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In the Cheshmeh-Bid district of the Khajeh-Jamali ophiolitic massifs (Southern Iran), mantle 

peridotites are intruded by abundant pyroxenite dykes. A few of these dykes are remarkable 

for the occurrence of native copper associated with the development of a metasomatic 

reaction zone. The dykes are progressively reacted, from their margins towards the center, 

with an amphibole + antigorite selvage, followed by a centimeter-thick clinopyroxene + 

antigorite assemblage and, finally, by the native copper-bearing zone consisting of 

clinopyroxene + chlorite + antigorite. Native Cu occurs along cleavages and partially healed 

fractures in clinopyroxene, and as massive grains intergrown with antigorite. Copper isotope 

signatures and thermodynamic calculations show that the main driver for reaction zone 

formation is Ca-metasomatism. Native copper forms at the expense of chalcocite in the 

reaction zone. Such a reaction can only occur in reducing conditions, in agreement with the 

analysis of fluid inclusions composition displaying H2 and CH4. Such fluids presumably 

originated from the hydration of mantle rocks. The observed reaction zone and native copper 

mineralization are thus interpreted as the result of Ca-metasomatism during hydrothermal 

alteration of the oceanic lithosphere. This is consistent with U/Pb dating of titanite, 

suggesting formation during the Albian when the dykes were exposed on the seafloor in a 

supra-subduction setting. The source for copper mineralization, as revealed by Cu isotopes, is 

probably mantle-like. 

Keywords: Native copper; serpentinization; Ca-metasomatism; pyroxenite; Cheshmeh-Bid 

ophiolitic massif; Iran 

1. Introduction 

Native copper has been documented in ultramafic and mafic rocks from ophiolitic and 

orogenic massifs. It was observed in partially serpentinized peridotites of Costa Rica 

(Schwarzenbach et al., 2014), pillow basalts from la Désirade, Lesser Antilles island 

arc (Nagle et al., 1973), rodingitized gabbro in serpentinites of the Braszowice-Brzeznica 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 
 

 3 

Massif, Poland (Gunia, 1986), basal cumulate sequence of the massif from the Zambales 

ophiolite, Philippines (Abrajano and Pasteris, 1989), plagioclase lherzolites from the 

Horoman peridotite complex, Hokkaido, northern Japan (Ikehata and Hirata, 2012) and 

websterite from the Totalp ultramafic massif, Swiss Alps (Van Acken et al., 2007). Three 

hypotheses have been put forward to explain the genesis of native copper in peridotites and 

basalts: ((i) crystallization in equilibrium with a mafic magma (e.g. Cabral and Beaudoin, 

2007; Ikehata and Hirata, 2012); (ii) low-temperature in situ alteration of magmatic or 

hydrothermal Cu-sulfides at highly reducing conditions (e.g. Lorand and Grégoire, 2006; 

Schwarzenbach et al., 2014); (iii) precipitation from low-temperature hydrothermal fluids 

(e.g. Dekov et al., 2013; Ikehata et al., 2016). 

 Thermodynamic calculations show that hypothesis (ii) requires reducing conditions for 

native copper to precipitate in hydrothermal environments (Schwarzenbach et al., 2014). The 

observation of Fe-Ni alloys and native metals in serpentinized peridotites (e.g. Klein and 

Bach, 2009; Schwarzenbach et al., 2014) shows that highly reducing conditions prevail 

during serpentinization. This is consistent with vent fluid compositions measured in 

ultramafic-hosted hydrothermal fields (Charlou et al., 2002) and gas seep compositions 

analyzed in ophiolites (e.g. Abrajano et al., 1988). During serpentinization, hydrogen 

production relates to water reduction coupled with iron oxidation during replacement of 

primary olivine and pyroxene by secondary magnetite and serpentine (McCollom and Bach, 

2009; Malvoisin et al., 2012). Water-rock interaction is also intimately associated with Ca-

metasomatism of mafic rocks in which the removal of silica (SiO2) and addition of Ca are the 

main mass transfers (Coleman 1967). 

In this contribution, we report a new occurrence of native copper mineralization within Ca-

metasomatically altered pyroxenites from the Cheshmeh-Bid ophiolitic massif in the Khajeh-

Jamali area, Southern Iran. Based on field and petrographic observations combined with new 
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geochronological and geochemical data we aim to: (1) define the paragenetic sequence of the 

ore and silicate minerals; (2) produce a thermodynamic model for the origin of Ca-

metasomatism and native copper; (3) determine the sources of Cu in the mineralization 

system; (4) constrain the timing of the copper mineralization and, finally, (5) develop a 

conceptual model of native copper genesis within metasomatised pyroxenite veins. 

2. Geological setting 

The Iranian Ophiolites (Fig. 1a) represent the remnants of the Tethyan oceanic lithosphere in 

the Anatolian segment of the Alpine–Himalayan Orogen. Mesozoic ophiolites of Iran have 

been divided into five ophiolitic belts (Shafaii Moghadam and Stern, 2015): (1) Late 

Cretaceous Zagros Outer Belt (ZOB) ophiolites along the Main Zagros Thrust including 

Kermanshah-Kurdistan, Maku-Khoy-Salmas, Neyriz/Khajeh-Jamali and Haji Abad 

ophiolites; (2) Late Cretaceous Zagros Inner Belt (ZIB) ophiolites including Nain, Dehshir, 

Shahr-e-Babak and Balvard-Baft ophiolites along the main boundaries of the Central Iranian 

Micro-continental block; (3) Late Cretaceous-Early Paleocene Sabzevar-Torbate-Heydarieh 

ophiolites in the northeast of Iran; (4) Early to Late Cretaceous ophiolites including 

Nehbandan, Birjand and Tchehel-Kureh ophiolites between the Afghan and Lut blocks; and 

(5) Late Jurassic-Cretaceous Makran ophiolites in the southeast of Iran. The Khajeh-Jamali 

ophiolites consist of four ophiolitic massifs belonging to ZOB in the Zagros Mountains 

(Southwestern Iran), and outcrop about 20 km from the Main Zagros Thrust (Fig. 1a). These 

massifs are dominantly composed of mantle harzburgite-dunite tectonites and a Moho 

Transition Zone (MTZ) (Fig. 1b; e.g. Rajabzadeh, 1998; Rajabzadeh and Nazari Dehkordi, 

2013; Eslami et al., 2015). Several concordant or subconcordant orthopyroxenites and 

clinopyroxenites intrude both mantle tectonites and the MTZ. Boundaries between the 

pyroxenite intrusions and peridotite host rocks are generally sharp. The pyroxenite 

dykes/veins are usually coarse-grained and range from a few cm to 35 cm in thickness. 
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A typical cumulate sequence and a sheeted dyke complex are missing in the Khajeh-Jamali 

area. Peridotites are overlain by a very thin nappe of basaltic pillow lavas, reddish-purple 

radiolarian cherts and Late Cretaceous pelagic limestones (Rajabzadeh, 1998; Eslami et al., 

2015). The ophiolitic assemblage is thrust onto the Cenomanian/Turonian shallow water 

deposits of the Sarvak Formation in the western portion of the Khajeh-Jamali area (Alavi, 

1994). The Cheshmeh-Bid ophiolitic massif covers rugged mountainous area of ∼25 km2 in 

the northwest of the Khajeh-Jamali area. This massif hosts large economical concentrations 

of chromitites showing massive and high-grade disseminated texture (Rajabzadeh, 1998; 

Eslami et al., 2015). In the Cheshmeh-Bid chromitite mine, a few pyroxenite dykes and veins 

crosscutting massive chromitite and serpentinized dunite are partially (Fig. 2a, b) or 

completely (Fig. 2c) metasomatised with remarkable native copper mineralization. 

3. Analytical methods 

Analytical work has been focused on five representative samples of metasomatically altered 

pyroxenite veins (KJPX04, KJPX05, KJPX06, KJPX11 and KJPX12) and two fresh 

pyroxenites (KJPX01 and KJPX20). Polished thin sections of both fresh and altered 

pyroxenites were examined under transmitted light using a Leica optical microscope at 

University of Milan. Samples KJPX04, KJPX05 and KJPX06 were selected for petrography 

observation because they show typical metasomatic zoning on the micrometer scale. 

3.1 Major and trace element analyses in minerals and whole-rocks 

Quantitative chemical analyses of silicate minerals (except chlorite) were obtained using a 

JEOL JXA-8230 electron probe micro-analyzer (EPMA) equipped with five wavelength-

dispersive spectrometers (WDS) at the Institut des Sciences de la Terre, Université Grenoble 

Alpes, France. Analytical conditions were: 15 kV acceleration voltage, 12nA beam current, 

3µm beam size. Natural minerals, pure metal and synthetic oxides were used as standards and 

ZAF correction was applied. Spectral interference (V Kα vs Ti kβ) was corrected using the 
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software-calculated correction factor. Elemental distribution maps were done at an 

accelerating voltage of 15kV, a beam current of 100 nA and a dwell time of 200 ms. Major 

element composition of chlorites, sulfides and spinels were analyzed using a JEOL JXA 8200 

Superprobe equipped with five wavelength-dispersive (WDS) spectrometers, an energy 

dispersive (EDS) spectrometer, and a cathodoluminescence detector (accelerating potential 

15 kV, beam current 15 nA), at the Dipartimento di Scienze della Terra “Ardito Desio”, 

University of Milano (Italy). 

 Major elements and Cr and Ni in whole-rock samples were analysed by X-ray Fluorescence 

(XRF) with a BRUKER S4-Pioneer instrument at the Instituto Andaluz de Ciencias de la 

Tierra (IACT, Granada, Spain), using standard sample preparation and analytical procedures. 

The accuracy of analyses was assessed by repeated analyses of international reference 

material JP-1 (peridotite) handled as unknown, which show good agreement with accepted 

values for this standard (Govindaraju, 1994). Whole-rock trace elements (REE, Ba, Th, Pb, 

Nb, Ta, Sr, Y and Sc) were analyzed by an Agilent 8800 QQQ ICP–MS (Inductively Coupled 

Plasma–Mass Spectrometer) at the IACT. Sample digestion was performed following the 

HF/HClO4 dissolution procedure described in detail by Ionov et al. (1992), and element 

concentrations were determined by external calibration using aqueous solutions. Accuracy of 

the ICP–MS analyses has been assessed analyzing the BIR-1 basalt standard as an unknown, 

which show good agreement with reference concentrations of Jochum et al. (2016). 

3.2 Copper isotope analyss 

Grains of native copper were separated through crushing and hand picking. Samples were 

processed similar to the techniques in previous studies, namely Bornhorst and Mathur (2017), 

Mathur et al. (2009a) and Wall et al. (2011). The native copper samples were dissolved in 

Teflon beakers with 8 mL of ultrapure aquaregia at 140°C for 24 hours or until complete 

dissolution occurred. Samples were diluted to 100 ng/g for Cu isotope analysis with a 
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Neptune MC-ICP-MS at Pennsylvania State University. Copper isotope compositions are 

reported in the traditional per mil format compared to the NIST 976 international standard. 

Mass bias was corrected for using standard-sample-standard bracketing. All samples matched 

the intensities of the standards within 25 %. An internal copper metal standard (USA 1838 

Cent, reported in Mathur et al. 2009b) was measured 4 times during the session and produced 

a d65Cu= 0.04+/-0.05 per mil value. This value is identical to accepted δ65Cu of the standard 

(-0.02 per mil +\- 0.08). 

3.3 U-Pb LA-ICP-MS analysis of titanite 

Titanite grains were ablated in thin section using a 213 nm laser beam with diameter of 25 

μm at 5 Hz and 40 % power (NWA ablation system). ICP-MS analyses were carried out 

using a Plasmaquad instrument. Data were collected on 206Pb, 207Pb, and 238U. Immediately 

prior to each analysis, the spot was briefly pre-ablated over a larger area than the beam 

diameter to clean the surface. Following a 10 s period of baseline accumulation the laser 

sampling beam was turned on and data were collected for 25 s followed by a 50 s washout 

period. About 150 measurement cycles per sample were produced and ablation pits are about 

15 μm deep. Data were edited and reduced using custom VBA software (UTILLAZ program) 

written by the author. 206Pb/238U show only slight fractionation caused by hole depth through 

the run and most of the 207Pb/206Pb and 206Pb/238U data can be averaged. Pb-204 was not 

measured since this peak is relatively small and would require a large amount of 

measurement time as well as being subject to interference from 204Hg in the Ar. Ages are 

determined by projecting data along a common Pb mixing line to the concordia curve (see 

Results below). Titanite from a quartz diorite sample in northwest Ontario, DD81-29, 

previously dated at 2700 ± 2 Ma (Davis and Edwards, 1986) was used as a standard. 

3.4 Raman Spectroscopy 
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Raman spectroscopic analyses were carried out at the Research and Industrial Relations 

Center of the Faculty of Science at the Eötvös University, Budapest. Analyses were carried 

out with a Horiba LabRAM HR800 spectrometer, using a 532 nm (green) laser with a 

maximum laser energy of 130 mW (~25 mW on the sample surface). A 100 µm confocal 

pinhole and an optical grating with 1800 grooves/mm were used. The spectral resolution of 

the measurements was 0.8 cm-1 at 1707.9 cm-1 (defined as the measured full width at half 

maximum values of neon atomic emission lines). During the measurements an objective with 

100× magnification was used (NA=0.9). Analyses ran with 2 to 5 repetitions for an 

accumulated 200-500 seconds. 

3.5 Thermodynamic modelling 

We used thermodynamic modelling to determine (1) the conditions prevailing during native 

copper formation, and (2) the factors controlling metasomatism. The calculations were 

performed differently for these two objectives. We therefore constructed phase diagrams in 

the Fe-Ni-Cu-O-S system with SUPCRT92 (Johnson et al., 1992) for (1). We used the 

thermodynamic database provided in Klein and Bach (2009) in which the SUPCRT92 

database is extended by including thermodynamic data for Fe-Ni sulfides. The diagrams are 

computed as a function of the activities of H2,aq (aH2,aq) and H2S,aq (aH2S,aq) at aH2O = 1 and 

50 MPa. This latter pressure is used to compute equilibrium constants in Klein and Bach 

(2009), and is relevant for serpentinization on the seafloor. 

We used Gibbs energy minimization with Perple_X (Connolly, 2005) for (2) because it 

provides solid solutions for the phases observed here. This ensures accurate modelling of the 

distribution of major elements during metasomatism. The equilibrium assemblages were 

determined for the composition of the orthopyroxenite (sample IRKJPX20; Supplementary 

Table 10) as a function of the chemical potential of CaO and temperature at 50 MPa. We did 

not include components with a concentration below 0.5 wt.% in the calculation. The chemical 
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potential of CaO was also computed as a function of temperature for three metasomatised 

samples (IRKJPX04, IRKJPX11 and IRKJPX12). We used the thermodynamic database of 

Holland and Powell (1998a) and the solid solution models of Holland and Powell (1996) for 

orthopyroxene and clinopyroxene, Holland and Powell (1998a) for olivine, spinel and 

staurolite, Holland and Powell (1998b) for chlorite, Diener et al. (2007) for amphibole, 

Padrón-Navarta et al. (2013) for antigorite and White et al. (2000) for garnet. The solid 

solutions for talc and brucite were considered as ideal. H2O was added in excess and 

modelled with the CORK equation of state (Holland and Powell, 1998). This explains why 

the orthopyroxenite is not composed of orthopyroxene in the calculations but rather of its 

hydration products (talc and antigorite). We did not consider here the kinetic effects that led 

to orthopyroxene preservation. 

Copper, and iron-nickel sulfides are not all available in Perple_X. We therefore constructed 

phase diagrams in the Fe-Ni-Cu-O-S system with SUPCRT92 (Johnson et al., 1992) for (2). 

We used the thermodynamic database provided in Klein and Bach (2009) at 50 MPa in which 

the SUPCRT92 database is extended by including thermodynamic data for Fe-Ni sulfides. 

The diagrams are computed as a function of the activities in H2,aq (aH2,aq) and H2S,aq (aH2S,aq) 

at aH2O = 1 and at the pressure at which the thermodynamic data are available (50 MPa). 

4 Results 

4.1 Petrography of the host peridotites 

Petrography of the Cheshmeh-Bid host peridotites and chromitites has been discussed in 

detail by previous authors (e.g. Rajabzadeh, 1998; Eslami, 2015). The scarcity of bastite 

suggests that the host peridotites of the studied pyroxenites was originally a dunite. The host 

dunites consist of >95 % mesh-textured serpentine, cut by serpentine veins, plus 1—3 % 

spinel minerals. The Cheshmeh-Bid harzburgites are composed of 70-85 modal% olivine and 

10-20 modal% orthopyroxene. The minor phases are fine-grained anhedral clinopyroxene (3–
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5 modal%) and subhedral spinel (0.5–3 modal%). Pervasive alteration in harzburgite includes 

the formation of serpentine minerals after olivine and orthopyroxene. In the Cheshmeh-Bid 

peridotites, Fe, Cu and Ni commonly form fine-grained opaque minerals including oxides 

(magnetite), sulfides (pentlandite, heazlwoodite) and alloys (awaruite) that occur together 

with (accessory) platinum-group minerals (PGM). Base metal sulfide inclusions inside alloys 

show desulfurization effects in the matrix of the Cheshmeh-Bid chromitite and host dunite 

and harzburgite (Eslami, 2015). 

4.2 Petrography and mineral chemistry of pyroxenite and reaction zones in contact with 

host peridotites 

Along the interface with the peridotite host rock, orthopyroxenite veins developed three 

mineralogically and chemically distinct alteration zones. These are described below. The 

transition between least altered and altered zones can either be sharp or progressive. 

4.2.1. Orthopyroxenite. The least altered mineral assemblage of the pyroxenite vein 

comprises orthopyroxenea and chromian spinel. It occurs in a zone with an average thickness 

of 1.5 cm (hereafter Opx-rich zone; Fig. 3a). Clinopyroxene, olivine and antigorite are 

secondary minerals in this zone. This zone displays a porphyroclastic texture with 1 to 3 mm 

large pyroxene grains surrounded by antigorite. The composition of orthopyroxene in this 

zone is mostly enstatitic (Supplementary Fig.1), with Mg# [Mg/(Mg+Fetot)] of 0.90–0.93. 

Orthopyroxene has Cr2O3, Al2O3 and TiO2 contents of 0.12–0.46 wt.%, 0.40–1.38 wt.% and 

<0.05 wt.%, respectively (Supplementary Table S1). The orthopyroxene crystals contain 

numerous ovoid and lamellar exolutions of clinopyroxene (Fig. 3b). Clinopyroxene 

exolutions in the Opx-rich zone have high CaO contents ranging between 21.02– 23.62 wt.% 

(with average of 22.94 wt.%), low Al2O3 contents of 0.50-2.20 wt.% (with average of 1.33 

wt.%) and Cr2O3 contents of 0.26 to 0.94 wt.% with average of 0.63 wt.% (Supplementary 

Table S2). The Mg# of clinopyroxene exolutions, observed in large orthopyroxenes, range 
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from 0.91 to 0.99. Clinopyroxene from pyroxenites are mostly diopside (Supplementary Fig. 

1). 

In Opx-rich zone of Cu-rich pyroxenites, secondary olivine occurred as vein-like texture in 

the middle of antigorite around the orthopyroxene porphyroclasts (Fig. 3c). Representative 

analyses of olivine with vein-like texture from the Cu-bearing pyroxenites are given in 

Supplementary Table S3. Olivine has low forsterite contents comprised between 75 and 83 

mol.%. Compared to the vein-like textured olivine in Cu-bearing pyroxenites, primary 

olivines found in dunite and harzburgite of the studied area have considerably higher Fo 

content (91-95 mol %) (Fig. 4; Rajabzadeh and Nazari-Dehkordi, 2013). MnO contents for 

vein-like textured olivines vary from 0.34 to 0.82 wt.% whereas they are lower than 0.21 

wt.% for olivine in associated harzburgite and dunite (Fig. 4a). NiO contents for vein-like 

textured olivines are homogeneous in all samples and lower (0.08 to 0.16 wt.%) compared to 

those in associated dunite and harzburgite (0.27-0.66 wt.%) (Fig. 4b). MnO contents and Mg# 

are negatively correlated for vein-like textured olivines whereas there is a broad positive 

correlation between NiO contents and Mg# for olivines from associated harzburgite and 

dunites. 

Euhedral or subhedral chromian spinel (50 µm to 2.5 mm in diameter) is interstitial or 

included in orthopyroxene grains (Fig. 3d). Chromian spinel grains show alteration to ferrian 

chromite across their cracks and fractures. Rarely, spongy reaction rims developed around 

homogeneous chromian spinel grains. Sieve-textured rims of chromian spinel results from the 

occurrence of several euhedral to anhedral inclusions of chlorite and clinopyroxenes (Fig. 

3e). Inclusion sizes range from 5 to 100 µm. Fresh cores of spinel show Cr# [Cr/(Cr + Al)] 

ranging from 0.65 to 0.73 (average of 0.70) and Mg# [Mg/(Mg + Fe2+)] from 0.49 to 0.59 

(average of 0.55) (Supplementary Table S4; Fig. 5). These high-Cr# spinels are characterized 
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by low TiO2 content < 0.18 wt.%, MnO contents of 0.04-0.24 wt.%, FeO contents of 18.29-

25.21 wt.%, Al2O3 contents of 13.38–20.29 wt.% (Fig. 5). 

The products of three successive reactions overprinted the Opx-rich zone. We distinguished 

three reaction zones from inner to outer portions of the orthopyroxenite dykes: 

4.2.2. Zone I is characterized by a narrow selvage of amphibole with subordinate antigorite 

between Opx-rich zone and Zone II. The thickness of this zone is 50 µm to 100 µm (Fig. 3a). 

The chemical composition of amphibole from the Cheshmeh-Bid pyroxenites is given in 

Supplementary Table S5. Based on the nomenclature of Leake et al. (1997), amphiboles show 

a wide range of compositions from tremolite to magnesio-hornblende and edenite. They are 

characterized by Mg# between 0.92 and 0.98, TiO2 <0.07 wt.%, Cr2O3 contents are between 

0.12 and 2.50 wt.% and Al2O3 contents between 0.26-10.30 wt.%. 

4.2.3. Zone II is composed of clinopyroxene megacrysts with subordinate antigorite and very 

rare orthopyroxene. The thickness of this zone is from 1 cm to 1.5 cm (Fig. 3a). 

Clinopyroxenes in Zone II show a wide range of Mg# (0.75-0.98) and are characterized by 

CaO contents of 21.95– 26.1 wt.% with average of 23.25 wt.%, Al2O3 and Cr2O3 contents 

lower than 2.23 wt.% and 1.56 wt.%, respectively (Supplementary Table S2; Supplementary 

Fig. 1). Light grey bands on zoned clinopyroxenes in Zone II have lower Mg# values (0.76-

0.80) and higher Cr2O3 contents compared to dark grey zones (Fig. 3f). Sporadic inclusions 

of amphiboles are discernible along the cleavage of clinopyroxenes (Fig. 3g). Amphibole 

inclusions in Zone II are magnesio-hornblende to edenite. They are characterized by Mg# 

between 0.90 and 0.97 and TiO2 contents <0.23 wt.%, Cr2O3 contents of 0.80-2.53 wt.% and 

Al2O3 contents of 4.14-9.71 wt.% (Supplementary Table S5). Orthopyroxene inclusions in 

diopside megacrysts of Zone II show lower Mg# (~ 0.87). These inclusions have average 

Al2O3 = 1.5 wt.% and Cr2O3 = 0.51 wt.%. Clinopyroxene is locally replaced by calcite with 

perfect rhombohedral cleavage (Fig. 3h, 3i). 
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4.2.4. Zone III is the mineralized zone consisting dominantly of clinopyroxene, chlorite, 

antigorite and native copper. Zone III range from 0.5 cm to 1.5 cm in width and is typically 

massive in texture (Fig. 3a). Antigorite forms well-shaped tablets or laths that penetrate 

deeply into the clinopyroxenes. Chlorite forms patches or more commonly occurs 

interstitially in between the antigorite plates (Fig. 3j). It shows chemical variations 

(dominantly clinochlore) in each set of samples (Supplementary Table S6). Generally, 

chlorites in Zone III from the studied pyroxenites display low FeO (<5.08 wt.%), high MgO 

(28.46-33.26 wt.%) and variable Cr2O3 contents (0.17-3.84 wt.%). Chlorites are mainly 

clinochlore with subordinate pennine (Supplementary Fig. 2). In backscattered electron 

images, the Fe-rich chlorites and Fe poor have the same texture (Fig. 3i). Rarely, apatite is 

interstitial with respect to chlorite and antigorite. 

Native Cu with pure composition occurs as flames intergrown with antigorite (Figs. 6a and 

6b; Table S7), along cleavage planes and along partially healed fractures cutting 

clinopyroxene (Fig. 6c). Occasionally, native copper occurs in fractures of chromian spinel as 

well as along chromian spinel grain boundaries (Fig. 6d). Occasionally, individual titanite 

grains are closely associated with native copper and chlorite (Fig. 6e) in zone III. Rare Cu-Au 

alloy is found in Zone III (Fig. 6e). Small inclusions of chalcocite (Cu2S) are fully embedded 

within native copper (Fig. 6f). Chalcocites hosted by native copper as vein and inclusion 

shows a relatively narrow range of Cu (76.69-80.92 wt.%) and S (20.05-21.71 wt.%) (Table 

S7). Occasionally, cadmium sulfides (Greenockite) occur as inclusions in native copper and 

have Cu (3.87-6.78 wt.%) and Cd contents (76.5-78.1 wt.%) (Table S7). 

4.3. Chemical changes across the reaction zone 

X-ray element mapping shows that the contact between Opx-rich and metasomatic zones (I 

and II) of Cu-rich pyroxenite samples is sharp (Fig. 7). The formation of amphiboles in Zone 
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I is associated with increase in Ca, Na and Al. Sporadic high concentrations of these elements 

also occur in Zone II where they correspond to amphibole inclusions. Aluminium transfer 

may have also a significant role in the formation of chlorite in zone III. The high volumetric 

proportion of clinopyroxene in zone II is responsible for an increase in Ca. 

4.4 Fluid inclusions in Zone II 

A study of fluid inclusions (FIs) in clinopyroxene from zone II was carried out for the sample 

PX05 (Fig. 8a). FIs appear in cloudy clinopyroxenes either oriented randomly or along 

cleavage planes and healed cracks. The FIs mainly range in size from 3 to 10 µm and display 

various shapes (Fig. 8a). The inclusions are often partially or fully decrepitated and whiskers 

may occur (Fig. 8a). At room temperature two phases (liquid + vapor) can be observed (Fig. 

8a). The FIs were discriminated based on their petrographic position following Roedder 

(1984) and Van den Kerkhof and Hein (2001). The FIs are considered to have a secondary 

origin, since they mostly occur along healed fractures and cleavage planes, indicating that 

they were captured after the formation of the host clinopyroxenes. 

We determined the nature of the phases in the FIs using Raman microspectroscopy. The 

molar proportion of the fluid components (shown in Supplementary Table S8) in the fluid 

(vapor + liquid) at room temperature was calculated based on 1) the integrated band area of 

their characteristic Raman bands and 2) Raman cross-sections following the method of 

Dubessy et al. (1989). In all studied FIs we identified CH4 and H2 based on their highest 

intensity bands (at ~2918; ~588 and ~4156 cm-1, respectively) (Fig. 8b). The fraction of H2 

widely varies in the FIs from 20 to 98 vol.%. 

4.5 U-Pb LA-ICP-MS dating of titanite 

Laser ablation ICP-MS U-Pb analyses including U and Pb contents, isotopic ratios and ages 

of seven titanite grains from the Cheshmeh-Bid Cu-rich pyroxenite are given in 

Supplementary Table S9. All titanite grains contain some U ranging from 5 to 38 µg/g as well 
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as some initial Pb. Concordia plots of titanite U–Pb isotopic results are shown in Figure 9. All 

titanite grains contain significant initial common Pb and therefore lie on a mixing line 

between the 207Pb/206Pb ratio of the common Pb component and the age of the radiogenic 

component as defined by the lower concordia intercept (Fig 9). Regressing data from the 

titanite grains using Isoplot (Ludwig, 2003) gives a line that projects to an age of 101±22 Ma. 

The MSWD of 3.8 indicates scatter outside of measurement error, probably because of excess 

variations in the Pb/U ratio. To some extent the 95% confidence error takes account of this 

since it scales as the square root of the MSWD (Ludwig, 2003). 

4.6 Copper isotope composition of native copper 

Copper isotopic results of eight native copper grains from the Cheshmeh-Bid Cu-rich 

pyroxenite are given in Supplementary Table S10. The eight native copper grains have Cu 

isotope compositions ranging from δ65Cu= -0.20 to +0.28‰ (Fig. 10). Errors for all the 

analyses are ± 0.08‰. An average δ65Cu Bulk Silicate Earth (BSE) value of +0.07 ±0.10‰ 

(2SD) (Savage et al., 2015) was used to examine and characterize the Cu isotope composition 

of Cheshmeh-Bid native copper. The copper isotope values for the studied native copper lie 

within the previously reported copper isotope range for bulk mantle rocks (Fig. 10; Ben 

Othman et al., 2006; Ikehata and Hirata, 2012; Liu et al., 2015; Zou et al., 2019). Native 

copper grains from the Cheshmeh-Bid pyroxenites display significant isotope fractionation 

compared to primary native copper in Horoman peridotite complex but there is significant 

isotope fractionation for Cheshmeh-Bid native copper. 

4.7 Bulk-rock chemistry 

Whole rock geochemical data of the Cheshmeh-Bid pyroxenite samples are shown in 

Supplementary Table S11. Compared to fresh pyroxenite samples (PX01 and PX20), 

matasomatized pyroxenites show slightly higher Mg# values (0.91-0.96), lower SiO2 (46.37-

51.76 wt.%), higher Al2O3 (2.60-8.84 wt.%), CaO (5.18-18.96 wt.%) and TiO2 contents 
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(0.07-0.17 wt.%) (Supplementary Table S11). The Cheshmeh-Bid metasomatised pyroxenites 

have high REE concentrations (3.79-15.64 µg/g). 

We use in the following an isocon diagram of Grant (2005) to estimate element mobility 

associated with metasomatism in the Cheshmeh-Bid pyroxenites (Fig. 11). We used average 

composition of the Cheshmeh-Bid fresh orthopyroxenites (samples IRKJPX01 and 

IRKJPX20) and metasomatic pyroxenite samples (samples IRKJPX04, IRKJPX05, 

IRKJPX06, IRKJPX11 and IRKJPX12). The isocon diagrams allow to quantify the loss and 

gain of elements during the alteration of fresh samples by using TiO2 and Sc to define the 

isocon (Fig. 11). These elements are commonly considered as relatively immobile during 

alteration (Van Baalen, 1993; Grant, 2005; Beinlich et al., 2010). The elements plotting 

above the isocon were gained during metasomatism, whereas those plotting below were lost. 

Concentration of Al2O3, CaO and REE increased during the metasomatism of the Cheshmeh-

Bid orthopyroxenites, whereas MgO, FeO, SiO2, MnO, K2O and Ba decreased (Fig. 11). The 

slope of the constant composition line in the isocon diagram is 1.9. This indicates that the 

total mass and the total volume decreased of 47 % and 61 % during the alteration, 

respectively. This is consistent with the observation that most major elements were lost 

during metasomatism. 

4.8 Thermodynamic modelling of Ca-metasomatism 

Thermodynamic modelling of phase equilibria indicates that the talc + antigorite + amphibole 

assemblage is stable in the presence of fluid at temperatures below ~ 420°C and at the lowest 

chemical potential of CaO investigated here (μCaO; Fig. 12). This assemblage is replaced at 

higher μCaO by amphibole + antigorite (I), then by clinopyroxene + antigorite (II) and finally 

by clinopyroxene + antigorite + chlorite (III). The samples having experienced Ca 

metasomatism are predicted to be composed of one of these three mineralogical assemblages 

(assemblage I for IRKJPX04 and assemblage III for IRKJPX11 and IRKJPX12). At the 
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highest μCaO investigated in the simulation, phases such as brucite, wollastonite and 

vesuvianite are stable. These latter phases are not observed in the natural samples. The 

olivine-antigorite transition occurs at a higher temperature at low μCaO (450°C at -730 

kJ/mol) than at high μCaO (250°C at -675 kJ/mol). 

4.9 Stability of native copper 

The Cu-Fe-Ni-O-S phase relations are displayed in Figure 13 as a function of the activities in 

H2,aq and H2S,aq at 50 MPa and 200 °C, 300 °C and 400 °C. In the Fe-Ni-O-S system, the 

stability fields are identical to the ones calculated in Klein and Bach (2009). Native copper is 

stable at aH2,aq > 10-3 and aH2S,aq < 10-3 together with awaruite or heazlewoodite in the Cu-Fe-

Ni-O-S system. Its stability field is bound by chalcocite (Cu2S) at low aH2S,aq and bornite 

(Cu5FeS4) at higher aH2S,aq. The stability field of bornite is bound by chalcopyrite (CuFeS2) at 

aH2S,aq > 10-3 at 200°C and at aH2S,aq > 10-2 at 400°C. In the Cu-O-S system, the stability field 

of native copper extends towards higher aH2S,aq and is entirely bound by chalcocite. 

5. Discussion 

5. 1. Ca-metasomatism: the main driver for reaction zone formation 

Thermodynamic calculations predict the progressive replacement of orthopyroxene by 

amphibole, clinopyroxene and chlorite as µCaO increases (Figure 12). This mineralogical 

sequence is exactly the one observed in the reaction zone where amphibole, clinopyroxene 

and clinopyroxene + chlorite are the main components of zones I, II and III, respectively (Fig. 

3a). This suggests that calcium input is the main driver for metasomatism. Clinopyroxene 

crystals in zone II show a wide range of Mg# (0.76-0.98) due to almost unity Mg-Fe partition 

coefficient between clinopyroxene and associated antigorite and chlorites. Clinopyroxenes 

cogenetic with chlorites, antigorite and/or tremolite have metasomatic origin. Aluminum 

transfer may also play a role for the formation of zone III in which significant amounts of 

chlorite are observed. The chromian spinel of the orthopyroxenite appears to react during 
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metasomatism and may provide the Al needed to form chlorite. Chromian spinel alteration 

may also explain the high Cr content measured in chlorite (up to 3.41 wt.%). The presence of 

chlorite inclusions and ferrian chromite in porous textured chromian spinel can be attributed 

to metamorphism or hydrothermal events (e.g. Beinlich et al 2020). Gervilla et al. (2012) 

suggested that during the early stage of chromite alteration, pristine chromite may react with 

olivine in the presence of reducing fluids to form chlorite and secondary high Cr-chromite 

with porous texture. Textural evidence (Fig. 3d) suggests the possibility that chromite grains 

from the Cheshmeh-Bid pyroxenites also reacted with percolating Ca2+-H2-rich fluids during 

metasomatism. Possible support for this scenario arises from the abundant large inclusions of 

chlorite and metasomatic clinopyroxene in porous chromian spinel rims. 

Ca-metasomatism is thought to occur by interaction between the pristine orthopyroxenite and 

Ca-OH fluids derived from serpentinization of ultramafic rocks. The observation of 

secondary/metamorphic olivine may also strengthen the interpretation of reaction zone 

formation by Ca-metasomatism. The mode of occurrence and mineral chemistry of olivine 

(Mg# = 0.75-0.83) in Opx-rich zone of Cu-rich pyroxenites is indeed in agreement with a 

secondary origin. It is interesting to note that the Mg# of olivine is also controlled by the 

phases in equilibrium (i.e. antigorite) and low-Mg# olivine is quite ordinary in low-T 

metaperidotites (Arai and Oyama, 1981). 

Several hypotheses have been proposed to explain the dehydration of serpentine producing 

olivine: (i) injection of magma into meta-peridotites or -serpentinites (e.g. Vance and 

Dungan, 1977); (ii) Barrovian-type metamorphism (e.g. Evans, 1977). (iii) de-

serpentinization in deep portion of subducting slab that has been linked to intermediate-depth 

intraslab earthquake (e.g. Hacker et al., 2003;; Plümper et al., 2017); (iv) in-situ dehydration 

of serpentinized mantle within oceanic lithosphere prior to subduction and/or obduction 

processes (Iyer et al., 2010). Figure 12 shows that serpentine breakdown occurs at 
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temperatures above 400°C at 50 MPa at low µCaO (-730 kJ/mol). This is in agreement with 

experimental constraints in the Mg-Si-O-H system (Ulmer and Trommsdorff, 1999; Padrón-

Navarta et al., 2010). Furthermore, the addition of CaO significantly shifts the antigorite-

olivine equilibrium towards lower temperature (250°C at µCaO = -675 kJ/mol; Figure 12). 

The evolution of the modes of the rock-forming minerals (Supplementary Fig. 2) indicates 

that the reaction of olivine formation at high μCaO can be written in the Mg-Si-Ca-O-H 

system as: 

3 Mg48Si34O85(OH)62 + 20 CaO = 20 CaMgSi2O6 + 62 Mg2SiO4 + 93 H2 

There is no evidence for high-pressure metamorphism in the studied pyroxenites. This 

suggests that serpentine breakdown and olivine formation are the result of Ca-metasomatism 

rather than heating at high-pressure in the Cheshmeh-Bid pyroxenites. 

Fluids originated during serpentinization, usually referred as “serpentinization-buffered 

fluids”, are Si-undersaturated and Ca-rich (e.g. Bach and Klein, 2009). The source of Ca is 

still a matter of debate and two ultimate sources have been suggested: (i) breakdown of 

pyroxenes during serpentinization, which may release Ca2+ into aqueous fluids (e.g. 

Coleman, 1967; Allen and Seyfried, 2003). Bach and Klein (2009) proposed that addition of 

Ca2+ from serpentinizing peridotite is likely driven by diffusive mass transfer in the form of 

hydroxo species (CaOH+); (ii) external hydrothermal solutions (e.g. Hatzipanagiotou and 

Tsikouras, 2001). The isocon diagram (Fig. 11) confirms mobility of major elements and 

REE (La-Lu) during metasomatism. Significant increase of CaO and decrease of SiO2 reflect 

the Ca-metasomatism reaction during alteration of the Cheshmeh-Bid orthopyroxenites. 

Although REEs are generally regarded as immobile elements during fluid-rock reaction, they 

can be mobilized during metasomatic process and hydrothermal alteration (e.g., Salvioli-

Mariani et al., 2020). Composition of fluid(s), pH conditions of the fluid phase, availability of 
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ligands in the aqueous fluids and water/rock ratio are key factors controlling the pronounced 

REE mobilization during hydrothermal alteration and/or metasomatic processes. The 

formation of calcite and apatite during Ca-metasomatism of the Cheshmeh-Bid pyroxenites is 

likely related to high activities in CO3 
2- and PO4 

3-, respectively. Complexation of LREE may 

be triggered by carbonate ions (e.g. Gimeno-Serrano et al., 2000). High concentration of 

LREE with respect to the HREE can be explained by preferential complexation of carbonates 

with LREE. High pH and relatively basic conditions are favourable for the REE-carbonate 

complexation (e.g. Haas et al., 1995), which is consistent with alkaline nature of fluids during 

serpentinization of peridotites (e.g. Barnes and O'Neil, 1969). 

The Ca-metasomatism observed in the case of Cheshmeh-Bid Cu-rich pyroxenites leads to 

the formation of a reaction zone. The dykes are surrounded by harzburgites and dunites 

having experienced extensive serpentinization, suggesting that clinopyroxene breakdown in 

the ultramafic rocks during hydration may play a key role for the Ca-metasomatism described 

here. In the following, we further investigate the links between Ca-metasomatism and 

serpentinization by looking at evidence for reducing conditions during fluid/rock interaction. 

5. 2. Reducing conditions during metasomatism 

Serpentinization leads to reducing conditions due to the coupled reduction of water to form 

H2 and the oxidation of the ferrous iron initially contained in the primary minerals (mostly 

olivine) to form ferric minerals (e.g. magnetite) (McCollom and Bach, 2009; Malvoisin et al., 

2012). 

H2 (e.g. Barnes et al., 1967) is commonly observed in fluids associated with serpentinized 

peridotites and Ni-Fe alloys (e.g. Ramdohr, 1950) have been described in serpentinized 

peridotites. Methane is also found in serpentinizing environments; it is generated through 

reduction of CO2 or CO by H2 (e.g. Charlou et al., 2002; McCollom, 2016). The observation 

of H2-CH4-bearing fluid inclusions in metasomatic diopside from the Cheshmeh-Bid 
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pyroxenites indicates that Ca-metasomatism occurred under reducing conditions, most likely 

associated with the serpentinization of the surrounding rocks. 

The source of copper may be either desulfurization of primary Cu-sulpfides of the pyroxenite 

during the hydrothermal overprint or transportation of Cu in a S-poor fluid from the 

surrounding harzburgites-dunites into the orthopyroxenite dike during hydrothermal 

alteration. Thermodynamic modelling indicates that native copper can be stable at high H2 

activity and/or at a low H2S activity (Fig. 13). The fluid inclusions data reveal the presence of 

H2 during metasomatism (Figs. 8a and 8b), suggesting that a high activity in H2 prevailed 

during native copper formation in the Cheshmeh-Bid pyroxenites. H2S activity during 

alteration is probably relatively low (Fig. 13) and thus difficult to constrain. Some mineral 

equilibria allow H2S activity to be retrieved from H2 activity. Seyfried et al. (2004) proposed 

that aH2 and aH2S may be buffered by the equilibrium magnetite + bornite + chalcocite in 

serpentinized peridotites. Klein and Bach (2009) used mineralogical observations in 

serpentinized peridotites collected on the seafloor and measurements of H2S and H2 

concentrations in fluids venting at peridotite-hosted hydrothermal fields (Rainbow and 

Logatchev, Charlou et al., 2002) to determine that the heazlewoodite/pentlandite equilibrium 

buffers aH2S where serpentinization occurs (HP buffer). The sulfide mineralogy in the 

serpentinized peridotites surrounding the orthopyroxenites described here is dominated by 

pentlandite and heazlewoodite suggesting that the HP buffer may fix aH2 and aH2S during 

native Cu formation. This would imply fast H2 and H2S transport between the serpentinized 

peridotites and the orthopyroxenites. H2 is known to diffuse rapidly in water (Kallikragas et 

al., 2014). Figure 13 shows that native copper is not stable at aH2 and aH2S fixed by the HP 

buffer in the Cu-Fe-Ni-O-S system. Bornite (Cu5FeS4) is indeed the stable Cu-bearing 

mineral along the HP buffer under reducing conditions. Bornite and other iron-bearing 

sulfides have not been observed in the samples from the Cheshmeh-Bid Ophiolite. This may 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 
 

 22 

be interpreted as evidence for i) aH2S below the one fixed by the HP buffer or ii) a low iron 

availability preventing Fe-bearing sulfide formation in zone III during metasomatism (Fig. 

13). It is difficult to select one of these two options since the mobility of H2S and the 

availability of iron are poorly constrained in the studied system. The isocon diagram (Fig. 11) 

indicates that Fe is lost during metasomatism but the concentration in Fe is still sufficient to 

form bornite instead of native copper in zone III. The thermodynamic calculations performed 

here in the Cu-Fe-Ni-O-S system assume the presence of Fe in excess and thus do not allow 

for Fe distribution to be investigated. Thermodynamic calculation of iron distribution in a Cu-

bearing system is theoretically possible, for example, with Gibbs energy minimization. 

However, it cannot be currently performed due to the lack of a thermodynamic database 

containing Cu-sulfides and realistic silicate solid solutions. 

The scarcity of chalcocite in the studied samples and its occurrence as inclusions in native 

copper (Fig. 6f) suggest that native copper is formed at the expense of chalcocite during 

alteration. If aH2S is below the HP buffer (i), native copper formation can be explained by 

desulfurization induced by an increase in H2 activity associated with serpentinization in the 

surrounding peridotites. If a low iron availability is assumed and bornite formation is 

excluded from thermodynamic calculations (ii), native Cu can be stable at the activities in 

H2,aq and H2S,aq fixed by the HP buffer (Fig. 13), allowing the following equation to be 

written: 

2 Fe4.5Ni4.5S8 + 12 H2O + 20 Cu = 3 Ni3S2 + 3 Fe3O4 + 10 Cu2S + 12 H2,aq 

2 Pentlandite + 12 H2O + 20 Native Copper = 3 Heazlewoodite + 3 Magnetite + 10 

Chalcocite + 12 H2,aq 

This equilibrium can be used to estimate the minimum aH2 achieved during native copper 

formation (see Fig. 13-14). Klein and Bach (2009) estimated that H2 gas could be produced 

after saturation in the liquid during serpentinization providing an estimate for aH2 variation 
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with temperature (Fig. 14). If aH2 is fixed on the gas saturation line, native Cu is stable at 

temperature below ~ 325 °C, whereas chalcocite is stable at higher temperature. Native Cu 

may thus be formed through chalcocite desulfurization associated with a decrease in 

temperature. 

5.3. Model of native copper formation: Ca-metasomatism at the seafloor in a supra-

subduction setting 

5.3.1. Cu isotope constraints on the Cu provenance 

The copper isotope values for the studied native copper are similar to those reported for bulk 

mantle rocks (Fig. 10; Ben Othman et al., 2006; Ikehata and Hirata, 2012; Liu et al., 2015; 

Zou et al., 2019). As discussed above, native Cu formation in the Cheshmeh-Bid pyroxenites 

can be related to addition of external Cu or desulfurization of pre-existing Cu sulfides. These two 

hypotheses can be assessed by copper isotopes of other mafic-ultramafic lithologies. Copper 

sourced from the surrounding mafic ophiolitic rocks provides the most straightforward 

interpretation of the data. The study by Dekov et al. (2013) augments this interpretation. In 

their study of native copper associated with modern oceanic crust, they proposed that Cu was 

mobilized within the basalts with no significant copper fractionation, whereas highly 

fractionated copper derived from seawater was found in the sedimentary sections of the 

drilled cores. Ikehata and Hirata (2012) also showed copper isotope value of primary native 

copper in peridotite was same as that of the host rock and demonstrated that there was no 

significant copper isotope fractionation during high-temperature magmatic processes. 

In-situ alteration of the copper sulfides by metamorphic fluid certainly occurred and could 

have impacted the copper isotope values in the native copper. How metamorphic fluids could 

alter the copper isotope composition in this tectonic environment are not well studied, 

however, Höhn et al. (2017) demonstrated that the metamorphic processes associated with 
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sulfide deposition generated a relatively tight range of copper isotope value from -0.3 to +0.4 

‰. Equally interesting and related to the formation of native copper in association with 

basalts, the Michigan native copper associated with secondary mobilization of copper also 

display a relatively tight range of copper isotope values that overlap the values reported here 

(Bornhorst and Mathur, 2017; Larson et al., 2003; Mathur et al., 2014). Therefore, significant 

copper isotope fractionation could not have occurred during secondary alteration by 

metamorphic fluids. This interpretation is in agreement with the textural and thermodynamic 

evidence discussed. 

Most certainly, the copper isotope values seen in the native copper samples are not related to 

secondary supergene processes or high temperature magmatic processes. Baggio et al. (2017) 

demonstrated that copper sourced from local basalts was later redistributed through 

supergene process that causes the 2 ‰ variation measured. Mathur et al. (2005) and Mathur 

et al. (2009a) clearly show that highly fractionated copper isotope values in supergene 

minerals resulted from low temperature oxidation. Ikehata et al. (2011) found that copper 

isotope values of supergene native copper (from +1.4 to +1.7 ‰) were significantly higher 

than those of primary chalcopyrite (from -0.3 to -0.1 ‰) from the same deposit. 

Due to textural equilibrium of the Cheshmeh-Bid native copper with antigorite and chlorite, 

high temperature magmatic processes suggested by Ikehata and Hirata (2012) for the primary 

native copper in the peridotite are unlikely for its formation. Zou et al. (2019) suggested that 

remarkable copper isotope heterogeneity for Balmuccia pyroxenites is due to variable extent 

of sulfide segregation as well as melt-peridotite reaction. The absence of any main sulfide 

phases (e.g. pentlandite, chalcopyrite and pyrrhotite) in the Cheshmeh-Bid pyroxenites 

precludes the possibility of magmatic sulfide segregation and/or melt-peridotite reaction. 

Unfortunately, we could not obtain the copper isotope values of the magmatic chalcocite 

grains because they are very small (Fig. 6f). However, the chalcocites probably has the same 
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δ65Cu values to bulk mantle rocks. Previous studies of copper isotope values of sulfide 

minerals from igneous-hosted ore deposits are tightly clustered around 0 ‰ (–0.6 to 0.4 ‰) 

(e.g. Larson et al., 2003). 

Our petrographic and geochemical results show that metasomatic fluids were involved for the 

formation of the Cheshmeh-Bid native copper. Copper isotope variations of native copper 

grains from the Cheshmeh-Bid pyroxenites are slightly large in comparison with those of 

non-metasomatised peridotite (Fig. 10; Ben Othman et al., 2006; Ikehata and Hirata, 2012; 

Liu et al., 2015), probably due to Cu isotope heterogeneity of the magmatic chalcocite grains 

and isotope fractionations during desulfurization of the sulfides. Our study also indicates that 

Cu isotopes can be a powerful tool to trace the source of copper in ophiolitic rocks. 

5.3. 2. Timing of copper formation 

Based on 40Ar/39Ar dating on hornblendes from plagiogranites and diabase, the genesis of 

Neyriz ophiolite in the southeast of Neyriz/Khajeh-Jamali ophiolite belt was constrained to 

Late Cretaceous (range between 83.6 ± 8.4 Ma and 93.19 ± 2.48 Ma) (Lanphere and Pamić, 

1983; Babaie et al., 2006). U-Pb zircon dating of plagiogranite and gabbro intrusions 

provided formation ages of 100.1 ± 2.3 to 93.4 ± 1.3 Ma for the Neyriz ophiolite (Monsef et 

al., 2018). The nature and formation age of Khajeh-Jamali ophiolitic massifs in the northwest 

of Neyriz/Khajeh-Jamali ophiolite belt remains currently debated. The uncertainty of 

geochronological data for the Khajeh-Jamali ophiolitic massifs made it difficult to understand 

the formation age of these massifs. Uranium–lead dating carried out in this study on titanite 

grains in association with native copper yield an age of 101±22 Ma (Fig. 9) which may be 

thus considered as the age of copper mineralization. If the previously reported age interval 

(83.6 ± 8.4 Ma-100.1 ± 2.3 Ma) could be attributed to the Khajeh-Jamali ophiolitic massifs, 

our U-Pb geochronological data on titanite indicates seafloor serpentinization, Ca-
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metasomatism and native copper precipitation during formation of an intra-oceanic forearc 

setting. 

5.3.3 A model for copper formation 

Considering all available data, a genetic model is proposed for the formation of native Cu 

occurrence during Ca-metasomatism affecting orthopyroxenites (Fig. 15). High Cr-spinels of 

the studied pyroxenites bear remarkable chemical resemblance to the peridotites and mantle-

hosted chromitites from the studied area (Fig. 5). High Cr#, low TiO2 content of the 

Cheshmeh-Bid pyroxenites are consistent with crystallization from arc-related magmas such 

as high-Mg andesite or boninite. At the first stage, orthopyroxenite dykes formed by 

magmatic segregation from Mg-andesite or boninite melts within a supra-subduction mantle 

at oceanic-arc system. 

At the second stage, the associated mantle peridotites underwent sub-sea floor hydrothermal 

alteration. Mantle exhumation was possibly enhanced by the trench-slab roll-back system 

(e.g. Barth et al., 2008). In such a scenario, Ca2+ and H2 released from the serpentinizing 

peridotite metasomatised ultramaficafic lithologies (here pyroxenite dykes). Circulation of 

hydrothermal fluids formed reaction zones I (amphibole + antigorite), II (clinopyroxene + 

antigorite) and III (clinopyroxene + chlorite + antigorite), respectively. During late stage of 

sea-floor serpentinization, native copper was likely formed by low-temperature alteration of 

Cu-sulfides in the pyroxenites at highly reducing conditions. 

6. Concluding remarks 

Alteration of pyroxenites from the Cheshmeh-Bid massif led to the formation of a reaction 

zone composed of three distinct metasomatic mineral assemblages (i) amphibole + antigorite 

(ii) clinopyroxene + antigorite and (iii) clinopyroxene + chlorite + antigorite (III). 

Metasomatism was driven by calcium transport and low aSiO2 fluids which could be related 

to interaction with Ca-rich fluids formed during clinopyroxene breakdown in the surrounding 
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serpentinized peridotites. The fluid inclusions data reveal the presence of H2 inclusions along 

the cleavage planes and healed cracks of clinopyroxenes in Zone II, revealing that a high 

activity in H2 prevailed during native copper formation in the Cheshmeh-Bid pyroxenites. 

These observations are consistent with thermodynamic calculations showing that native 

copper can be stable at high H2 activity. The reducing conditions associated with 

serpentinization allowed for native copper formation under decreasing T conditions. Tightly 

clustered copper isotope values of native copper also indicate secondary alteration by 

metamorphic fluids. According to the Cu isotope composition, a mantle origin can be inferred 

for copper. Serpentinization and Ca-metasomatism likely occurred in an intra-oceanic forearc 

setting during Albian. 
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Fig. 1. a. Map of Mesozoic ophiolites of Iran, showing the Khajeh-Jamali ophiolitic massifs 

(within red square) in the Zagros Suture Zone; b. simplified geological map of Khajeh-Jamali 

area (modified after Rajabzadeh, 1998). 

Fig 2. Hand samples of: a-b: partly metasomatised pyroxenite with native copper 

mineralization; c: highly metasomatised and deformed pyroxenite containing native copper 

mineralization. Scale of clips is 2 cm in length. Opx-rich zone is composed of orthopyroxene 

and minor clinopyroxene. 

Fig. 3. Back-scatter-electron (BSE) images of the Cheshmeh-Bid Cu-rich pyroxenites. (a) 

Whole profile from Opx-rich portion and metasomatic zones (I) amphibole (Amp) + 

antigorite (Atg), (II) clinopyroxene (Cpx)+ antigorite and (III) clinopyroxene + chlorite (Chl) 

+ antigorite. Zone I (antigorite+amphibole) is characterized by small narrow selvage of 

amphibole and antigorite; (b) Ovoid and lamellae inclusions of clinopyroxene in 

orthopyroxene; (c) Spinifex-liked textured olivine (Ol) in the middle of antigorite; (d) Sieve-

textured chromite (Chr) included in orthopyroxene (Opx); (e) Euhedral inclusions of chlorite 

and clinopyroxene in chromite; (f) Zoned clinopyroxene in Zone II; (g) Inclusions of 

amphibole and orthopyroxene in metasomatic clinopyroxene; (h) Pseudomorph of 

clinopyroxene replaced by antigorite, chlorite and calcite; (i) Replacement of orthopyroxene 

by calcite (Cal); (j) Fe-poor (dark grey) and Fe-rich (light grey) chlorite. 

Fig. 4. Chemical compositions of olivines from the Cheshmeh-Bid peridotites. a Mg# vs. 

MnO (wt.%); b. Mg# vs. NiO (wt.%). The olivine compositions from the Cheshmeh-Bid 

dunites and harzburgites (Rajabzadeh and Nazari-Dehkordi, 2013) are included for 

comparison. 

Fig. 5. Composition of Cr-spinels from the Cheshmeh-Bid orthopyroxenites. (a) 

Compositional plot of Cr-spinels on the Cr-Al-Fe3+.ternary diagram (b) Cr/(Cr+Al) vs. 
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Mg/(Mg+Fe2+) (c) Cr/(Cr+Al) vs. TiO2 (wt.%). Compositional fields of Cr-spinel from 

abyssal peridotites, forearc peridotites and podiform chromitites (Miura and Arai, 2014) are 

shown for comparison. 

Fig. 6. Photomicrograph and back-scatter-electron (BSE) images of copper assemblage (zone 

III): (a-b) Reflected light (a) and cross polarized (b) images of native copper (Cu) intergrown 

with antigorite (Atg); (c) Native Cu along cleavage planes and along partially healed 

fractures cutting clinopyroxene (Cpx); (d) native copper filling fracture of chromian spinel 

(Chr); (e) association of Cu, Cu-Au alloy and titanite (Ttn) in metasomatic clinopyroxene. Cu 

and Au maps are shown as small insets; (f) chalcocite (Cct) inclusions in native copper. 

Fig. 7. Back-scattered electron (BSE) imaging and multi-element wavelength-dispersive 

spectroscopy (WDS) mapping of sharp contact between orthopyroxene-rich and 

metasomatised portion of Cu-rich pyroxenite sample. 

Fig. 8. (a) Fluid inclusions in the cloudy clinopyroxene of sample X05. In the zoomed area, 

the fluid inclusions appear in healed fractures and along the cleavage planes of the 

clinopyroxene. The white arrow shows a whisker, suggesting decrepitation of the FI. 

Abbreviations: L - liquid phase; V - vapor phase. (b) Main Raman bands of the components 

(CH4 and H2) of the FIs. The stars note the Raman bands of the host clinopyroxene. 

Fig. 9. Concordia plots of titanite U–Pb isotopic results 

Fig. 10. Variations of δ65Cu values in the Cheshmeh-Bid Cu-rich pyroxenites. Data of 

peridotites from previous studies are also shown for comparison. The grey rectangle 

represents the estimated δ65Cu value of the Bulk Silicate Earth (BSE: 0.07±0.10‰, Savage et 

al., 2015). 
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Fig. 11. Isocon diagram for major (a), and trace and rare earth elements (b) using the method 

of Grant (2005) comparing average composition of Cheshmeh-Bid fresh orthopyroxenites 

and average composition of five metasomatised samples. The error bars correspond to +/- one 

standard deviation. Scaling factors have been used to display a better dispersion of the 

elements. Scaling factors are shown on isocon diagrams. The lines for constant total mass 

(black dashed line), constant total volume (black dotted line) and the best fit of the 

composition in immobile elements (isocon assuming Sc and TiO2 as immobile; black plain 

line) are displayed. No change in composition is assumed along the isocon. The grey dashed 

lines correspond to compositions calculated for different mass gain(+)/loss(-). The densities 

used for constant volume and volume change calculations are 2896 kg/m3 for the fresh 

orthopyroxenites and 3870 kg/m3 for the Cu-bearing metasomatised samples. They are 

retrieved with image analysis of the modal composition in the fresh orthopyroxenite and in 

zone III. *: estimated based on image analysis. 

Fig. 12. Temperature-µCaO pseudosection for the composition of sample IRKJPX20 

(orthopyroxenite) at 50 MPa. µCaO calculated as a function of temperature is displayed for 

the orthopyroxenite and three samples affected by Ca-metasomatism (IRKJPX04, IRKJPX11 

and IRKJPX12). Tlc: talc; Atg: antigorite; Amp: amphibole; Cpx: clinopyroxene; Chl: 

chlorite; Ol: olivine; Brc: brucite; Wo: wollastonite; Mont: monticellite; Ves: vesuvianite; 

Rnk: rankinite. 

Fig. 13. Sulfide and oxide stabilities as a function of aH2,aq and aH2S,aq in the Cu-Fe-Ni-O-S 

system. The phase diagrams are computed at 50 MPa, aH2O = 1 and 200°C (a), 300°C (b) and 

400°C (c). The boundaries in the Fe-O-S, Cu-O-S, Fe-Ni-O-S,, and Cu-Fe-O-S systems are 

displayed with grey dashed lines, green plain lines, black plain lines and red plain lines, 

respectively. The blue spot corresponds to the intersection of the pentlandite/heazlewoodite 

and the chalcocite/Cu boundaries. This intersection is used to determine the stability of native 
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copper in a system where aH2,aq and aH2S,aq are buffered by the pentlandite/heazlewoodite 

equilibrium. 

Fig. 14. aH2 as a function of temperature for the H2,aq = H2,g equilibrium (black line) and the 2 

Pentlandite + 12 H2O + 20 Native Copper = 3 Heazlewoodite + 3 Magnetite + 10 Chalcocite 

+ 12 H2,aq equilibrium (red line). This latter equilibrium allows to determine the activity in 

hydrogen at which the transition from chalcocite to native copper occurs in the rock. 

Hydrogen partial pressure and hydrostatic pressure are assumed to be equal (50 MPa). 

Fig. 15. Schematic model for the genesis of Cu-rich pyroxenite from the Cheshmeh-Bid 

massif. Figures (a) and (b) are presented as meso-scale. 

Supplementary Figure Captions 

Supplementary Fig. 1. Pyroxene ternary diagram showing clino- and orthopyroxene 

compositions from the Cheshmeh-Bid Cu-rich pyroxenites. 

Supplementary Fig. 2. Plot of the analysed chlorites on their classification diagram (after 

Hey, 1954). 

Supplementary Fig. 3. Modes (vol.%) of the phases as a function of temperature and 

chemical potential in CaO for the pseudosection calculated with the composition of sample 

IRKJPX20 at 50 MPa. (a) Olivine. (b) Antigorite. (c) Clinopyroxene. (d) Amphibole. 

Supplementary Table Captions 

Table S1. Representative analyses of orthopyroxenes from the Cheshmeh-Bid Cu-bearing 

pyroxenites 

Table S2. Representative analyses of olivine with vein-like texture from the Cu-bearing 

pyroxenites 

Table S3. Representative analyses of chromian spinels in the Cheshmeh-Bid Cu-bearing 

pyroxenite 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 
 

 42 

Table S4. Representative analyses of amphiboles from the Cheshmeh-Bid Cu-bearing 

pyroxenites 

Table S5. Representative analyses of clinopyroxenes from the Cheshmeh-Bid Cu-bearing 

pyroxenites 

Table S6. Representative analyses of chlorites in Zone III from the Cu-bearing pyroxenites 

Table S7. Chemical compositions of sulfides in Zone III 

Table S8. Composition of the fluid phase (liquid+vapor) in studied clinopyroxene-hosted 

fluid inclusions from the PX05 sample. 

Table S9. Laser ablation ICP-MS U-Pb analyses including U and Pb contents, isotopic ratios 

and ages of seven titanite grains from the Cheshmeh-Bid Cu-bearing pyroxenites 

Table S10. Copper isotopic results of eight native copper grains from the Cheshmeh-Bid Cu-

bearing pyroxenite 

Table S11. Whole-rock analyses of the Cheshmeh-Bid pyroxenites. 
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 Native copper associated with a metasomatic reaction found in the Cheshmeh-Bid 

pyroxenite 

 Metasomatic reaction zones are interpreted as the result of a Ca-metasomatism on the 

seafloor during formation of an intra-oceanic forearc setting. 
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 The source for copper mineralization, as revealed by Cu isotopes, is probably mantle-

like. 

 Native copper was formed by desulfurization of Cu-sulfides in the pyroxenites at 

highly reducing conditions. 
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