rβ−1〉2〈

r2β
〉 , for β ≥ max{−D + 1,−1} (70)

and

F[ρ] ≥
〈

r−2
〉[

(D− 2)2 +
(β + 1)2〈rβ−1〉2〈

r2β
〉
〈r−2〉 −

〈
rβ−1

〉2

]
, β ≥ −1 (71)

in terms of the two and three radial expectation values 〈rα〉, respectively. These general
expressions, derived by means of Redheffer’s integral inequalities of Weyl type [135],
extend to D dimensions numerous inequalities obtained in the literature (see e.g., [113]).

Third, for central potentials the position and momentum densities of the D-dimensional
state (n, l, {µ}) are given by ρ(r) = ρn,l,{µ}(r) and γ(p) = γnr ,l,{µ}(p), according to the ex-
pressions (20) and (22), respectively. They can be decomposed into two radial and angular
parts according to Equations (20) and (22), so that we can show that the corresponding
Fisher informations factorize [107] as

F
[
ρn,l,{µ}

]
= 4

∫ ∞

0

[
R′nl(r)

]2
rD−1dr +

〈
r−2

〉
F
[
Yl,{µ}

]
= 4

〈
p2
〉
+
〈

r−2
〉

F
[
Yl,{µ}

]
(72)

and

F
[
γn,l,{µ}

]
= 4

∫ ∞

0

[
M′

nl(p)
]2

pD−1dp +
〈

p−2
〉

F
[
Yl,{µ}

]
= 4

〈
r2
〉
+
〈

p−2
〉

F
[
Yl,{µ}

]
, (73)

respectively, where the common symbol F[Y ; D] denotes the angular part given by

F
[
Yl,{µ}

]
= 4

D−2

∑
i=1

∫
SD−1

[
∂

∂θi
Yl,{µ}(θ1, θ2, ..., θD−2, 0)

]2
dΩD−1 = −2|m|(2l + D− 2) (74)

in both spaces. Then, we have finally the elegant expressions

F
[
ρn,l,{µ}

]
= 4

〈
p2
〉
− 2|m|(2l + D− 2)

〈
r−2
〉

(75)

F
[
γn,l,{µ}

]
= 4

〈
r2
〉
− 2|m|(2l + D− 2)

〈
p−2

〉
(76)

for the position and momentum Fisher informations of D-dimensional central poten-
tials in terms of the pairs of radial expectation values

(〈
p2〉, 〈r−2〉) and

(〈
r2〉, 〈p−2〉),

respectively. See also [108] for the three-dimensional case and some hydrogenic and
harmonic applications.

Now, from the last two expressions and the previous inequalities (56)–(57), it is
straightforward to obtain the following uncertainty-like relations between the position
(momentum) Fisher information and the momentum (position) second-order radial expec-
tation value:

F
[
ρn,l,{µ}

]
≥ 4

(
1− 2|m|

2L + 1

)〈
p2
〉

(77)
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and

F
[
γn,l,{µ}

]
≥ 4

(
1− 2|m|

2L + 1

)〈
r2
〉

(78)

Then, from the last two inequalities and the Stam ones given by (67), one can readily show
that the lower and upper bounds for the position and momentum Fisher informations of
any D-dimensional central potential are

4
(

1− 2|m|
2L + 1

)〈
p2
〉
≤ F

[
ρn,l,{µ}

]
≤ 4

〈
p2
〉

, (79)

and

4
(

1− 2|m|
2L + 1

)〈
r2
〉
≤ F

[
γn,l,{µ}

]
≤ 4

〈
r2
〉

, (80)

respectively.
Moreover, from relations (77)–(78) one has that the position and momentum Fisher

informations of central potentials satisfy [107] the relation

F[ρn,l,{µ}]× F[γn,l,{µ}] ≥ 16
[

1− 2|m|
2L + 1

]2
〈r2〉〈p2〉, (81)

which is a clear manifestation of the uncertainty character of the Fisher-information product
F[ρ]× F[γ]. Then, from Equations (60) and (81) we finally have the Fisher-information-
based uncertainty relation [109]

F[ρn,l,{µ}]× F[γn,l,{µ}] ≥ 16
[

1− 2|m|
2L + 1

]2 (
L +

3
2

)2
= 16

[
1− 2|m|

2l + D− 2

]2 (
l +

D
2

)2
, (82)

which is valid for all wavefunctions of arbitrary central potentials. This relation extends and
improves similar expressions previously obtained in three [108] and D [107] dimensions.
Note that for S states (i.e., when l = 0), this central-potential inequality boils down as
F[ρn,0,{0}]× F[γn,0,{0}] ≥ 4D2. Moreover, let us finally point out that the Fisher-information-
based uncertainty relation (83)

F[ρ]× F[γ] ≥ 4D2 (83)

has been rigorously proved for general one-dimensional states with even real-valued
wavefunctions [136] and for general D-dimensional quantum states with real-valued
position (or momentum) wavefunctions [62]. However, this is not the most universal
uncertainty relation expressible as a lower bound to the product of the Fisher measures
F[ρ] and F[γ] because the Fisher product F[ρ]× F[γ] can be made arbitrarily small [137].
See also [138], where this problem has been discussed for pure and mixed states.

4.2. The Shannon Entropies

Here, we begin with the definition of the position and momentum Shannon entropies
of a multidimensional quantum state; then, we show their universally-valid lower and
upper bounds by means of the position and momentum Heisenberg-like and logarithmic
measures, and the uncertainty character for the sum of the position and momentum
Shannon entropies is shown. Later, the Shannon entropy for the quantum states of arbitrary
central potentials are considered; it is explicitly shown how the spherical-symmetry effects
of the quantum potential improve the associated position-momentum uncertainty relation
and the upper bounds of the Shannon entropies in both conjugated spaces. Finally, some
open problems are briefly discussed.

The Shannon entropy for a D-dimensional quantum state with the density ρ(r) is
defined [25] by

S[ρ] := −
∫
RD

ρ(r) ln ρ(r) dr, (84)



Entropy 2021, 23, 607 15 of 31

This quantity is a global spreading measure of the state’s density which does not depend
on any particular point of its multidimensional domain. The Shannon entropy, closely
connected to the thermodynamical entropy in the case of a thermal ensemble [139], fulfills
all the hypotheses of Shannon theorem [25,26] and other important criteria [139,140]. It is
worth noting that S[ρ] can have any values in [−∞, ∞], contrary to the differential Shannon
entropy, −∑i pi ln pi, of a probability on a discrete sample space which is always positive;
moreover, S[ρ] can also be undefined. Any sharp peaks in ρ(r) will tend to make S[ρ]
negative, whereas positive values fo S[ρ] are provoked by a slowly decaying tail; hence,
the Shannon entropy S[ρ] estimates the total multidimensional extent of the density ρ.

Similarly, the momentum entropy is given as

S[γ] := −
∫
RD

γ(r) ln γ(r) dr, (85)

where γ(p) denotes the momentum density. These two position and momentum informa-
tion entropies define uncertainty measures in the following sense: the higher this quantity
is, the more delocalized is the density, the higher is the uncertainty and the smaller is
the accuracy in predicting the localization of the particle. The sum of these two Shannon
entropies is lowerbounded by means of the well-known (Shannon-entropy-based) entropic
uncertainty relation conjectured by Everett and Hirschman [141,142] and independently
proved by Beckner and Bialynicki-Birula and Mycielski [143,144]

S[ρ] + S[γ] ≥ D(1 + ln π), (86)

which improves [140,144] the standard Heisenberg relation (31).
These two entropies have been rigorously shown to be upperbounded. Indeed, it was

variationally shown for both three [100] and D-dimensional [101] systems that the entropy
S[ρ] is sharply bounded as

S[ρ] ≤ A(α, β) + β ln〈rα〉+ (D− αβ)〈ln r〉; ∀β > 0, α > −D (87)

in terms of the expectation values 〈rα〉 and 〈ln r〉, with

A(α, β) = β + ln
ΩD Γ(β)

|α|ββ
, (88)

This inequality with β = D
α provides the upper bound (see also [145])

S[ρ] ≤ D
α
+ ln

2π
D
2

α

( α

D

) D
α

Γ
(

D
α

)
Γ
(

D
2

)
+

D
α

ln 〈rα〉; ∀α > 0. (89)

Then, for α = 2 one has the upper bound

S[ρ] ≤ D
2

ln
(

2πe
D

〈
r2
〉)

, (90)

so that for a given
〈
r2〉 the Shannon entropy is maximum for a Gaussian density of

covariance matrix R =
〈r2〉

D I, where I is the identity matrix. Similar upper bounds can
be obtained for the momentum entropy S[γ] in terms of 〈pα〉 and 〈ln p〉. Thus, we can
correlate the position-momentum entropic uncertainty S[ρ] + S[γ] and the Heisenberg
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product 〈rα〉〈pα〉; this gives rise in particular the following relation between the Shannon
entropic uncertainty and the familiar Heisenberg uncertainty:

S[ρ] + S[γ] ≤ D ln
[

2πe
D

(〈
r2
〉〈

p2
〉) 1

2
]

, (91)

which emphasizes the uncertainty character of the the Shannon entropic sum and general-
izes the corresponding three dimensional result [146].

Similarly, another variational upper bound to S[ρ] and S[γ] can be obtained via
logarithmic expectation values; namely,

S[ρ] ≤ 1
2
+ ln

(√
2π ΩD

)
+ ln ∆(ln r) + D〈ln r〉, (92)

S[γ] ≤ 1
2
+ ln

(√
2π ΩD

)
+ ln ∆(ln p) + D〈ln p〉. (93)

Then, by summing these two expressions and taking into account (41), the relation of the
Shannon entropic uncertainty (86) and the logarithmic uncertainty relation follows in a
straighforward manner.

For central potentials the previous lower and upper bounds to the Shannon entropies
can be improved since the position and momentum densities of the D-dimensional state
(n, l, {µ}) are given by ρn,l,{µ}(r) and γn,l,{µ}(p). This is because both densities can be
decomposed into two radial and angular parts according to Equations (20) and (22), and
then the corresponding position and momentum Shannon entropies (84)–(85) factorize as

S[ρn,l,{µ}] = S[Rn,l ] + S
[
Yl,{µ}

]
, (94)

S[γn,l,{µ}] = S[Mn,l ] + S
[
Yl,{µ}

]
, (95)

respectively, where the position and momentum radial parts of the entropies are given by

S(Rn,l) = −
∫

rD−1|Rnl(r)|2 ln |Rnl(r)|2 dr, (96)

S(Mn,l) = −
∫

pD−1|Mnl(p)|2 ln |Mnl(p)|2 dp, (97)

respectively, and the angular entropy part is given by the entropic functional of the hyper-
spherical harmonics as

S
[
Yl,{µ}

]
= −

∫
SD−1

|Yl,{µ}(ΩD−1)|2 ln |Yl,{µ}(ΩD−1)|2dΩD−1 (98)

Note that, contrary to the radial parts S(Rn,l) and S(Mn,l) which require the knowledge

of the corresponding radial eigenfunctions to go ahead, the angular part S
[
Yl,{µ}

]
is under

control. This is because the entropy of the hyperspherical harmonics [147,148] can be
expressed as

S
[
Yl,{µ}

]
= −B1(l, {µ}) +

D−2

∑
j=1

S
(

C̃
(αj+µj+1)
µj−µj+1

)
, D ≥ 2, (99)
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with the constant

B1(l, {µ}) = ln 2π − 2
D−2

∑
j=1

µj+1
[
ψ(2αj + µj + µj+1

−ψ(αj + µj)− ln 2− 1
2(αj + µj)

]
, (100)

where ψ(z) = Γ′(z)/Γ(z) is the digamma function, and S(C̃(λ)
n ) denotes the entropy-like

functional of the orthonormal Gegenbauer polynomial C̃(λ)
n (x) given by

S[C̃(λ)
n ] := −

∫ +1

−1

[
C̃(λ)

n (x)
]2

ln
[
C̃(λ)

n (x)
]2 (

1− x2
)λ− 1

2 dx. (101)

This entropy can be expressed by means of the values of the quadratic logarithmic potential
of Gegenbauer polynomials C̃(λ)

n (x) at the polynomial’s zeros [147,148]. Note that the angu-
lar entropy S[Yl,{µ}] does not depend on n, and its maximum value is S

[
Y0,{0}

]
= ln ΩD,

which occurs for the S-wave states; that is when (l, {µ}) = (0, 0). So, it is equal to ln(2π)
for D = 2, and ln(4π) for D = 3. See [148,149] for further specific details about these
integral functionals of the Gegenbauer polynomials and the hyperspherical harmonics.

First, to improve the Shannon-entropy-based uncertainty relation (86) for central
potentials we use the expressions (21) and (23) of the position and momentum densities
into the radial Shannon entropies (96)–(97), obtaining [118]

S(Rn,l) = S[ωn,l ] + (D− 1)〈ln r〉, (102)

S(Mn,l) = S[ω̃n,l ] + (D− 1)〈ln p〉, (103)

where S[ω] denotes the Shannon entropy of the one-dimensional density ωn,l(r) = |un,l(r)|2:

S[ωn,l ] = −
∫ ∞

0
ωn,l(r) ln ωn,l(r)dr.

and the logarithmic expectation value 〈ln r〉 has the value

〈ln r〉 =
∫
RD

ρn,l,{µ}(~r) ln r dDr =
∫ ∞

0
ωn,l(r) ln r dr

The momentum quantities S[ω̃n,l ] and 〈ln p〉 of the reduced density ω̃n,l(p) = |ũn,l(p)|2 are
correspondingly defined. Then, keeping in mind the expressions (94), (95), (102) and (103),
we have the total position-momentum Shannon entropy

S[ρn,l,{µ}] + S[γn,l,{µ}] = S[ωn,l ] + S[ω̃n,l ] + (D− 1)(〈ln r〉+ 〈ln p〉) + 2 S(Yl,{µ}), (104)

where the only terms which depend on the (unknown) analytical form of the potential
VD(r) are the sums S[ω] + S[ω̃] and 〈ln r〉+ 〈ln p〉. However, Rudnicki et al. [118] have
found by use of a limiting case of the De-Carli Hankel-transform integral inequality that
the Shannon reduced sum is lowerbounded as

S[ω] + S[ω̃] ≥ 2l + D + 2 ln

Γ
(

l + D
2

)
2

− (2l + D− 1)ψ
(

l +
D
2

)
(105)

Thus, from this inequality and the previous central-potential logarithmic uncertainty
relation (63) one finally has the Shannon-entropy-based uncertainty relation for any
central potential:

S[ρn,l,{µ}] + S[γn,l,{µ}] ≥ Bl,{µ}, (106)
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with the constant

Bl,{µ} = 2l + D + 2 ln

Γ
(

l + D
2

)
2

− (2l + D− 1)ψ
(

l +
D
2

)

+(D− 1)
(

ψ

(
2l + D

4

)
+ ln 2

)
+ 2 S(Yl,{µ}) (107)

where S(Yl,{µ}) is given by Equation (98)–(99). This lower bound depends on the angular
hyperquantum numbers (l, {µ}) and the dimensionality D, but not on the principal quantum
number n. The latter is because the radial wavefunction is unknown. The comparison of the
general bound D(1 + ln π) given by (86) and the central bound Bl,{µ} shows that the larger
the value of l, the bigger is the new central bound, and the larger the improvement with
respect to the general bound. Moreover, for D = 3 the central bound is bigger (so, better)
than the general one for all values (l, m) except for l = m = 0. For D 6= 3 the bound might
not be improved for more than one set of values (l, {µ}), such as for example the case of the
values (l, µ2, µ3) = (0, 0, 0), (1, 0, 0) and (1, 1, 0), when D = 4. The latter phenomenon is an
open problem for the future; it might be due either to the separation (104) between the sum of
the Shannon entropies of the reduced densities and the logarithmic uncertainty sum, and/or
to the fact that, when l = 0, the logarithmic uncertainty relation (63) is not sharp enough in
this case. See [118] for further details.

To improve the entropic upper bounds (89) and (90) for central potentials we can use
the Rényi maximization approach of Costa et al. [150] with a covariance constraint. This
has been illustrated by Sánchez-Moreno et al. [151] to improve the upper bound (90) in
terms of the expectation value

〈
r2〉, obtaining the sharp upper bound

S[ρ] ≤ D
2

ln
(

2πe
D

〈
r2
〉)

+ L(ΩD−1) (108)

where L(ΩD−1), which represents the loss of entropy due to the angular part of the state’s
wavefunction (i.e., it is coming from the hyperpherical harmonics), is given by

L(ΩD−1) =
1
2

D−2

∑
k=1

(
(D− k) ln〈sin2 θk〉+ ln〈cos2 θk〉

)
− ln 2 +

D
2

ln D, (109)

and

〈cos2 θk〉 =
2µk(µk + D− k− 1)− 2µk+1(µk+1 + D− k− 2) + D− k− 3

4µk(µk + D− k− 1) + (D− k + 1)(D− k− 3)
. (110)

and, of course, 〈sin2 θk〉 = 1− 〈cos2 θk〉. From the last two expressions we observe that
there are some special configurations for which the loss of entropy L(ΩD−1) vanishes;
namely when

L(ΩD−1) = 0⇔
{

µi = 0, ∀i for (nS)-states

m ≡ µD−1 = ± 2, and µi = D− i + 1, ∀i < D− 1
(111)

Note that the first configuration corresponds to the (nS) states; they have spherically sym-
metric wavefunctions since the angular part (the hyperspherical harmonics) is a constant
and thus there is no loss of entropy. The second configuration is the interesting one because
the wave function is not spherically symmetric since the magnetic number m is ±2 and
the remaining angular hyperquantum numbers µi of the state have special values. The
phenomenon of the vanishing entropy loss in this special non-spherically-symmetric con-
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figuration of angular numbers is an interesting physical problem, not yet fully understood.
Note that for three-dimensional central systems, the previous upper bound simplifies as

S[ρ] ≤ 3
2

ln
(

2πe
3

〈
r2
〉)

+ L(Ω2), (112)

where the loss of entropy L(Ω2) is

L(Ω2) =
1
2

ln
(

2l(l + 1)− 2m2 − 1
4l(l + 1)− 3

)
+ ln

(
l(l + 1) + m2 − 1

4l(l + 1)− 3

)
+

3
2

ln 3, (113)

since the involved trigonometric expectation values are

〈cos2 θ〉 = 2l(l + 1)− 2m2 − 1
4l(l + 1)− 3

, 〈sin2 θ〉 = 2l(l + 1) + 2m2 − 2
4l(l + 1)− 3

Note that L(Ω2) = 0 if and only if l = m = 0 (nS-states) or l = 3 and m = ±2. To check
the accuracy of the bound (90) and its improvement (112) for central potentials, the mutual
comparison of these bounds and the exact position entropy for various bound states of two
relevant classes of central potentials has been analytically and numerically examined in
detail [62]: the D-dimensional and three-dimensional hydrogenic and oscillator-like systems.
It has been found for these three dimensional cases that the general bound (90) and the
central bound (112) for l = m = 0 and l = 3, m = 2 have the same values, what confirms
the theoretical observation (111). Moreover, for the circular states (l = m) the improvement
of the central bound is remarkable, when the spherical harmonics are concentrated around
the equatorial region with θ near π/2. The size of the improvement is specially relevant for
m = 0 when the spherical harmonics are concentrated around the polar regions with θ near
0 and π.

Note that the entropic uncertainty relation (106) and the upper bounds (112) can be
further improved for all the stationary states of large, specific classes of central potentials,
such as e.g., the power-law potentials, but this is still an open issue up until now. However,
for highly-excited states of one-dimensional power-law potentials of the type x2k with
k ∈ N and x ∈ R the asymptotics of the position and momentum Shannon entropies have
been determined [129] by means of the WKB approximation. We have found that for highly
excited states both position and momentum entropies have a logarithmic dependence on
its quantum number not only for both harmonic (k = 1) and anharmonic (k 6= 1) oscillators.

4.3. The Rényi Entropies

Here, we consider the position and momentum properties of the Rényi entropies of a
multidimensional quantum state. We show their universally-valid lower and upper bounds
by means of the position and momentum Heisenberg-like and logarithmic measures. Then,
the uncertainty character for the sum of the position and momentum Rényi entropies is
manifested. Later, the Rényi entropies for the quantum states of arbitrary central poten-
tials are examined. First we heuristically argue how the spherically-symmetric effects of
the quantum potential improve the associated position-momentum uncertainty relation.
Second, we give the rigorous upper bounds of the Rényi entropies for central potentials.

The Rényi entropies for the position probability density ρ(r) are defined [27,28] by

Rq[ρ] =
1

1− q
ln
∫
RD

[ρ(r)]q dr, 0 < q < ∞, q 6= 1, (114)

They supply a family of entropic measures of quantum states, depending on a real param-
eter q. The order parameter q allows to vary, by increasing or decreasing its value, the
contribution of the probability density over different regions. The higher the value of q the
more concentrated is the function [ρ(r)]q around the local maxima of the distribution, while
the lower values have the effect of smoothing that function over its whole definition region.
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The Rényi entropies provide various complementary ways to quantify the extent of ρ(r) all
over the hyperspace, including numerous relevant quantities as special cases, such as e.g.,
the disequilibrium D[ρ] = exp(−R2[ρ]) and the (previously considered) Shannon entropy
S[ρ] = limp→1 Rp[ρ]. The corresponding quantities Rq[γ] for the momentum density γ(p)
are given by

Rq∗ [γ] =
1

1− q∗
ln
∫
RD

[γ(p)]q
∗

dp, 0 < q∗ < ∞, q∗ 6= 1, (115)

Beyond the monotonicity relations [44] given by

Rp[ρ] ≥ Rq[ρ], if p ≤ q; and
p− 1

p
Rp[ρ] ≥

q− 1
q

Rq[ρ], if p ≥ q > 1 (116)

(which allows one to lowerbound all the Rényi entropies by means of the second-order
entropy as Rq[ρ] ≥ 1

2 R2[ρ], for q > 0), the most important property of these quantities
is the Rényi-entropy-based uncertainty relation given by

Rq[ρ{ni}] + Rq∗ [γ{ni}] ≥ D ln
(

πq
1

2q−2 q∗
1

2q∗−2

)
(117)

of general validity for D-dimensional quantum systems which was proved by Zozor,
Portesi and Vignat [46] for arbitrary indices, extending the one-dimensional relation previ-
ously found by Bialynicki-Birula [47] and Zozor and Vignat [152] for conjugated indices
(i.e., when 1

q +
1
q∗ = 2). See [42] for a review. Therein, we can learn that these uncertainty

relations are saturated by the Gaussian distributions.
Moreover, the position and momentum Rényi entropies can be upperbounded. Indeed

the maxent problem can provide variational upper bounds to the Rényi entropy Rq[ρ]
given by (114). It has been found, in particular, that the upper bounds

Rq[ρ] ≤
1

1− q
ln
{

L1(q, k, D)
〈

rk
〉− D

k (q−1)
}

, q > 1, k = 1, 2, ... (118)

and

Rq[ρ] ≤
1

1− q
ln
{

L2(q, k, D)
〈

r−k
〉− D

k (q−1)
}

, q > 1 (119)

with k = 1, 2, · · · so that k < D
q (q− 1). The functions Li(q, k, D), i = 1 and 2, are known to

have the expressions

L1(q, k, D) =
qk

D(q− 1) + kq


kΓ(D/2)

[
D(q−1)

D(q−1)+kq

] D
k

2π
D
2 B
(

q
q−1 , D

k

)


q−1

(120)

and

L2(q, k, D) =
qk

D(q− 1)− kq


kΓ(D/2)

[
D(q−1)−kq

D(q−1)

] D
k

2π
D
2 B
(

D
k −

1
q−1 , q

q−1

)


q−1

(121)

where B(x, y) = Γ(x)Γ(y)/Γ(x + y) is Euler’s beta function. We have used the variational
bounds [153,154] to the entropic moments Wq[ρ] =

∫
RD

[ρ(r)]q dr with a single radial expec-
tation value as constraint. These bounds (118)–(121) extend and generalize (see also [145])
similar bounds obtained in the one-dimensional [155,156] and three-dimensional [157]
cases used in various contexts, ranging from finances to atomic physics. In momentum
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space similar expressions to (118)–(121) can be variationally derived for the corresponding
entropies and constraints. In particular, for k = 2 one has [151] the upper bound

Rq[ρ] ≤ BD(q) +
D
2

ln
(
〈r2〉
D

)
, (122)

with

BD(q) =



D
2 ln

(
π((2+D)q−D)

q−1

)
+ 1

q−1 ln
(
(2+D)q−D

2q

)
+ ln

(
Γ
(

q
q−1

)
Γ
(
(2+D)q−D

2(q−1)

)
)

if q > 1,

D
2 ln

(
π((2+D)q−D)

1−q

)
− q

1−q ln
(
(2+D)q−D

2q

)
− ln

(
Γ
(

q
1−q

)
Γ
(
(2+D)q−D

2(1−q)

)
)

if q ∈
(

D
D+2 , 1

)
,

(123)

to the position Rényi entropy, and

Rq∗ [γ] ≤ BD(q∗) +
D
2

ln
(
〈p2〉

D

)
, (124)

to the momentum Rényi entropy. Thus, we can obtain in particular that the position-
momentum Rényi entropy sum and the position-momentum Heisenberg uncertainty〈
r2〉〈p2〉 are related as

Rq[ρ] + Rq∗ [γ] ≤ BD(q) + BD(q∗)− D ln D +
D
2

(〈
r2
〉〈

p2
〉)

, (125)

which emphasizes the uncertainty character of the position-momentum Rényi entropy sum
and generalizes the corresponding three dimensional result [146] to D dimensions.

For central potentials, the Rényi entropies have not yet been explicitly obtained by
means of the state’s hyperquantum numbers for reasons similar to the Shannon case.
Indeed, in this case the Rényi entropies for an arbitrary D-dimensional state characterized
by the position and momentum probability densities ρn,l,{µ}(r) and γn,l,{µ}(p) are given,
according to Equations (21) and (23), by

Rq[ρn,l,{µ}] = Rq[un,l ] + Rq[Yl,{µ}], (126)

Rq∗[γn,l,{µ}] = Rq∗[ũn,l ] + Rq∗[Yl,{µ}], (127)

where the symbols Rq[un,l ], Rq∗[ũn,l ] and Rq[Yl,{µ}] denote the position and momentum ra-
dial and angular Rényi entropies for D-dimensional quantum state (n, l, {µ}), respectively.
The radial Rényi entropies are given by

Rq[un,l ] =
1

1− q
ln
∫ ∞

0
dr r(D−1)(1−q)|un,l(r)|2q (128)

Rq∗[ũn,l ] =
1

1− q∗ ln
∫ ∞

0
dr r(D−1)(1−q∗)|un,l(r)|2q∗ (129)

in position and momentum spaces, respectively, and the angular Rényi entropies are
given by

Rq[Yl,{µ}] :=
1

1− q
ln Λq[Yl,{µ}]. (130)
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with the entropic moments of the hyperspherical harmonics [158]

Λq[Yl,{µ}] =
∫
SD−1

|Yl,{µ}(ΩD−1)|2q dΩD−1

= 2πN 2q
l,{µ}

D−2

∏
j=1

∫ π

0
[C

(αj+µj+1)
µj−µj+1

(cos θj)]
2q(sin θj)

2qµj+1+2αj dθj, (131)

where the normalization constant Nl,{µ} is given by

N 2
l,{µ} =

1
2π

D−2

∏
j=1

(αj + µj)(µj − µj+1)![Γ(αj + µj+1)]
2

π 21−2αj−2µj+1 Γ(2αj + µj + µj+1)
. (132)

Note that, according Equations (7) and (130)–(132), the hyperspherical harmonics Yl,{µ}(ΩD−1)
and consequently the angular Rényi entropies Rq[Yl,{µ}] do not depend on the principal
hyperquantum number n but they do depend on the the angular hyperquantum numbers
and the dimensionality D. Moreover, the integral functionals involved in (131) are the Rényi-
like functionals of the Gegenbauer polynomials, which are under control since they can be
analytically calculated by two recent methodologies: one based on the Srivastava’s linearization
method [159] and another one based on the combinatorial Bell polynomials [160].

To improve the Rényi-entropy-based uncertainty relation (117) for central poten-
tials we take into account the expressions (21) and (23) of the position and momentum
densities, respectively, so that the sum of the position and momentum Rényi entropies can
be expressed as

Rq[ρn,l,{µ}] + Rq∗[γn,l,{µ}] = Rq[un,l ] + Rq∗[ũn,l ] + Rq[Yl,{µ}] + Rq∗[Yl,{µ}] (133)

Recently, it has been heuristically found that

Rq[un,l ] + Rq∗[ũn,l ] ≥
2q ln A(2q)

q− 1
+

2q∗ ln A(2q∗)
q∗ − 1

, (134)

(whose validity conditions have not yet been established) with the constant

A(q) = 2
2−D

2q
q

1
2

(
1
2+l+ D

2 −1+ D−1
2

2−q
q + 1

q

)

Γ
((

l + D
2 − 1 + D−1

2
2−q

q + 1
2

)
q
2 + 1

2

) 1
q

.

Then, by combining the last three expressions we finally have the Rényi-entropy-based
position-momentum uncertainty relation for quantum systems with a central potential as

Rq[ρn,l,{µ}] + Rq∗[γn,l,{µ}] ≥
2q ln A(2q)

q− 1
+

2q∗ ln A(2q∗)
q∗ − 1

+ Rq[Yl,{µ}] + Rq∗[Yl,{µ}] (135)

This heuristic uncertainty relation gives a lower bound for the sum of the position and
momentum Rényi entropies by means of the angular hyperquantum numbers (l, {µ}).
Despite this relation does not depend on the analytical form of the central potential, it is
not valid for all central potentials for the reason mentioned above. However, it has been
numerically shown to be fulfilled by various large classes of qualitatively different central
potentials such as e.g., the oscillator and hydrogenic-like potentials. Moreover, in the limits
(q→ 1, q∗ → 1) one realizes that the uncertainty inequality (135) simplifies as

S[ρn,l,{µ}] + S[γn,l,{µ}] = S(un,l) + S(ũn,l) + 2S(Yl,{µ})

≥ 2l + D + 2 ln
Γ
(

l + D
2

)
2

− 2lψ
(

l +
D
2

)
+ 2S(Yl,{µ}), (136)
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which improves the rigorous position-momentum Shannon-entropy-based uncertainty
relation for central potentials given by (107). The lower bound (136) is always larger or
equal to the general lower bound (86); so, even when l = 0, where the latter bound failed
because a logarithmic uncertainty-like inequality used for its derivation is not sharp enough.
Nevertheless, the rigorous proof of the heuristic position-momentum Rényi-entropy based
uncertainty relation (135) or, at least its validity conditions, remains an open problem for
the future.

To improve the entropic upper bounds (122)–(124) for central potentials the Rényi
maximization procedure of Costa et al. [150] can be used again to find [151] the following
sharp upper bound in terms of the expectation value

〈
r2〉:

Rq[ρ] ≤ BD(q) +
D
2

ln
(
〈r2〉
D

)
+ L(ΩD−1), (137)

where the spherical-symmetry entropy effects of the potential are contained in the quantity
L(ΩD−1), which represents the loss of entropy due to the angular part of the state’s
wavefunction, is given by Equation (109). For the three-dimensional quantum systems
with a central potential, this expression boils down as

Rq[ρ] ≤ B3(q) +
3
2

ln
(
〈r2〉

3

)
+ L(Ω2), (138)

where L(Ω2) is given by the expression (113) which only depends on the quantum numbers
(l, m) which control the spherical harmonics Yl,m involved in the three dimensional wave-
function of the system. Then, the inequalities (137) and (138) provide the improvement to
the general position Rényi-entropy upper bounds given by (122) because of the spherical
symmetry of the potential for the D and two-dimensional quantum systems, respectively.
It has been found [62] that the general and central position upper bounds coincide for
l = m = 0 and l = 3, m = 2 in accordance to the theoretical result (111). The improvement
of the bound, as given by the loss of entropy L(Ω2) is independent of the specific form of
the potential. Thus, the best improvement occurs for the cases l = m and m = 0.

Similar improvements follow for the momentum upper bounds (124) in terms of the
second-order radial expectation value 〈p2〉, so that we have the sharp inequality

Rq∗ [γ] ≤ BD(q∗) +
D
2

ln
(
〈p2〉

D

)
+ L(ΩD−1) (139)

Then, the position-momentum Rényi entropy sum and the position-momentum Heisenberg
uncertainty

〈
r2〉〈p2〉 are related as

Rq[ρ] + Rq∗ [γ] ≤ BD(q) + BD(q∗)− D ln D +
D
2

(〈
r2
〉〈

p2
〉)

+ 2L(ΩD−1) (140)

for central potentials with dimensionality D ≥ 3.

5. Spin Effects on the Heisenberg and Entropic Uncertainty Relations of
Multidimensional Quantum Systems

Now we examine the present knowledge of the spin effects on the general and
central uncertainty relations of Heisenberg and entropic types for single-fermion sys-
tems with spin s. Particularly, by use of the Daubechies–Thakkar and Lieb–Thirring
inequalities, we show the spin effects on the Heisenberg uncertainty relations given by
expressions (32) and (60), and on the Fisher-information-based uncertainty relations given
by expressions (81)–(83). It remains open the investigation of the spin effects of uncertainty
inequalities of Shannon (see (86), (91), (106), (136)) and Rényi (see (117), (125), (135)) types.
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To obtain the spin-dependent Heisenberg uncertainty relations we begin with the
Daubechies–Thakkar uncertainty inequality [67,95,161] of the momentum radial expecta-
tion value of order k and the position entropic moment of order 1 + k

D :

〈pk〉 ≥ KD(k) q−
k
d

∫
RD

[ρ(~r)]1+
k
D dD~r, (141)

where k > 0, q = 2s + 1 is the number of spin states, and

KD(k) =
D

k + D
(2π)k

[
Γ
(

1 + D
2

)]k/D

πk/2 . (142)

Lieb (see e.g., [162]) previously conjectured the case k = 2 in Equation (141); later,
weaker versions of it were rigorously proved [163]. Moreover, Daubechies [161] rigor-
ously proved this inequality with constant K′D(k) = KD(k) × B(D, k) wnere

B(D, k) =
{

Γ
(

D
k

)
infa>0

[
a−

D
k
(∫ ∞

a du e−u(u− a)u−1)−1
]}− k

D . Other authors have pub-
lished some rigorous D-dimensional bounds of the same type [164,165] with much
less accuracy.

Then, the combination of the lower bound (141) to the momentum expectation value
〈pk〉 and the variational bounds (118) to the involved position entropic moments [153,154]
allows us to find [67,166] the following spin-dependent Heisenberg-like uncertainty relations
for single-fermion systems:

〈rα〉
k
α 〈pk〉 ≥ F (D, α, k) q−

k
D , (143)

with

F (D, α, k) = KD(k)×

(
1 + k

D

)1+ k
D

α1+ 2k
D[

ΩDB
(

D
α , 2 + D

k

)] k
D
×


kk[(

1 + k
D

)
α + k

](1+ k
D )α+k


1
α

, (144)

where ΩD = 2πD/2

Γ(D/2) is the volume of the unit hypersphere. This uncertainty relation, which
holds for any single-fermion systems with space dimensionality D and spin dimensionality
q = 2s + 1, was previously found for k = 2 by means of the Lieb–Thirring inequality [166].
Then, for α = k = 2, one has that

〈r2〉〈p2〉 ≥
{

D
D + 1

[Γ(D + 1)]
1
D

}2
(2s + 1)−

2
D , (145)

This generalized (space-spin) uncertainty relation shows a delicate balance of the space
and spin dimensionality effects to the position-momentum Heisenberg uncertainty, so
that the bound (145) is better (worse) than the spinless bound D2/4 = 0.25 D2 when
D is small (large), respectively. Indeed, note that the bound (145) increases when the
space dimensionality is increasing, thus the uncertainty relation gets improved; and for
large values of D, the bound (145) behaves as D2/e2 = 0.1353 D2. Let us also highlight
that for a given D-dimensional single-fermion system, the uncertainty relation is less
accurate when the spin dimensionality of the system increases. Moreover, one trivially
obtains the spin-dependent Heisenberg uncertainty relation for all three-dimensional
single-fermion systems

〈r2〉〈p2〉 ≥
(

3
4

61/3
)2

(2s + 1)−2/3 (146)

where the equality is reached for the harmonic oscillator [167]. Then, the spin-dependent Heisen-
berg uncertainty for electronic systems (s = 1/2) is 〈r2〉〈p2〉 ≥ 1.85733× 2−2/3 = 1.17005.
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In addition, uncertainty relations similar to Equation (145), at times with better ac-
curacy, have been recently found [168] by means of a variational procedure based on the
extremization of various information-theoretical measures which allows us to determine
an extremum-entropy or least-biased distribution compatible with the known data. Indeed,
the combination of the Daubechies–Thakkar momentum lower bound (141) with the posi-
tion entropic moments of the maximizer solution ρS(r) of the Shannon MaxEnt problem
with the constraints (〈r0〉 = 1, 〈rα〉) has allowed us to find

〈rα〉
k
α 〈pk〉 ≥ 2

(D−2)k
D D

(α+D)(D+k)
αD (D + k)−

α+D
α αk( 1

D−
1
α )Γ
(

D
2

) D+k
D

Γ
(

D
α

)− k
D
(2s + 1)−

k
D , (147)

with α > 0, k > 0. Then, one has for three-dimensional single-electron systems (d = 3 and
q = 2) the following uncertainty-like relation

〈rα〉
k
α 〈pk〉 ≥

2−
2k
3 π

k
3 3

(α+3)(k+3)
3α Γ

( 3
α

)− k
3 αk (α−3)

3α

(k + 3)1+ 3
α

, (148)

which for the particular case α = 2 and k = 2, gives

〈r2〉〈p2〉 ≥ 81 6
√

3 3
√

π

50
√

5
= 1.30107 (149)

which clearly improves the previous bound 1.17005. Finally, similar bounds obtained with
this Shannon MaxEnt procedure [169–172] and with extremization methods associated to
other information-theoretical measures (Fisher information, Tsallis entropies [173,174]) [168]
have been found by various authors for a large number of atoms and molecules.

To obtain the spin-dependent Fisher-information-based uncertainty relations we
use the inequalities (81) and (145), giving rise to

F[ρn,l,{µ}]× F[γn,l,{µ}] ≥ 16
[

1− 2|m|
2l + D− 2

]2 { D
D + 1

[Γ(D + 1)]
1
D

}2
(2s + 1)−2/D (150)

This uncertainty relation holds for all D-dimensional single-fermion systems subject
to an arbitrary central potential. Let us highlight that for the values l ≡ µ1 = . . . = m = 0,
one has

F[ρn,0,{0}]× F[γn,0,{0}] ≥
{

4D
D + 1

[Γ(D + 1)]
1
D

}2
(2s + 1)−

2
D , (151)

which is the spin-modified expression for the general Fisher-information-based uncertainty
relation F[ρ]× F[γ] ≥ 4D2 already mentioned [62]. Note that the bound (151) behaves as
16e−2D2 = 2.16536 D2 for large D. Then, here again, it is manifest the delicate balance of
the space and spin dimensionality effects which makes the lower bound (151) to be better
(worse) than the spinless bound when D is small (large). In addition, we observe that the
lower bound to the position-momentum Fisher-information-based uncertainty increases
when the space dimensionality is increasing; and it decreases when the spin dimensionality
is increasing, so that the spin effects worse the uncertainty relation, especially when the
space dimensionality decreases. Finally, for the standard (D = 3) systems we obtain the
uncertainty relation

F[ρ]× F[γ] ≥ 9× 62/3 (2s + 1)−2/3

for all three-dimensional fermionic systems. So, for electronic systems (s = 1
2 ), one has

F[ρ]× F[γ] ≥ 38/3 = 2.1810.

6. Conclusions and Open Problems

Spherical symmetry is one of the most frequent and useful approximations to simplify
and solve the Schrödinger equation of quantum systems. In higher dimensions, this
approximation often provides a deeper quantitative insight into the quantum structure
and dynamics of three-dimensional systems, and in many cases allows for the conceptual
understanding of physics in a transparent and intuitive way. Moreover, the solutions of the
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wave equations of complex physical systems within this approximation are very valuable
tools for checking and improving complicated numerical methods used.

Here, we have investigated and reviewed the spatial extension of the D-dimensional
stationary states of arbitrary central potentials by means of various spreading quantities
of global (radial and logarithmic expectation values, Rényi and Shannon entropies) and
local (Fisher information) type. Attention has been focussed on the improvements of the
Heisenberg-like and the information-theoretical measures of the associated position and
momentum densities because of the spherical symmetry effects of the multidimensional
potential and the spin effects of the fermionic system under consideration.

The results have been shown in the form of inequality-based relations because the
analytical form of the central potential is not known. In particular, the spherical-symmetry
effects on the upper bounds of the Heisenberg-like (radial expectation values) and entropy-
like (Fisher, Shannon, Rényi) spreading measures and on the associated uncertainty rela-
tions have been examined and discussed, showing their explicit dependence on the angular
hyperquantum numbers. In addition, the delicate balance of the space and spin dimen-
sionality effects on the mathematical formulations of the position-momentum uncertainty
principle based on the Heisenberg-like measures and the Fisher information has been
investigated and discussed.

Let us now mention a few open issues which have been identified. First, the im-
provement of the Heisenberg-like and entropy-like uncertainty relations for various broad
relevant classes of potentials such as e.g., the convex potentials and the power-law or
anharmonic potentials. Second, the dependence of the Rényi and Shannon uncertainty
relations on the space and spin dimensionality effects; it seems that we could obtain it in
our scenario provided the Rényi and Shannon uncertainty sums are expressed in terms
of the Heisenberg uncertainty product, but this has not yet been found to the best of our
knowledge. Third, the formulation of the quantum uncertainty principle by means of the
position and momentum Fisher informations.

Finally, it would be interesting to extend a similar study to other classical entropy-like
entropies (such as the Tsallis entropies and Salicrú-like extensions [175,176]) and their quantum-
information generalizations (von Neumann, quantum Fisher, quantum Rényi, quantum Tsallis
and extensions [177]) which play a prominent role in classical nonequilibrium thermodynam-
ics [174] and modern quantum technologies (see e.g., [77,78]), respectively.
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