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El progreso, siempre un paso por delante: 

andamos y no lo alcanzamos 

pero avanzamos, que es lo importante. 

 

Fragmento del tema: 

“¿Por qué existe algo en lugar de nada?” 

Ozelot 
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ABSTRACT 

Malignant melanoma (MM) is the most aggressive and life-threatening form of skin 

cancer and its incidence rapidly continues increasing worldwide. This type of cancer is often 

curable, but only if detected early. When diagnosed in early stages of disease (I and II), it has an 

excellent prognosis, but the mortality rate drastically rises in advanced stages (III and IV) after 

distant spread. Despite the progress made in recent years, diagnosis of MM remains challenging. 

To date, there are no suitable clinical diagnostic, prognostic or predictive biomarkers for this 

neoplasia. Several candidate biomarkers have been proposed but few have reached clinical 

application. Thus, there is still an urgent need for discovering specific useful biomarkers and for 

developing methods that can sensitively detect this neoplasia at the earlier pre-metastatic stages. 

It is known that the extraordinary metastasis capacity and chemotherapy resistance of this 

type of cancer are mainly due to intratumoral heterogeneity and, specifically, to MM cancer stem 

cells (CSCs). These cells represent a subpopulation of cancer cells which possess stem-like 

functional properties such as self-renewal ability and multipotency, and they are responsible for 

tumor initiation, progression, therapy resistance, relapse and metastasis. 

In addition, accumulating evidence supports the idea of the multiple roles that exosomes 

play in cancer’s biology. These small extracellular vesicles are involved in cell-to-cell 

communication and, by transferring their cargo, cancer cell-derived exosomes are able to induce 

in target cells diverse signalling pathways involved in tumor initiation, sustenance, progression 

and metastasis. These tiny messengers are actively released by all cells, including CSCs, to the 

extracellular matrix and to the bloodstream, making of them an interesting source of circulating 

biomarkers that can be easily isolated from the different body fluids by liquid biopsies. 
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In this context, several omics technologies and analytical platforms, such as 

metabolomics and LC-HRMS, represent powerful tools for detecting and analyzing the 

expression levels of circulating metabolites in liquid biopsies that might serve as potential 

biomarkers not only for cancer, but also for other diseases. 

Taking all these facts into account, the main goal of this study was to identify potential 

CSC-derived exosomal and serological biomarkers using metabolomics techniques (LC-HRMS) 

with diagnostic, prognostic or predictive value for malignant melanoma. First, a patient-derived 

MM cell population enriched in CSCs was appropriately characterized. Next, exosomes derived 

from those MM-CSCs and serums from patients with MM were also characterized and their 

metabolomic profile was analyzed by LC-HRMS following an untargeted approach and applying 

univariate and multivariate statistical analyses. These analyses revealed significant metabolomic 

differences between exosomes derived from MM-CSCs compared to those from MM 

differentiated cells, as well as between serum-derived exosomes from patients with MM at 

several stages of disease and those derived from healthy individuals. Various metabolites showed 

a clear differential pattern of expression across the different sample groups of comparison and 

some of them were tentatively identified. Interestingly, we identified similarities in some 

structural lipids from both CSC-derived exosomes and those derived from patients with MM, 

such as the glycerophosphocoline PC 16:0/0:0. According to biomarker evaluation models, all 

those differential metabolites showed an excellent discrimination capacity between the two 

groups of samples (patients with MM and healthy controls), suggesting that they could be 

considered as potential exosomal biomarkers for this disease. Taking together, these results 

proved that metabolomic characterization of CSC-derived exosomes sets an open door to the 

discovery of clinically useful biomarkers for MM diagnosis. 
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Along the same line and aiming at the same objective, another similar metabolomic study 

was also carried out but using a larger sample size. A total of 105 serum samples from both 

healthy individuals and patients with MM were analysed by LC-HRMS, following a similar 

nontargeted approach. Here again, significant metabolomic differences were found between 

patients in stage I of disease and healthy controls, and 10 candidates were consequently selected 

and identified as different classes of glycerophospolipids such as glycerophosphoethanolamines 

(PEs), glycerophosphocholines (PCs), cytidine diphosphate diacylglycerol (CDP-DG), or 

oxidized glycerophospholipids (POB-PS and PKOHA-PG). They all were suggested as potential 

biomarkers for early diagnosis of MM, since they yielded remarkable diagnostic capacities based 

on ROC curves analyses and biomarker evaluation models. 

All together, the results presented herein provide evidence that metabolomics and LC-

HRMS analytical platforms represent powerful tools for the identification and quantification of 

exosomal and serological metabolites in liquid biopsies, which could serve as potential 

biomarkers not only for MM, but also for other types of cancer.  

Given we are living in the era of effective molecular targeted treatments and 

immunotherapies, the discovery, validation and implementation into clinic of suitable biomarkers 

is more necessary than ever. Consequently, more funding and research are needed in order to 

find suitable biomarkers that could aid or improve early and accurate MM diagnosis. In this 

regard, untargeted LC-MS-based metabolomics applied to liquid biopsies and circulating 

compounds could pave the way for those achievements, since studies like this demonstrate its 

value for biomarker research, as well as its general applicability for translational research and 

precision medicine in oncology. 
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RESUMEN 

El melanoma maligno (MM) es el tipo de cáncer de piel más agresivo y potencialmente 

mortal que existe, y su incidencia mundial sigue aumentando actualmente a un gran ritmo. Este 

en particular, es un tipo de cáncer altamente curable, pero solo si se detecta a tiempo. Cuando se 

diagnostica en un estadio temprano de la enfermedad (I y II), tiene un pronóstico excelente, pero 

la tasa de mortalidad aumenta notablemente en los estadios avanzados (III y IV) cuando se ha 

diseminado a otras partes del cuerpo. A pesar de todos los esfuerzos que se han realizado en los 

últimos años, el diagnóstico del MM sigue presentando dificultades. Por el momento, todavía no 

existen biomarcadores diagnósticos, pronósticos o predictivos adecuados para esta neoplasia. 

Aunque varios biomarcadores candidatos han sido propuestos, pocos han demostrado ser 

eficaces para su aplicación en la práctica clínica. Por tanto, aún existe una urgente necesidad de 

descubrir biomarcadores útiles específicos y desarrollar métodos sensibles que puedan detectar 

esta neoplasia en sus etapas tempranas pre-metastásicas. 

Se sabe que la extraordinaria capacidad de metástasis y resistencia a la quimioterapia de 

este tipo de cáncer se debe principalmente a la heterogeneidad intratumoral, y en particular a las 

células madre cancerígenas (CMCs). Estas células representan una subpoblación de células 

tumorales que poseen propiedades funcionales similares a las de las células madre, como la 

capacidad de auto-renovación y diferenciación en distintos tipos celulares, y son responsables del 

inicio, progresión, resistencia a la terapia, recaída y metástasis de los tumores. 

Por otra parte, numerosas investigaciones respaldan las múltiples funciones que 

desempeñan los exosomas en la biología del cáncer. Estas pequeñas vesículas extracelulares 

están implicadas en la comunicación intercelular y, al transferir su carga, los exosomas derivados 

de células cancerígenas pueden inducir en las células diana diversas vías de señalización 
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implicadas en la formación, el sustento, la progresión y la metástasis del tumor. Estos diminutos 

mensajeros son liberados activamente por todas las células, incluidas las CMCs, a la matriz 

extracelular y al torrente sanguíneo, lo que los convierte en una interesante fuente de 

biomarcadores circulantes fácilmente aislables de los diferentes fluidos corporales mediante 

biopsias líquidas. 

En este contexto, varias tecnologías ómicas y plataformas analíticas, como la 

metabolómica y la cromatografía líquida acoplada a la espectrometría de masas de alta 

resolución (LC-HRMS), representan poderosas herramientas para detectar y analizar los niveles 

de expresión de metabolitos circulantes que podrían servir como potenciales biomarcadores no 

solo en cáncer, sino también en otras enfermedades. 

Por todo ello, el objetivo principal de este estudio fue identificar posibles biomarcadores 

exosomales y serológicos derivados de CMCs mediante el uso de técnicas metabolómicas (LC-

HRMS) con valor diagnóstico para el melanoma maligno. En primer lugar, se caracterizó 

adecuadamente una población de células de MM enriquecidas en CMCs, en una línea celular 

primaría derivada de un paciente con MM. A continuación, también se caracterizaron los 

exosomas derivados de esas CMCs de MM y de sueros de pacientes con MM y se analizó su 

perfil metabolómico mediante LC-HRMS siguiendo una aproximación no dirigida y aplicando 

análisis estadísticos univariados y multivariados. Estos análisis revelaron diferencias 

metabolómicas significativas entre exosomas derivados de CMCs de MM en comparación con 

los de células diferenciadas de MM, así como entre exosomas derivados de suero de pacientes 

con MM en distintos estadios de la enfermedad y los derivados de individuos sanos. Varios 

metabolitos presentaron un patrón claro de expresión diferencial entre los diferentes grupos de 

muestras comparadas y a algunos de ellos se les pudo asignar una identificación tentativa. 
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Curiosamente, se detectaron ciertas similitudes en algunos lípidos estructurales de los exosomas 

derivados de CMCs y los derivados de pacientes con MM, como la glicerofosfocolina PC 16: 

0/0:0. En base a los modelos de evaluación de biomarcadores generados, todos los metabolitos 

diferenciales mostraron una excelente capacidad de discriminación entre los dos grupos de 

muestras (pacientes con MM y controles sanos), siendo por tanto susceptibles de ser 

considerados como potenciales biomarcadores exosomales de esta enfermedad. En conjunto, 

estos resultados demostraron que la caracterización metabolómica de exosomas derivados de 

CMCs abre una puerta al descubrimiento de biomarcadores clínicamente útiles para el 

diagnóstico del MM. 

En la misma línea y con el mismo objetivo, también se llevó a cabo otro estudio 

metabolómico similar pero con un tamaño de muestra mayor. Un total de 105 muestras de suero 

de pacientes con MM y de individuos sanos fueron analizadas por LC-HRMS, siguiendo una 

aproximación no dirigida similar. De nuevo, se encontraron diferencias metabolómicas 

significativas entre pacientes en estadio I de la enfermedad y controles sanos, por lo que se 

seleccionaron 10 candidatos que fueron identificados como distintos tipos de glicerofoslípidos, 

como glicerofosfoetanolaminas (Fes), glicerofosfocolinas (FCs), citidín difosfato diacilglicerol 

(CDP-DG) o glicerofosfolípidos oxidados (POB-PS y PKOHA-PG). Todos ellos fueron 

sugeridos como posibles biomarcadores para el diagnóstico precoz del MM, ya que mostraron 

notables capacidades diagnósticas basadas en análisis de curvas ROC y los modelos de 

evaluación de biomarcadores. 

En conjunto, los resultados presentados en este trabajo demuestran que la metabolómica y 

las plataformas analíticas LC-HRMS, representan una poderosa herramienta para la 

identificación y cuantificación de metabolitos exosomales y serológicos en biopsias líquidas, que 
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podrían servir como posibles biomarcadores no solo para MM, sino también para otros tipos de 

cáncer. 

Puesto que estamos viviendo una era de múltiples tratamientos moleculares dirigidos e 

inmunoterapias eficaces, el descubrimiento, la validación y la implementación en la clínica de 

biomarcadores adecuados son más necesarios que nunca. En consecuencia, todavía se necesita 

más financiación y más esfuerzos de investigación para encontrar biomarcadores adecuados que 

puedan ayudar o mejorar el diagnóstico temprano y preciso del MM. En este sentido, la 

metabolómica no dirigida basada en LC-MS aplicada a biopsias líquidas y compuestos 

circulantes podría allanar el camino hacia esos logros, ya que estudios como este demuestran su 

valor para la investigación de biomarcadores, así como su aplicabilidad general a la investigación 

traslacional y a la medicina de precisión en oncología. 
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INTRODUCTION 

1. CANCER 

Cancer can be considered as a heterogenic group of disorders with very different 

biological properties. The term cancer is used in a general sense for many diseases characterized 

by a rapid, abnormal and uncontrolled cells proliferation that can grow beyond their normal 

boundaries, forming distinct masses in a tissue or organ, as well as a great degree of anaplasia 

(scarce cell differentiation). Malignant tumors also have the property of invading adjacent 

structures and the ability to spread to other parts of the body through the bloodstream and the 

lymphatic system by the process known as metastasis [1].  

The risk of suffering from many types of cancer can be reduced by keeping healthy 

lifestyle habits and avoiding certain commonly known risk factors, such as tobacco or alcohol 

consumption, obesity, or harmful radiation exposure, among others. Furthermore, many cancers 

have a fairly high cure rate by surgery, radiotherapy or chemotherapy, especially when detected 

early [2]. 

1.1. Epidemiology 

According to the most updated data compiled by GLOBOCAN, in 2020 there were more 

than 19.2 million of new cases and almost 10 million of deaths caused by cancer worldwide 

(Figure 1). The incidence and mortality vary depending on the different world areas, developed 

and developing countries, and sex. At a global level, the most commonly diagnosed types of 

cancer, for both sexes and all ages are: breast, lung, colorectum, prostate, stomach, liver, cervix 

uteri, oesophagus, thyroid, bladder, and other cancers (Figure 1) [3]. 
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Figure 1. Pie charts representing the distribution of cases (A) and deaths (B) for the 10 most common 

cancers in 2020 for both sexes (worldwide). Source: GLOBOCAN 2020. 
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Noncommunicable diseases (NCDs) currently accounts for most global deaths and 

cancer, in particular, is expected to become the main cause of death worldwide in near future, 

being their incidence and mortality rates estimated to continue to rapidly increase (+49.7% and 

+62.5%, respectively) in the next decades (Figure 2), partially due to demographic changes [3]. 

 

Figure 2. Future trends for incidence and mortality rates in both sexes (A) and estimated numbers for new 

cases (B) and deaths (C) from 2020 to 2040. Source: GLOBOCAN 2020. 
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In Europe, incidence and mortality rates differ from the global ones, being higher in 

certain types of cancer such as non-melanoma skin cancer or melanoma of skin, which is 

relevant to the content of this work [3]. 

In Spain, malignant tumors still represent one of the most important causes of mortality. 

In 2020, according to the latest data released by the National Statistics Institute, cardiovascular 

diseases remained the leading cause of death, representing 23.0% of the total deaths. 

Historically, malignant tumors were ranked in the second place, but last year they were narrowly 

overcome by infectious diseases (20.9%), which caused an increase of 1,687.7% compared to the 

first five months of 2019. It should be noted that 67.5% of deaths in this group corresponded to 

confirmed cases of COVID-19 and 26.9% to supposed cases. Consequently, in 2020 neoplasms 

were relegated to the third place (20.4%) in this mortality ranking, even though they were 

increased by 0.5% compared to the previous year. The most frequently diagnosed types of cancer 

in Spain (Figure 3) are colorectal, which represents 14.3%, of total cases, prostate (12.3%), 

breast (12.1%), lung (10.3%) and urinary bladder (6.6%) [3].  

 

Figure 3. Dual bars representing the age-standardized incidence and mortality rates (A) and pie chart 

representing the number of new cases (B) for the most common cancers in Spain. Source: GLOBOCAN 

2020. 
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1.2. Etiology 

Malignant tumor cells are originated from normal cells that typically suffer a 

precancerous lesion and go under a stepwise process by which they suffer several changes. That 

process is triggered by a combination of both individual’s genetic and environmental factors [4].  

Among the external agents, carcinogens deserve a special mention, since they are 

substances, radionuclides and radiation able to enhance the probabilities of cancer development. 

They can be classified according to their physical, chemical or biological nature [5,6]. Physical 

carcinogens include several types of ionizing radiation from X-rays or from radioactive materials 

in industry, or ultraviolet (UV) rays from sunlight, which is the most harmful type of radiation in 

terms of carcinogenic power. Indeed, it is highly associated to a notorious increase of developing 

skin cancer [4]. Among chemical carcinogens are included several chemical products effluents 

from industry and environmental pollutants from automobiles, residences, and factories such as 

acrylamide, arsenic, formaldehyde, benzene, or tobacco smoke, which contains nitrosamines, 

polycyclic aromatic hydrocarbons and many other carcinogenic compounds. Indeed, tobacco 

smoke represents the major source of chemical carcinogens for humans, and it is highly 

responsible for many cancer cases in developed countries, being lung cancer the most associated 

one. The last kind of carcinogenic agents are the biological ones, which include several 

microorganisms or viruses, such as human papillomaviruses, the Epstein-Barr virus, or the 

hepatitis B and C viruses, which are capable of induce cancer formation [4].  

Other external factors are those related to lifestyle. For instance, it has been widely 

demonstrated that obesity or alcoholism are highly associated with higher risk of certain types of 

cancers, whereas other healthy lifestyle-related habits such as regularly practicing physical 

activity or keeping a balanced diet significantly reduce the probabilities of suffering from other 



Introduction 

 

36  
 

tumors. Furthermore, these healthy habits remarkably improve life’s quality of cancer patients, 

their treatment outcomes and reduce the risk of recurrence [7]. 

On the other hand, individual’s genetic-related factors must be also taken into account, 

although it is estimated that only about 5-10% of some types of cancers seem to have an 

hereditary risk component due to certain genetic variations [6]. In this regard, several mutations 

in specific genes have been proved to be associated with higher risk of some types of cancer [8]. 

1.3. Carcinogenesis 

Carcinogenesis, also called oncogenesis or tumorigenesis, is a stepwise process whereby 

normal cells are transformed into cancer cells, by going through great changes at the metabolic, 

genetic, epigenetic and behavioral levels. As a consequence, cell division regulatory mechanisms 

are disrupted, leading to an uncontrolled and premature cell proliferation. In addition,  cancerous 

cells are able to avoid the defensive mechanisms of immune system and, eventually, migrate to 

distant organs and cause metastases (Figure 4) [1,7]. 

To date, several biological characteristics are firmly established as hallmarks of cancer 

(Figure 5). In 2011, Hanahan and Weinberg originally highlighted six of them: sustainability of 

proliferative signaling, evasion of growth suppressing mechanisms, induction of angiogenesis, 

activation of invasion and metastasis ability, resistance to cell death, and enablement of 

replicative immortality [9]. However, it has been shown that the promotion of inflammation and 

the increase in genome instability and mutation rates contribute to the acquisition of deregulation 

of cellular energy metabolism and the prevention of immune destruction, all of which are 

facilitating factors of the tumor cells that should be included along with the hallmarks mentioned 

above (Figure 5) [10,11]. 
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Figure 4. Schematic representation of cancer cell transformation. Normal cells (whether stem, progenitor 

or differentiated) can undergo several mutagenic events that affect their genetic material, including genes 

involved in the regulation of self-renewal or normal cell division. As a consequence, they become cancer 

cells that divide uncontrollably and show specific differential characteristics. 

There are different ways for a cancer cell to maintain proliferative signaling, including 

autocrine mechanisms such as growth factors production and release by the tumor cells 

themselves [12], or by paracrine interactions with closely located supporting normal cells [13], 

as well as increasing the expression of the corresponding surface receptors in order to increase 

their sensitivity to those factors. Also, mutations or expression disruptions in several proto-

oncogenes or oncogenes, along with the subsequent altered expression of their corresponding 
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oncoprotein products, are also involved in this complex process of cell proliferation maintenance 

[14,15]. On the other hand, cancer cells must also evade growing suppressing mechanisms, by 

inactivating the expression of certain tumor suppressor genes that are involved in the regulation 

of normal cell proliferation [15,16].  

In order to meet all their metabolic requirements and blood supply, cancer cells stimulate 

angiogenesis, the process by which new blood vessels are formed. Nevertheless, this tumor-

associated neovasculature is structurally and functionally different from the normal one, and it is 

characterized by its anarchic and heterogenic organization [17]. 

 

Figure 5. Hallmarks of cancer. The scheme encompasses the ten main biological capabilities acquired 

during the staggered development of human tumors. These hallmarks traits might be gained at different 

stages of the carcinogenesis process and are functional within the context of the tumor microenvironment. 
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From primary tumor formation, tumor cells eventually acquire the capacity to spread and 

invade distant organs within the body. This process is known as metastasis, and it is a complex 

staggered process which involves several steps. First, the primary tumor generates new 

vasculature (neoangiogenesis) and grows until it starts local invasion through the extracellular 

matrix and cell layers of the surrounding stroma. Eventually, there is an intravasation of tumor 

cells to the blood and lymphatic vessels, where they survive and circulate until they are arrested 

in distant organs, and their extravasation to the tissue parenchyma takes place. At this point, 

these cells start to create a pre-metastatic niche, which leads to micrometastases and ultimately 

macroscopic tumors formation, being the metastatic colonization process completed (Figure 6) 

[18,19]. 

Tumor cells are also capably of avoiding apoptosis, which is the programmed type of cell 

death that plays an essential role in many processes, including maintaining homeostasis and 

normal development, as well as elimination of infected or transformed cells. The two main 

branches of this strictly regulated cell death are the intrinsic and extrinsic pathways, in which the 

signals initiating cell death are originated inside or outside the cell, respectively [20,21]. In 

addition, cancer cells also acquire an unlimited replication potential in a process known as cell 

immortalization [9]. 

Apart from those classically accepted hallmarks of cancer, there are other emerging 

characteristics and enabling factors that allow tumor cells to achieve those previously described 

ones. One the one hand, several inflammatory processes take place within the tumor context, and 

there is certain tumor-promoted inflammation that also contribute to the acquisition of some of 

the previously described properties of tumor cells [22,23]. On the other hand, it has been also 

shown that cancer cells present a particular genome instability and a high mutation rate, 
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attributable to certain damages in DNA maintenance and repair mechanisms as well as to 

telomeric dysfunction [11,24].  

Last but not least, while some cancer cells are successfully destroyed by host immune 

cells, some others manage to survive throughout several mechanisms, highlighting the two roles 

that immune system plays in oncogenesis by both cancer promotion and prevention [25]. 

 

Figure 6. Schematic representation of the invasion-metastasis cascade. Metastasis is a multistep process 

where: 1) tumor cells migrate into adjacent tissues (local invasion); 2) translocate and enter the systemic 

circulation (intravasation); 3) survive in the circulation and reach distant parts of the body; 4) attach to 

endothelial cells, translocate again and enter to a distant tissue or organ (extravasation), where tumor cells 

adapt to survive and form pre-metastatic niches, micro-metastasis; 5) proliferation and formation of 

macrometastasis (colonization). This process is also orchestrated by several tumor-secreted factors, such 

as cytokines or exosomes. 
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Another relevant concept that must be taken into account is the tumor microenvironment 

(TME) or also called niche. Apart from the heterogeneous population of cancer cells within the 

tumor mass, their TME consists of a variety of resident and infiltrating host cells, secreted 

factors and extracellular matrix proteins. Tumor growth and progression is profoundly influenced 

by interactions of tumor cells with niche stromal and inflammatory cell populations, that ultimate 

determine the tumor development, establishment of metastases or dormant micrometastases, and 

even resistance to treatment. (Figure 7) [9,26]. 

 

Figure 7. Representation of the distinct cell types that constitute most solid tumors and the distinctive 

tumor microenvironments (TMEs), which change and evolve as tumors invade normal tissue and 

thereafter seed and colonize distant tissues. The abundance, histological organization, and phenotypic 

characteristics of these different cell types, as well as of the extracellular matrix, determine the character 

of the different TMEs. 
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2. MALIGNANT MELANOMA 

Skin cancer (SC) is a type of cancer originated by the uncontrolled growth of aberrant 

skin cells due to several oncogenic events that lead them to proliferate beyond their natural 

limits, causing malignant tumors. The vast majority of skin cancers are commonly classified in 

two main groups: melanoma and non-melanoma skin cancers [27].  

Non-melanoma skin cancers (NMSCs) refers to the most common types of SC that 

slowly develop in the upper layers of the skin, including basal cell carcinoma (BCC), squamous 

cell carcinoma (SCC), as well as others much more unusual skin tumors. These cancers are 

normally originated in body areas exposed to the sun, such as the arms, legs, head or neck, but 

they might be found elsewhere as well. BCCs, which are the most common ones (~80%), 

normally show a slow progression and highly unlikely propagation to distant organs unless left 

untreated. SCCs, which represent the second most form of SC (~20%) show higher chances of 

invading deeper skin layers and spreading to distant parts of the body [28]. The term NMSCs is 

meant to distinguish these more common types of skin cancer from the less common one: 

Melanoma [27]. 

Melanoma, or also known as malignant melanoma (MM), is a more dangerous form of 

skin cancer that originates from melanocytes (pigment-producing cells) and presents much 

higher chances of growing and spreading to distant organs if it is not treated at an early stage. 

Although it is least common type of SC (~1%), is the most aggressive and lethal one, accounting 

for the highest number of deaths caused by skin cancers [3,27,29].  
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2.1. Epidemiology 

Historically, melanoma was an unusual type of cancer, but in the last 50 years its 

incidence has been increased more than almost any other cancer [3,30]. Over the last decade, the 

annual cases of MM have risen up by nearly 50% to over 287,000 new cases, which translates to 

over 60,000 MM-related deaths per year [31]. Actually, dermatologists believe that skin cancer 

should be currently considered, with all due caution, a global epidemic. 

According to the latest data from World Health Organization (WHO), it is estimated that 

there are currently over one million cases of skin cancer each year, including both NMSCs and 

MMs. However, it should be taken into account that NMSCs is under reported, since several 

countries do not have official records, so the real incidence is widely acknowledged to be higher. 

Thus, this type of cancer is one of the most extended around the world [3].  

Considering both NMSC and MM number of deaths, it is estimated that one person dies 

from SC every 4 minutes, which is a tremendously shocking statistic considering that this type of 

cancer is one of the most preventable and curable, if detected early [32]. Nonetheless, the 

predictions for the next 20 years are even more disturbing. According to the new online tool 

created by the Global Cancer Observatory, it is estimated that the number of new MM cases 

diagnosed worldwide will rise 18% and 62% by 2025 and 2040, respectively, and the number of 

melanoma-related deaths will suffer an increase of 20% by 2025 and of 74% by 2040 [3]. 

Regarding melanoma, according to the most updated data reported by GLOBOCAN, in 

2020 there were reported 324,635 new cases (1.7% of total cancers) and almost 57,043 deaths 

(0.6% of total) caused by MM worldwide (Figure 8). Its incidence and mortality rates continue 

to steadily increase every year by 4-6%, and rose between 2008 and 2018 by 44% and 32%, 
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respectively. However, they considerably vary among different populations depending on several 

factors, including ethnicity, geography, age, sex, and anatomic distribution [3,29,30,33].  

 

Figure 8. Pie charts representing the distribution of cases (A) and deaths (B) for malignant melanoma in 

2020 for both sexes (worldwide). Source: GLOBOCAN 2020 
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With regards to its incidence, it is disproportionally diagnosed among fair-skinned 

Caucasian populations, since they have decreased levels of melanin in the skin, and therefore 

they are less protected from UV radiation than darker-skinned people [34]. Regardless ethnicity, 

there are also geographic differences, which can be attributed to differences in several factors. 

For instance, those related to incident UV radiation, such as atmospheric features, latitude or 

altitude, which explains a higher MM incidence in regions like Northern Europe, North America, 

Australia and New Zealand (Figure 9). Also, according to the mortality-to-incidence ratio 

(MIR), MM is one of the most treatable cancers (MIR=21%), but it there is also a marked 

disparity between the treatment outcomes of different countries. Overall, people in countries with 

a high human development Index (HDI) score are more likely to be diagnosed with melanoma, 

but people in countries with a lower HDI score are more likely to die from it [3,29,35]. 

Worldwide MM incidence is also age- and sex- dependent. For example, it steadily 

increases with age, reaching the highest peaks at the seventh and eighth decades of life. This 

trend becomes even more evident among most high-risk populations, such as Australia and New 

Zealand, and Northern Europe [36,37]. Additionally, despite MM is less common among people 

under 40 years of age, it is becoming one of the most reported cancers among adolescent and 

young adults in the United States [38]. Overall, men are 10% more susceptible to develop 

melanoma (especially after the age of 40) and 4% likely to die, which is the general trend related 

to sex (Figure 10) [29]. However, in the last year a higher rate of MMs is being reported among 

adolescent and young women under 40 years of age, probably due to their more frequent use of 

indoor tanning [38].   
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Figure 9. Global map representing worldwide melanoma age-standardized annual incidence rate by 

geography. Age-standardized rate (ASR) by world is expressed per 100,000 persons. Source: 

GLOBOCAN 2020.  

 

Figure 10. Dual bar graph representing the Ageage-standardized incidence and mortality rates (A) for 

malignant melanoma by sex, all ages. Source: GLOBOCAN 2020. 
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Regarding MM anatomic distribution, MMs are generally reported on high sunlight-

exposed parts of the body such as the head, neck, arms and limbs. However, some age- sex- or 

geographic-dependent differences have also been reported [39,40] 

2.2. Etiology 

There are several risk factors that predispose to the development of not only melanoma, 

but also any type of skin cancer. The most important ones include UV light exposure, presence 

of moles, fair skin, freckling and light hair, family or personal history of skin cancer, having a 

weakened immune system, some other factors associated with ethnicity, sex and age [27,28]. 

The vast majority of MMs (about 86%) seems to be associated with sun light (UV) 

exposure to and a history of sunburns [41]. The carcinogenic role of UV is widely known, 

representing a classical risk factor associated with several types of cancer, including MM 

[34,42,43]. On average, a person has double chances of developing a MM if they have struggled 

with more than 5 sunburns throughout their lifetime [44] or just by having suffered one blistering 

sunburn during their childhood or adolescence [45]. In addition to the recreational outdoors 

exposure, indoor tanning represents one of the most dangerous practices with regards to SC 

appearance. Those people who have ever tanned indoors have tremendously higher risk of 

developing different types of SC, including MM. In fact, the chances of suffering from SC 

because indoor tanning are greater than developing lung cancer because of smoking [46]. 

The majority of moles are completely benign, but the presence of many of them increases 

the probabilities of developing a MM, since 20-30% of them are originated in previously existing 

moles [47]. 
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Ethnicity, age, and sex-related factors also increase the risk of developing MM. For 

example, people with fair complexion, blond or red hair, blue eyes and freckles are more 

susceptible of developing MM. Generally speaking, SC incidence is about 20 times higher in 

White people than in other ethnicities, and is more likely to occur in older people, being white 

men over age 55 the most commonly diagnosed cases. Also, it is estimated than men have higher 

probabilities of MM appearance than women in their life time [28,30] 

Another important risk factor is having a family history of MM as well as having already 

suffered any type of SC, including oneself. About 10% of people diagnosed with this disease 

have one or more first-degree relatives who have previously had MM. Besides, this type of SC 

tends to occur at younger age when it runs in families [27,28]. 

The molecular mechanisms underlying the carcinogenesis of this type of cancer, as well 

as those responsible for the sporadic transformation of some moles into a MM are still under 

revision. However, several mutations have been associated to MM development; some of them 

are acquired during a person’s lifetime, while other are inherited. The majority of melanomas 

arise from somatic acquired mutations, which are by the way highly associated to UV radiation 

[48]. For instance, some of the most common mutations in MM are found in the MAPK 

signaling pathway, such as BRAF or other MAPK mutations like V600E. MAPK and BRAF 

mutations have been reported in ~70% and ~50 of MM, respectively. This signaling pathway, 

and BRAF in particular, has garnered a lot of interest from a therapeutic point of view, since this 

oncogene is only active in malignant cells, easy to target and mutated in a high percentage of 

MM patients [49,50].  

Among inherited mutations, which account for 5-12% of MMs, the most common ones 

are found in CDKN2A and NER pathway, such as XP genes. CDKN2A (also known as P16), 
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which is a tumor suppressor involved in cell cycle control and p53 stabilization, is present in 

40% of hereditary MMs [51]. Mutations in NER genes, which are associated with repair of 

radiation-induced DNA damage, result in accumulated mutations in the skin caused by UV 

radiation or chemicals and therefore, an increased risk of SC. That is the reason why people with 

xeroderma pigmentosum, a diseased caused by inherited mutations in these genes, have higher 

risk of suffering from MM [28,50,51]. 

Other mutations commonly driving MM tend to be found in signaling pathways involved 

in proliferation (NRAS and NF1), growth and metabolism (PTEN and C-KIT), apoptosis 

resistance (TP53), cell identity (ARID2) or replicative lifespan (TERT). However, their 

frequencies vary among different tumors. For example, C-KIT is more frequent in MMs that 

develop in parts of the body rarely exposed to sunlight [28,49,50]. 

2.3. Subtypes 

Malignant melanoma is a heterogeneous type of skin cancer, and different subtypes can 

be distinguished according to several characteristics such as physical appearance, location, 

thickness, presence or absence of ulceration, mitotic rate, presence of tumor-infiltrating immune 

cells, margin status in a biopsy sample or different mutations like those previously described 

[27]. 

The most reliable features used by dermatologists in terms of first visual examination are 

the thickness, ulceration and mitotic rate of primary MM. A mole can be thin (<1 mm), 

associated with low risk of spreading, intermediate (1-4 mm), or thick (>4 mm), associated with 

higher chances of spread and recurrence. At the same time, the presence of ulceration and an 



Introduction 

51 
 

elevated mitotic rate are also related with higher risk in this regard. All combined are helpful in 

terms of determining stage, treatment options, and prognosis. 

Overall, the 4 most commonly known subtypes of MM are: 

- Superficial spreading melanoma, which is the most usually diagnosed subtype, making 

up 70% of MM. It usually develops from an existing mole. 

- Lentigo maligna melanoma, which tends to occur in older people. It is commonly found 

on higher sunlight-exposed locations, such as the face, ears or arms. 

- Nodular melanoma, which accounts for about 15% of MM. It often develops rapidly as a 

bump on the skin, and it is usually black (but it may be pinkish or reddish). 

- Acral lentiginous melanoma, which usually appears on the palms of the hands, soles of 

the feet, or under the nail bed. It occurs more frequently on darker-skinned people, and it 

is not as related to sun exposure as other subtypes. 

However, several molecular MM subtypes are also defined by different mutations in some of 

the genes previously mentioned, such as BRAF (~50% of MMs), NRAS (~20% of MMs), NF1 

(~10-15%) or C-KIT (Higher in lentigo maligna melanomas) [27]. 

2.4. Staging 

According to the American Joint Committee on Cancer (AJCC) [52], which is an 

international institution that regularly revises and updates the TNM (tumor, node, metastasis) 

staging system of several types of cancer, MM present 4 different stages (Figure 11) [27,53]: 

- Stage 0: It refers to MM in situ, which means melanoma cells are found only in the outer 

layer of skin or epidermis. This stage is very unlikely to spread to other parts of the body. 
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- Stage I: The primary tumor is still very thin (<1 mm), localized but slightly more 

invasive, reaching deeper layers of skin. This stage is subdivided into 2 subgroups, IA or 

IB, depending on the thickness (<0.8 or >0.8 mm) and ulceration (presence or absence), 

respectively. 

Stage 0 and I are considered early localized, not spread MMs (Figure 11). 

- Stage II: The primary tumor is thicker (>1 mm), extended through the epidermis and 

further into the dermis. Although they might not yet have advanced beyond the primary 

location, the risk of spreading is higher. In these cases, a sentinel lymph node biopsy is 

recommended to verify whether melanoma cells have spread to the local lymph nodes. 

Stage II is divided into 3 subgroups, IIA, IIB, or IIC, also depending on thickness and 

ulceration, which conditions the risk of spreading and the treatment regimen. 

Stage II MMs are considered intermediate or high-risk MMs, still localized but more likely to 

spread (Figure 11).  

- Stage III: This stage corresponds to MMs that has spread locally to a skin site located 

more than 2 cm away from the primary tumor, or through the lymphatic system to one or 

more nearby lymph nodes (sentinel lymph nodes). This phenomenon is called in-transit 

metastasis or satellite metastasis. This stage can also be divided into 4 subgroups, (IIIA, 

IIIB, IIIC, or IIID) depending on the size and number of lymph nodes involved, whether 

the primary tumor has satellite or in-transit metastasis, and the presence of ulceration. 

Thickness no longer plays a staging role. 

- Stage IV: This stage describes MMs that have spread through the bloodstream to distant 

body areas, and can be also further classified depending on whether the cancer has spread 
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only to distant skin or soft tissue (M1a), to other distant organs like the lung (M1b) or to 

other locations not related or related with the central nervous system (M1c or M1d, 

respectively). 

Stage III and IV are considered advanced MMs, spread beyond the primary tumor to distant parts 

of the body and therefore associated with poor prognosis and worse treatment outcomes (Figure 

11). 

 

Figure 11: Schematic representation of the malignant melanoma tumor progression at different stages of 

disease. The discrimination between the different stages defined by the AJCC staging system is based on 

several characteristics of primary tumor such as thickness, ulceration or location, spread to regional 

lymph nodes or nearby skin, and distant metastasis. 
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2.5. Diagnosis 

Nowadays, the diagnosis of MM mainly depends on frequent visual self-examinations by 

the naked eye, as well as an annual complete skin inspection and a dermoscopy. Visual 

examinations base the MM detection in the so-called ABCDE in reference to the most important 

hallmarks of this type of malignancy: asymmetry (A), border irregularity (B), color (C), diameter 

(D) and evolution (E) [54]. Dermoscopy consists on a non-invasive skin surface microscopy-

based examination, using a device called dermoscope, which allows the in vivo evaluation of 

colors and microstructures of the epidermis not visible to the naked eye. However, these methods 

are not sufficiently precise, resulting in a handful of false positives and commonly failing in the 

accurate identification of many skin malignancies. Therefore, whether a suspicious cutaneous 

melanocytic lesion is detected, histopathological examinations are also required in order to 

confirm its malignancy [55]. Nonetheless, despite this method represent the real gold standard 

for MM diagnosis, it is an invasive technique that requires the surgical excision of the tumor 

(biopsy) (Figure 12) [56].  

Hence, MM detection currently remains challenging, and it is still a long-term, resource-

consuming and costly process [57]. Basically, it relies on the patients’ commitment to their self-

exams and medical appointments, dermatologists’ availability as well as on the invasive and 

pricey method of histological examination, on the pathologists’ interpretation, which are 

subjective and neither accurate nor reproducible (especially in the early stages) [58,59]. 

Nowadays, the necessity of new sophisticated diagnostic tools to support pathologists and 

compliment visual assessments is clearly evident, since diagnostic errors lead not only to under 

or overtreatment, but also to a higher economic cost of MM management. Huge efforts have 
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been made in recent years to develop quantitative and non-invasive novel diagnostic tools, based 

on the fact that skin is easily accessible. For instance, the state-of-the-art methods that are 

starting to be increasingly used in this regard include imaging techniques such as confocal 

microscopy, multispectral imaging, 3D topography, optical coherence tomography, self-mixing 

interferometry and polarized imaging [60,61]. 

 

Figure 12. Schematic representation of the different types of malignant melanomas, the main hallmarks 

considered for identifying melanomas by visual examination (ABCDE), and current state of diagnosis 

based on tissue biopsy, dermoscopy examination, and histopathological assessment. 

Additionally, the other major focus of attention of researchers in this field during the last 

years, has been the discovery and validation of biomarkers clinically useful for early diagnosis, 

prognosis and prediction, as well as for patient counsel and appropriate management, and 

ultimately for a better personalized therapy. This, by the way, has also been the one of this thesis. 
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3. THEORIES ABOUT TUMORAL HETEROGENEITY  

Phenotypic and functional heterogeneity arises from diverse cell types recruited to the 

tumor, environmental differences, and from genetic, epigenetic and functional changes amongst 

the tumor cells themselves [62,63]. This diversity within a given tumor is a consequence of 

several intrinsic and extrinsic cell features. Cell-intrinsic factors are those inherent properties of a 

cell that contribute to its oncogenic phenotype, whereas cell-extrinsic factors are those ones from 

its surrounding TME that also make an influence [63]. Furthermore, variability can occur within 

individual tumors -intratumoral heterogeneity-, in which the tumor cells often belong to different 

phenotypes with a wide range of functional properties and a diverse expression of markers, and 

also between tumors arising in the same organ -intertumoral heterogeneity- leading to the 

classification of discrete tumor subtypes that are typically characterized by their molecular 

profile, morphology and expression of specific markers [64].  

3.1 Intratumoral heterogeneity 

The origins of the complex process of intratumoral heterogeneity have been widely 

debated and different theories have been proposed to account for the diversity within a tumor 

[65–67]. 

The first theory is the stochastic or clonal evolution model (Figure 13), which suggests 

that tumors evolve progressively during staggered carcinogenesis in a monoclonal way. This 

means that neoplasms come from a single malignant cell, whose progeny eventually accumulate 

heritable genetic and epigenetic changes that provide them certain advantages in terms of 

survival. Therefore, those heritable mutations are responsible for selection and outgrowth of 

those fitter clonal subpopulations with a marked intratumoral heterogeneity [63,68,69]. 

According to this theory, all cancer cells are equivalent in terms of capacity to give rise, boosting 
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or regenerate a tumor, being their intratumoral heterogeneity due to random or stochastic 

intrinsic or extrinsic factors [69–71]. 

A second theory corresponds to the hierarchical or Cancer Stem Cells (CSCs) model 

(Figure 13), which proposes that intratumoral heterogeneity is a consequence of certain states of 

stemness or differentiation of several cancer cells subpopulations within a given tumor. 

According to this theory, tumors arise from a subset of malignant cells, the so-called CSCs, 

which are predisposed to drive the progression, metastasis and therapeutic resistance of the 

tumor. These cells show stem-like functional properties such as self-renewal capacity and 

differentiation ability into other subsets of non-CSCs, as well as other specific features that make 

them susceptible to be specifically isolated [63,70,72].  

More recently, several investigations have suggested that CSC phenotype is not as rigid 

and stable as the hierarchical model assumed, being actually much more plastic and highly 

regulated by the TME. The ability of cells to switch states via different programs such as 

epithelial-mesenchymal-transition (EMT) has given rise to the dynamic CSCs model (Figure 

13), according to which cellular plasticity allows bidirectional switching between CSCs and non-

CSCs that plays a key role in tumor biology [63,73–78].  

This third theory also take into account the importance of TME stromal cells and their 

interactions with tumor cells in cancer development, progression, dissemination and resistance to 

treatment. These niche stromal cells, including inflammatory cells, fibroblasts and mesenchymal 

stem cells, produce different cytokines, growth factors and extracellular matrix (ECM) 

components which have been reported to promote several CSC properties such as self-renewal, 

invasion capacity or chemoresistance [79–82]. 
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Figure 13. Theories about intratumoral heterogeneity: Stochastic, hierarchy and dynamic models. 

According to the stochastic or clonal evolution model (left), different populations of cancer cells within 

the bulk tumor are tumorigenic and thus have the capacity to proliferate uncontrollably, differentiate and 

form new tumors. According to the hierarchical or CSCs model (center), only certain subpopulations of 

undifferentiated cells (CSCs) have the capacity for tumor initiation, maintenance, and spreading. The 

dynamic CSCs model (right) takes into account recent findings about the remarkable heterogeneity and 

plasticity of cancer cells, and consider that bidirectional conversions between non-CSCs and CSCs are 

possible. 
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Given the current focus on therapeutic targeting of CSCs, this dynamic theory has 

important implications on the development of future therapies [63,72,78,83]. Actually, and based 

on this plastic CSC model, members of our research group have recently proposed a novel 

therapeutic approach focused on targeting those cells that are involved in the non-CSC and CSC 

conversion. They propose to specifically target some peripheral non-CSCs, located in the TME 

edges, which have the potential to give rise to CSCs with their corresponding properties and 

subsequent role in tumor growth, progression, TME formation, and eventually, distant metastasis 

[84]. Combined therapies should be focused not only against CSCs themselves, but also against 

these bidirectional switching between CSCs and non-CSCs in order to provide a more effective 

therapeutic treatment and ultimately improve patient survival. 

3.2 Intertumoral heterogeneity 

Regarding intertumoral diversity, there are also two theories attempted to explain the 

variability that can be observed between different tumors arising in the same organ. The first 

theory corresponds to the mutational model (Figure 14), which proposes that intertumor 

variability is a consequence of genetic and/or epigenetic mutations that shape the different tumor 

phenotypes [64]. The second theory corresponds to the cell-of-origin model, which puts forward 

the idea that different cancer subtypes within the same tissue or organ are caused by different 

oncogenic events in the hierarchy of the cell lineage (Figure 14). According to this theory, any 

type of cell within the organism is able to become cancerous after accumulating mutations, and 

different tumor phenotypes can be developed depending on the differentiation state of that initial 

cell. After the malignant transformation of that particular tumor initiating cell, and independently 

of its differentiation degree, the tumor progression can be fitted to the stochastic or the 

hierarchical model [64,85].  
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Figure 14. Theories of intertumoral heterogeneity: Mutational and cell-of-origin models. According to 

the mutational model, different genetic (and epigenetic) mutations primarily determine the different tumor 

phenotypes. According to the cell-of-origin model, different cell populations serve as cells of origin for 

the different cancer subtypes that arise in a tissue or organ. 
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4. CANCER STEM CELLS 

As previously described, clonal evolution and CSC models have been classically 

proposed as drivers of intratumoral heterogeneity. However, these two theories are not 

necessarily mutually exclusive, and the concept of CSC plasticity and bidirectional switching 

between CSCs and non-CSCs has added more complexity to these highly debated paradigms, so 

it must be taken into account in order to explain the tumoral diversity observed within a given 

tumor [67,86]. 

The bulk of a solid tumor is composed not only by neoplastic cells, but also by a wide 

variety of surrounding non-tumorigenic cells within the TME, such us supporting vascular cells, 

diverse immune inflammatory cells, fibroblasts, as well as several stromal cells (Figure 7). In 

this context, tumor cells are hierarchically organized and sustained by a heterogeneous 

subpopulation of cells with stem-like functional properties, which are widely known as Cancer 

Stem Cells (CSCs), Tumor Initiating Cells (TICs) or Tumor Stem Cells (TSCs) (Figure 15)  

[87–89]. 

First evidence of the existence of this fraction of cells came from the study carried out by 

Bonnet and Dick in 1997. In their study, the authors successfully isolated a specific cell 

subpopulation from acute myeloid leukaemia (AML) patients. To their surprise, those cells 

showed functional properties similar to haematopoietic stem cells, and actually they were able to 

give rise to novel AML after implanted into immunodeficient mice [90]. After that, first evidence 

of CSCs found in solid tumors was reported in breast cancer [91]. 

Those early studies laid the groundwork for the subsequent investigations and 

accumulating evidence in favor of the CSC concept. To date, not only the existence of CSCs has 
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been widely reported, but also their primary role in driving tumorigenesis, progression, 

metastasis, therapeutic resistance and recurrence of tumor [67,72,86,92–94], as a consequence of 

their unique characteristics (Figure 15). 

 

Figure 15. Schematic representation of the main hallmarks of CSCs: stemness capacities, such as self-

renewal, undifferentiation and pluripotency, as a consequence of a noteworthy deregulation of several 

signaling pathways such as Wnt/β-catenin, Notch, or Sonic Hedgehog, among others; ability of stay 

quiescent for long periods; plasticity and capacity to undergo EMT; Therapeutic resistance, as a 

consequence of several properties and protective mechanisms, including the overexpression of MDR 

(ABC transporters) or detoxification proteins (ALDH), resistance to DNA damage-induced cell death or 

oxidative damage, and autophagy activation, among others; All these traits, as well as other 

environmental and epigenetic factors, make influence one another. Also, specific surface markers allow 

the isolation and characterization of different types of CSCs. 



Introduction 

65 
 

4.1. CSC characteristics 

4.1.1. Self-renewal and pluripotency 

Stem cells and CSCs are both characterized by their capacity for self-renewal and their 

potential for differentiation. On the one hand, the self-renewal ability allows them to give rise to 

indefinitely more cells of the same cell type, perpetuating the stem cell pool and maintaining 

their undifferentiated state. On the other hand, they are also able to differentiate into several 

types of more specialized cells. These traits in specific lineages of stem cells are orchestrated by 

environmental signals coming from their niche [83,86].  

However, CSCs differ from normal stem cells in several traits that contribute to their 

malignant phenotype. For instance, they present differences in the way of dividing and 

replicative potential, cell cycle properties, DNA damage repair mechanisms [95]. Additionally, 

they also present a noteworthy deregulation of several signaling pathways, such as Wnt/β-

catenin, Notch, or Sonic Hedgehog, which are involved in self-renewal, differentiation and 

survival [87,96,97] 

4.1.2. Plasticity 

In the last years, accumulated evidence has shed light on CSC heterogeneity and 

plasticity in several types of cancer, such as glioblastoma [98–101], melanoma [102,103], breast 

cancer [104,105] or colorectal cancer [106,107], proving that there are different subsets of CSCs 

displaying extensive metabolic and phenotypical plasticity. In addition to the aforementioned 

dynamic switching ability between CSC and non-CSC subsets, they also show biochemical and 

biophysical diversity, resulting in drug-resistance potential and/or varied dissemination to distant 

organs [108,109]. This CSC plasticity is orchestrated by cell-intrinsic factors such as epigenetic 
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modifications, transcription factors or mutations, and also by cell-extrinsic factors like physical 

and chemical conditions of the TME and molecules produced by its associated cells [84,110]. 

4.1.3. CSCs and the Epithelial-to-Mesenchymal Transition 

The epithelial-to-mesenchymal transition (EMT) is a highly dynamic and staggered 

process by which a polarized epithelial cell that normally interacts with basement membrane via 

its basal surface, undergo several changes at different levels that allow it to adapt a mesenchymal 

phenotype (Figure 16). Throughout this process, epithelial cells loss of epithelial apico-basal cell 

polarity, detach from each other by breaking cell-cell junctions and from the underlying 

basement membrane as a consequence of ECM remodeling, and mesenchymal fate is determined 

by the activation of a new transcriptional program, meaning that several EMT-inducing 

transcription factors are activated. Subsequently, some specific epithelial markers are lost while 

some other specific markers of mesenchymal cells are acquired [111,112]. 

 

Figure 16. Schematic representation of Epithelial-to-Mesenchymal Transition (EMT). This is a biological 

process by which epithelial cells undergo to multiple biochemical changes that make them lose their cell 

polarity, break cell–cell and basement membrane adhesions, as well as some specific epithelial markers, 

and acquire a mesenchymal cell phenotype with migratory capacity, invasiveness, resistance to cell death, 

increased production of extracellular matrix components and specific mesenchymal markers. 
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EMT normally takes place during normal embryonic development, tissue regeneration, 

organ fibrosis, and wound healing. However, in the context of cancer, there is strong evidence 

that EMT is also involved in tumor formation, progression, metastasis, and the generation of 

tumor cells with stem cell properties that play a major role in resistance to cancer treatment 

[75,89,111,113]. The reverse process, mesenchymal-to-epithelial transition (MET), seems to 

play an important role final steps of malignant progression and metastasis in distant organs, but it 

still remains to be further studied in greater detail [114–116]. 

4.1.4. Quiescence 

The ability to stay quiescent, which is the reversible state of a cell in which it does not 

divide but retains the ability to re-enter cell proliferation, is another major trait of CSCs. This 

cellular state, also known as dormancy, confers them an important resistance to most anticancer 

treatments and it is highly related to tumor recurrence [87,89,117]. 

4.1.5. Therapeutic resistance 

CSCs are also characterized by their remarkably resistance to the majority of the 

anticancer drugs and therapeutic treatments, which still represents an ongoing challenge in 

cancer treatment and is undoubtedly one of the main reasons for treatment failure and cancer 

relapse. This property is a consequence of several properties of CSCs, such as those previously 

reviewed (self-renewal and differentiation capacity, plasticity, or their ability to undergo EMT or 

stay quiescent), it is also attributable to other intrinsic resistance mechanisms that CSCs harbor 

against radiation and chemotherapy at a much higher rate than non-CSC, differentiated tumor 

cells (Figure 15) [94]. 



Introduction 

 

68  
 

4.1.5.1. High expression of multidrug resistance (MDR) or detoxification proteins 

CSCs present a remarkable overexpression of drug-efflux pumps such as ATP-binding 

cassette pumps (ABC transporters), such as MDR1, ABCG1, ABCG2 or ABCB1, which allow 

them to expel multiple citotoxic drugs or harmful products from their cytoplasm [118]. For 

instance, ABG2 and P-Glycoprotein drive out the fluorescent Hoeschst 33342 dye, which allow 

the isolation of the CSC-enriched side population [119–121]. In addition, the cytosolic enzyme 

aldehyde dehydrogenase (ALDH), which is one of the most widely known CSC markers, also 

plays a protective role by oxidizing intracellular aldehydes which could be potentially toxic 

[122]. 

4.1.5.2. Resistance to DNA damage-induced cell death 

CSCs also harbor several mechanisms that allow them to avoid DNA damage-induced 

cell death and thus contribute to their strong therapeutic resistance. For example, they have an 

enhanced DNA repair capacity. It has been proved that these cells present an enhanced DNA 

repair capacity after radiation, since they have significantly increased expression levels of certain 

genes involved in DNA damage response, as well as higher activation of checkpoint mechanisms 

when double and single DNA breaks are produced, inhibiting the cell cycle progression in order 

to repair the damage [123,124]. Additionally, in response to oxidative DNA damage, it has also 

been reported an enhanced reactive oxygen species (ROS) scavenging as well as increased 

activation of anti-apoptotic signaling pathways such as PI3K/Akt, WNT/b-catenin or Notch 

[125]. 
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4.1.5.3. Autophagy 

Autophagy is a regulated self-degradative mechanism of the cell that allows the orderly 

degradation and recycling of dysfunctional cellular components. Therefore, it is an important 

process for balancing sources of energy under several stressful conditions. Although autophagy 

plays dual roles in tumor suppression and promotion in many cancers, it is involved in the 

regulation of some of the CSC properties and takes an important part in their stemness 

maintenance, recurrence induction, and treatment resistance [123,126].  

4.1.5.4. Hypoxia and ROS 

Hypoxia plays a key role not only in the stemness maintenance of CSCs, but also in their 

drug resistance capacity. Indeed, they are commonly located nearby hypoxic zones within tumors 

[127]. Mainly, there are two mechanisms by which hypoxia takes part in drug resistance: 

Activation of stem-related pathways and quiescence promotion. On the one hand, activation of 

HIF1α induces the expression of several EMT and stemness activators, such as Wnt, Hedgehog 

and Notch pathways alongside other stemness-specific markers [128]. On the other hand,  

hypoxia promotes cancer cell quiescence, as it represents a restrictive stressful context for 

cellular growth [129].  

At the same time, the HIF1α signaling pathway also induces a decreased formation of 

ROS, which has also been reported to be essential for preserving important stemness CSC 

properties, including drug resistance, as well as promoting quiescence. As previously mentioned,  

ALDH is one of the culprits of ROS decreased levels [130,131].  
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4.1.5.5. Tumor environment 

As previously mentioned, TME makes a huge impact on tumor biology. Accumulated 

evidence supports that multiple cell interactions within the TME, as well as the physical and 

chemical conditions of TME, play important roles in CSC dynamics and properties, including 

their treatment resistance [132].  

Cancer-associated fibroblasts (CAFs) have been reported to stimulate the secretion of 

specific cytokines and chemokines involved in CSC maintenance, self-renewal and invasion 

capacity [79,80]. Regarding immune cells, it has been indicated that tumor-associated 

macrophages (TAMs) also promote some of these CSCs properties which confer them 

chemoresistance [81,82]. 

In addition, some of the previously mentioned signaling pathways and autophagy 

mechanism are activated in the hypoxic context within the TME [133,134], and several 

inflammatory processes that take place in this environment have been also associated to CSCs 

and their chemoresistance [135]. 

4.1.5.6. Epigenetics 

CSC-mediated drug resistance is also modulated by epigenetic mechanisms, such as 

DNA methylation or histone modifications. For instance, it has been demonstrated that several 

changes in chromatin methylation contribute to chemoresistance in CSCs [136]. Some epigenetic 

silencer proteins of the Polycomb group like BMI1 or EZH2 have also been indicated to be 

involved in CSC self-renewal and resistance to chemotherapy and radiation-induced cell death 

[137,138]. Moreover, histone acetylation seems to play an important role in regulation of 

transcriptional activation and CSC treatment resistance too [139]. 
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4.2. CSC isolation and characterization 

Traditionally, isolation and characterization of CSCs have been widely carried out by 

using biochemical methods, which are based on some of the specific characteristics of these cells 

previously described. For instance, one of the most commonly applied method is to sort CSCs 

based on their differential expression of multiple surface markers (CD133, CD44, CD34, CD26, 

CD24, CD166, CD326 (EpCAM), CD271, CD20, CD90, CD49, CD184, CD38, CD19, among 

others) (Figure 15) [86,140,141]. In fact, it is a common practice to use specific patterns of 

surface markers in order to perform a more accurate and specific selection of different CSC 

subsets in different types of tumors, such as CD34
+
/CD38

-
 in leukemia [142] or CD44

+
/CD24

-
 in 

prostate cancer [143]. 

Another commonly applied method is the determination of ALDH activity, typically 

measured with the Aldefluor® assay kit. An increased enzymatic activity of this intracellular 

protein detected by fluorescence-activated cell sorting (FACS) has been correlated with CSC-

enriched populations in several cancer types [144–146]. Also, the detection of the side 

population (SP) phenotype by Hoechst 33342 dye exclusion is widely used [147]. 

In addition, there are several functional assays that can be applied for CSC 

characterization. On the one hand, there are several in vitro assays for proliferation, colony 

forming units, sphere formation, or adhesion, migration and invasion capacity. On the other 

hand, in vivo tumorigenicity assays for testing carcinogenesis and tumor progression can also be 

carried out [148]. 

Besides these traditionally applied methods, novel approaches and methodologies have 

been proposed and in order to better isolate and characterize different types of CSCs. Emerging 
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technologies are currently being applied in this regard, including biophysical methods such as 

microfluidic chips, trypsin deadhesion or atomic force microscopy [149–151]; single-cell 

methods like FACS, single-cell OMICS or single-cell imaging [152–154]; and computational 

methods, which represent the latest in silico approaches being taken for characterizing CSC 

plasticity [77,155]. 

4.2.1. Malignant Melanoma CSCs 

In like manner, isolation and characterization of malignant melanoma cancer stem cells 

(MM-CSCs) are based on the same methods described for CSCs in general, including surface 

markers, drug resistance-associated markers and intercellular markers.  

As previously mentioned, specific marker signatures are typically used to identify tumor-

specific CSCs. In the case of melanoma, there is still controversy about the existence of a unique 

and specific pattern of surface marker for melanoma stem cells. This is mainly due to the high 

degree of cellular plasticity and the multiple mechanisms that might be driving the progression of 

this type of tumor [156]. Despite of that, some combinations of surface markers has been 

proposed to specifically isolate MM-CSCs, such as CD133
+
/CD20

+
 or CD44

+
/CD20

+
 [140]. 

In the last decade different biomarkers have been proposed for the identification of this 

subtype of CSCs [157], including some related to melanocyte undifferentiated state (CD133, 

CD271), MDR mechanisms (ATP-binding cassette transporters), or to metabolic traits (ALDH 

activity) [158–160] 

Regarding surface markers, the most consistently used to identify MM-CSCs are CD133, 

CD20 and CD271. In the last years, some conflicting results have cast some doubts on its role in 

specifically defining the CSC fraction in MM [160]. In particular, the use of CD271 remains 
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controversial, due to its highly variable expression and several results that have cast some doubts 

on its reliability and high variability observed in its expression levels [159]. However, there is 

also accumulating evidence supporting their use for MM-CSCs identification. For instance, 

recent studies have proved that CD271 and CD133 seem to be involved in MM aggressiveness, 

progression and prognosis [161–163]. 

About markers associated to MDR mechanisms, ABC transporters responsible for drug 

efflux can be also used for specific MM-CSCs identification. For instance, ABCB5, that has 

been associated with higher cellular tumorigenic ability and also correlated with tumor 

progression in melanoma patients, or ABCG2, which has been found significantly co-expressed 

with other MM CSC-specific surface markers such as CD133 [164–166]. 

With regards to intracellular markers, some of the previously detailed methods for 

general CSC isolation are also applied in case of MM-CSCs identification, such as ALDH 

activity assessment or side population detection [167].  

In addition, some other functional assays generally applied for CSC characterization can 

be carried out in MM-CSCs, both in vitro (colony forming units or sphere formation capacity 

under conditioned media) and in vivo (tumorigenicity assays) [148].  
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5. BIOMARKERS 

In the last years, the American National Institute of Health (NIH) and Food and Drug 

Administration (FDA) has reviewed biomarker definitions, as part of their common resource 

―Biomarkers, EndpointS, and other Tools (BEST)‖, created with the aim of unifying the 

definition of biomarker and their different types, among other related purposes [168]. According 

to this joint FDA-NIH resource place, a biomarker is ―A defined characteristic that is measured 

as an indicator of normal biological processes, pathogenic processes or responses to an 

exposure or intervention‖.  

Besides the general definition, there are different classes of biomarkers also defined 

according to their potential applications and usefulness in patient counseling and care, clinical 

research, or therapeutic development, including diagnostic, monitoring, 

pharmacodynamics/response, predictive, prognostic, safety and susceptibility/risk biomarkers. A 

particular biomarker might be included in two or more of those categories and some definitions 

may overlap, but all of them present particularities in their clinical use that distinguish them from 

each other [169]. 

In this era of precision medicine and multiple effective treatments highly dependent of 

early and accurate detection, such as targeted therapies or immunotherapies, designing the 

optimal personalized therapy strategy demands the development of sophisticated clinically useful 

biomarkers of several types, for the sake of earlier cancer detection, better treatment response, 

and improved patient survival [169–172]. 

In this regard, the perfect biomarker would be a metabolically and analytically stable 

molecule detectable and/or quantifiable in body fluids such as blood, urine, or saliva, through 
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minimally invasive techniques. To date, no such a flawless biomarker exists for this disease. 

However, circulating biomarkers in several body fluids take on a remarkable importance in this 

context, and they have currently become a major trend in this field of research. 

5.1. Biomarkers in malignant melanoma 

Melanoma biomarkers can be classified into different categories of those previously 

mentioned. In general, the majority of them are being used as diagnostic biomarkers, since they 

are overexpressed in MM cells. Other biomarkers show higher expression in advanced stages of 

disease and serve as indicators of therapy response or risk of recurrence, so they are considered 

prognostic or predictive. Some serologic and histologic markers typically associated to MM 

include lactate dehydrogenase (LDH), tyrosinase, S100 family of calcium-binding proteins, 

cyclooxygenase-2 and matrix metalloproteinases. Actually, some MM-CSCs markers are also 

used to identify some cell subpopulations that show significant potential for driving 

carcinogenesis, metastasis and drug resistance [170,173].  

Despite all the significant advances made in the last years in order to provide insights into 

MM behavior and outcome, this disease is still unpredictable. Hence, more efforts still need to be 

made in finding out fitting biomarkers for early detection, correct staging, avoidance of 

overdiagnosis and discrimination of other skin malignancies, and also benefit patients’ prognosis 

and personalized treatments.  

5.2. Circulating/Liquid biomarkers 

Liquid biomarkers, such as tumor cells, tumor-derived metabolites, proteins, nucleic 

acids and extracellular vesicles, are commonly found in several body fluids like blood, urine, or 

saliva, among others. These circulating components are easily accessible through minimally 



Introduction 

77 
 

invasive methods such as liquid biopsies, and they can provide priceless diagnostic, prognostic 

and predictive information [174–176] (Figure 17). Liquid biopsies present certain advantages in 

comparison to tissue based profiling. For instance, they are minimally invasive and can be 

routinely performed in order to follow up tumor progression and patient’s response to therapy 

[172]. In addition, since tumors exhibit genetic and phenotypic heterogeneity, liquid biopsies 

allow the collection of different molecules derived from multiple metastases [177], providing a 

more comprehensive profile of a patient’s cancer. 

 

Figure 17. Different circulating cells and molecular compounds, such as tumor and immune cells, 

proteins, nucleic acids (ctDNA, miRNAs, lncRNAs…), metabolites and extracellular vesicles (which 

include exosomes), can be detected in the bloodstream by liquid biopsies and may serve as potential 

cancer biomarkers. 

With regards to MM, in the last years several circulating biomarkers have been identified 

and proposed in pre-clinical models and clinical samples based on different strategies. For 

instance, there are some proteomics-based approaches, including mass spectrometry proteome 

profiling and affinity-based proteomic assays molecular and cellular profiling approaches [178–
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181]. In addition, there are also molecular and cellular approaches for liquid biomarker discovery 

in MM. Molecular profiling methods are focused on circulating tumor DNA (ctDNA) (associated 

to BRAF and NRAS mutations or epigenetic changes) [182–184], microRNAs (miRNAs) and 

long noncoding RNAs (lncRNAs) [185,186], exosomes and exosomal miRNAs [187,188]. 

Cellular profiling methods look at circulating tumor cells (CTCs) [189] and several immune cells 

[190] (Figure 17). 

Nonetheless, despite recent advances in these technologies and the considerable amount 

of potential biomarkers reported, their identification remains challenging and time-consuming. 

Only a few of them have been validated or FDA-approved for clinical use. Indeed, the only 

circulating biomarker with significant prognostic value in the updated version of the 8th edition 

AJCC melanoma staging system is lactate dehydrogenase (LDH) [191]. Increased LDH levels 

are associate with poor survival in stage IV melanoma [192] and poor outcome in patients treated 

with dabrafenib and trametinib [193]. Furthermore, significantly reduced LDH is associated with 

better response to immunotherapy [194]. Other circulating proteins have shown diagnostic and 

prognostic value for this disease, including S100B, C reactive protein (CRP), melanoma-

inhibiting activity (MIA) protein, vascular endothelial growth factor and interleukin-6, but all of 

them have limitations for clinical application, regarding their sensitivity or specificity [173]. 
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6. EXTRACELLULAR VESICLES 

Besides the classical forms of cell communication like cell junctions, adhesion contacts, 

or soluble factors that can act in an autocrine, paracrine or endocrine manner, a novel mechanism 

of cell-to-cell communication called communication by extracellular vesicles (EVs) has emerged 

in the last few years [195]. The term ―extracellular vesicle‖ is a generic term that refers to a 

heterogeneous population of endogenous nano-sized cell-derived membrane vesicles with 

pleiotropic functions, released by cells into the intercellular space and the bloodstream [196]. 

There are various subtypes of EVs, including exosomes (typically 30–150 nm), 

microvesicles (150–1,000 nm) and apoptotic bodies (1–5 μm) [197] (Figure 18). However, it 

should be noticed that the International Society for Extracellular Vesicles (ISEV) recently 

revised the nomenclature of these vesicles. According to the Minimal Information for Studies of 

Extracellular Vesicles (―MISEV‖) guidelines [198] they published in 2018, EVs should be 

discriminated depending on several distinctive traits, such as morphological aspects, biochemical 

composition, biogenesis, or cell of origin. For instance, according to their size, they should be 

termed as small EVs (sEVs) and medium/large EVs (m/lEVs), with ranges defined (<100nm or 

<200nm for sEVs and >200nm for m/lEVs). Therefore, conventionally termed ―exosomes‖ could 

be also called ―sEVs‖. 

6.1. Exosomes (sEVs): biogenesis, structure and biological functions 

Regarding its biogenesis, exosomes are originated by a sequential process of inward 

budding of late endosomes, producing multivesicular bodies (MVBs) that later fuse with the 

plasma membrane [199] (Figure 18). 
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Figure 18. Schematic representation of the different types of EVs depending on their size and biogenesis 

processes. Exosomes correspond to a smaller subset of EVs (30–150 nm) that are originated by a 

sequential process of inward budding of late endosomes, producing multivesicular bodies (MVBs) that 

later fuse with the plasma membrane. This way, exosomes are released to the extracellular matrix and to 

the bloodstream, throughout which they disseminate to distant parts of the body. 

This way, exosomes are released into the intercellular space and bloodstream by most cell types, 

being able to reach recipient cells, deliver their cargo and promote a wide spectrum of functional 

responses or phenotypic changes on them [196,200]. They contain and transfer a series of 

important bioactive molecules such as nucleic acids (DNA, mRNA, miRNA, non-coding RNAs) 

proteins, lipids and other metabolites, being this content dependent on cell types and conditions 

[199,201]. By transferring their cargo, exosomes mediate near and long-distance intercellular 

communication in health and disease and affect different aspects of target cells biology (Figure 
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19). In addition, these sEVs and their membrane are enriched in different molecules that can be 

used as exosomal markers: tetraspanins such as CD9, CD63 and CD81, proteins implicated in 

endocytosis and cargo sorting such as ALIX, flotillin and TSG101, integrins, major 

histocompatibility complex (MHC) classes I and II proteins and protein receptors, among others 

[196] (Figure 19). 

 

Figure 19. Schematic representation of exosomes' structure. These sEVs are generated by all cells and 

they carry nucleic acids, proteins, lipids, and metabolites. They act as messengers in near and long-

distance cell-to-cell communication and exert pleiotropic functions in both normal and cancer cells. 

6.2. Role in cancer, CSCs and MM 

Regardless their nomenclature, accumulating evidence constantly confirms that EVs and 

exosomes, in particular, play a major role in cancer biology, including MM [187,202] (Figure 

19). By transferring their cargo to target cells of different lineage, cancer cell-derived exosomes 

are able to induce pathways involved in cancer initiation, sustenance, progression and metastasis 
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[203,204]. They support tumor progression by promoting angiogenesis, immune system 

modulation and tumor parenchyma remodelling [205,206]. In addition, EVs are also released by 

CSCs, influencing their surrounding niche. Indeed, CSC-derived EVs can regulate direct 

crosstalk with other neoplastic cells or can modify normal surrounding cells to promote immune 

tumor escape, tumor growth and metastasis. Several studies have demonstrated that CSC-derived 

EVs play a key role in tumor progression [207]. 

In relation to MM, several studies reported different important roles of MM-derived 

exosomes in several processes and mechanisms underlying the tumorigenicity of this type of skin 

cancer (Figure 19). For instance, it has been reported that MM-derived sEVs are involved in the 

metastatic dissemination and invasion process from the primary location to regional lymph nodes 

[208] and distant organs by promoting the generation of pre-metastatic niches [209]. They also 

play an important role as promoters of EMT in primary melanocytes through paracrine and 

autocrine signaling in the tumor microenvironment [210]. Actually, it has been demonstrated that 

they contribute to metastatic invasion by carrying messenger proteins (e.g. the oncoprotein c-

MET) educating bone marrow-derived cells towards a pro-metastatic phenotype or influencing 

the behaviour of immune cells [211,212]. Furthermore, exosomal miRNAs also play significant 

roles in tumor malignancy of this neoplasia [80,213]. 

As previously mentioned, the release of exosomes and other EVs into the different body 

biofluids allows their detection, being a major source of secreted biomarkers in circulation [214–

217]. Since cancer cells exhibit enhanced production of exosomes, their concentrations are 

increased in body fluids of cancer patients compared to healthy controls [203]. Thus, exosomes 

(and other EVs) could represent a rich source of non-invasive biomarkers for the diagnosis and 

prognosis of cancers, including MM, as well as therapeutic targets [58,187,215,218,219]. 
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7. METABOLOMICS 

In this whole context, metabolomics takes on special importance, integrating all these 

topics, and it is one of the main pillars on which this thesis is based.  

Metabolomics comprises a multidisciplinary set of sciences devoted to the systematic 

study of the chemical processes involving metabolites, the small molecule substrates, 

intermediates and end products of cell metabolism. Together, the whole set of metabolites and 

their interactions constitute the metabolome, which represents a complete set a faithful 

representation of cell physiology that, unlike genes and proteins, is not subject to epigenetic 

regulation or post-transcriptional/translational modifications [220,221].  

Indeed, metabolomics is related to other genomic, proteomic and transcriptomic 

technologies in charge of the studying the whole set of genes (genome), proteins (proteome), and 

mRNAs (transcriptome), respectively. Indeed, it is often likened to its proteomic sibling, from 

which metabolomics has taken advantage of in terms of ―inheriting‖ experience and 

methodologies, but also subsequent challenges and limitations, including the metabolite 

identification process. Actually, one of the major current challenges of systems biology and 

functional genomics is to integrate all the overwhelming amount of information coming from 

different omics technologies, in order to provide a better understanding of cellular biology 

[222,223]. 

In other words, metabolomics sheds light on the unique chemical fingerprints that 

specific cellular processes leave behind and provides a functional readout of the physiological 

state of an organism. It deepens into other aspects of cellular function, complementing other 

omics technologies, by allowing the description of metabolic patterns related to a certain disease 
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or a phenotype of interest, being its ultimate goal the comprehensive identification of key 

biological mechanisms underlying disease etiology and progression. 

7.1. Metabolomics approaches, methodologies and challenges 

Within metabolomics, untargeted and targeted studies represent the two main approaches. 

Targeted (or validation-based) metabolomic studies, aim to analyze previously well-known 

relevant metabolites, and often also obtain their absolute quantification. Generally, this type of 

approach focuses on identifying and quantifying a limited number of known metabolites, such as 

those commonly found in clinical analyses. Conversely, untargeted (or discovery-based) 

approaches are focused on the global detection and relative quantification of the whole set of 

metabolites within a sample. This type of approaches is commonly carried out in order to obtain 

data for as many species as possible, annotating both known and unknown metabolites as well as 

their changes [222,224,225] (Figure 20).  

Regarding data acquisition, there are several separation [liquid chromatography (LC), gas 

chromatography (GC) and capillary electrophoresis (CE)] and detection [mass spectrometry 

(MS) and nuclear magnetic resonance (NMR)] methods that can be used in untargeted 

metabolomics studies [222]. Different combinations of those techniques can be applied, 

depending on the goals of the study. In particular, the combination on LC-MS-based 

metabolomics has become the leading technology for analyzing a wide coverage of metabolites 

[226]. Despite LC methods take longer (minutes to hours) than others like direct infusion or flow 

injection analyses (seconds to minutes), they are remarkably advantageous regarding selectivity, 

sensitivity and versatility, especially for complex biological samples like body fluids [224].  
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After separation, acquisition methods are based on the registration of accurate mass 

measurements of individual molecules by full scan MS1, followed by data dependent or 

independent acquisition of those compounds, defining those features with a mass-to-charge ratio 

(m/z) and retention time (RT). Additionally, specific MS/MS fragmentation patterns of selected 

features are also subsequently generated, which provide valuable information in terms of 

ultimate metabolite identification by using both compound and spectrum databases [222,224]. 

 

Figure 20. Overview of the workflow typically followed in untargeted metabolomics approaches, which 

normally includes an initial study design, sample collection from different biological sources, metabolite 

extraction protocols by using different solvents such as methanol (MeOH) or acetonitrile (AcN), data 

acquisition throughout different platforms such as LC/GS and MS/NMR, statistical analyses in order to 

select those differential features between the groups of comparison and identification of those selected 

compounds. Final steps comprise pathway analyses integrating data from different omics, biological 

interpretation, and ultimately, further studies for potential biomarkers validation. 
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The data processing workflow followed in untargeted approaches typically comprises 

several steps including, peak detection, filtering and alignment, and finally feature annotation 

and metabolite identification by using several public or private databases [222].  

However, despite its multiple advantages and strengths, it should be also taken into 

account that metabolomics still has some weaknesses and there are several current challenges to 

overcome, such as the reproducibility of experiments, false discovery rates, lack of standard 

reference material for many metabolites, as well as lack of connection and integration among 

data bases and other omics, which makes of compound identification probably the major 

limitation of metabolomics. 

7.2. Applications in cancer research 

Over the last decade, metabolomic studies have made great contributions to cancer 

research, not only providing comprehensive insights into the complex biological mechanisms 

and deregulated pathways underlying cancer etiology and progression, but also leading to the 

discovery of novel diagnostic/prognostic/predictive biomarkers and personalized treatment 

[227,228] (Figure 21). 

With regards to MM, several studies using omics technologies have reported many 

potential biomarkers clinically useful for this neoplasia [229]. Unfortunately, none of them has 

reached the clinical practice so far. In the last years, several metabolomic studies have evaluated 

metabolic changes in MM cells using various analytical techniques in both in-vivo and in-vitro 

models, but using other methodological platforms such as GC-MS [230] or NMR [231]. Only a 

few of them have been recently carried out in MM patients’ serum samples [232] or using 

untargeted LC-MS approaches [233,234]. 
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Figure 21. Clinical applications of liquid biopsies and metabolomics. Liquid biopsies include several 

body fluids, such as blood, urine, saliva, or stool, which contain cancer-derived cells and molecular 

components, including CTCs, nucleic acids, proteins, metabolites and exosomes. These targets circulate 

throughout the patient's body and can be detected and analyzed thanks to modern technologies such as 

metabolomics. The application of these types of technologies to liquid biopsies analysis offers a number 

of clinical applications: detection and quantification of potential biomarkers for early diagnosis of cancer, 

identification of aggressive subtypes of cancer and high-risk patients who require intensive treatment; 

design of optimal personalized therapies; as well as monitor in real time the treatment response of each 

individual.  

Therefore, significant efforts still need to be made in finding suitable biomarkers that 

could aid or improve MM early and accurate diagnosis. In this regard, untargeted LC-MS-based 

metabolomics applied to liquid biopsies and circulating compounds could pave the way toward 

those achievements (Figure 21). 
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HYPOTHESIS 

In this era of precision medicine and multiple effective treatments for cancer disease, 

such as targeted therapies or immunotherapies, the discovery, validation and implementation into 

clinic of novel reliable biomarkers is essential not only for early and accurate diagnosis, but also 

for designing the optimal personalized therapeutic strategy and, ultimately, for improving 

patients’ survival. In this sense, MM is a clear example, representing a highly curable type of 

cancer, if detected early. If not, it is the most aggressive and deadliest form of skin cancer, 

showing an extraordinary metastasis capacity and chemotherapy resistance, which are partially 

due to CSCs. To date, unfortunately, there are no suitable clinical diagnostic, prognostic or 

predictive biomarkers for this disease. Therefore, significant efforts have been carried out in 

recent years and many sources of potential biomarkers are being researched by using different 

cutting-edge technologies.  

In this context, our hypotheses were based on the following pieces of evidence: 

1. CSCs are responsible for the tumor initiation, progression, therapy resistance, relapse and 

metastasis. However, despite their great potential, their isolation and characterization still 

remain challenging, and they are not currently being used as diagnostic and prognostic 

tools in the clinical practice. 

2. Accumulating evidence supports the idea of the multiple roles that exosomes play in 

cancer’s biology, including tumor progression and dissemination to distant organs. These 

sEVs are actively released by all cells, including CSCs, to the extracellular matrix and to 

the bloodstream.  
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3. Circulating compounds, including exosomes, represent a novel source of biomarkers 

since they can be easily isolated from the different body fluids. Accordingly, liquid 

biopsies analysis using different omics technologies and analytical platforms, such as 

metabolomics and LC-HRMS, represent a powerful tool for biomarker discovery. 

4. Currently, there are no suitable clinical diagnostic, prognostic or predictive biomarkers 

for MM, and the few which have been proposed neither take into account the CSCs nor 

the CSC-derived exosomes as a target. 

5. The metabolomic characterization of exosomes derived from CSCs and serum of patients 

with MM might allow the identification of potential exosomal and serological biomarkers 

with diagnostic, prognostic or predictive value for this disease.  
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OBJECTIVES 

Based on our hypotheses, the main goal of this study was to identify potential CSC-

derived exosomal and serological biomarkers using metabolomics techniques (LC-HRMS) with 

diagnostic value for malignant melanoma. 

In order to achieve this general objective, several specific objectives were established: 

1. To recruit patients with MM at several stages of disease, collecting both serum samples 

and clinical data. 

2. To isolate, enrich and characterize CSC subpopulations in MM cell lines. 

3. To isolate and characterize exosomes derived from both MM-CSCs and serum of patients 

with MM. 

4. To analyze the metabolomic profile of both MM CSC-derived and serum-derived 

exosomes, as well as those of total serum of patients with MM by using a LC-HRMS 

analytical platform and following an untargeted biomarker discovery approach. 

5. To detect those metabolites differentially expressed in exosomes derived from MM-CSCs 

and non-CSCs, as well as in patients with MM and healthy individuals, not only in their 

serum-derived exosomes but also in the total serum fraction. 

6. To identify those differential compounds susceptible to being considered as potential 

biomarkers, and tentatively evaluate their potential clinical usefulness in terms of early 

diagnosis of MM. 
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MATERIALS AND METHODS 

1. MALIGNANT MELANOMA PRIMARY CELL LINE 

1.1. Cell culture and CSC enrichment 

The human primary Mel1 MM cell line comes from a malignant metastatic melanoma 

(stage M1a) skin biopsy (BBSPA-Mel#1) and was provided by the Biobank of the Andalusian 

Public Health System (Spain). This cell line is hipotriploid (complex karyotype with multiple 

numerical and structural chromosome abnormalities), MelA positive, p53 positive and S100 

positive, and has high tumorigenic ability. Mel1 adherent cells were maintained in standard 

culture conditions. Enriched Mel1 CSC subpopulations were obtained after culturing as primary 

and secondary spheroids in serum-free medium and in anchorage-independent conditions [235]. 

Mel1 adherent cells were cultured in a humid incubator at 37°C and 5% CO2, with DMEM 

(Dubelcco’s Modified Eagle’s medium) (Sigma-Aldrich, St. Louis, MO, USA) supplemented 

with 10% heat inactivated fetal bovine serum (FBS) (Gibco, Grand Island, NY, USA) and 1% 

Penicillin/Streptomycin (P/S) (Sigma-Aldrich) in 75 cm
2
 flask culture (Nunc, Roskilde, 

Denmark), unless otherwise indicated. FBS was inactivated by heating at 56°C for 45 minutes. 

Cells were assayed for mycoplasma contamination. Enriched Mel1 CSC subpopulations were 

obtained as follow: for primary spheroids, culture cells were collected by centrifugation (1500 

rpm for 10 min) and the pellet was resuspended twice in phosphate buffered saline (PBS). Then, 

resuspended cells were plated in serum-free sphere culture medium (DMEM:F12, 1% P/S, B27, 

10 µg/mL ITS, 1 µg/mL Hydrocortisone, 4 ng/mL Heparin, 20 ng/mL EGF, 10 ng/mL FGF, 10 

ng/mL IL6, 10 ng/mL HGF) in ultra-low adherence 6-well plates (Corning, Corning, NY, USA) 

for 72h. For the secondary sphere culture, cells from primary spheroids were collected by 
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centrifugation (1500 rpm for 10min), and then the pellet was resuspended in DMEM-F12 sphere 

medium mechanically disrupted with a pipette and by syringing three to five times through a 

sterile 25-gauge needle. After that, cells were plated, resuspended and incubated for 72h in 

sphere culture medium in ultra-low adherence 6-well plates. 

1.2. Sphere-forming assay 

To determine the self-renewal ability of the Mel1 CSCs population, a sphere-forming 

assay was performed [236]. Mel1 cells were grown as spheroids as described above: 2.5×10
5
 

cells were washed with PBS and resuspended in sphere culture medium in ultra-low adherence 6-

well plates (Corning). Spheres > 75 µm diameter were counted after 3 days by light microscopy. 

For the secondary sphere-forming assay, 2.5×10
5
 single cells derived from primary spheroids 

were plated and resuspended in sphere culture medium in ultra-low adherence 6-well plates. 

Diameters were measured using the ImageJ software.  

1.3. Colony-forming assay 

The clonogenic capability of Mel1 CSCs was determined by a colony-formation assay in 

soft agar as previously described [236] with minor modifications. Briefly, 10
4
 cells coming from 

secondary spheroids were seeded in 0.4% cell agar base layer, which was on top of 0.8% base 

agar layer in 6-well culture plates. Then, cells were incubated for 23 days at 37°C and 5% CO2, 

adding 100 µL of DMEM (10% FBS, 1% P/S) every 1-2 days. Cell colony formation was then 

examined under a light microscope after staining with 0.1% Iodonitrotetrazolium Chloride 

(Sigma-Aldrich). The size of colonies was measured using ImageJ software. 
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1.4. Aldefluor assay and phenotypic characterization by flow cytometry 

The analysis of CD20 and CD44 surface markers and the ALDH1 activity were 

performed using a Becton Dickinson FACSCanto II flow cytometer from the CIC Scientific 

Instrumental Centre (University of Granada) as previously described [236]. Briefly, 

ALDEFLUOR assays (Stem Cell Technologies, Vancouver, Canada) to detect ALDH1 activity 

in viable cells were performed according to the manufacturer’s instructions. Cells were 

suspended in aldefluor assay buffer containing ALDH1 substrate (BAAA, 1 μmol/l per 1×10
6
 

cells) and incubated for 45 minutes at 37°C in darkness. Dethylaminobenzaldehyde (DEAB) was 

used as an ALDH1 inhibitor to set ALDH1 gates. The brightly fluorescent ALDH1-expressing 

cells were detected in the green fluorescent channel (520-540 nm). Cell surface levels of CD44 

and CD20 were determined with anti-human antibodies CD44-phycoerithrin (PE) and CD20-

allopycocyanin (APC) (MiltenyiBiotec, BergischGladbach, Germany), respectively. The brightly 

fluorescent PE and APC were detected in red (564-606nm) and blue (650-670 nm), respectively. 

All samples were analysed on a FACS CANTO II (BD Biosciences, San Jose, CA, USA) using 

the FACS DIVA software. 

1.5. Side population assay 

Hoechst 33342 exclusion (Side Population) assays were carried out as previously 

described [237] to analyse cells overexpressing ABC transporters. Single cell suspension 

obtained from parental cell lines and melanospheres were stained with Hoechst 33342 (Sigma-

Aldrich) dye. As negative controls, Verapamil (Sigma-Aldrich) was used for maintaining the 

efflux channel closed, inhibiting the capacity to efflux Hoechst 33342 by cells. The brightly 

fluorescent cells were measured by flow cytometry in Hoechst blue (440/40) and Hoechst red 
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(695/40) of a FACScan Aria III (BD Biosciences) using FACS DIVA software from the CIC 

Scientific Instrumental Centre (University of Granada). Cells with the ability to efflux Hoechst 

33342 were considered as the side population (SP). 

2. EXTRACELLULAR VESICLES: EXOSOMES 

2.1. Isolation and purification 

For exosome isolation, Mel1 cells were cultured in 75 cm
2
 flasks culture in standard 

anchorage-dependent culture conditions with DMEM supplemented with 1% P/S and 10% heat 

inactivated exosome-depleted FBS, until 80% confluence. FBS was depleted of bovine exosomes 

by ultracentrifugation at 100,000g for 70 min [216]. Exosomes were also isolated from Mel1 

CSCs: a total of 3×10
6
 cells were cultured as primary and, then, as secondary spheroids in 

anchorage-independent and serum-free conditions, as described above. Supernatant fractions 

collected from cell cultures after 72 h were centrifuged at 500g for 10 min to remove any cell 

contamination and debris. Exosomes from cell-free culture supernatants were purified by 

sequential centrifugation as previously described by Costa-Silva et al. with minor modifications 

[238]. Briefly, to remove any possible apoptotic bodies, dead cells and large cell debris, the 

supernatants were first spun at 10,000g for 40 min. Exosomes were collected by 

ultracentrifugation at 100,000g for 80 min. Exosome pellets were washed in 35mL PBS and 

pelleted again by ultracentrifugation at 100,000g for 80 min (Beckman SW28 rotor). In addition, 

serum-derived exosomes from patients with MM and healthy individuals were isolated following 

the same protocol described above, but washing the exosome pellets in 10 mL PBS. The final 

pellet was resuspended in 100μL of PBS and stored frozen at -80˚C for further analyses. 

Repeated freezing and thawing of the exosome suspensions was avoided.  
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2.2. Characterization 

2.2.1. Transmission and scanning electron microscopy 

Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) 

analyses were performed at the Centro de Instrumentación Científica (CIC, University of 

Granada). For TEM and SEM, samples were negatively stained with uranyl acetate as follows: a 

30 μL drop of the exosome sample was placed on a carbon-coated 300 mesh grid and allowed to 

adsorb at room temperature for 5 min. The grids were then washed in drops of ultrapure water 

for 1 min. Adsorbed exosomes were negatively stained by placing the grids on a drop of 1% 

uranyl acetate in aqueous suspension for 1 min. The excess fluid was slightly drained with filter 

paper, and then sample grids were dried at room temperature for 6 min. The preparations were 

examined with a LIBRA 120 PLUS transmission electron microscope (Carl Zeiss SMT, 

Oberkochen, Germany) at an acceleration voltage of 120 kV, and the HITACHI, S-510scanning 

electron microscope. Then, samples were determinate with the Edwin-Röntec microanalysis 

system. 

In addition, pellets obtained from CSC cultures were immersed in 4% 

paraformaldehyde/0.1 M PBS for 4 hours at 4ºC and washed in sucrose in 0.1 M PBS overnight. 

The fractions were incubated by increased alcohol concentrations and were cut in semithin 

sections at 0.5 µm with tissue processor (TP1020, Leica, Germany).   

2.2.2. Atomic force microscopy 

Atomic Force Microscopy (AFM) analyses were performed at the Centro de 

Instrumentación Científica (CIC, University of Granada). For AFM, purified exosomes were 

diluted 1:10 in deionized water. A 10μL drop of exosome suspension was adsorbed to freshly 
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cleaved mica sheets at room temperature for 10 min and rinsed with deionized water to remove 

salt precipitates. The sheets were then completely dried under a gentle stream of argon gas (Ar). 

The preparations were examined with an NX20 Atomic Force Microscope (Park Systems, 

Suwon, South Korea) and images were visualized and processed using the Park Systems XEI 

software. Measurements were carried out with ACTA cantilevers (40 N·m
-1

) and in Non-Contact 

Mode. 

2.2.3. Western blot analysis 

Exosome pellets were isolated from 100 mL of cell culture supernatants of adherent cells 

and CSCs and from 600 µL of patients’ serum. The final pellets were resuspended in 100 μL of 

PBS and stored at 4°C for further protein quantification. The protein concentrations were 

measured using the BCA Protein Assay Kit (Pierce, Rockford, IL, USA) according to the 

manufacturer’s instructions. Proteins extracts (30μg) were denatured at 95°C for 5min in loading 

buffer (containing Tris – pH 6.8, SDS, glycerol, β-mercaptoethanol and bromophenol blue). 

Proteins were subjected to 4-20% Mini-PROTEAN TGX (Bio-Rad, USA) gel together with 

Precision PlusProteinTM Kaleidoscope Prestained Protein Standards (Bio-Rad, USA). The 

samples were transferred to a nitrocellulose membrane (Trans-Blot, Mini Format, Bio-Rad) 

using a transfer apparatus according to the manufacturer’s protocols (standard program: 25 V for 

30 minutes) (Bio-Rad). After incubation with 5% skimmed milk in PBS-Tween 0.1% for 1 h at 

room temperature, the membranes were incubated overnight with antibodies against CD9 

(dilution 1/1500, eBioscience), CD63 (dilution 1/500, Santa Cruz Biotechnology), CD271 

(dilution 1/500, Abcam) and Alix (dilution 1/1000, Cell Signaling). Membranes were then 

incubated with conjugated goat anti-mouse secondary antibody and goat anti-rabbit secondary 
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antibody for 2 h, and signals were detected using the ECL-PLUS y ECL PRIME (Amersham 

Biosciences). The bands were visualized with medicals photographic films (AGFA). 

2.2.4. Exosome size analysis 

Analyses were performed on NanoSight NS500 instruments (Malvern Instruments, UK). 

The instrument was equipped with a 488 nm laser, a high sensitivity CMOS camera and a 

syringe pump. Exosomes were diluted 1:1000 in PBS buffer to obtain a concentration range (1-

10 x 10
8
 particles/mL). The measurements were analysed using the NTA2.3 software (Malvern) 

after filming three 60-second videos. 

2.2.5. Immunogold labelling by transmission electron microscopy 

Immunogold labelling of exosomes was carried out at the Andalusian Centre for 

Nanomedicine (Bionand, Spain). Exosomes suspensions were put on copper grid with Formvar-

Carbon and incubated for 15 min at RT. They were dried slightly and diluted in 15 µL of 2% 

paraformaldehyde in 0.1 M PBS and incubated for 10 min. The samples were transferred to a 15 

µL drop of 2% BSA in 0.1 M PBS, plus the primary antibody Anti-Human CD63 Clone H5C6 

(RUO) (Becton Dickinson) diluted 1/500 and incubated for 1.5 h at room temperature within a 

humid chamber. After several PBS washes, the grid was incubated with the Anti-Mouse IgG 

(Whole molecule)-gold 10 nm secondary antibody (Sigma Aldrich) and incubated 1 h at room 

temperature within a humid chamber. The samples were marked with a negative stain by using 

15 μL of 1% uranyl acetate in Milli-Q water for 15 seconds. The preparations were examined 

with a LIBRA 120 PLUS transmission electron microscope (Carl Zeiss SMT, Oberkochen, 

Germany). 
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3. PATIENTS WITH MALIGNANT MELANOMA 

3.1. Collection and preparation of serum samples 

Serum samples were collected in the Oncology Service at the University Hospital Virgen 

de las Nieves of Granada and University Hospital San Cecilio of Granada (Spain). The ethics 

committee from both hospitals approved the study (number: 32140085), and all clinical 

investigations were conducted according to the principles expressed in the Declaration of 

Helsinki (―Ethical Principles for Medical Research Involving Human Subjects‖). Written 

informed consent was obtained from all patients and controls before their enrolment in the study. 

Samples were collected in BD vacutainer SSTII advanced tubes (Becton Dickinson, Franklin 

Lakes, NJ) with silica to activate clotting of the specimen, incubated at room temperature for 30 

min, and centrifuged for 10 min at 1400g. Afterwards, the supernatant (around 1 mL) was 

carefully aspirated and stored at -80ºC until the examination. 

Regarding the experiments carried out in chapter 1, samples were obtained from serum of 

patients with MM (MMPs) (n=20) and healthy controls (HCs) (n=14). MMPs presented different 

stages of the disease, namely: Stage I (n=5), stage II (n=5), stage III (n=5) and stage IV (n=5). 

For those experiments performed in chapter 2, a total of 105 serum samples were 

collected, containing 26 HCs and 79 MMPs. Regarding the stage of disease, MMPs presented 

different stages, namely: Stage I (n=22), stage II (n=22), Stage III (n=22) and stage IV (n=13). 

In both cases, serum samples from the corresponding HCs were supplied by the Biobank 

of the Andalusian Public Health System and were collected and treated in the same manner as 

the patients’ samples. 
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4. METABOLOMIC ANALYSES 

The metabolomic analyses of exosomes isolated from cell culture supernatant and 

patients’ serum samples were performed in Fundación MEDINA (Centro de Excelencia en 

Investigación de Medicamentos Innovadores en Andalucía) as described by García-Fontana, et 

al. with minor modifications [239]. 

4.1. Metabolite extraction 

Exosome samples from both MM Mel1 cell line and MMPs’ serum (chapter 1), as well as 

total serum samples from MMPs and HCs (chapter 2), were kept at 4˚C during the analytical 

process. Sample preparation for LC-HRMS analysis was performed as follows. Exosome 

samples were thawed on ice and vortexed. Proteins were removed from exosome suspension 

using an appropriate extraction solvent [methanol (1:3 exosomes:MeOH) for exosome samples 

and acetonitrile(1:8 serum/AcN) for total serum samples] and shaken (60 seconds), [Exosome 

samples were also sonicated (1 min) and shaken again]. Then, samples were centrifuged at 

13,300 rpm for 15 min at 4°C. Supernatants were collected and dried under an N2 air stream. 

Dried samples were reconstituted in mobile phase (MP) (50% H2O and 50% AcN at 0.1% of 

formic acid), 90 μL or 250 μL for exosomes samples and total serum samples, respectively. 

Internal standards such as caffeine, creatine, L-Leucine, roxithromycine or L-Abrine were also 

added at 500 ppbs.  Next, samples were transferred to the analytical vials. Samples were stored at 

4°C and analysed within 24 hours of reconstitution. 
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4.2. High-Performance-Liquid-Chromatography/High-Resolution-Mass-

Spectrometry analyses 

HPLC/HRMS were carried out using an AB SCIEX TripleTOF 5600 quadrupole-time-of-

flight mass spectrometer (Q-TOF-MS) (AB SCIEX, Concord, Canada) coupled to high 

performance liquid chromatography (HPLC) system, in positive electrospray ionization (ESI) 

mode. 

Before HRMS analysis, chromatographic separation was performed by Agilent Series 

1290 LC system (Agilent Technologies), equipped with a reverse phase Atlantis T3 HPLC C18 

column (C18: 2.1mm x 150mm, 3mm) (Waters, Milford, MA, USA) kept at 25 ºC in ESI mode. 

Mobile phase was 0.1% formic acid-90:10 H20/AcN (Eluent A) and 0.1% formic acid-90:10 

AcN/H20 (Eluent B). The gradient elution was: 0.00–0.50 min 1% eluent B, 0.50–11.00 min 99% 

eluent B, 11.00–15.50 min 99% eluent B, 15.50–15.60 min 1% eluent B, and 15.60–20.00 min 

1% eluent. The elution flow rate was 300 µL/min. For each sample, 5 μL were injected into the 

HPLC system. Samples were injected randomly in order to prevent any possible time-dependent 

changes in the chromatographic profiling. Blank solvent (BS) and quality control (QC) samples 

were injected interspersed in the sequence run. The QC samples were prepared by pooling an 

equal volume of all samples and injected frequently across the sequence run in order to check the 

stability and performance of the system. The BS samples were also run interspersed in the 

sequence to identify possible impurities of the solvents or extraction procedure and to check 

carryover contamination from intense analytes. 

For HRMS analysis, TripleTOF 5600 was operated using a TOF method in combination 

with information dependent acquisition (IDA) method, obtaining not only full scan mass spectra 
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acquisition but also simultaneous automatic acquisition of MS/MS fragmentation mass spectra 

for the most intense ions of each scan. Ion Source parameters and IDA conditions were: gas 

source 1: 50.00; gas source 2: 50.00; curtain gas: 45.00; temperature: 500.00 °C; ionspray 

voltage floating: 4500.00; TOF masses: Min = 80.0000 Da Max = 1600.0000 Da; accumulation 

time: 0.2500 sec, IDA accumulation time: 0.1000 sec. Mass calibration was automatically 

performed every 10 injections. The method consisted of high-resolution survey spectra from m/z 

50 to m/z 1600 and the 8 most intense ions were selected for acquiring MS/MS fragmentation 

spectra after each scan. An Automated Calibration Delivery System performed an exact mass 

calibration prior to each analysis. 

4.3. Data set creation 

PeakView software (version 1.0 with Formula Finder plug-in version 1.0, AB SCIEX, 

Concord, ON) was used in order to assess the analytical drift in terms of mass and retention time 

shift, which is an essential step for a reliable processing of data. The variability of several known 

peaks (m/z and RT), corresponding to those analytical standards previously added, were 

evaluated. MarkerView software (version 1.2.1.1, AB SCIEX, Concord, ON) was used for 

processing the LC-HRMS raw data. This software performs peak detection, alignment and data 

filtering, generating a feature table which defines measured m/z, RT and integrated ion intensity 

for each peak. An automated algorithm in the RT range 0.8–19 min and m/z range 50–1600 was 

used for data mining.  

For exosome samples, the intensity threshold of extraction was established at 100 counts 

per second, in order to avoid background noise. RT and m/z tolerances of 0.1 min and 15 ppm, 

respectively, were used for peak alignment. Background noise was removed by using a specific 

tool of MarkerView software. The analytical replicates of each sample were averaged. 
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For total serum samples, extraction intensity threshold was established in 50 counts per 

second. Peak alignment was achieved using RT and m/z tolerances of 0.07 min and 10 ppm, 

respectively. Based on the accuracy of mass measurement, the algorithm select true molecular 

features, and group ions related to charge-state envelope and isotopic distribution. Only features 

that were present at least in 60 samples were considered. In order to discard possible 

contaminants and background mass signals present in the BS, a filtering procedure with fold-

change (FC > 2) and Student’s t-test (p < 0.05) between BS and MMP/HC samples was applied.  

Mass signals with an unacceptable reproducibility (RSD > 30%) with regards to the QC 

samples were also discarded. Subsequent statistical analyses were carried out using 

MetaboAnalyst 4.0 Web Server [240] as previously described [239]. 

4.4. Data pre-treatment 

QC distribution on principal component analysis (PCA) plot was used for analytical 

validation prior to the following analysis. After that, different approaches of data normalization 

(normalization by a QC reference sample, sum and median normalization), data transformation 

(logarithmic and cubic root transformation) and scaling (auto scaling and Pareto scaling) were 

evaluated in order to define which combination provides a better grouping of QC samples on 

PCA plot and a normal distribution of the data. Variables with unacceptable reproducibility 

(RSD > 30%) or detected in less than 50% of QC samples, were also rejected from the data 

matrix. 
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4.5. Data treatment 

Statistical analyses were carried out using MetaboAnalyst 4.0 Web Server. Briefly, after 

dataset creation, raw data were normalized, transformed, and scaled in order to achieve a more 

Gaussian type distribution [241]. Then, filtering according to significant differences was done 

based on statistical analysis including both univariate (UVA) and multivariate (MVA). Statistical 

analyses were carried out to filter variables (metabolites) that are significantly different between 

the groups compared. UVA assesses the statistical significance of each peak/variable separately, 

while MVA takes into account the combination of the effects of multiple variables. For UVA, a 

double filtering procedure with t-test (p-value < 0.05) and fold-change (FC > 1.5) was applied in 

order to identify differentially expressed mass signals between BS and biological samples. This 

first filtering allowed removing background noise and preserving the peaks from true biological 

samples. Then, UVA-based (ANOVA or t-test) filtering (p-value < 0.05) was used to detect 

differential metabolites between the sample groups. Thus provides a quality criterion to assess 

variable relevance for further data analysis. For MVA, principal component analysis (PCA) and 

partial least squares regression (PLS-DA) were carried out after UVA-based filtering. PCA was 

applied to assess quality of the analytical system performance. PLS-DA allowed discriminating 

variables that are responsible for variation between the comparison groups. For statistical 

validation, quality description by goodness of fit (R
2
) and goodness of prediction (Q

2
) was used. 

A powerful model for diagnostics should show high values of R
2
 and Q

2
 but also not vary more 

than 0.2–0.3. For metabolomics data, R
2
> 0.7 and Q

2
> 0.4 are considered acceptable values 

[241]. Selection of the metabolites with highest discriminatory power and therefore susceptible 

of being considered as potential biomarkers was based on their variable importance in projection 
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(VIP) score, which had to be >1, and on their fold change, which had to be <0.6–>1.5. The 

models were also validated using 10-fold cross validation (CV). 

4.6. Biomarker identification 

PeakView software was used to estimate the elemental formula of selected marker 

compounds from accurate mass, isotopic clustering, and fragmentation patterns. Next, accurate 

mass searching was performed in several compound databases (Metlin, Human Metabolome 

Database, Lipid Maps, PubChem, ChemSpider). The mass tolerance was established at 10 ppm. 

For automatic MS and MS/MS elemental formula estimation the Formula Finder plug-in of 

PeakView software (AB SCIEX) was used, and the mass tolerance was set at 10 mDa. For those 

tentatively identified compounds with a fragmentation spectrum available, similarities between 

the theoretical and the experimental fragmentation spectrum was assessed using both the 

fragmentation pane tool of PeakView software for in silico fragmentation and scientific literature 

search. Only candidates whose presence in humans was likely were selected as potential MM 

biomarkers. 

4.7. Biomarker evaluation 

Receiver operator characteristics (ROC) curve analyses were carried out in order to 

assess the clinical utility of the metabolites selected as potential biomarkers[221,242]. ROC 

curves are often summarized into a single metric known as area under the curve (AUC), which 

indicates the predictive and classificatory capacity of a specific biomarker (or model combining 

several ones). A general guide for assessing the utility of a biomarker based on its AUC is as 

follows: 0.5–0.6 = fail; 0.6–0.7 = poor; 0.7–0.8 = fair; 0.8–0.9 = good; 0.9–1.0 = excellent. ROC 

curves are generated by Monte Carlo cross validation (MCCV) using balanced sub-sampling. In 
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each CV, two thirds (2/3) of the samples are used to evaluate the feature importance. The top 

important features are then used to build classification models which are validated on the 1/3 of 

the samples that were left out. The procedure was repeated multiple times to calculate the 

performance and confidence interval of each model. The AUC provided in this work are flipped 

(1-AUC) and consequently they are always presented as being >0.5 independently of the case 

control ratios. Biomarker evaluation models were created using a linear SVM with different 

numbers of features (up to 10 in this case). ROC curves were generated using the predicted class 

probabilities from repeated cross validation for each model. 

5. STATISTICAL ANALYSES 

For Mel1 characterization, all data are presented as the mean ± standard deviation. 

Differences between groups were analysed for statistical significance using the two-tailed 

Student’s t-test. P-value of 0.05 was accepted as the statistical significance level. 
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BACKGROUND 

Malignant melanoma (MM) is the most aggressive and life-threatening form of skin 

cancer whose incidence continues increasing worldwide at a great rate. It is known that this 

aggressiveness is mainly due to intratumoral heterogeneity. In fact, tumor cells are hierarchically 

organized and sustained by cancer stem cells (CSCs), a subpopulation of cells with stem-like 

functional properties such as self-renewal ability and multipotency, among others [92,93]. This 

fraction of cells is highly responsible for tumor initiation, maintenance, progression, metastasis 

and recurrence. In addition, CSCs are remarkably resistant to radiotherapy and chemotherapy as 

a consequence of their particular biology [94]. Moreover, the CSC phenotype is not a rigid state 

and the intratumoral heterogeneity of cancer also extends to CSC characteristics, mainly due to 

tumor microenvironment (TME) [84]. In particular, malignant melanoma CSCs can be identified 

by the expression of specific markers and functional assays, and their stem-like properties have 

been demonstrated in vitro and in vivo [243,244]. 

Although significant efforts have been made in the last years, identification of useful 

diagnostic, prognostic and predictive biomarkers in MM remains challenging. Several candidate 

biomarkers have been proposed but few have reached clinical application [245]. Thus, it is 

important to discover specific useful biomarkers and develop methods that can sensitively detect 

this neoplasia at subclinical metastatic stages. 

Recent investigations confirm that extracellular EVs and exosomes (sEVs), including 

those released by CSCs, play important roles in cancer’s biology [203]. By transferring their 

cargo to different target cells, including surrounding TME cells, they promote multiple processes 

directly related with tumor initiation, sustenance, progression and metastasis, including 

angiogenesis, immune system modulation and avoidance, tumor growth, and tumor parenchyma 
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remodelling [204–207]. MM-derived exosomes are involved in the metastatic dissemination to 

regional lymph nodes [208] and distant parts of the body by promoting the generation of pre-

metastatic niches [209,211]. 

Importantly, exosomes and other EVs represent an important source of circulating 

biomarkers, since they are released into the bloodstream and other body fluids, especially by 

cancer cells [203,214–217]. Therefore, they can be easily isolated by minimally invasive 

techniques such as liquid biopsies, representing a rich source of potential novel biomarkers for 

the diagnosis and prognosis of cancers, including MM, as well as therapeutic targets 

[215,246,247]. 

In this context, metabolomics as emerging ―omic‖ research technology represents a 

powerful tool for biomarkers discovery. Metabolomics refers to the systematic identification and 

quantification of the complete set of low molecular weight metabolites, known as metabolome, 

which are context dependent and vary according to the physiology, developmental or 

pathological state of a cell, tissue or organism [248]. The study of the complete metabolome is 

technically challenging, due to its diversity, and multiple strategies are employed to provide a 

broad metabolic coverage. In this regard, MS is the gold standard analytical platform for 

metabolomics, as it provides high sensitivity, versatility and reproducibility [217,224,248]. In 

order to extract useful biological information from large and complex datasets generated by mass 

spectrometers, univariate (T-test, ANOVA) and multivariate (PCA, PLS-DA) statistical analyses 

are used [217,240].  

Over the last decade, several studies using omics technologies have enhanced the 

development and validation of biomarkers currently used in the diagnosis, prognosis and 
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treatment response prediction in MM [229], but unfortunately none of the metabolites identified 

as potential biomarkers has been proven to be clinically useful so far.  

In this work, we characterized a patient-derived MM cell population enriched in CSCs 

and analysed the metabolomic profile of exosomes derived from these MM cells and from serum 

of patients with MM using a high-resolution mass spectrometry untargeted approach (Figure 

22). To our knowledge, we reported for the first-time differences on exosome metabolomic 

profile from CSCs-enriched melanospheres versus MM differentiated cells. We also reported 

metabolomic differences between serum-derived exosomes from patients with MM at several 

stages of the disease compared to those derived from healthy controls. 

 

 

 

 

 

 

 

 

 

 

Figure 22. Graphical abstract representing the general workflow and the main assays performed in this study.  
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RESULTS 

1. Characterization of primary Mel1 melanospheres 

For the enrichment of melanoma CSCs, we used a primary patient-derived tumor cell line 

(Mel1) from an MM skin biopsy (stage M1a). We studied the anchorage-independent growth of 

Mel1 spheres in serum-free conditions [235] to determine their CSC characteristic phenotype by 

determining sphere forming ability, proliferation rate of primary and secondary melanospheres, 

clonogenic capacity by colony-formation assay in soft agar, side population, CD20 and CD44 

cell surface markers expression and ALDH activity.  

 

Figure 23. (A) Representative light microscopy (4x) images of primary (left) and secondary (right) melanospheres 

formed from Mel1 cell line; (B) Proliferation curves of Mel1 adherent cells and melanospheres cultured for three 

days and seeded with an equal number of cells at day 0. 

Under anchorage-independent and serum-free conditions Mel1 cells had the capacity of 

self-renewal by the increased sphere number and size of melanospheres (Figure 23A).  
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Cells growing as melanospheres had a significantly lower proliferation rate when 

compared to the adherent cell culture of the same cell line, with a doubling time for adherent 

cells, primary and secondary spheres of 31.6, 51.7 and 65.1 h, respectively. Therefore, 

melanospheres showed the slow-cycling nature of stem cell populations (Figure 23B). 

Although a significantly higher number of secondary spheres were observed in 

comparison with primary spheres (Figure 24A), the size was smaller in secondary spheres than 

in primary spheres, with average diameters of 5.6 and 0.8 mm, respectively (Figure 24B). 

Moreover, Mel1 melanospheres showed a high capacity to form colonies in soft agar (Figure 

24C). 

Accordingly, secondary spheres showed a significantly higher proportion of cells 

expressing both CD20+ and CD44+ markers with values of 29% and 14.5% respectively in 

comparison to primary melanospheres (CD44+: 14%, CD20+: 9%) and cells growing in adherent 

conditions, where only 1.5% and 5% were positive for CD20 and CD44 respectively (Figure 

25A-B). Moreover, the rate of side population (SP) in melanospheres was significantly higher 

than in adherent cells (Figure 25C). Thus, adherent cells displayed a 9.7% of SP, whereas 

primary and secondary Mel1 melanospheres showed 17.5% and 24.5%, respectively. Regarding 

ALDH activity, both primary (8.1%) and secondary melanospheres (26.9%) displayed a 

significantly higher proportion of ALDH+ cells than the adherent ones (4.8%) (Figure 25D).  

Altogether, these results indicate that Mel1 cells growing as primary and secondary 

melanospheres in anchorage-independent and serum free conditions constitute an enriched cell 

population with functional and phenotypic stemness properties. Since secondary melanospheres 

were most enriched in CSC properties they were used for subsequent studies. 
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Figure 24. (A) Number of primary and secondary spheres formed by Mel1 cell line growing in anchorage-

independent and serum-free conditions. Spheres were counted after 3 days under light microscopy; (B) Diameter of 

primary and secondary spheres, measured by ImageJ software; (C) Representative optical image of the colonies 

formed by Mel1 cells coming from adherents cells, primary and secondary spheroids after 37 days soft agar culture 

in P6 well plates; stained with 0.1% Iodonitrotetrazolium Chloride.  

 

Figure 25. (A) Percentage of CD20+ and (B) CD44+ in adherent cells and primary and secondary melanospheres; 

(C) Side Population determined in the different culture types; (D) Percentage of ALDH+ cells measured by flow 

cytometry. Data are graphed as mean ± SD from experiments carried-out in triplicates (***P < 0.001; **P < 0.01; 

*P < 0.05). 
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2. Isolation and characterization of exosomes derived from primary patient-

derived Mel1 CSCs and serum of patients with malignant melanoma 

Based on their unique size and density, we isolated exosomes from the culture 

supernatant of Mel1 secondary spheres and MMP serum following the ultracentrifugation 

protocol described in the Material and Method section. Exosomes purification was confirmed by 

TEM, AFM, Western blot, NanoSight and SEM. 

As shown in TEM images (Figure 26A) vesicles obtained from Mel1 secondary 

melanospheres (Figure 25A) have a characteristic saucer-like ultrastructure with diameters 

ranging from 40 to 210 nm and crescent shaped membrane invaginations limited by a lipid 

bilayer, while vesicles obtained from MMP serum had a diameter ranging from 30 to 140 nm. 

AFM images (Figure 26B) showed a heterogeneous organization of exosomes, in terms of the 

wide variation in shape and size as demonstrated in both 2-dimensional (2D) images and 

topographic profiles, regardless of their origin.  

Western blot analysis (Figure 27) showed that these extracellular Mel1 vesicles were 

positive to known exosome classic markers including CD63, Alix and CD9. Moreover, we were 

able to detect the expression of the CD271 melanoma CSC marker in both exosomes and Mel1 

secondary melanospheres. EVs isolated from serum of HCs and MMPs at different stages of the 

disease (stages I-IV) were also positive for Alix and CD9 markers.  
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Figure 26. (A) Transmission electron microscopy images of isolated exosomes with a saucer-like shape limited by a 

lipid bilayer. EVs isolated from Mel1 secondary melanospheres culture supernatants had diameters ranging from 

~40–210 nm; and those isolated from MMP in had a diameter ranging from ~30–140 nm. Images show exosomes 

derived from an MMP at stage IV. Black arrow heads point to exosomes; (B) Topography of exosomes derived from 

Mel1 secondary melanospheres and MMP serum observed under atomic force microscopy (AFM). Exosomes on a 

mica surface revealed heterogeneity in size and shape as well as forming aggregates in both 2-dimensional 2D (left) 

images and 3D profiles (right). Acquisition areas were 5 x 5 µm
2
. 

 

Figure 27. Western blot analysis of CD9, CD63, Alix exosomal surface markers and the CD271 melanoma stem 

cell marker in melanospheres-derived exosomes and Mel1 CSCs. The expression of CD9 and Alix are also shown as 

representative exosomal surface markers in MMP serum-derived exosomes. IgG was used as a positive control. 
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Exosome size distribution determined by NTA Software confirmed the presence of 

particles with nanometric size in both types of samples, and the average concentration was 5.48 x 

10
8 

particles/mL for Mel1 CSC-derived exosomes and 4.64 x 10
8
 particles/mL for MMP serum-

derived exosomes. Mel1 CSC-derived exosomes showed peaks around 115 nm corresponding to 

individual exosomes while larger size peaks were related to exosome aggregates (Figure 28A), 

which was also confirmed by SEM (Figure 28B). The micro-analysis determined that the 

majority component was carbon, which confirmed the organic origin of the samples (Figure 

28B).  

Furthermore, we were able to detect MVBs with spheroid structures inside surrounded by 

a phospholipid bilayer in Mel1 secondary melanospheres (Figure 29A). Finally, the morphology 

and size of exosomes were also verified by immunogold using beads coated with an anti CD63 

antibody. Black punctate regions indicate a positive staining for CD63 around the exosome 

membranes from both Mel1 CSC-derived exosomes and MMP serum-derived exosomes (Figure 

29B). Exosomes derived from Mel1 differentiated adherent cells were also isolated and 

characterized according to the same criteria (Figure S1). 
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Figure 28. (A) The size distribution of exosomes obtained from Mel1 CSCs and MMPs serum was analyzed by 

NTA; (B) Scanning electron microscopy images of CSC derived-exosomes aggregated (left) and individualized 

(middle) and micro-analysis of particles (right) showing the particle composition. 

 

Figure 29. (A) Multivesicular bodies observed by electron microscopy in Mel1 CSCs. Image obtained from paraffin 

sections; (B) Immunogold using beads coated with an anti-CD63 antibody in exosomes derived from Mel1 

secondary melanospheres cultures (left) and from a stage IV MMP serum (right). 
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3. LC-HRMS metabolomic analysis of primary patient Mel1-derived 

exosomes 

Metabolomic characterization was first performed with exosomes isolated from adherent 

Mel1 tumor cells and from Mel1 CSCs. The LC-HRMS total ion chromatograms (TIC) observed 

in the positive ionization mode for the metabolites extracted from exosome samples showed 

excellent reproducibility in terms of retention time and signal intensity, suggesting a low 

analytical drift across the whole set of samples (Figure 30). A positive ionization data matrix of 

2,486 mass signals was obtained as an outcome of the peak picking and alignment procedures. In 

order to filter the results and minimize the signal redundancy, only peaks representing 

monoisotopic ions (signals with the lowest m/z value within an isotope pattern) were selected 

(281 peaks) and subjected to the chemometric analysis. After that, raw data were normalized, 

transformed and scaled, and a first filtering by t-test and two-fold change was performed in order 

to discard mass signals present in blank solvent samples and, therefore, not exclusively present in 

biological samples. 

After this filtering process, 138 candidates (5.5% of total mass signals) were considered 

and selected as differentially expressed in exosome samples versus mobile phase solvent 

samples. Next, ANOVA (p-value < 0.05) and fold change (FC) > 1.5 filtering was performed for 

multiple comparison on the 3 groups of samples (adherent cells, primary spheres and secondary 

spheres), and post hoc analysis using Tukey’s Honestly Significant Difference (Tukey’s HSD) 

were applied to identify significant metabolite changes. As an outcome, 19 differential m/z 

signals met these criteria (Table 1).  
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Figure 30. Representative LC-HRMS total ion chromatograms (TIC) of metabolites present in exosomes derived 

from Mel-1 cell line. TIC corresponding to representative exosome samples derived from (A) adherent cells, (B) 

primary melanospheres, and (C) secondary melanospheres, scanned by positive ion mode. The X axis represents the 

chromatographic retention time while the Y axis represents the intensity. Methanol was used for metabolite 

extraction. 
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Table 1. Significantly different metabolites found in the three-group comparison between adherent cells 

(AD), primary spheres (S1) and secondary spheres (S2), in Mel1 patient-derived cell line exosomes. 

AD/S1/S2 
1
 

m/z  
2
 RT 

3
 P-value 

4
 

378.3214 12.6 7.62x10
-6
 

381.0997 5.1 0.001326 

388.2521 4.2 0.0011 

399.2608 15.2 0.00637 

415.2359 15.2 0.006676 

426.1372 7.0 0.000571 

455.1165 7.7 0.000862 

460.3096 4.4 0.005243 

483.2172 15.7 0.00584 

496.3409 11.6 1.91x10
-5
 

530.1469 8.6 5.87x10
-5
 

573.2039 5.4 0.006179 

589.1461 5.2 0.001116 

602.1573 5.1 0.001039 

623.0031 1.3 8.64x10
-6
 

750.1882 7.7 0.000799 

761.1923 5.1 0.00124 

909.2258 7.7 0.000875 

1206.827 1.3  0.000903 

1 
Three-group comparison (ANOVA); 

2
 Mass-to-charge ratio; 

3
 Retention time (min); 

4
 p-value 

corresponding to univariate statistical analysis (ANOVA). Only peaks with a p-value < 0.05 were 

selected. 
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After the selection of those differential m/z signals, samples were analysed by principal 

component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). The PCA 

score plots for all the analysed sample groups are shown in Figure 31. Blank solvent (BS) 

samples were clearly separated from biological samples (Figure 31A). Additionally, the close 

clustering of quality control (QC) samples reflected the quality of the analytical system 

performance (Figure 31A-B). Exosome samples derived from adherent cells, primary and 

secondary spheres were clearly separated from each other along the first principal component 

(PC1) and the second principal component (PC2), indicating a differential pattern of the 

metabolites found in exosomes isolated from adherent cells compared to primary and secondary 

spheres (Figure 31B). 

 

Figure 31. (A) PCA scores plot based on LC-HRMS data of all exosome samples derived from adherent cells (red), 

primary melanospheres (green), secondary melanospheres (blue), QC samples (yellow) and BS samples (pink). (B) 

Analytical validation based on the close clustering of QC samples (yellow) observed in the PCA scores plot. 
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However, as can be clearly seen in the PCA score plot, the greatest metabolic differences 

were found between adhered cells and CSCs melanospheres, but not between primary and 

secondary spheres. For that reason, a filtering by t-test (p-value < 0.05) and FC (FC > 1.5) was 

also performed comparing adhered cells with secondary spheres samples, as they were those that 

possessed more stemness properties (Figures 22-24). When comparing these two groups, 19 

differential m/z signals also met these criteria (Table 2).  

Based on PCA and PLS-DA models, exosome samples derived from adherent cells and 

secondary spheres were discriminated with a R
2
 of 0.99 and a Q

2
 of 0.97, exceeding the 

threshold values accepted in metabolomic experiments (R
2
 > 0.7 and Q

2
 > 0.4) (Figure 32) 

[241]. Accordingly, the heatmap displayed a clear differential pattern of metabolite expression 

across samples of exosomes derived from both Mel1 adherent cells and Mel1 secondary spheres 

(Figure 33). The corresponding PCA score plot for the three groups (Adherent cells, primary and 

secondary spheres) of comparison and the heatmap showing the differential abundance of those 

metabolites found as statistically different between them are shown in Figure S1. 

 

 

 

 

Figure 32. PLS-DA scores plot based on LC-

HRMS data of exosome samples derived from 

adherent cells (red), and secondary melanospheres 

(blue). The two groups were discriminated with a 

R
2
 of 0.99 and a Q

2
 of 0.97, exceeding the 

threshold values accepted in metabolomic 

experiments (R
2
 > 0.7 and Q

2
 > 0.4). 
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Figure 33. Heatmap showing the significantly different metabolites when comparing exosomes derived from 

adherent cells (red) and secondary melanospheres (blue). Each row on the heatmap represents a unique metabolite 

with a characteristic mass to charge ratio and retention time, while each column represents one exosome sample. 

The colour code represents the normalized intensity with which each metabolite is detected. Blue represents a 

decreasing trend, while red represents a rising trend. 
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Table 2. Differential metabolites found in the two-group comparison between exosomes derived from 

adherent cells (AD) and secondary spheres (S2), in Mel1 patient-derived cell line exosomes. 

AD/S2 
1
 

m/z
2
  RT

3
  P-value

4
  FC

5
  

313.2714 15.7  0.0318 1.7911 (↑) 
316.3215 8.7 0.03372 0.6633 (↓) 
357.1404 4.9 0.00163 11.1627 (↑) 

378.3214 12.6  0.0008 0.3929 (↓) 

388.2521 4.2 0.00685 1.5919 (↑) 
399.2608 15.2 0.01546 1.8870 (↑) 
415.2359 15.2 0.01587 1.8891 (↑) 

425.136 7.2 0.01171 0.1966 (↓) 
426.1372 7.0  0.00049 0.1124 (↓) 
496.3409 11.6 6.48x10

-5
  4.1367 (↑) 

507.4077 15.6 0.04807 3.1055 (↑) 
515.3962 15.7 0.04258 2.2071 (↑) 
530.1469 8.6 2.24x10

-5
  18.1682 (↑) 

589.1461 5.2 0.04382 10.2656 (↑) 
623.0031 1.3 0.00377 0.0106 (↓) 
680.5277 15.6 0.04514 2.0574 (↑) 
729.5293 15.7 0.04517 2.2063 (↑) 
745.5143 15.7 0.04205 2.2513 (↑) 
1206.827 1.3 0.009 0.4205 (↓) 

1
Two-group comparison (T-Test); 

2
Mass-to-charge ratio; 

3
Retention time (min); 

4
p-value corresponding to 

univariate statistical analysis (T-Test). Only peaks with a p-value < 0.05 were selected; 
5
Fold change 

expressed as the ratio of the two averages (AD/S2). Only peaks with a fold-change > 1.5 or < 0.66 were 

selected. The arrows indicate if the metabolite is increased (↑) or decreased (↓) in AD relative to S2. 
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4. Structural identification of selected differential metabolites in primary 

patient Mel1 cells 

Metabolite identification was carried out according to the criteria explained in Materials 

and Methods section. In addition, we established 2 identification levels: (1) Molecular formula 

matched with isotopic profile and compound data-bases and (2) Experimental fragmentation 

spectrum matched in spectral data-bases. As a result, it was possible to assign the following 

tentative identifications for differential peaks between exosome samples derived from adherent 

cells and those derived from CSC melanospheres (Table 3): m/z 496.3381 corresponds to the 

glycerophosphocoline PC 16:0/0:0 (Figure 34A); m/z 515.3962 corresponds to the  

triacylglicerol TG(18:2/22:3/22:4) (Figure 34B); m/z 729.5293 corresponds to the 

diacylglycerophosphoglycerol  PG(20:0/12:0) (Figure 34C); m/z 745.5143 corresponds to the 

glycerophosphoserine PS(P-16:0/15:1) (Figure 34D). 

We were not able to identify the rest of m/z signals or assign them a biologically coherent 

molecular formula, according to the same mentioned criteria and the identification rules 

described by Kind and Fiehn [249]. 

The four tentatively identified and other nine unidentified ions have significant 

differences between the groups, being more abundant in exosome samples derived from adherent 

cells compared to those from secondary spheres. However, other 6 unidentified signals were 

more abundant in CSC Mel1-derived exosomes compared to those from adherent cells (Figure 

33).  
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Table 3. Differential metabolites tentatively identified in Mel1 patient-derived cell line exosomes based 

on MS/MS fragmentation spectra and data-base search. 

m/z
1
 RT

2
 Tentative ID

3
 

Molecular 
Formula

4
 

Mass 

error
5
  P-value

6
  FC

7
  IL

8
 

 

496.3381 11.61  LPC (16:0) C
24

H
50

NO
7
P 3 6.48x10

-5
  4.1367 (↑) 2  

515.3962 15.72  TG(18:2/22:3/22:4) C
65

H
108

O
6
  0 0.04258 2.2071 (↑) 2  

729.5293 15.71  PG(20:0/12:0) C
38

H
75

O
10

P  4 0.04517 2.2063 (↑) 2  

745.5143 15.70  PS(P-16:0/15:1) C
37

H
70

NO
9
P  2 0.04205 2.2513 (↑) 2  

1
Mass-to-charge ratio; 

2
Retention time (min); 

3
Common name of the tentatively identified metabolite 

according to MS/MS fragmentation spectra and data-base search;  
4
Molecular formula of the tentatively 

identified metabolite; 
5
Mass error (ppm); 

6
p-value corresponding to univariate statistical analyses (T-test). 

Only peaks with a p-value < 0.05 were selected; 
7
Fold change expressed as the ratio of the two averages 

(AD/S2). Only peaks with a fold-change > 1.5 or < 0.66 were selected. The arrows indicate if the 

metabolite is increased (↑) or decreased (↓) in AD relative to S2; 
8

Identification level: (1) Molecular 

formula matched in compound data-bases and (2) Experimental fragmentation spectrum matched in 

spectral data-bases. 

 

Figure 34. (A) Chemical structure of candidate biomarker 1-hexadecanoyl-sn-glycero-3-phosphocholine PC 

(16:0/0:0). (B) Chemical structure of candidate biomarker triacylglycerol TG (18:2/22:3/22:4). (C) Chemical 

structure of candidate biomarker diacylglycerophosphoglycerol PG (20:0/12:0). (D) Chemical structure of candidate 

biomarker glycerophosphoserine PS (P-16:0/15:1). 
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5. LC–HRMS metabolomic analysis of exosomes derived from serum of 

patients with malignant melanoma 

Analogously to Mel1-derived exosomes, we carried out a metabolomic analysis in the 

same experimental conditions with the aim of exploring metabolomic differences between 

serum-derived exosomes from MMPs at different stages of the disease and HCs. As an outcome, 

93 differential (T-test p-value < 0.05 and FC < 1.5) m/z signals were found. These signals were 

analysed by PCA and PLS-DA, obtaining a clear separation of exosome samples derived from 

MMP and HC serum within the PCA score plot along PC1 and PC2 (Figure 35). Again, it could 

be observed a clear separation of BS samples from biological samples (Figure 35A), and the 

close clustering of QC samples confirmed the quality of the analytical system performance 

(Figure 35A-B). In PLS-DA models, a clear separation of exosome samples derived from MMPs 

and HCs serum was observed, and they were discriminated with an R
2
 of 0.99 and Q

2
 of 0.98 

(Figure 36). 

Due to the greater complexity of the patient-derived serum composition, we found a 

larger number of differentially expressed metabolites compared to Mel1 primary cell line. Since 

metabolite identification is the most laborious and time-consuming task in the metabolomic 

workflow, we applied the variable importance in projection (VIP) technique as an additional 

independent variable selection method in order to achieve a more affordable set of metabolites in 

terms of identification [250]. Following the greater-than-one rule, which is usually considered 

for detecting variables with the greatest importance in the projection [250], 24 differentially 

expressed metabolites were selected (Table 4).  
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Table 4. Potential biomarkers differentially expressed in MMP compared to HC serum-derived exosomes 

based on MS/MS fragmentation spectra and data-base search. 

m/z 
1
  RT 

2
  Tentative ID 

3
  

Molecular 
Formula 

4
  

Mass 

error
5
  P-value

6
  FC

7
  AUC

8
  VIP

9
  IL

10
  

380.2551 9.64 Sphingosine-1-

phosphate  C
18

H
38

NO
5
P 2  1.31x10

-13
 3.57 (↑) 1 1.03  2 

400.3419 10.19 Palmitoylcarnitine  C
23

H
45

NO
4
 1  9.71x10

-16
 6.07 (↑) 1 1.26  2 

426.3570 10.41 Elaidic carnitine  C
25

H
47

NO
4
 2  2.54x10

-14
 3.44 (↑) 1 1.13  2 

438.2987 11.69 PE(P-16:0/0:0  C
21

H
44

NO
6
P

 
 2 4.74x10

-19
 5.18 (↑) 1  1.33  2 

454.2902 11.20 PE(16:0/0:0)  C
21

H
44

NO
7
P 6  1.99x10

-09
 3.72 (↑) 1  1.23  2 

466.3302 13.55 Glycerophospholipi

d-related compound C23
H

48
NO

6
P 2  1.16x10

-15
 3.31 (↑) 1  1.18  1 

477.2309 3.99 --- --- --- 2.33x10
-24

 9.84 (↑) 1  1.36  - 

480.3080 11.64 PE(18:1/0:0)  C
23

H
46

NO
7
P 1  2.11x10

-09
 3.33 (↑) 1  1.23  2 

482.3251 12.95 PE(18:0/0:0)  C
23

H
48

NO
7
P 2  5.19x10

-10
 3.71 (↑) 1  1.45  2 

482.3585 11.71 PC(O-16:0/0:0)  C
24

H
52

NO
6
P 4  1.11x10

-12
 2.54 (↑) 1  1.1  2 

496.3391 11.28 LPC (16:0)  C
24

H
50

NO
7
P  1  1.18x10

-06
 3.89 (↑) 0.99  2.28  2 

502.2917 10.68 PE(20:4/0:0)  C
25

H
44

NO
7
P 2 1.24x10

-10
 3.25 (↑) 0.99  1.15  2 

516.3009 4.17 Taurallocholic acid  C26
H

45
NO

7
S 4 7.39x10

-28
 22.23 (↑) 1  1.72  1 

521.2544 4.17 --- --- --- 3.90x10
-27

 22.86 (↑) 1  1.6  - 

522.3551 11.47 PC(18:1/0:0)  C
26

H
52

NO
7
P 1  3.83x10

-06
 2.40 (↑) 0.96  1  2 

524.3698 12.76 PC(18:0/0:0)  C
26

H
54

NO
7
P 2  3.95x10

-08
 4.00 (↑) 0.98  1.57  2 

526.2902 10.47 PE(22:6/0:0)  C
27

H
44

NO
7
P 5 2.60x10

-13
 3.82 (↑) 1  1.06  2 

564.3588 4.49 Ganglioside GM3 

(d18:0/14:0)  C
55

H
102

N
2
O

21
 5 5.80x10

-12
 2.19 (↑) 0.99  1.07  1 

565.2809 4.32 --- --- --- 8.84x10
-28

 13.19 (↑) 1  1.58  - 

604.3544 4.46 Presqualene 

diphosphate C
30

H
52

O
7
P

2
 0.6 4.46x10

-29
 24.62 (↑) 1  1.99  1 

608.3849 4.61 --- --- --- 1.37x10
-11

 2.33 (↑) 0.99  1.08  - 

632.3827 4.46 --- --- --- 1.20x10
-28

 44.92 (↑) 1  1.58  - 
733.3346 4.15 --- --- --- 1.08x10

-07
 0.13 (↓) 0.95  1.02  - 

736.4321 4.76 Glycerophospholipi

d-related compound C38
H

68
NO

8
P 1 4.47x10

-29
 52.18 (↑) 1  1.97  1 
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1

Mass-to-charge ratio; 
2

Retention time (min); 
3

Common name of the tentatively identified metabolite 

according to MS/MS fragmentation spectra and data-base search; 
4

Molecular formula of the tentatively 

identified metabolite; 
5

Mass error (ppm); 
6

p-value corresponding to univariate statistical analyses (T-test). 

Only peaks with a p-value < 0.05 were selected; 
7

Fold change expressed as the ratio of the two averages 

(HC/MMP). Only peaks with a fold-change > 1.5 or < 0.66 were selected. The arrows indicate if the 

metabolite is increased (↑) or decreased (↓) in HC relative to MMP; 
8

Area Under the Curve corresponding 

to ROC curve analyses; 
9

VIP value corresponding to Variable Importance in the Projection selection 

technique; 
10

Identification level: (1) Molecular formula matched in compound data-bases and (2) 

Experimental fragmentation spectrum matched in spectral data-bases.  

 

Figure 35. (A) PCA scores plot based on LC-HRMS data of all exosome samples derived from MMPs (red), HCs 

(blue), QC samples (yellow) and BS samples (pink). (B) Analytical validation based on the close clustering of QC 

samples (yellow) observed in the PCA scores plot. 
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Figure 36. PLS-DA scores plot based on LC-HRMS data of exosome samples derived from MMPs (red), and HCs 

(blue). The two groups were discriminated with a R
2
 of 0.99 and a Q

2
 of 0.98, exceeding the threshold values 

accepted in metabolomic experiments (R
2
 > 0.7 and Q

2
 > 0.4). 

The corresponding heatmap representing the differential abundance of these selected 

metabolites between exosome samples derived from MMPs and HCs is shown in Figure 37. As 

can be observed, 23 metabolites were more abundant in exosome samples derived from HCs, 

compared to those from MMPs, and only 1 metabolite (not identified) was higher in MMPs in 

comparison to HCs (Figure 37, Table 4).  
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Figure 37. Heatmap showing the significantly different metabolites when comparing exosomes derived from 

adherent cells (red) and secondary melanospheres (blue). Each row on the heatmap represents a unique metabolite 

with a characteristic mass to charge ratio and retention time, while each column represents one exosome sample. 

The colour code represents the normalized intensity with which each metabolite is detected. Blue represents a 

decreasing trend, while red represents a rising trend. 

Some of these selected differential peaks between the exosome samples derived from 

MMPs and those derived from HCs were tentatively identified (Table 4). Following the same 
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criteria previously described, we established 2 identification levels. In figure 37 it is represented 

the chemical structure and the corresponding interpretation of fragmentation spectrum of m/z 

496.3381 identified as PC 16:0/0:0, as an example of one of those tentatively identified 

metabolites (Figure 38).  

Additionally, the area under the curve (AUC) values were calculated from receiver 

operating characteristic (ROC) curve analysis in order to assess the potential clinical utility of the 

previously selected metabolites, displaying all values close or equal to 1, which suggest they 

could be considered as potential diagnostic biomarkers. Despite for some of the m/z signals a 

tentative identification was not possible following the same criteria [249], they could still be 

considered as potential biomarkers, since all of them showed high AUC values. 

Interestingly, the metabolite corresponding to m/z 496.3381, identified as 

glycerophospholipid 1-hexadecanoyl-sn-glycero-3-phosphocholine (PC 16:0/0:0), was found to 

be not only overexpressed in exosomes derived from both HC serum and adherent Mel1 cells, 

compared to MMP serum and CSC Mel1 cells, respectively. Taken into account that this 

metabolite was not only tentatively identified, but also showed an excellent AUC value and 

discriminatory capacity between the two groups of samples (Figure 39), it could be considered a 

promising CSC-derived exosomal biomarker for MM. 
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Figure 38. (A) Chemical structure of candidate biomarker 1-hexadecanoyl-sn-glycero-3-phosphocholine PC 

(16:0/0:0); (B) Representative fragmentation spectrum of candidate biomarker PC (16:0/0:0). Within the product ion 

spectra arising from the [M+H]
+
 ions of this molecule, different specific fragments were found, such as the m/z 184, 

104, 258, 321 or 478 ions, corresponding to characteristic molecule fragments. 

 

Figure 39. Receiver-operating characteristic (ROC) curve with the corresponding area under the curve (AUC) 

statistics and box-and-whiskers plot representing the relative abundance within MMP and HC serum-derived 

exosome samples for the metabolite corresponding to m/z 496.3381, identified as (PC 16:0/0:0).
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DISCUSSION 

As previously described throughout this whole dissertation, in the era of precision 

medicine and multiple effective treatments for cancer that we are living in, the necessity of 

developing sophisticated clinically useful biomarkers becomes more evident than ever. The 

design of optimal personalized therapy strategy absolutely depends on the earliest diagnostic, in 

order to achieve the subsequent best treatment response and, ultimately, improved patients’ 

survival. In this regard, MM is one of the clearest examples.  

In this context, circulating biomarkers represent an excellent source of biomarkers, easy 

to detect and/or quantify in body fluids such as blood, urine, or saliva, through minimally 

invasive techniques [175]. During the last decade, some of these circulating markers that has 

attracted the most attention of researchers in this field have been the EVs, and particularly the 

exosomes [251]. To date, it is known that the composition of sEVs is not a random sample of cell 

content, but rather is assembled by a highly selective process whose nature remains unclear 

[252]. Moreover, while in some instances the antigens found on the surface of microvesicles (e.g. 

lineage markers) could resemble those of their producing cells [253], several studies suggest that, 

especially exosomes, contain a more unique protein and RNA cargo. Thus, exosomes tend to be 

enriched in glycoproteins compared to the secreting cells [254]. In addition, sEVs imperatively 

comprise a lipid moiety, and their phosphatidylserine, cholesterol, sphingomyelin, and 

glycosphingolipid content is richer than their cellular sources [255,256]. Thus, the studies that 

originally reported their presence in blood determined that sEVs membrane could support the 

coagulation cascade by exposition on their surface of phosphatidylserine [257]. Furthermore, 

sEVs also interact with secreted phospholipases to generate eicosanoids, which regulate the 

transfer of cargo into a cellular recipient. Eicosanoids, potent bioactive lipid mediators, are 
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useful as biomarkers and contribute to a variety of biological functions, including modulation of 

distal immune responses, angiogenesis and tumor progression in cancer context [258]. The role 

of the various lipid pathways is crucial in the biogenesis and functions of microvesicles and 

exosomes. For instance, tumor-derived exosomes enriched in prostaglandins and free fatty acids 

(including arachidonic acid) participate in the formation of a favorable microenvironment for 

tumor growth [259]. In this context, sEVs contribute with their lipid molecules or their lipid-

related enzymes to several pathophysiologies, playing an important role in cancer [260]. 

Exosomes are actively secreted by cancer cells at a higher rate than by normal cells. In 

particular, melanoma cells seem to produce a large quantity of these microvesicles [261], in 

contrast to normal melanocytes [262]. Moreover, a melanoma-specific exosomal signature, 

which correlates with tumor burden and metastasis, was identified in blood from patients with 

MM at stage IV [209]. Malignant melanoma is characterized by an extraordinary heterogeneity, 

propensity for dissemination to distant organs and resistance to chemotherapy, which results 

from the unique characteristics of melanoma CSCs [263]. 

In this study, we have set up a broadly applicable approach for metabolomic profiling of 

exosomes isolated from cell culture media of Mel1 melanoma CSCs and from serum of patients 

with MM at different stages in order to identify potential clinically useful biomarkers with 

prognostic/diagnostic value. First, we confirmed that the primary Mel1 cell line obtained from a 

metastatic MM growing in serum-free and anchorage-independent conditions displayed both 

CSC-like functional and phenotypic properties. Mel1 cells growing as spheres possess self-

renewal ability and clonogenicity. The spheres were enriched in cells with high ALDH activity, 

overexpressing CD20 and CD44 surface markers and presenting a great SP rate. All these 

properties have been described as characteristics of CSCs [236]. The isolation of exosomes from 
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cell culture supernatant was performed by ultracentrifugation and confirmed by TEM, AFM and 

Western blot assays. Next, we characterized their size by NanoSight showing particles with 

diameters of around 100 nm, confirming the specific enrichment in exosomes [209,215]. Mel1 

exosomes were positive for CD9, CD63 and Alix exosomal markers, and also for CD271 

melanoma CSC marker. Previous studies on patients with melanoma have shown that CD271+ is 

a good candidate marker to unequivocally identify CSCs subpopulation [264]. However, it is 

important to highlight that, based on the exosome isolation and characterization protocols carried 

out in this study, the term ―exosomes‖ applied in this work actually refers to sEVs, a general 

term proposed in the ―MISEV‖ guidelines [198], comprising exosomes but also other vesicles 

which share size, density and markers. 

The metabolomic profile of exosomes analysed through MS revealed significant 

differences in the metabolomic fingerprint of exosomes derived from CSCs as compared to 

tumor adherent (more differentiated) cells in Mel1 MM primary cell line and also in the 

exosomes derived from MMPs at different stages compared to HCs. ROC curves are frequently 

used in biomedical informatics research to evaluate classification and prediction models for 

decision support, diagnosis and prognosis. Thus, it is possible within a metabolomics study to 

calculate ROC curves for each potential biomarker in order to assess its potential clinical utility 

in terms of AUC [242]. In this regard, we calculated the AUC for each selected candidate 

biomarkers in patients’ serum-derived exosomes, and we obtained values close or equal to 1. 

Considering that AUC values over 0.8 indicate a good predictor model, our results (Tables 1 and 

3) suggest that these metabolites could be used as a panel of clinically useful biomarkers. 

Metabolic reprogramming is firmly established as a hallmark of cancer [9] and lipids 

have been described to exert multiple biochemical functions during cancer development. Several 
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lipids, including sterols, di-/tri-acylglycerols and phospholipids are integral part of biological 

membranes and are also used for energy storage, production, and cellular signalling. Fatty acids 

(FA) are indispensable for lipid biosynthesis. Disruption of lipid metabolism, especially FA 

synthesis (FAS) and fatty acid oxidation (FAO) has become increasingly recognized as an 

important metabolic rewiring phenomenon in tumor cells [265]. Glycolipids and phospholipids 

(phosphatidylcholine and phosphatidylethanolamine) along with cholesterol are major 

components of biological membranes and markedly influence membrane fluidity [265]. In 

addition to their structural roles, lipids also orchestrate signal transduction cascades and can also 

be broken down into bioactive lipid mediators, which regulate several carcinogenic processes, 

such as cell growth, cell migration and metastasis [266].  

In our study, we found a decreased expression between exosome samples derived from 

CSCs melanospheres and those derived from adherent-differentiated tumor cells of four 

tentatively identified metabolites from different lipid classes, such as glycerophosphoglycerols 

(PG(20:0/12:0)), glycerophosphoserines (PS(P-16:0/15:1)), triacylglycerols 

(TG(18:2/22:3/22:4)) and glycerophosphocholines (PC 16:0/0:0). Interestingly, we found that PC 

16:0/0:0 expression was reduced in both Mel1 CSCs and MMPs in comparison to Mel1 

differentiated tumor cells and HCs, respectively. In line with these results, previous studies 

reported the reduced expression of PC 16:0/0:0 associated with malignant diseases, such as 

colorectal cancer [267], digestive tract tumors or renal cell carcinoma [268]. Moreover, higher 

levels of other glycerophospholipids such as LysoPC 18:0/0:0 have been consistently related to 

lower risks of breast, prostate and colorectal cancer [269]. Other studies have shown that the 

serological lipidomic profile of prostate cancer patients revealed several putative lipids that 

might serve as diagnostic biomarkers of this neoplasm [270]. 
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The metastatic potential of cancer cells correlates with the expression of genes involved 

in fatty acid synthesis, oxidation and intracellular lipid storage. It has been shown that enzymes 

involved in lipid metabolism play a role in metastasis. For example, stearoyl-CoA desaturase 

(SCD) and long chain fatty acyl synthetase (ACSL) 1 and 4 cooperate to induce epithelial to 

mesenchymal transition resulting in an increased invasion potential of colon cancer cells [271]. 

Furthermore, it has been suggested that the rapid extracellular hydrolysis of phospholipids like 

PC 16:0/0:0 by metastatic tumor cells and the subsequent cellular uptake of the resulting free 

fatty acids (FFA) seems to be a necessary prerequisite for metastatic potential of epithelial tumor 

cells, probably for generating pro-metastatic lipid second messengers [272].  

In this work, we also detected significant differences in other metabolites in the serum-

derived exosomes from HCs compared to MMPs. For example, we found lower levels of the 

lysophospholipid sphingosine 1-phosphate (S1P) in serum-derived exosomes from MMPs than in 

HCs. This is consistent with previous studies that had suggested this molecule as a potential 

serum biomarker for hepatocellular carcinoma (HCC) diagnosis, which was also found to be 

lower in HCC patients [273]. Other differential metabolites that were lower in MMP serum-

derived exosomes were palmitoylcarnitine and elaidic carnitine. Recently, the role of the 

carnitine system has been described in the metabolic plasticity phenomenon, a mechanism 

through which cancer cells are able to become more aggressive and metastasize [274]. In 

agreement with our results, a similar previous study, aimed at characterizing the metabolomic 

serum profile of HCC patients in a Korean prospective cohort, also showed lower levels of 

palmitoylcarnitine in HCC patients, compared to HCs [275]. Another metabolomic study 

reported the potential use of this metabolite, among others, as a predictive serum biomarker in 

non-small cell lung cancer [276]. We also found lower levels of several phospholipid-related 
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compounds such as phosphatidylcholines (PCs) and phosphatidyletanolamines (PEs) in MMP 

exosomal extracts versus HC extracts (see Table 3). Changes in specific phospholipid (PL) levels 

in tissues, cells, and body fluids like urine, plasma or serum, have clearly been demonstrated to 

be associated with cancer [277]. Yang et al. suggested that specific differential PLs found in the 

plasma of breast cancer patients could be useful for diagnosis purposes [278] and Waki et al. 

also reported PL differences in breast CSCs and non stem cancer cells [279]. In colorectal 

cancer, decreased LPC levels in serum patients have potential for use as diagnosis biomarkers 

[280], since lower LPC levels could be associated with the loss of body weight and 

inflammation, but could also indicate a higher LPCs decomposition rate to support cancer 

metabolism. Another study showed that some PL species, including LPC(16:0), LPC(18:0), 

PC(16:0), and PC(18:0) were significantly less present in HCC and LC (liver cirrhosis) patients, 

compared to HCs [281]. Another tentatively identified metabolite, also found at lower levels in 

serum-derived exosomes from MMPs, is the glycosphingolipid Ganglioside GM3 (d18:1/16:00), 

a component of cell plasma membrane that modulates cell signal transduction events. It has been 

reported that GM3 downregulates the invasiveness capacity of human bladder cancer cells and 

also that exogenously added GM3 can prevent haptotactic cell migration in colorectal cancer cell 

lines [282]. For the rest of metabolites, it was not possible to give an accurate mass or MS/MS 

spectra-based putative identifications using several data-bases. This still represents a major 

challenge in the field of metabolomics. However, it could be clinically useful to explore 

exosome-associated metabolomic m/z signatures related to several stages of MM.  

All these results found in both patients and CSCs suggest the importance of structural 

lipids detected in exosomes of patients with MM and their potential as useful diagnostic, 

prognostic, or predictive biomarkers for this disease.  



Chapter 2 

157 
 

 

 

 

 

 

CHAPTER 2 

Untargeted LC-HRMS-based metabolomics to 

identify novel biomarkers for early diagnosis of 

malignant melanoma 



 Chapter 2 

 

158  
 

 



Chapter 2: Background 

159 
 

 

 

 

 

 

 

 

BACKGROUND 



 Chapter 2: Background 

 

160  
 

 



Chapter 2: Background 

161 
 

BACKGROUND 

Despite MM is the least common of all skin cancers, representing only about 1% of them, 

it accounts for the highest number of deaths by far [28]. According to the latest data [3], in 2020 

there were reported 324,635 new cases (1.7% of total cancers) and almost 57,043 deaths (0.6% 

of total) caused by MM worldwide. Its incidence and mortality rates are steadily increasing every 

year and it is expected to continue to do so over the next decades. In general, the 5-year survival 

rate is elevated, as long as it is localized and early detected. However, this rate significantly 

drops when the disease is spread to regional lymph nodes or when it metastasizes to distant 

organs [28,30,57]. 

Currently, methods employed for MM diagnosis include visual assessment, biopsies, 

dermoscopies and histopathological examinations, in order to determine the malignancy of a 

suspicious cutaneous melanocytic lesion. However, diagnosis of skin lesions remains 

challenging, since relies on pathologist’s interpretations, which are subjective, and neither 

accurate nor reproducible, especially in early stage invasive MM cases [58,59]. This underscores 

the necessity of new innovative diagnostic tools to support pathologists and compliment visual 

assessments, since diagnostic errors lead not only to under or overtreatment, but also to a higher 

economic cost of MM management. 

Indeed, this justifies all the efforts made in recent years to further understand the 

mechanisms underlying this disease, as well as to discover biomarkers clinically useful for 

diagnosis, prognosis and prediction, for patient counsel and for appropriate management. In 

particular, an early diagnosis is crucial in this type of skin cancer, since an earlier stage at 

diagnosis improves survival [57,283]. 



 Chapter 2: Background 

 

162  
 

Serum based biomarkers represent an ideal, non-invasive and easy to collect source of 

biomarkers. Unfortunately, only a few of them have been proven to be clinically useful. Indeed, 

the only circulating biomarker with significant prognostic value in the updated version of the 8th 

edition AJCC melanoma staging system is LDH [191]. Other circulating proteins have also been 

reported as potential diagnostic or prognostic biomarkers, but their low sensitivity or specificity 

limit its clinical application [173]. Therefore, MM diagnosis remains challenging, and further 

research is needed in order to discover reliable serologic biomarkers. 

As previously discussed in the chapter 1 of this work, metabolomics and mass 

spectrometry represent an excellent and powerful tool for biomarker research. In this regard, 

several studies have proved in the last years their usefulness for biomarker discovery in various 

cancer types such as breast, gastric, lung, and colorectal cancer [284–288].  

Considering the poor prognosis of advanced MM and the lack of reliable serologic 

biomarkers for the early detection of melanoma or prognostic markers for early-stage patients, 

and after having obtained the results previously described in chapter 1, the aim of this second 

study was to compare the metabolomic profile of serum samples derived from MMPs versus 

those derived from HCs. Therefore, this time we performed a similar metabolomic study but 

analyzing the whole serum, not only EVs, in a larger number of patients with MM, framed in the 

same context and main goal of this thesis and attempting to discover new potential biomarkers 

for diagnosis MM. In this regard, we report for the first time, some differentially expressed 

metabolites in serum from MMP and HC that could be considered as potential biomarkers for 

early diagnosis of this disease. 
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Figure 40. Graphical abstract representing the general workflow and the main assays performed in this study. 
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RESULTS 

1. LC-HRMS metabolomic analysis of serum of patients with malignant 

melanoma 

In this study, a total of 105 serum samples (79 MMPs and 26 HCs) were analysed 

following an untargeted metabolomic approach, using an LC-HRMS platform and an AcN-based 

metabolite extraction protocol. For nontargeted metabolomics, protein removal using an organic 

solvent-based metabolite extraction protocol is often performed. In particular, AcN-based 

extraction methods have been proven to be the one of the most effective in terms of obtaining 

information for lipid low-molecular-weight species [289]. 

Total ion chromatograms (TICs) of MMP and HC serum samples (Figure 41) revealed a 

good reproducibility in terms of retention time and signal intensity, a clear separation among 

[290]: medium-polar metabolites (e.g., phospholipids, lysophospholipids, and steroids), eluted 

between minutes 6 and 14; very polar metabolites (e.g., some amino acids and sugars), eluted in 

the first 5 minutes; and non-polar metabolites, eluted between minutes 14 and 17, and also 

significant differences between MMP and HC TICs. 

After peak alignment and filtering procedures, a positive ionization data matrix of 1670 

mass signals was obtained. In order to filter the results and minimize the signal redundancy, only 

peaks representing monoisotopic ions were selected (521 peaks) and subjected to the 

chemometric analysis. After that, raw data were normalized, transformed and scaled, and a first 

filtering by Student’s t-test (p < 0.05) and fold-change (FC > 1.5) was performed in order to 

discard mass signals present in blank solvent samples and, therefore, not exclusively present in 

biological samples. After this filtering process, 133 candidates were considered and selected as 

differentially expressed in serum samples versus blank solvent samples. In addition, 4 features 
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were excluded for unacceptable variability (RSD > 30%); As a result, 129 variables were 

selected and evaluated in the PCA and PLS-DA.  

 

Figure 41. Representative LC-HRMS total ion chromatograms (TICs) of metabolites present in a HC (blue) and 

MMP (red) serum samples. The X axis represents the chromatographic retention time (RT) while the Y axis 

represents the intensity. Acetonitrile was used for metabolite extraction. A significant difference between HC and 

MMP TICs can be observed at 6–17 minutes, when most lipids elute. 

The PCA score plot (Figure 42A) revealed a close clustering of QC samples and a clear 

separation of BS samples, confirming the quality of the analytical system performance and 

indicating that the separation observed between MMP and HC groups was mainly due to 

biological reasons. Additionally, the PLS-DA score plot (Figure 42B) suggested that it might be 

possible to discriminate between MMP and HC samples. The predictive ability of the PLS-DA 

model to discriminate between these groups was assessed, but the present model did not meet the 

threshold values accepted in metabolomic experiments of R
2
 ≥ 0.7 and Q

2
 ≥ 0.4, with no 

variation > 0.2–0.3, at least when all MMPs at different stages were considered in the analysis.  
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Figure 42. PCA (A) and PLS-DA (B) scores plot based on LC-HRMS data of serum samples from  total MMPs 

(red), and HCs (green). QC samples (blue) and BS samples (pink); PCA (C) and PLS-DA (D) scores plot based on 

LC-HRMS data of serum samples from MMP–Stage 1 (red), and HCs (green). 
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However, based on the same approach and applying the same statistical analyses, we also 

carried out multiple comparisons between the HC group and the different MMP groups 

separately, according to their stage of the disease. No significant differences were found when 

comparing the different MMP groups (Stages I, II, III and IV). But interestingly, the PCA 

(Figure 42C) and PLS-DA (Figure 42D) score plots revealed a clear group separation when 

comparing the HC and the MMP-S1 (Stage I) groups, which is the most interesting and relevant 

comparison in terms of biomarker discovery for early diagnosis. Based on the PLS-DA model, 

the values obtained for R
2
 and Q

2
 were 0.82 and 0.56, respectively, which demonstrates the 

suitability of this model for discriminating between HC and MMP-SI groups.  

In order to select those features susceptible of being considered as potential biomarkers, 

we applied a filtering process based on Student’s t-test (FDR-corrected p < 0.05), the variable 

importance in projection (VIP) technique (VIP > 1) and a fold-change (FC > 1.5). As an 

outcome, 10 metabolites met these criteria and were consequently selected (Table 5).  
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Table 5. Potential biomarkers differentially expressed in MMP (Stage I) compared to HC serum samples 

based on MS/MS fragmentation spectra and data-base search. 

m/z 
1
  RT 

2
  Tentative ID 

3
  

Molecular 
Formula 

4
  

Mass 

error
5
  P-value

6
  FC

7
  AUC

8
  VIP

9
  IL

10
  

319.1932 15.75 ---  --- ---  3.64x10
-3
 0.63 (↓) 0.77 1.59  - 

478.2926 10.50 PE(18:2/0:0) C
23

H
44

NO
7
P 0 6.42x10

-7
 1.78 (↑) 0.89 2.14  2 

500.2737 10.72 PE(20:5/0:0) C
25

H
42

NO
7
P 7 8.77x10

-5
 1.55 (↑) 0.79 1.68  2 

520.3398 10.74 PC(18:2/0:0) C
26

H
50

NO
7
P 1 1.73x10

-7
 1.80 (↑) 0.90  2.20  2 

531.3236 10.83 --- --- --- 7.90x10
-7
 1.75 (↑) 0.88  2.17  - 

539.3174 10.81 CDP-DG 

(18:0/22:3) 
C52H91N3O15P2 1 5.85x10

-8
 1.95 (↑) 0.90  2.45  1 

542.3222 10.83 PC(20:5/0:0) C
28

H
48

NO
7
P 3 1.16x10

-6
 1.54 (↑) 0.87  1.89  2 

604.2886 10.58 POB-PS C
26

H
48

NO
11

P 5 5.09x10
-8
 1.62 (↑) 0.91 2.07  2 

610.3136 10.62 ---  --- ---  1.20x10
-7
 1.69 (↑) 0.9  2.12  - 

640.3431 10.26 PKOHA-PG C
29

H
51

O
12

P 4 1.17x10
-3
 2.03 (↑) 0.73 2.09 2 

 

1

Mass-to-charge ratio; 
2

Retention time (min); 
3

Common name of the tentatively identified metabolite 

according to MS/MS fragmentation spectra and data-base search; 
4

Molecular formula of the tentatively 

identified metabolite; 
5

Mass error (ppm); 
6

p-value corresponding to univariate statistical analyses (T-test). 

Only peaks with a p-value < 0.05 were selected; 
7

Fold change expressed as the ratio of the two averages 

(HC/MMP). Only peaks with a fold-change > 1.5 or < 0.66 were selected. The arrows indicate if the 

metabolite is increased (↑) or decreased (↓) in HC relative to MMP; 
8

Area Under the Curve corresponding 

to ROC curve analyses; 
9

VIP value corresponding to Variable Importance in the Projection selection 

technique; 
10

Identification level: (1) Molecular formula matched in compound data-bases and (2) 

Experimental fragmentation spectrum matched in spectral data-bases and in silico fragmentation tools. 
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The heatmap representing the differential abundance of these potential biomarkers 

between MMP (Stage I) and HC is shown in Figure 43A. As can be observed, there is a clear 

pattern with 9 of these metabolites being more abundant in HC samples in comparison with those 

serum samples derived from MMPs, and only 1 metabolite was higher in MMPs compared to HC 

samples (Figure 43A). A heatmap representing the intensity average of the different compounds 

in each group of samples (MMP-S1 and HC) brings out this pattern more clearly (Figure 43B). 

 

Figure 43. Heatmaps showing the differential metabolites between MMP-State I (red) and HC (green) serum 

samples. (A) Each row represents the intensity of each metabolite selected as potential biomarker with its 

characteristic mass to charge ratio and retention time, while each column represents each of the serum samples. (B) 

Each row represents the intensity average of each metabolite, while each column represents each group of samples. 

The colour code represents the normalized intensity with which each metabolite is detected. Blue represents a 

decreasing trend, while red represents a rising trend. 
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2. Evaluation of potential biomarkers 

In order to evaluate the potential clinical utility of the previously selected compounds, the 

area under the curve (AUC) values were calculated from receiver operating characteristic (ROC) 

curve analysis. ROC curves represent a frequently used in metabolomics and biomarker research 

studies to assess classification and prediction models. Features with AUC values between 0.7-0.8 

(fair), 0.8-0.9 (good) and 0.9-1 (excellent) are susceptible of being considered as potential 

diagnostic biomarkers [221]. In this study, AUC values calculated for all the 10 selected 

compounds ranged from 0.73 to 0.92 (Table 5 and Figure 44). 

 

Figure 44. Box-and-whiskers plots representing relative abundance of those metabolites corresponding to m/z 

signals: (A) 319.1932, (B) 478.2926, (C) 500.2737, (D) 520.3398, (E) 531.3236, (F) 539.3174, (G) 542.3222, (H) 

604.2886, (I) 610.3136 and (J) 640.3431 differentially expressed in serum samples from MMPs and HCs. The 

relative abundance of metabolites was significantly lower (nine of them) and higher (only one of them) in serum of 

MMPs, compared to HC serum samples. 
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Multivariate models combining several individual biomarkers are often generated in 

multifactorial diseases diagnosis studies, in order to improve discrimination and confidence 

levels. In these models, a multivariate mathematical equation is obtained, which provides a 

single score derived from several biomarkers that can be evaluated by ROC curve analysis as 

previously described [221]. In this regard, several biomarker models were created taking into 

account different subsets of the selected features (2 to 10). All of them displayed AUC values 

higher than 0.88 (Figure 45A) and showed a more than acceptable discriminatory capacity, since 

most of the samples were correctly classified in their correct class (MMP or HC).  

In particular, the model created considering the 10 selected metabolites displayed an 

AUC value of 0.881 (95% CI: 0.753-1) and its corresponding ROC curve and prediction 

overview are shown in Figure 45B-C. Taking into account all these results, based on the ROC 

curves analyses, AUC values and biomarker model obtained, the 10 selected metabolites may be 

taken into consideration as potential serological biomarkers for early diagnosis of MM. 
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Figure 45. (A) Comparison of different models based on ROC curves. Nine biomarker models were created 

considering different combinations of the 10 selected metabolites. The legend shows the feature numbers, the AUCs 

(and CIs) of the 9 models. (B) ROC curve for combined (10 features) biomarker model; 100 cross-validations were 

performed and the results were averaged to generate the plot. (C) Average of predicted class probabilities of each 

sample across the 100-fold cross validations. The corresponding confusion matrix provided shows that 22/26 HC 

samples and 19/22 MMP samples were correctly classified. 
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3. Identification of potential biomarkers 

Identification of selected metabolites was performed based on the assessment of the 

molecular formula from accurate mass, isotopic clustering and experimental fragmentation 

spectra interpretation and comparison in spectral databases (see Materials and Methods section 

for more details). Additionally, we established 2 identification levels: (1) Molecular formula 

matched with isotopic profile and compound data-bases and (2) experimental fragmentation 

spectrum matched in spectral data-bases and in silico fragmentation tools. As a result, tentative 

identifications for 7 of the selected potential biomarkers were achieved (Table 5 and Figure 46): 

m/z 478.2926 corresponds to the glycerophosphoethanolamine PE(18:2(9Z,12Z)/0:0); m/z 

500.2737 corresponds to the glycerophosphoethanolamine PE(20:5(5Z,8Z,11Z,14Z,17Z)/0:0); 

m/z 520.3398 corresponds to the glycerophosphocholine PC(18:2(9Z,12Z)/0:0); m/z 539.3174 

corresponds to cytidine diphosphate diacylglycerol CDP-DG (18:0/22:3(10Z,13Z,16Z)); m/z 

542.3222 corresponds to the glycerophosphocholine PC(20:5(5Z,8Z,11Z,14Z,17Z)/0:0); m/z 

604.2886 corresponds to the oxidized glycerophosphoserine POB-PS; m/z 640.3431 corresponds 

to the oxidized glycerophosphoglycerol PKOHA-PG. 

According to the same followed criteria and the identification rules described by Kind 

and Fiehn [249], we were not able to assign biologically coherent molecular formulas for 3 of the 

selected metabolites (Table 5). 
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Figure 46. Chemical structures of candidate biomarkers tentatively identified as: 

(A) glycerophosphoethanolamine PE(18:2(9Z,12Z)/0:0);  

(B) glycerophosphoethanolamine PE(20:5(5Z,8Z,11Z,14Z,17Z)/0:0);  

(C) glycerophosphocholine  PC(18:2(9Z,12Z)/0:0);  

(D)  cytidine diphosphate diacylglycerol CDP-DG (18:0/22:3(10Z,13Z,16Z));  

(E) glycerophosphocholine  PC(20:5(5Z,8Z,11Z,14Z,17Z)/0:0);  

(F) oxidized glycerophosphoserine POB-PS; 

(G) oxidized glycerophosphoglycerol PKOHA-PG. 
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DISCUSSION 

Despite advances in its treatment, MM is still the most life-threatening form of skin 

cancers, and its incidence rate and mortality have continued increasing worldwide over the past 

few decades. The diagnosis of this disease remains challenging and the procedure is still 

invasive, costly and takes too long, since it implies the removal and evaluation of the primary 

tumor, identification of high risk markers, and sentinel lymph node biopsy in order to check 

potential metastasis [291]. To date, several tissue and serological biomarkers for predicting MM 

progression and overall patient survival have been proposed [292]. However, only S100 calcium-

binding protein B (S100B) and lactate dehydrogenase (LDH) are the serological markers proved 

to have some predicting value for disease progression to an advanced, but their translation into 

adequate therapeutic intervention and survival have not been achieved [293]. Hence, there are 

currently no single reliable serum-derived markers for early detection, prognosis prediction, 

treatment response or patient survival. This underscores an urgent need to discover reliable 

blood-based markers that may lead to a minimally-invasive, simple, economical and 

standardized test for detection of MM in its earliest stages, when disease is more amenable to 

treatment and the successful patient outcomes are more likely. 

Here, LC-HRMS untargeted metabolomics was carried out in order to identify a 

molecular signature capable to discriminate between MMPs at different stages of disease and 

HC, illustrating the potential of this approach for biomarker discovering. According to our 

results, the chromatographic process was satisfactory and a significant difference between MMP 

and HC TICs was observed between minutes 6 and 14, when most lipids elute [290]. Univariate 

and multivariate analyses allowed the selection of 10 differentially expressed metabolites in 

serum from MMPs in stage I of disease and HCs, most of which were downregulated in patient 
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samples. Some of those selected compounds were tentatively identified and belong to different 

classes of glycerophospholipids (GP), such as glycerophosphoethanolamines, 

glycerophosphocholines, CDP-Diacylglycerols and oxidized glycerophospholipids. 

Phospholipids (PL) like phosphatidylcholines and phosphatidylethanolamines, along with other 

glycolipids and cholesterol are major components of biological membranes and greatly influence 

their fluidity [265]. As previously discussed, one of the most steadily established hallmarks of 

cancer is metabolic reprogramming [9] and lipids have been demonstrated to play multiples 

biochemical roles in cancer development [266,277].  

In our study, nine of those metabolites selected as potential biomarkers (including the 

seven compounds tentatively identified as GPs) were found less expressed in MMP serum 

samples, while only one metabolite was found at higher levels in MMPs, compared to HCs. In 

accordance with these results, a reduced expression of specific PL-related compounds has been 

previously associated with different types of cancer such as colorectal cancer (CRC) [267] 

digestive tract tumors or renal cell carcinoma (RCC) [268]. Higher levels of other 

glycerophospholipids have also been related to lower risks of breast (BC), prostate (PC) and 

CRC [269]. CDP-diacylglycerols, which is another lipid metabolite that we found downregulated 

in MMPs, are important branchpoint intermediates and also key regulatory molecules in PL 

metabolism. Decreased levels of these molecules might be related with low PLs levels [294]. We 

also found lower levels of two oxidized PLs in MMP serum samples, which are another subtype 

of PLs that play an important role as endogenous pattern recognition ligands in innate immunity 

[295]. Therefore, they are also thought to be associated with pathogenesis of several diseases, 

including cancer [296–298].  
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Regarding diagnosis, decreased levels of this type of PLs in body fluids could be used for 

diagnostic purposes in different malignancies such as CRC [280], hepatocellular carcinoma 

(HCC) [273], liver cirrhosis (LC) [281]. This is consistent with the idea suggested by Raynor et 

al. that the fast extracellular hydrolysis of phospholipids by metastatic tumor cells and the 

subsequent cellular uptake of the resulting free fatty acids (FFA) seems to be indispensably 

necessary for epithelial tumor cells, probably for generating pro-metastatic lipid second 

messengers involved in their metastatic potential [272]. In addition, Tang et al. suggested that 

lower levels of PL-related compounds could be associated with the loss of body weight and 

inflammation, but could also indicate a higher LPCs decomposition rate to support cancer 

metabolism [280]. Moreover, elevated levels of specific PLs in body fluids have also been 

correlated with lower risk of BC, PC and CRC [269]. Another possible explanation for these 

findings could be the uncontrolled cell proliferation, which leads to PL degradation in order to 

generate energy for expansion and dissemination [299]. Other studies have also demonstrated 

that variations in the serological lipidomic profile and combinations of several putative PLs 

differentially found in body fluids might serve as diagnostic biomarkers of PC [270] and BC 

[278,298]. 

For diagnostic purposes, single biomarkers are often insufficiently sensitive or specific 

for clinical use. Thus, current research focuses on finding combinations of several biomarkers in 

order to improve clinical accuracy and predictive capacity. In this regard, ROC curves analyses 

are frequently used in biomedical informatics research to assess classification and prediction 

models. Here, we conducted this type of analysis and AUC values were calculated for each 

selected candidate, obtaining values that ranged from 0.73 to 0.92. The biomarker model 

utilizing those markers showed a more than acceptable classificatory capacity, being its 
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corresponding AUC value was 0.881 (95% CI: 0.753-1). Considering that AUC values over 0.8 

indicate a good predictor model, our results suggest that these compounds might be considered to 

be used as a panel of clinically useful biomarkers for early diagnosis of this disease. 

This study sets an open door to many other potential issues to further explore, and we are 

also aware that there are some limitations, being probably the most important one the sample 

size. While the total set of samples initially addressed (105, considering MMPs at Stage I, II, III, 

IV and HCs) could be considered more than acceptable for a metabolomic study, no significant 

metabolomic differences were found when comparing those samples from MMPs at different 

stage of disease. The most interesting results were obtained from a smaller sample size (22 Stage 

I MMPs vs 26 HCs), limiting the power of the study and the conclusions drawn. Therefore, this 

study could be considered a pilot, and further studies performed with larger sample sizes would 

be necessary in order to address models validation. 

Despite instrumentation advances and better understanding accomplished in the last years 

in metabolomics, analysis of complex nature of biological samples (body fluids in particular), 

characterized by the huge amount of metabolites that can be detected and their highly wide 

dynamic range of their expression levels still remains challenging in metabolomic studies. The 

results obtained depend on several factors, including the sample type, cohort composition, 

analytical procedure, data treatment workflow, and cohort composition. Moreover, the difficulty 

to accurate metabolite identification by stepwise search in several molecular weight and 

fragmentation spectrum databases still represents one of the major limitations in the field. 

However, as previously discussed, not only identified molecules but also m/z signals could make 

up clinically useful metabolomic signatures, as long as they display suitable discrimination 

capacity in the corresponding biomarker evaluation models.  
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In this study, the 10 selected metabolites found differentially expressed in MMP-SI and 

HC serum samples displayed excellent discrimination capacity between those groups according 

to ROC curves analyses and the corresponding biomarker model assessment. Thus, these 

metabolites are susceptible of being considered as potential biomarkers and could represent a 

novel metabolomic signature, suitable and applicable for early diagnosis of MM. Taking into 

account the crucial importance of early detection of this type of skin cancer, in terms of 

treatment management and improved patient outcomes, these results provide valuable knowledge 

in this regard. 

Further avenues to exploit could include complementary ―omics‖ analyses, which will 

probably add new insights into the MM pathophysiological changes, as well as further 

complementary studies evaluating other easily collectible body fluids including saliva or urine, 

that might contribute to the discovery of additional potential diagnostic biomarkers. 

Significant efforts still need to be made in the next years in order to find suitable 

biomarkers that could aid or improve MM early diagnosis, its correct staging, the discrimination 

of other pathological conditions, as well as indicate patients’ prognosis or the most appropriate 

personalized therapeutic regimes. In this regard, studies like the one herein presented could pave 

the way for those goals, by suggesting novel potential biomarkers for early cancer detection. 

Furthermore, this study represent an excellent example of the potential role that untargeted LC-

MS-based metabolomics applied to liquid biopsies and circulating compounds could play in 

biomarkers discovery for their use in translational research and precision medicine in oncology. 
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1. A patient-derived MM cell subpopulation enriched in CSCs was characterized by 

assessing the expression of specific markers and their stem-like properties. 

2. Exosomes derived from CSCs and serums from patients with MM were isolated, 

characterized and their metabolomic profile was analyzed by LC-HRMS following an 

untargeted approach and applying univariate and multivariate statistical analyses. 

3. Significant metabolomic differences were found in exosomes derived from MM-CSCs 

compared to those from MM differentiated cells. In particular, 19 metabolites were 

selected according to statistical criteria. They showed a clear differential pattern of 

expression across the two groups of comparison and 4 of them were tentatively identified 

as structural lipids of different types. 

4. Additionally, some differences were also found in the metabolomic profile of serum-

derived exosomes from patients with MM at several stages of disease, compared to those 

from healthy individuals. In particular, 24 metabolites were selected according to 

statistical criteria. They also showed a clear differential pattern of expression across the 

two groups of comparison and 18 of them were tentatively identified. According to ROC 

curve analyses, they all showed excellent discrimination capacity between the two groups 

of samples, suggesting that they could be considered potential exosomal biomarkers for 

MM. 

5. Similarities in some structural lipids from both CSC-derived exosomes and those derived 

from patients with MM were also detected. In particular, the glycerophosphocoline PC 

16:0/0:0 was commonly found to be overexpressed in exosomes derived from both HC 

serums and MM differentiated cells, compared to MMP serum and MM CSCs, 

respectively. 
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6. Significant metabolomic differences were found between patients in stage I of MM and 

HCs. In particular, 10 metabolites were selected according to statistical criteria. They also 

showed a clear differential pattern of expression across the two groups of comparison and 

7 of them were tentatively identified as different structural lipids that belong to different 

classes of glycerophospolipids such as glycerophosphoethanolamines (PEs), 

glycerophosphocholines (PCs), cytidine diphosphate diacylglycerol (CDP-DG), or 

oxidized glycerophospholipids (POB-PS and PKOHA-PG). 

7. Those selected differential metabolites were suggested as potential serological 

biomarkers for early diagnosis of MM, since they all yielded remarkable discrimination 

capacity between the two groups of samples, according to ROC curve analyses. 

8. To our knowledge, this is the first reported evidence of differences in exosome 

metabolomic profile from CSCs-enriched melanospheres versus MM differentiated cells 

and serum samples from patients with MM and healthy individuals.  

9. All together, the results presented herein provide evidence that metabolomics and LC-

HRMS analytical platforms, represent a powerful tool to identify and quantify 

metabolites in liquid biopsies, which could serve as potential biomarkers for diagnosis of 

not only MM, but also for other types of cancer and diseases.  
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1. Se caracterizó una subpoblación celular enriquecida en CMCs en una línea celular 

primaria derivada de un paciente con MM mediante la evaluación de la expresión de 

marcadores específicos y de sus propiedades características. 

2. Los exosomas derivados de CMCs y sueros de pacientes con MM fueron aislados, 

caracterizados, y su perfil metabolómico fue analizado por cromatografía líquida 

acoplada a espectrometría de masas de alta resolución (LC-HRMS) siguiendo una 

aproximación no dirigida y aplicando análisis estadísticos univariados y multivariados. 

3. Se hallaron diferencias metabolómicas significativas entre los exosomas derivados de 

CMCs de MM y aquellos derivados de células cancerígenas diferenciadas. En concreto, 

se seleccionaron 19 metabolitos en base a criterios estadísticos. Todos ellos mostraron un 

claro patrón de expresión diferencial entre los grupos comparados y 4 de ellos fueron 

tentativamente identificados como lípidos estructurales de diferentes clases. 

4. Además, también se encontraron diferencias en el perfil metabolómico de los exosomas 

derivados del suero de pacientes con MM en distintos estadios de la enfermedad, 

comparados con aquellos derivados de individuos sanos. En concreto, 24 metabolitos se 

seleccionaron en base a criterios estadísticos. Todos ellos también presentaron un claro 

patrón de expresión diferencial entre los grupos comparados y 18 de ellos fueron 

tentativamente identificados. De acuerdo con los análisis de curvas ROC, todos ellos 

presentaban una excelente capacidad de discriminación entre los dos grupos de muestras, 

lo cual sugiere que podrían ser considerados como potenciales biomarcadores exosomales 

de MM.  
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5. También se detectaron similitudes en algunos lípidos estructurales tanto en exosomas 

derivados de CMCs como en aquellos derivados de pacientes con MM. En particular, la 

glicerofosfocolina PC 16:0/0:0 se halló comúnmente sobre-expresada en exosomas 

derivados tanto de sueros de individuos sanos como en células diferenciadas de MM, en 

comparación con aquellos derivados de suero de pacientes con MM y CMCs de MM, 

respectivamente.  

6. Se hallaron diferencias metabolómicas significativas entre pacientes en estadio I de MM 

e individuos sanos. En concreto, se seleccionaron 10 metabolitos en base a criterios 

estadísticos. Todos ellos presentaban un claro patrón de expresión diferencial entre los 

grupos comparados y 7 de ellos se identificaron tentativamente como lípidos estructurales 

pertenecientes a distintas clases de glicerofosfolípidos, como glicerofosfoetanolaminas 

(Pes), glicerofosfocolinas (PCs), citidín difosfato diacilglicerol (CDP-DG) o 

glicerofosfolípidos oxidados (POB-PS y PKOHA-PG). 

7. Todos esos metabolitos diferenciales seleccionados fueron sugeridos como potenciales 

biomarcadores serológicos para el diagnóstico precoz del MM, puesto que todos 

presentaron una notable capacidad de discriminación entre los dos grupos de muestras, de 

acuerdo con los análisis de curvas ROC. 

8. Hasta donde sabemos, esta es la primera evidencia reportada sobre diferencias en el perfil 

metabolómico de exosomas derivados de melanosferas enriquecidas en CMCs respecto a 

los de células diferenciadas de MM, así como en exosomas derivados de sueros de 

pacientes con MM respecto a los de individuos sanos. 
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9. En conjunto, los resultados presentados en este trabajo demuestran que la metabolómica 

y las plataformas analíticas LC-HRMS representan una poderosa herramienta para 

identificar y cuantificar metabolitos en biopsias líquidas, que podrían servir como 

potenciales biomarcadores para el diagnóstico no solo del MM, sino también para otros 

tipos de cáncer y otras enfermedades.  
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AFM: Atomic force microscopy 

AJCC: American Joint Committee on 

Cancer 

ALDH: Aldehyde dehydrogenase 

AUC: Area under the curve 

BCC: Basal cell carcinoma 

BS: Blank solvent 

CAF: Cancer-associated fibroblast 

CE: Capillary electrophoresis 

CSC: Cancer stem cell 

CTC: Circulating tumor cell 

ctDNA: Circulating tumor DNA 

CV: Cross validation 

DMEM: Dulbecco’s modified eagle’s 

medium 

ECM: Extracellular matrix 

EMT: Epithelial-to-mesenchymal transition 

ESI: Electrospray ionization 

EV: Extracellular vesicle 

FACS: Fluorescence-activated cell sorting 

FBS: Fetal bovine serum 

FDA: Food and Drug Administration 

GS: Gas chromatography 

HC: Healthy control 

HDI: Human development index 

IDA: Information dependent acquisition 

ISEV: International Society for 

Extracellular Vesicles 

LC: Liquid chromatography 

LDH: Lactate dehydrogenase 

lncRNA: Long noncoding RNA 

m/lEV: medium/large extracellular vesicle 

m/z: mass-to-charge ratio 

MDR: Multidrug resistance 

MET: Mesenchymal-to-epithelial transition 

MHC: Major histocompatibility complex 

MIR: Mortality-to-incidence ratio 

miRNA: microRNA 

MISEV: Minimal information for studies of 

extracellular vesicles 
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MM: Malignant melanoma 

MM-CSC: Malignant melanoma cancer 

stem cell 

MMP: Malignant melanoma patient 

MP: Mobile phase 

HRMS: High resolution mass spectrometry 

MVA: multivariate analysis 

MVB: Multivesicular body 

NCD: Noncommunicable diseases 

NIH: National Institute of Health 

NMR: Nuclear magnetic resonance 

NMSC: Non-melanoma skin cancer 

PBS: Phosphate buffered saline 

PC: Phosphatidylcholine 

PCA: Principal component analysis 

PE: Phophatidyletanolamine 

PL: Phospholipid 

PLS-DA: Partial least squares regression 

QC: Quality control 

Q-TOF: Quadrupole-time-of-flight 

ROC: Receiver operator characteristics 

ROS: Reactive oxygen species 

RT: Retention time 

SC: Skin cancer 

SCC: squamous cell carcinoma 

SEM: Scanning electron microscopy 

sEV: small extracellular vesicle 

SP: Side population 

TAM: Tumor-associated macrophages 

TEM: Transmission electron microscopy 

TIC: Total ion chromatogram 

TME: Tumor microenvironment 

UV: Ultraviolet 

UVA: Univariate analysis 

VIP: Variable importance in projection 

WHO: World Health Organization 
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Figure S1. Characterization of exosomes derived from Mel1 differentiated tumor cells. (A) Transmission 

electron microscopy images of isolated exosomes with a saucer-like shape limited by a lipid bilayer. EVs isolated 

from Mel1 culture supernatants had diameters ranging from ~50–240 nm. Black arrow heads point to exosomes; (B) 

Topography of exosomes derived from Mel1 adherent cells observed under atomic force microscopy (AFM). 

Exosomes on a mica surface revealed heterogeneity in size and shape as well as forming aggregates in both 2-

dimensional 2D (left) images and 3D profiles (right). Acquisition areas were 5 x 5 µm
2
; (C) The size distribution of 

exosomes isolated from Mel1 adherent cells was analyzed by NTA; (D) Western blot analysis of CD9, Alix and the 

Hsp70 exosomal surface markers. 

 

 



 Annexes: Supplementary Information 

 

230  
 

 

 

 

 

 

 

 

 

 

 

Figure S2. Metabolomic analysis of exosomes derived from Mel1 patient-derived cell line. (A) PCA scores plots 

based on HPLC/MS data of exosome samples derived from adherent cells (red), primary spheres (green) and 

secondary spheres (blue). (B) Heatmap showing the significantly different metabolites when comparing exosomes 

derived from adherent cells (red), primary spheres (green) and secondary spheres (blue). Each row on the heatmap 

represents a unique metabolite with a characteristic mass-to-charge ratio and retention time while each column 

represents one exosome sample. The colour code (blue to red) represents the normalized intensity with which each 

metabolite is detected. 

 

 


