
Database
(SNPs) and CpG Methylation in the
0022-2836/� 2020 The Autho
licenses/by-nc-nd/4.0/).
geno5mC: A Database to Explore the
Association between Genetic Variation

Human Genome
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Abstract

Genetic variation, gene expression and DNA methylation influence each other in a complex way. To study
the impact of sequence variation and DNA methylation on gene expression, we generated geno5mC, a
database that contains statistically significant SNP-CpG associations that are biologically classified either
through co-localization with known regulatory regions (promoters and enhancers), or through known cor-
relations with the expression levels of nearby genes. The SNP rs727563 can be used to illustrate the
usefulness of this approach. This SNP has been associated with inflammatory bowel disease through
GWAS, but it is not located near any gene related to this phenotype. However, geno5mC reveals that
rs727563 is associated with the methylation state of several CpGs located in promoter regions of genes
reported to be involved in inflammatory processes. This case exemplifies how geno5mC can be used to
infer relevant and previously unknown interactions between described disease-associated SNPs and their
functional targets.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creati-
vecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Although several human diseases clearly show
Mendelian inheritance, virtually all quantitative
traits are complex, i.e. multi-genic and influenced
by the environment. Those include complex
diseases such as Alzheimer, autoimmune
diseases1 and most cancer types2. Genome Wide
Association Studies (GWAS), which statistically
relate allele frequencies at certain loci to pheno-
types3, have been widely used to identify the
rs. Published by Elsevier Ltd.This is an open ac
genetic component of complex traits. These stud-
ies contributed to the knowledge of the genetic pre-
disposition to complex diseases and therefore the
discovery of genetic variants (mostly SNPs, Single
Nucleotide Polymorphisms) with a potential diag-
nostic and prognostic value.
However, statistically associated SNPs

frequently locate outside coding or known
regulatory regions4. Therefore, in many cases the
mechanistic relationships between SNPs and the
phenotype cannot be easily established. Expres-
cess article under the CC BY-NC-ND license (http://creativecommons.org/
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sion quantitative trait loci (eQTL) provide a statisti-
cal link between genetic variation and gene expres-
sion5. For example, a recent study found 202,489
variants associated with the expression levels of
1959 genes in liver, which suggests that a substan-
tial proportion of human genes might have at least
one associated eQTL6.
DNA methylation is well known for its implication

in gene regulation. Early studies showed that DNA
methylation generally relates to repression of gene
expression, but recent experiments suggest that
methylation associates with both reduced and
increased levels of gene expression7. Furthermore,
there are several lines of evidence that suggest
that sequence variation can trigger changes in
DNA methylation. Further studies found that
changes in both transcription factor (TF) abun-
dance and binding are associated with changes in
DNA methylation8–10. And more recently, genome
wide quantitative trait studies associated sequence
variants with changes in methylation levels
(mQTLs, Methylation Quantitative Trait Loci)11,
and many of them were found to co-localize with
known TFBSs (Transcription Factor Binding Sites)
or other regulatory sites12.
Altogether, TFs might play a key role in linking

sequence variants, DNA methylation and gene
expression levels in a complex way. Indeed,
recent observations show that eQTLs often co-
localize with mQTLs, thus suggesting that these
QTLs are connected at a functional level13. Pierce
et al. identify more than 400 co-localized eQTL-
mQTL pairs likely to share a common causal vari-
ant. Two possibilities exist: (1) changes in DNA
methylation drive changes in gene expression or
(2) DNA methylation is the result of gene regula-
tion. By means of partial correlation and mediation
analysis, these authors found that both possibilities
co-exist in the genome, although many SNPs affect
multiple CpGs in opposite directions.
Although eQTLs and mQTLs can notably extend

our understanding of the molecular mechanisms of
complex traits, these studies generally involve a
high number of samples which makes them costly
and labor intensive. Furthermore, it is often not
possible to study eQTLs and mQTLs in the
relevant tissue or cell type. Therefore, we present
here a novel approach to explore the possible
impact of sequence variants on methylation and
thus on gene expression levels. It’s known that
SNPs can both, affect TF binding locally and
provoke changes on DNA methylation levels5.
DNA methylation in turn can influence gene
expression as recently shown by14,15 for TL-CpGs
(Traffic Light CpG, i.e. the methylation level corre-
lates with gene expression)14. Therefore, we postu-
late that a subset of eQTLs are mQTLs + TL-CpGs.
This mechanistic interplay would also allow for cau-
sal relations between SNPs and gene expression
at larger distances.
2

Using 58 publically available whole genome
bisulfite sequencing datasets, we determined not
only the methylation state of all CpG
dinucleotides but also all sequence variants by
means of MethylExtract16. We detected a total of
506,041,598 significant SNPs-CpG associations
(Fisher exact test FDR � 0.05) which are further
classified by their biological relevance through co-
localization with promoters17, enhancers18 and
TL-CpGs [14]. To our knowledge, this is the first
time that whole-genome bisulfite sequencing data-
sets (not limited to microarray probes19,20) are
associated with GWAS results, unraveling new
genetic regulatory associations previously
unknown for complex traits.
The results of this study were compiled into

geno5mC, the database presented here. The
users can query the database using SNP
identifiers, gene IDs or phenotype/syndrome traits
to obtain statistically associated DNA methylation
of CpGs located in functionally relevant genomic
regions. We demonstrate the usefulness of the
database by showing how a SNP that was found
to be associated with Inflammatory Bowel
Disease21 but lacking a functional relationship,
can be connected to relevant genes. This approach
may also be useful to guide future population-
based studies onto how epigenetic variation modu-
lates risk of disease.
Results

geno5mC database

After applying a minor allele frequency filter of 0.1
and removing all variant positions not known in
dbSNP version 151 we obtain 4,086,616 SNPs
for the analysis. Out of those 51,585 (1.3%) are
associated with at least one CpG. On the other
hand, we found that the methylation levels of
5,417,468 (19.3%) CpG dinucleotides are
associated with at least one SNP. Please note
that the number of associated CpGs is five times
higher than the total number of CpGs interrogated
by Infinium MethylationEPIC array.
The distance distribution is not monotonically

decreasing and shows clear differences
compared to the expected distribution. All
chromosomes show an overrepresentation of
short distances (<2 Mb in most cases) as
depicted in Figure 1(a) for chr22. Up to distances
of 2 Mb the number of observed CpG-SNP pairs
are significantly higher than expected by chance
alone (z-score > 3.3). At larger distances we can
observe both, over and underrepresented
distance ranges. Surprisingly, a very pronounced
peak was found for distances between 30 Mb and
33 Mb in chr22. Blocks of SNPs associated to
several CpGs are responsible for this peak.
Figure 1(b) shows a block of 36 SNPs



Figure 1. (a) Observed and expected distance distribution (SNP-CpG) and the statistical significance expressed in
z-scores (bottom). We mark with dashed lines those differences between observed and expected counts that are
highly significant (|z| > 3.3). (b) Two genome regions, one very dense in CpGs (26) and one in SNPs (36). A total of
560 SNP-CpG pairs do exist between these two regions, explaining the high number of distances observed between
30 Mb and 33 Mb. (c) The distribution of the number of associated CpGs per SNP as a function of chromosome.
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(chr22:46923540-46972342) associated with 26
CpGs (chr22:16602566-16602738). The SNP
rs1569518 is associated to the methylation values
of 25 out of these 26 CpGs (bottom of Figure 1
(b)). The association between these two regions
contributes with a total of 560 SNP-CpG pairs
explaining the observed overrepresentation of
these distances. Although these long range
associations may appear as mere artefacts, it
was recently shown that methylation domains can
form long loops connecting loci that are several
dozens of megabases apart22.
Finally, Figure 1(c) shows the distribution of the

number of associated CpGs per SNP in the 22
autosomes. The median values range between
979 CpGs (chr21) and 13,684 (chr2). This shows
that while only a minor fraction of SNPs (1.3%)
are associated at all, most of them correlate with
thousands of different CpGs. This distribution is
clearly different than random expectation (noise)
and therefore reinforces that the found statistical
associations are not artefacts but of biological
nature.
Front and backend implementation

A MySQL database was used to store all data
displayed at the website. The interactive web
3

application was implemented using a Django
framework, together with Bootstrap and
Javascript. SQLAlchemy23 was used as Object
Relational Mapper (ORM) between MySQL and
Python. The plotly package24 was used for data
visualization in order to improve the interactivity of
the web application.
Information extraction and workflow

The database can be queried in four different
ways using: (i) a single SNP ID from dbSNP, (ii) a
trait (iii) a gene symbol or (iv) a genomic region.
Output page examples for these four different
query types are shown in Figure 2. On the output
page for a given SNP, the associated CpGs are
grouped by their putative biological relevance, i.e.
those that are located in known regulatory regions
(promoter and enhancers) or those that are
known to correlate with gene expression (TL-
CpG). We highlight ‘Top results’ if an associated
CpG dinucleotide correlates with the transcription
levels of at least one gene and also lies within the
promoter region of a gene or an enhancer. Given
the hierarchical classification, different output
levels are generated: (i) a summary tab that also
contains the ‘Top results’, (ii) CpGs located in
known promoters, (iii) CpGs located in enhancers



Figure 2. Example of the output for different ways to query geno5mC: (a) Query SNP, (b) Query trait, (c) Query
Gene, and (d) Query Region.
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and (iv) CpGs reported to correlate with gene
expression (TL-CpGs).
For a trait based search (Figure 2(b)), associated

SNPs are reported if they have at least one
associated CpG. The corresponding SNPs can
then be explored separately.
The output for a gene search is slightly different

reporting (i) all associated CpGs located in the
promoter region together with the associated
SNPs (see Figure 2(c)) and (ii) associated CpGs
that correlate with gene expression (TF-CpGs).
Furthermore, the methylation values can be
visualized for each promoter.
Finally we provide the possibility to query a user-

defined genome region by its coordinates. The
output is virtually identical to the gene-centered
search with the exception that TL-CpGs cannot
be reported as those are limited to regions
centered around genes.
A working example

To illustrate how geno5mC can be used to extend
the knowledge about putatively functional
implications of SNPs we analyzed rs727563,
reported to be statistically associated with
inflammatory bowel disease.21 This SNP has two
possible alleles C/T, being C the risk allele.
Although the GWAS showed a highly significant
4

association, no mechanistic link is known between
this SNP and the mentioned phenotype.
Located in chromosome 22 (chr22:41471373,

GRCh38.p12), this SNP is an intron variant of the
gene ACO2 which encodes for the aconitase two
protein. The ACO2 belongs to the aconitase/IPM
isomerase family, and catalyzes the inter-
conversion of citrate to isocitrate via cis-aconitate
in the second step of the citric acid cycle.
Diseases associated with ACO2 include Infantile
Cerebellar-Retinal Degeneration and Optic
Atrophy 925,26; but it has no apparent relation to
inflammatory bowel disease.
geno5mC reports a total of 6280 associated

CpGs for this SNP which can be downloaded
from the output page. In order to provide more
concise results, the output is centered on the
most relevant CpGs. We find 2299 CpGs located
in enhancers, 16 in promoters and 53 that are TL-
CpGs. Figure 3(a) shows that three genes are
found with at least one associated TL-CpG. The
gene CYTH4 (Figure 3(b)) with two TL-CpGs
encodes for the Cytohesin-4 protein, which has
been related to inflammatory bowel diseases27.
On the other hand, promoter co-localization analy-
sis revealed that the promoter region of gene
SLC5A1 presents three associated CpGs (not
reported as TL-CpGs) (Figure 3(c)). SLC5A1
encodes a member of the sodium-dependent glu-
cose transporter (SGLT) family. The encoded
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integral membrane protein is the primary mediator
of dietary glucose and galactose uptake from the
intestinal lumen, being mainly expressed in the
intestine. Interestingly, its function has also been
related to inflammatory bowel disease28,29. In the
enhancer section this gene appears again showing
that six enhancers contain associated CpGs, rein-
forcing therefore a possible functional link between
this SNP and SLC5A1 through DNA methylation
changes.
Taken together, this example demonstrates that

although no molecular link has previously been
described between rs727563 and inflammatory
bowel disease, some of its associated CpGs are
located in the promoter regions of several genes
reported to have a role in inflammatory
processes. Therefore, this analysis suggests an
implication of this SNP in the regulation of gene
expression of a handful of genes involved with
inflammation.
To show that this SNP is not an exception we

analyzed some more phenotype associated SNPs
that are not located in any known regulatory
regions. For example the SNP rs4780401 is
related to Rheumatoid Arthritis by GWAS30 but is
not located within or near any related gene. By
means of our database we have found that it is
Figure 3. (a) Three genes with associated CpGs in their
expression (TL-CpGs), (b) the distribution of methylation
promoter region. It can be seen clearly that the CC geno
value = 6 � 10�4, chr22:37282497 p-value = 1.3 � 10�4). (
previously reported as correlating to gene expression.

5

associated with a CpG-TL in the promoter of the
gene MLKL which has been related to the same
disease31. The SNP rs10746333 is related to Dia-
betes Mellitus by GWAS. geno5mC reports that it
is associated with several CpGs-TL in the promot-
ers of the genes LRMP and MGP that have been
described as associated with the same
disease32,33.

Discussion

Our database geno5mC allows to connect
sequence variation (SNPs) to genes through the
statistical association with CpG methylation and
their correlation with gene expression values. In
this way, it can hint towards putative functional
implications of SNPs known to be associated to
specific phenotypes but without any known
molecular links.
Note that geno5mC is based on statistical

association and therefore the putative mechanistic
link is not confirmed. Just like in eQTL and mQTL
studies, the associations reported by geno5mC
still need to be confirmed by independent
functional assays.
One important last note is that if a causal

mechanistic link exists, then some kind of effector
promoter regions. These CpGs also correlate with gene
values of the two associated TL-CpGs in the CYTH4
type is associated to unmethylation (chr22:3728507 p-
c) Associated CpGs in promoter regions that were not
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molecule must be present. Strong candidates are
transcription factors with different affinity to
different binding sites defined by SNPs. It was
shown that this scenario can impact on
methylation (mQTL) and transcription levels
(eQTL). Consequently, this effector needs to be
present in the analyzed cell type, otherwise the
SNP genotype will not have any impact on the
methylation level. Since our approach is based on
many different tissue types the effector might be
absent in a subset of samples and, therefore, the
associations are likely to be missed. However, it
is important to highlight that this will not increase
the number of false positives but the number of
false negatives.
Up to our knowledge this is the first mQTL

database for whole genome sequencing data,
what makes it an important resource to leverage
GWAS results and identify new genes and CpGs
associated with complex traits.
Materials and Methods

Whole genome bisulfite sequencing data

Raw whole genome bisulfite sequencing data
were downloaded from the NCBI Sequence Read
Archive (https://www.ncbi.nlm.nih.gov/sra). To
avoid technical bias and in order to screen all
possible SNP-CpG combinations, only Whole
Genome Bisulfite Sequencing (WGBS) data were
selected. A total of 58 samples from different
tissues and projects, summarized in Supp.
Table 1, were selected. We made sure that each
sample comes from a different individual or cell
line in order to maximize the number of different
haplotypes.
DNA methylation and genotype profiling

To obtain DNA methylation levels and sequence
variation from the same samples, we developed a
pipeline based on Trimmomatic34, Bowtie235, Bis-
mark36, BSeQC37 and MethylExtract16. MethylEx-
tract provides methylation levels as the ratio
between 5mC reads and total number of reads
mapped to each cytosine position. Therefore, val-
ues close to one imply methylation while values
close to 0 indicate unmethylation. Additionally,
sequence variation is determined using a Fisher
Exact test like performed in VarScan38,39. Both,
methylation values for all CpG dinucleotides and
sequence variants are stored in a MySQL
database.
Statistical model

At a single-cell level, only three different
methylation values are biologically possible: 0
(unmethylated), 0.5 (allele specific methylation)
and 1 (methylated). However in a cell population
different values can be biologically meaningful,
6

like partial methylation values at enhancers40,41.
We first classify the methylation values (Mv) for
each CpG dinucleotide covered by at least five
reads into three groups: M (methylated):
Mv > 0.65, I (Intermediate): 0.35 � Mv � 0.65
and U (unmethylated): Mv < 0.35.
After filtering out SNPs with a minor allele

frequency below 0.1 in our set of 58 samples, we
obtain a 3 � 3 contingency table for each SNP-
CpG pair. This table is then reduced to a 2 � 2
table by using only homozygotes for the reference
or alternative allele and methylated or
unmethylated for the CpG methylation state. In
this way, heterozygotes and intermediately
methylated samples are not used to determine
statistical significance. The exact p-value was
then calculated using a Fisher Exact test. The
false discovery rate (FDR) is finally obtained by
correcting the exact p-value with the number of
tests performed for each SNP. Only SNP-CpG
pairs significant at FDR � 0.05 are included into
the database.
Annotation and classification data

Sequence variants detected within the 58
samples were filtered using dbSNP42 version 151
(all), i.e. only known sequence variants are further
considered. Associated CpGs are classified
according to their genome location using:

� EPD promoters version 006 downloaded from
(https://epd.epfl.ch/human/human_database.php?
db=human)17.

� Enhancers from GeneHancer version 4.4 down-
loaded from (https://www.genecards.org/GeneHan-
cer_version_4-4)18.

� CpGs previously found to correlate with gene expres-
sion, i.e. TL-CpGs14 (Supp. Table II).

Trait-SNP information was downloaded from the
Phenotype-Genotype integrator (PheGenI)43. Only
those SNPs reported as associated with both, a
phenotype and DNA methylation were considered.
Distance distribution

We carry out randomization experiments in order
to obtain an expected distance distribution under
the assumption that the found SNP-CpG
associations are by chance alone. This allows us
to determine statistically significant over and
underrepresentation of certain distances. We first
determine the number of SNP-CpG pairs for
distance bins of 100 kb (observed counts). The
expected values are then calculated by randomly
shuffling 100 times the labels associated/not-
associated among the CpGs associated to a
given SNP. This is performed for each SNP
separately preserving the number of associated
CpGs. For each distance bin we obtain the
observed and expected number of SNP-CpG

https://www.ncbi.nlm.nih.gov/sra
https://epd.epfl.ch/human/human_database.php%3fdb%3dhuman
https://epd.epfl.ch/human/human_database.php%3fdb%3dhuman
https://www.genecards.org/GeneHancer_version_4-4
https://www.genecards.org/GeneHancer_version_4-4
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distances and the standard deviation. Finally we
calculate a z-score to determine at which
distances statistically significant associations are
over and under-represented.

Database URL: https://arn.ugr.es/geno5mc/
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