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Abstract: If S is a numerical semigroup and s ∈ S , we denote by nextS(s) = min {x ∈ S | s < x} . Let a be an integer
greater than or equal to two. A numerical semigroup is equidistant modulo a if nextS(s)− s− 1 is a multiple of a for
every s ∈ S . In this note, we give algorithms for computing the whole set of equidistant numerical semigroups modulo
a with fixed multiplicity, genus, and Frobenius number. Moreover, we will study this kind of semigroups with maximal
embedding dimension.
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1. Introduction
Let Z be the set of integers an let N = n ∈ Z | n ⩾ 0 the set of nonnegative integers. A submonoid of (N,+)

is a subset of N closed addition and containing 0 . A submonoid of (N,+) with finite complement in N is a
numerical semigroup.

Given a numerical semigroup S and s ∈ S , we denote by nextS(s) = min {x ∈ S | s < x} . For
a ∈ N\ {0, 1} , we say that S is an equidistant numerical semigroup modulo a if nextS(s)− s− 1 is a multiple
of a for every s ∈ S .

We denote by

E(a) = {S | S is equidistant numerical semigroup modulo a} .

Our aim in this note is to study of this kind of numerical semigroups.
This work is a generalization of the study of the parity numerical semigroups [3]. Indeed a numerical

semigroup S is parity if s + nextS(s) is odd for every s ∈ S . Clearly s + nextS(s) is odd if and only if
nextS(s) − s − 1 is a multiple of 2 . Therefore, the parity numerical semigroups are equidistant numerical
semigroups modulo 2 .

A numerical semigroup S is prefect if {x− 1, x+ 1} ⊆ S then x ∈ S (see for instance [4, 5]). Observe that
every equidistant modularly numerical semigroup is a perfect numerical semigroup. In fact, if S is equidistant
numerical semigroup modulo a and {x− 1, x+ 1} ⊆ S then x ∈ S , because otherwise nextS(x − 1) = x + 1

and then nextS(x− 1)− (x− 1)− 1 = x+ 1− x+ 1− 1 = 1 that is not a multiple of a .
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We briefly outline the structure of this note. In Section 2 , we will order the elements of E(a) in a tree
rooted in N . We will characterize the sons of a vertex and this will allow us to build recursively the elements
of E(a) .

If S is a numerical semigroup, then m(S) = min(S\{0}) , F(S) = max {z ∈ Z | z ̸∈ S} and g(S) =

card(N\S) (cardinality of N\S ) are three important invariants of S called multiplicity, Frobenius number,
and genus of S , respectively. See for instance [6] and [2] to understand the importance of the study of these
invariants.

As a consequence of the results of Section 2 , we present an algorithmic procedure to compute all elements
in E(a) with a given multiplicity and genus in Section 3 . In Section 4 , we get an algorithm for computing the
set E(a) with given Frobenius number and we also characterize the maximal elements of this set.

An interesting class of numerical semigroups theory are the numerical semigroups with maximal em-
bedding dimension (see [2]). In Section 5 , we characterize the elements in E(a) with maximal embedding
dimension.

2. The tree associated to E(a)

In this section, we characterize the set E(a) , for given a integer greater than or equal to 2 . We see how this
set can bee arranged in a tree.

Lemma 2.1 If S ∈ E(a) then m(S) ≡ 1(mod a) .

Proof Clearly, nextS(0) = m(S) and thus m(S) − 0 − 1 is a multiple of a . Therefore, we have that
m(S) ≡ 1(mod a) . 2

It is clear that N is a numerical semigroup that belongs to E(a) . If S ∈ E(a) and S ̸= N then m(S) ≥ 2 ,
and so there exists k ∈ N\{0} such that m(S) = 1 + ka . Therefore, a < m(S) .

Lemma 2.2 If S ∈ E(a)\{N} , then {F(S),F(S)− 1, . . . ,F(S)− (a− 1)} ⊆ N\S .

Proof Since F(S) ≥ m(S) − 1 ≥ a we have that {F(S),F(S)− 1, . . . ,F(S)− (a− 1)} ⊆ N\{0} . Assume
that there exists i ∈ {1, . . . , a− 1} such that F(S)− i ∈ S and let t = min {i ∈ {1, . . . , a− 1} | F(S)− i ∈ S} .
Then nextS(F(S) − t) = F(S) + 1 . As S ∈ E(a) then F(S) + 1 − (F(S) − t) − 1 is a multiple of a . Hence,
t = la for some l ∈ N\{0} and consequently t ≥ a , which is impossible. 2

Lemma 2.3 If S ∈ E(a)\{N} , then S ∪ {F(S),F(S)− 1, . . . ,F(S)− (a− 1)} ∈ E(a) .

Proof Since a < m(S) , by applying Lemma 2.2, we get that T = S ∪ {F(S),F(S)− 1, . . . ,F(S)− (a− 1)} is
a numerical semigroup. Let s ∈ S such that nextS(s) = F(S) + 1 . In order to conclude the proof, it suffices to
show that nextT (s)− s− 1 is a multiple of a . As nextT (s) = F(S)− (a− 1) then nextT (s)− s− 1 is multiple
of a if and only if F(S) − (a − 1) − s − 1 = F(S) − s − a is multiple of a . However, this is true, because if
S ∈ E(a) then F(S) + 1− s− 1 = nextS(s)− s− 1 is multiple of a . 2

The previous result can be viewed as a procedure to construct a sequence {Sn | n ∈ N} of elements in
E(a) . Given a numerical semigroup S , we define recursively

• S0 = S ,
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• Sn+1 =

{
Sn ∪ {F(Sn),F(Sn)− 1, . . . ,F(Sn)− (a− 1)} if Sn ̸= N
N otherwise.

The next result can be easily proved.

Proposition 2.4 If S ∈ E(a) and {Sn | n ∈ N} is the previous sequence, then there exists k ∈ N such that

Sk = N . Furthermore, for every i ∈ {0, 1, . . . , k − 1} then card(Si+1\Si) = a and k = g(S)
a .

We illustrate the previous result with an example.

Example 2.5 In the following sequence of elements of E(2) , we have k = 3 .

S0 =< 5, 6, 7 >⊊ S1 =< 5, 6, 7, 8, 9 >⊊ S2 =< 3, 4, 5 >⊊ S3 = N.

A graph G is a pair (V,E) , where V is a nonempty set and E is a subset of {(v, w) ∈ V × V | v ̸= w} .
The elements of V and E are called vertices and edges of G , respectively. A path of length n connecting the
vertices u and v of G is a sequence of distinct edges of the form (v0, v1) , (v1, v2) , . . . , (vn−1, vn) with v0 = u

and vn = v .
A graph G is a tree if there exists a vertex r (known as the root of G) such that for every other vertex

v of G , there exists a path connecting v and r . If (u, v) is a edge of the tree then we say that u is a son of v .
We define the graph G(E(a)) as graph whose vertices are the elements of E(a) and (S, T ) ∈ E(a)× E(a)

is an edge if T = S ∪ {F(S),F(S)− 1, . . . ,F(S)− (a− 1)} . From Proposition 2.4, we deduce the following.

Theorem 2.6 The graph G(E(a)) is a tree with root equal to N .

Note that the tree G(E(a)) can be constructed recursively, from the root N in each step we are joining
each of the vertices with its sons. Our next goal is to characterize the sons of an arbitrary vertex in the tree
G(E(a)) . We distinguish two cases depending on whether or not the vertex is N .

Lemma 2.7 The vertex N has a unique son in the tree G(E(a)) that is {0, a+ 1,→} .

Proof If S is a son of N , then S ∪ {F(S),F(S)− 1, . . . ,F(S)− (a− 1)} = N and thus S = {0, a+ 1,→} . 2

If X is a nonempty subset of N , then we will write ⟨X ⟩ for the submonoid of (N,+) generated by X ,
that is,

⟨X ⟩ :=

{
n∑

i=1

λi xi | n ∈ N\ {0} , x1, . . . , xn ∈ X , and λ1, . . . , λn ∈ N

}
.

It is well known (see for example [8]) that ⟨X ⟩ is a numerical semigroup if and only if gcd(X ) = 1 .
If M is a submonoid of (N,+) and M = ⟨X ⟩ then we say that X is a system of generators of M .

Moreover, if M ̸= ⟨Y⟩ for all Y ⊊ X , then we say that X is a minimal system of generators of S . The
following result can be deduced from [8, Corollary 2.8].

Corollary 2.8 If M is a submonoid of (N,+) , then M has a unique minimal system of generators, which in
addition is finite.
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This minimal system of generators of M will be denoted by msg(M) .

Lemma 2.9 [7, Lemma 1.7] Let S be a numerical semigroup and x ∈ S . Then S\ {x} is a numerical semigroup
if and only if x ∈ msg(S) .

Proposition 2.10 Let T ∈ E(a)\{N} . Then the set of sons of T , in the tree G(E(a)) , is equal to{
T\ {x, x+ 1, . . . , x+ (a− 1)} | {x, x+ 1, . . . , x+ (a− 1)} ⊆ msg(T ) and x > F(T )

}
.

Proof If T ∈ E(a)\{N} , then by Lemma 2.1, we have that m(T ) > a . Since S is a son of T then
T = S ∪ {F(S),F(S)− 1, . . . ,F(S)− (a− 1)} . Hence, {F(S),F(S)− 1, . . . ,F(S)− (a− 1)} ⊆ msg(T ) and
F(S)− (a− 1) > F(T ) .

Conversely, if {x, x+ 1, . . . , x+ (a− 1)} ⊆ msg(T ) and x > F(T ) then, using repeatedly Lemma 2.9,
we obtain that S = T\ {x, x+ 1, . . . , x+ (a− 1)} is a numerical semigroup with F(S) = x+ a− 1 . Therefore,
T = S ∪ {F(S),F(S)− 1, . . . ,F(S)− (a− 1)} and thus S is a son of T . 2

Example 2.11 Let us construct recursively the tree G(E(2)) .

N

⟨3, 4, 5⟩

⟨5, 6, 7, 8, 9⟩ ⟨3, 7, 8⟩

⟨7, 8, 9, 10, 11, 12, 13⟩ ⟨5, 8, 9, 11, 12⟩ ⟨5, 6, 9, 13⟩ ⟨5, 6, 7⟩ ⟨3, 10, 11⟩

........ ........ ........ ........ ........ ........

3, 4 4, 5

5, 6 6, 7 7, 8 8, 9 7, 8

The numbers that appear on either side of the edges is the elements that we remove from the semigroup
to obtain its son. For example ⟨3, 4, 5⟩\{3, 4} = ⟨5, 6, 7, 8, 9⟩ .

Observe that E(a) has infinite cardinality, because {0, ka+ 1,→)} ∈ E(a) for all k ∈ N .

3. The set E(a) with a given multiplicity and genus

We will denote by E(a,m) = {S ∈ E(a) | m(S) = m} . By Lemma 2.1, we obtain that E(a,m) ̸= ∅ if and only
if m = ka+ 1 for some k ∈ N . It is clear that E(a, 1) = {N} .
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From now on, assume that m = ka + 1 with k ∈ N\ {0} . It is clear that maximum element in E(a) is
⟨m,m+ 1, . . . , 2m− 1⟩ = {0,m,→} . From Lemma 2.3, we deduce the next result.

Lemma 3.1 If S ∈ E(a,m) and S ̸= {0,m,→} , then S ∪ {F(S),F(S)− 1, . . . ,F(S)− (a− 1)} ∈ E(a,m) .

The previous lemma allows us to define recurrently the sequence {Sn | n ∈ N} of elements of S ∈ E(a,m) .
If S ∈ E(a,m) , then

• S0 = S ,

• Sn+1 =

{
Sn ∪ {F(Sn),F(Sn)− 1, . . . ,F(Sn)− (a− 1)} if Sn ̸= {0,m,→}
{0,m,→} otherwise.

The next result has immediate proof.

Proposition 3.2 If S ∈ E(a,m) and {Sn | n ∈ N} is the previous sequence, then there exists k ∈ N such that

Sk = {0,m,→} . Moreover, for every i ∈ {0, 1, . . . , k − 1} then card(Si+1\Si) = a and k = g(S)−(m−1)
a .

As a consequence of Lemma 2.1 and Proposition 3.2, we have the following result.

Corollary 3.3 If S ∈ E(a,m) then g(S) is a multiple of a .

We define the graph G
(
E(a,m)

)
as follows: E(a,m) is its set of vertices and (S, T ) ∈ E(a)× E(a) is an

edge if T = S ∪ {F(S),F(S)− 1, . . . ,F(S)− (a− 1)} .
The following result is a consequence of Propositions 2.10 and 3.2.

Theorem 3.4 The graph G
(
E(a,m)

)
is a tree rooted in {0,m,→} . Moreover, the set of sons of T is equal to

{T\{x, x+ 1, . . . , x+ (a− 1)} | {x, x+ 1, . . . , x+ (a− 1)} ⊆ msg(T ), x > F(T )) and x ̸= m} .

Example 3.5 We are going to build the tree G
(
E(2, 5)

)
.
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⟨5, 6, 7, 8, 9⟩

⟨5, 8, 9, 11, 12⟩ ⟨5, 6, 9, 13⟩ ⟨5, 6, 7⟩

⟨5, 11, 12, 13, 14⟩ ⟨5, 8, 9⟩

⟨5, 13, 14, 16, 17⟩ ⟨5, 11, 14, 17, 18⟩ ⟨5, 11, 12, 18, 19⟩

........ ........ ........ ........ ........ ........

6, 7
7, 8

8, 9

8, 9 11, 12

11, 12 12, 13 13, 14

Observe that for t ∈ N\{0} we have that ⟨m⟩∪{tm,→} ∈ E(a,m) and so E(a,m) has infinite cardinality.
Our next aim in this section will be to show an algorithm that allows us to compute the set E(a,m) with given
genus.

If G = (V,E) is a tree and v ∈ V , then the depth of v , which we will denote by d(v) , is the length
of a unique path that connects v with the root. Given k a nonnegative integer, denote by N(G, k) =

{v ∈ V | d(v) = k} .
As a consequence of Proposition 3.2 we have the following result.

Proposition 3.6 Let S ∈ E(a,m) . Then S ∈ N
(
G (E(a,m)) , k

)
if and only if g(S) = m− 1 + ak .

The next lemma follows immediately from the definitions.

Lemma 3.7 If k ∈ N , then N
(
G (E(a,m)) , k + 1

)
=

{
S | S is a son of an element in N

(
G (E(a,m)) , k

)}
.

We are already able to give an algorithm that allows us to compute the set E(a,m) with a given genus.
Note that S ∈ E(a,m) then {1, . . . ,m− 1} ⊆ N\S and thus g(S) ≥ m − 1 . Moreover, by Corollary 3.3, we
have that g(S) is a multiple of a .
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Algorithm 1
INPUT: a, m and g nonnegative integers such that 2 ≤ a ≤ m− 1 ≤ g,

m ≡ 1(mod a) and g ≡ 0(mod a).
OUTPUT: The set {S ∈ E(a,m) | g(S) = g}.

1: Set i = m− 1 and A = {⟨m,m+ 1, . . . , 2m− 1⟩}
2: while True do
3: if i = g then
4: return A
5: for S ∈ A do
6: BS = {{x, x+ 1, . . . , x+ (a− 1)} ⊆ msg(S), x > F (S) and x ̸= m}
7: A :=

∪
S∈A {S\{x, x+ 1, . . . , x+ (a− 1)} | {x, x+ 1, . . . , x+ (a− 1)} ∈ BS},

i = i+ a and go to step 2.

Example 3.8 Let us compute the set {S ∈ E(2, 5) | g(S) = 8} using Algorithm 1 .

1. Set i = 4 and A = {⟨5, 6, 7, 8, 9⟩} .

2. The first loop constructs B⟨5,6,7,8,9⟩ = {{6, 7}, {7, 8}, {8, 9}} then
A = {⟨5, 6, 7, 8, 9⟩\{6, 7}, ⟨5, 6, 7, 8, 9⟩\{7, 8}, ⟨5, 6, 7, 8, 9⟩\{8, 9}} , i = 6 ,

3. the second loop constructs B⟨5,8,9,11,12⟩ = {{8, 9}, {11, 12}} , B⟨5,6,9,13⟩ = ∅ and B⟨5,6,7⟩ = ∅ then
A = {⟨5, 8, 9, 11, 12⟩\{8, 9}, ⟨5, 8, 9, 11, 12⟩\{11, 12}} , i = 8 .

Hence, {S ∈ E(2, 5) | g(S) = 8} = {⟨5, 11, 12, 13, 14⟩, ⟨5, 8, 9⟩} .

4. The set E(a) with a given Frobenius number

Our aim in this section will be to show an algorithm that allows us to compute the set E(a) with a given
Frobenius number. If S is a numerical semigroup such that S ̸= N , then we have that F(S) ≥ m(S) − 1 .
Besides, by Lemma 2.1, if S ∈ E(a)\{N} then m(S) = 1 + ka for some k ∈ N\{0} . Since m(S) ≤ F(S) + 1

and m(S) = 1 + ka then k ≤ F(S)
a .

Given a rational number q we denote by ⌊q⌋ its integer part, that is, ⌊q⌋ = max {z ∈ Z | z ≤ q} . We
can announce the following result.

Lemma 4.1 Let F(S) be an integer greater than or equal to two. Then

{S ∈ E(a) | F(S) = F} =
∪⌊F

a ⌋
k=1 {S ∈ E(a, ka+ 1) | F(S) = F} .

Clearly, {S ∈ E(a, ka+ 1) | F(S) = ka} = {0, ka+ 1 →} .

Lemma 4.2 Let k ∈ N\{0} such that ka + 1 < F . Then {S ∈ E(a, ka+ 1) | F(S) = F} ̸= ∅ if and only if
F mod (ka+ 1) ̸∈ {0, 1, . . . , a− 1} .

Proof Necessity . If S ∈ E(a, ka + 1) and F(S) = F then, applying Lemma 2.2, we have that
{F(S),F(S)− 1, . . . ,F(S)− (a− 1)} ⊆ N\S . Therefore, {F(S),F(S)− 1, . . . ,F(S)− (a− 1)} ∩ ⟨ka + 1⟩ = ∅
and so F mod (ka+ 1) ̸∈ {0, 1, . . . , a− 1} .
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Sufficiency . Assume that r = F mod (ka + 1) . Then F = q(ka + 1) + r for some q ∈ N\{0} and
r ∈ {a, . . . , ka} . Hence we obtain that

S = {0, ka+ 1, 2(ka+ 1), . . . , q(ka+ 1), q(ka+ 1) + 1, . . . , q(ka+ 1) + r − a, F + 1,→} ∈ E(a)

and F(S) = F . 2

Now by using Lemmas 4.1 and 4.2, in order to compute the set E(a) with a given Frobenius number F , it
is enough to give an algorithm that computes this set with m a positive integer and verifies that 2 ≤ a ≤ m−1 ,
m < F , m ≡ 1(mod a) , and (F mod m) ̸∈ {0, 1, . . . , a− 1} .

Algorithm 2
INPUT: a, m and F nonnegative integers such that 2 ≤ a ≤ m− 1,

m < F , m ≡ 1(mod a) and (F mod m) ̸∈ {0, 1, . . . , a− 1}.
OUTPUT: The set {S ∈ E(a,m) | F(S) = F}.

1: B = ∅ and A = {⟨m,m+ 1, . . . , 2m− 1⟩}
2: while True do
3: for S ∈ A do
4: Compute BS = {{x, x+ 1, . . . , x+ (a− 1)} ⊆ msg(S) | x ̸= m,

x > F (S) and x+ (a− 1) ≤ F}
5: B := B ∪ {S\{x, x+ 1, . . . , x+ (a− 1)} | S ∈ A,

{x, x+ 1, . . . , x+ (a− 1)} ∈ BS and x+ (a− 1) = F}
6: A :=

∪
S∈A{S\{x, x+ 1, . . . , x+ (a− 1)} |

{x, x+ 1, . . . , x+ (a− 1)} ∈ BS and x+ (a− 1) < F}
7: if A = ∅ then
8: return B

Next we illustrate this method with an example.

Example 4.3 Let us compute the set {S ∈ E(2) | F(S) = 12} . First, by using Lemma 4.1, we have that
{S ∈ E(2) | F(S) = 12} =

∪
m∈{3,5,7,9,11,13} {S ∈ E(2,m) | F(S) = 12} . From Lemma 4.2, we obtain that

{S ∈ E(2, 3) | F(S) = 12} = ∅ and {S ∈ E(2, 11) | F(S) = 12} = ∅ . Moreover, by the observation made after
the Lemma 4.1, we get that {S ∈ E(2, 13) | F(S) = 12} = {0, 13,→} . Therefore, by using Algorithm 2 , we have
to compute the set {S ∈ E(2,m) | F(S) = 12} with m ∈ {5, 7, 9} .

For example, we will calculate the set {S ∈ E(2, 5) | F(S) = 12} .

1. Start B = ∅ and A = {⟨5, 6, 7, 8, 9⟩} .

2. The first loop constructs B⟨5,6,7,8,9⟩ = {{6, 7}, {7, 8}, {8, 9}}
then B = ∅ ,

3. next constructs A = {⟨5, 6, 7, 8, 9⟩\{6, 7}, ⟨5, 6, 7, 8, 9⟩\{7, 8}, ⟨5, 6, 7, 8, 9⟩\{8, 9}} ,

4. the second loop constructs B⟨5,8,9,11,12⟩ = {{8, 9}, {11, 12}} , B⟨5,6,9,13⟩ = ∅ and B⟨5,6,7⟩ = ∅
then B = {⟨5, 8, 9, 11, 12⟩\{11, 12}} ,

5. next constructs A = {⟨5, 8, 9, 11, 12⟩\{8, 9}} ,
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6. the third loop constructs B⟨5,11,12,13,14⟩ = {{11, 12}}
then B = {⟨5, 8, 9⟩, ⟨5, 11, 12, 13, 14⟩\{11, 12}} ,

7. next constructs A = ∅ ,

8. {S ∈ E(2, 5) | F(S) = 12} = {⟨5, 8, 9⟩, ⟨5, 13, 14, 16, 17⟩} .

Next we are interested in characterizing of the maximal elements in the set {S ∈ E(a) | F(S) = F} . The
next result is well known.

Lemma 4.4 [9, Lemma 10] Let S and T be two numerical semigroups such that S ⊊ T and x = max(T\S) .
Then S ∪ {x} is a numerical semigroup.

Proposition 4.5 Let {S, T} ⊆ E(a) such that S ⊊ T , x = max(T\S) and let s ∈ S such that s < x <

nextS(s) . If {x1 < x2 < · · · < xr} = {t ∈ T | s < t < nextS(s)} then S ∪ {x1, x2, . . . , xr} ∈ E(a) , r is a
multiple of a and S ∪

{
xr, xr−1, . . . , xr−(a−1)

}
∈ E(a) .

Proof By repeatedly applying Lemma 4.4, we get that S∪{x1, x2, . . . , xr} is a numerical semigroup. Moreover,
as {S, T} ⊆ E(a) such that S ⊆ T , we deduce that S ∪ {x1, x2, . . . , xr} ∈ E(a) .

Since s < x1 < · · · < xr < nextS(s) are consecutive elements of T and T ∈ E(a) , then there exist
{k1, . . . kr+1} ⊆ N such that x1 = s+k1a+1, x2 = s+k1a+1+k2a+1, . . . , xr = s+k1a+1+ · · ·+kra+1 and
thus nextS(s) = s+k1a+1+· · ·+kra+1+kr+1a+1 . Therefore, nextS(s)−s = k1a+1+· · ·+kra+1+kr+1a+1 .
As S ∈ E(a) then nextS(s)−s−1 = ta for some t ∈ N . Consequently, k1a+1+· · ·+kra+1+kr+1a+1 = ta+1 .
Then (k1+ · · ·+ kr+1)a+ r+1 = ta+1 and thus r is a multiple of a . Assume that r = la for some l ∈ N\{0}

To conclude the proof, we check that S ∪
{
x(l−1)a+1, x(l−1)a+2, . . . , x(l−1)a+a

}
∈ E(a) . In order to see

this, it is enough to see that x(l−1)a+1 − s − 1 is a multiple of a . This is true because x(l−1)a+1 − s − 1 =

s+ k1a+1+ k2a+1+ · · ·+ k(l−1)a+1a+1− s− 1 = (k1 + · · ·+ k(l−1)+1)a+ (l− 1)a+1− 1 is a multiple of a .
2

Given a sequence of nonnegative integers n1 < n2 < · · · < np , we say that it is equidistant modulo a if
ni+1 − ni − 1 is a multiple of a for all i ∈ {1, . . . , p− 1} .

Let S be a numerical semigroup. An element of s ∈ S is called a-refinable if there exists
{x1 < x2 < · · · < xa} ⊆ {x ∈ N | s < x < nextS(s) and xa < F(S)} such that S ∪ {x1, x2, . . . , xa} is a numer-
ical semigroup and the sequence s, x1, x2, . . . , xa,nextS(s) is equidistant modulo a . We denote by R(S) =

{s ∈ S | S is a-refinable} .

Theorem 4.6 Let S ∈ E(a) with F(S) = F . Then S is a maximal element in the set {T ∈ E(a) | F(T ) = F}
if and only if R(S) = ∅ .

Proof Necessity . If R(S) ̸= ∅ , then there exists s ∈ R(S) . Hence, there exist {x1 < x2 < · · · < xa} ⊆
N\{0} such that the sequence s < x1 < x2 < · · · < xa < nextS(s) is equidistant modulo a with xa <

F and S ∪ {x1, x2, . . . , xa} is a numerical semigroup. We deduce that S ∪ {x1, x2, . . . , xa} ∈ E(a) with
F(S ∪ {x1, x2, . . . , xa}) = F contradicting the maximality of S .
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Sufficiency . If we suppose that S is not maximal, then there exists T ∈ E(a) with F(T ) = F and
S ⊊ T . Let x = max(T\S) and s ∈ S such that s < x < nextS(s) . By applying Proposition 4.5, we obtain
that s ∈ R(S) and thus R(S) ̸= ∅ . 2

5. The elements of E(a) with maximal embedding dimension

Let S be a numerical semigroup. The cardinality of msg(S) is known as the embedding dimension of S and it is
denoted here by e(S) . In [8, Proposition 2.10 ] shows that e(S) ≤ m(S) . We say that S has maximal embedding
dimension (MED-semigroup) if e(S) = m(S) . The following result can be deduced from [2, Proposition I.2.9 ].

Lemma 5.1 Let S be a numerical semigroup. Then S is a MED-semigroup if and only if
{s−m(S) | s ∈ S\{0}} is a numerical semigroup.

Proposition 5.2 Let S be a MED-semigroup. Then S ∈ E(a) if and only if T = {s−m(S) | s ∈ S\{0}} is
an element of E(a) and m(S) ≡ 1(mod a) .

Proof Necessity . By Lemmas 5.1 and 2.1, we have that T is a numerical semigroup and m(S) ≡ 1(mod a) ,
respectively. To conclude the proof, it suffices to see that nextT (t) − t − 1 is a multiple of a for every t ∈ T .
If t ∈ T , then there exists s ∈ S\{0} such that t = s−m(S) and so nextT (t) = nextS(t)−m(S) . Therefore,
nextT (t)− t− 1 = nextS(s)−m(S)− (s−m(S))− 1 = nextS(s)− s− 1 is a multiple of a , because S ∈ E(a) .

Sufficiency . Let us see that S ∈ E(a) , that is, if s ∈ S then nextS(s) − s − 1 is a multiple of a .
If s = 0 , then nextS(s) − 0 − 1 = m(S) − 1 is a multiple of a . If s ̸= 0 , then s − m(s) = t ∈ T and
nextT (t) = nextS(s)−m(S) . Hence, nextS(s)− s− 1 = nextT (t)− t− 1 is multiple of a , because T ∈ E(a) . 2

From Lemma 5.1, it is easy to deduce the following result.

Lemma 5.3 Let S be a numerical semigroup and x ∈ S\{0} . Then S(x) = ({x}+S)∪{0} is a MED-semigroup
with multiplicity x . Moreover, every MED-semigroup is of this form.

Proposition 5.4 Let S ∈ E(a) and x ∈ S\{0} such that x ≡ 1(mod a) . Then S(x) = ({x}+ S) ∪ {0} is an
equidistant MED-semigroup modulo a . Moreover, every equidistant MED-semigroup modulo a is of this form.

Proof By Lemma 5.3, we obtain that S(x) is a MED-semmigroup with multiplicity x . Clearly S =

{s− x | s ∈ S(x)\{0}} and thus, applying Proposition 5.2, we obtain that S(x) is equidistant modulo a .
Let T be an equidistant MED-semigroup modulo a . Then by Proposition 5.2, we get that S =

{T −m(T ) | t ∈ T\{0}} ∈ E(a) and m(T ) ≡ 1(mod a) . Therefore, T = ({m(T )} + S) ∪ {0} with S ∈ E(a)

and m(T ) ∈ S such that m(T ) ≡ 1(mod a) . 2

Let S be a numerical semigroup and let n ∈ S\{0} . The Apéry set (named so in honour of [1]) of n in
S is

Ap(S, n) := {s ∈ S | s− n ̸∈ S}.

Lemma 5.5 [8, Lemma 2.4] Le S be a numerical semigroup and n ∈ S\{0} . Then Ap(S, n) = {0 =

w(0), w(1), . . . , w(n − 1)} , where w(i) is the least element in S congruent with i modulo n , for all i ∈
{0, . . . , n− 1} .
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Observe that the above lemma in particular implies that the cardinality of Ap(S, n) is n . From [10], we
can deduce the next result.

Proposition 5.6 Le S be a numerical semigroup, n ∈ S\{0} and T = ({n}+ S) ∪ {0} . Then the following
conditions hold:

1. T is MED-semigroup

2. m(T ) = n .

3. F(T ) = F(S) + n .

4. g(T ) = g(S) + n− 1 .

5. msg(T ) = Ap(S, n) + {n} .

Example 5.7 It is clear that S = ⟨5, 8, 9⟩ is an an equidistant numerical semigroup modulo 2 . We have
that 9 is an element in S such that 9 ≡ 1(mod 2) . Then from Proposition 5.4, we obtain that T =

({9} + S) ∪ {0} is an equidistant MED-semigroup modulo 2 . Since F(S) = 12 , g(S) = 8 and Ap(S, 9) =

{0, 5, 8, 10, 13, 15, 16, 20, 21} , by Proposition 5.6 we have that F(T ) = 12 + 9 = 21 , g(T ) = 8 + 9− 1 = 16 and
msg(T ) = {9, 14, 17, 19, 22, 24, 25, 29, 30} .
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