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Abstract

The maintenance of cash levels under certain security

thresholds is key for the health of the banking sector. In

this paper, the monitoring process of branch network

cash levels is performed using a single intelligent system

which should provide an alert when there are cash

shortages at any point of the network. Such an integral

solution would provide a unified insight that guarantees

that branches with similar cash features are secured as a

whole. That is to say, a triggered alarm at a specific

branch would indicate that attention must also be paid

to similar (in‐cash‐feature) branches. The system also

incorporates a (complementary) specific treatment for

individual branches. The Early Warning System for

securing cash levels presented in this paper (cash level

EWS) is deliberately free of local demographic specifi-

cations, thereby overcoming the current lack of world-

wide definitions for local demographics. This aspect

would be particularly valuable for banking institutions

with branch networks all over the world. A further

benefit is the cost reductions that are a result of repla-

cing several approaches with a single global one. Instead

of local demographic parameters, a solid theoretical

model based on Markov random fields (MRFs) has been

developed. The use of MRFs means a reduction in the
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amount of information required. This would mean a

higher processing speed as well as a significant reduc-

tion in the amount of storage capacity required. To the

best of the author's knowledge, this is the first time that

MRFs have been applied to cash monitoring.

KEYWORD S

cash level EWS, intelligent system, local demographics free,
markov random fields, securing cash levels

1 | INTRODUCTION

Alert systems and warning tools are essential for preventing disasters of any type. In the financial
context, Early Warning Systems (EWSs) detect vulnerabilities and malperformance thus preventing
institutions from potential bankruptcies derived from liquidity risks. Although there are many
definitions, liquidity risks are associated with the the ability of banking institutions to obtain cash
(with immediacy) from other products when necessary, without any loss of capital.1

Liquidity risks may arise due to several factors, which have intricate and interdependent
relationships. Despite the complexity of the subject, most authors agree that accurate cash
management of liquid resources at both bank and branch level is determinant in reducing risk
exposure as well as guaranteeing financial solvency.2‐4 In particular, some authors5,6 think that
precise cash management at a bank level is largely supported by careful cash management at a
branch level, see Reference [7], for further details.

This paper provides a tool for enhancing the cash management capacity at a branch level.
To achieve this, the maintenance of cash levels under certain security thresholds is considered
as a surveillance process of the whole branch network. A cash level EWS is presented here as
an individual tool for (network) cash monitoring which should provide alerts when there are
cash shortages at any point of the network. Among other benefits, this type of integral solution
would provide a unified insight that guarantees that branches with similar cash features are
subjected to similar treatments. This would mean that, for instance, a triggered alarm at a
specific branch would indicate that attention must also be paid to similar (in‐cash‐feature)
branches. Besides this treatment of similar (in‐cash‐feature) branches as a whole, the system
also incorporates a (complementary) specific treatment for individual branches.

The cash level EWS presented in this paper has been deliberately designed to be free of local
demographic specifications. Instead, a new framework based on “internationally accepted” notions
(as opposed to local ones) has been developed. In this sense, this cash level EWS is sometimes
referred to as universal. In this regard, it should be noted that the main purpose of bypassing local
demographic specifications is to avoid the confusion surrounding local demographics derived from
the lack of common definitions for local parameters (In fact, the differences concerning the local
demographic parameters that exist, complicate efforts in both academic and corporate fields), see
Reference [8]. In short, one of the major advantages of a cash level EWS that is free of local
specifications is that it would boost the use (and the export) of global technologies for banking
institutions that expand their branch networks all over the world. It would also offer cost reduc-
tions when replacing several proposals with a single global one.
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Our proposal is specifically based on the notion of Markov random fields (MRFs) which was
first mentioned in 1980,9 as a particular kind of graphical model, see Reference [10]. The cash
level EWS has been built around two alarm functionalities. First of all, a spatial alarm devoted to
covering the whole branch network, for which MRFs have been used as the theoretical ground-
work. By means of the corresponding Gibbs distribution associated to any given MRF, the entire
network is monitored in such a way that an alarm is generated once a given threshold has been
exceeded. This type of joint probability distribution can be expressed as a function of only a few
nodes of the network (the cliques) thereby reducing the amount of information required. This
would mean a higher processing speed as well as a significant reduction in the amount of storage
capacity required. The secondary alarm notification provides temporal coverage thereby recording
information as to whether the frequency of cash shortages is acceptable or not. To the best of our
knowledge this is the first time in literature that MRFs have been applied in designing an intelligent
system for securing cash levels (cash level EWS).

The paper is organized as follows. In Section 2, a review of related previous works is provided.
Section 3 contains the preliminaries on MRFs. Section 4 is devoted to developing the EWS
structural model through its primary and secondary alarm notifications. In Section 5, the cash level
EWS for the whole network is derived as well as complementary alert services for individual
branches. Moreover, an example of the monitoring of cash holdings is provided to illustrate how
our EWS works. Besides, model assessment is performed by using some experiments on the risk
behavior of unsafe cash levels. Finally, Section 6 presents the concluding remarks.

2 | RELATED REVIEWS

The literature offers an exhaustive range of mathematical trends for addressing the main-
tenance of cash levels and risk control in the financial context. Some approaches integrate the
information monitoring in the different possible scenarios by means of stochastic techniques:
see Reference [11], where an EWS is discussed using a statistical tool (the risk measurement)
which serves as a rational index for the definition of warning thresholds. Other perspectives
rely on Fuzzy Neural Networks due to their ability to derive the relationships between the
selected inputs and outputs. For instance, see Reference [12], where the authors propose the
use of a neural fuzzy system (GenSoFNN) for predicting banking failure. A comparison be-
tween neural network methods and standard statistical methods is given in Reference [13],
where the authors examine the effect of such models to detect financially troubled life insurers.
The paper [14] promote the use of stochastic optimization to improve cash management at a
branch level, focusing on two items: the cash forecast in branch ATMs and in credit card
transactions. And more recently, the cash forecast for branches have been approached by
coupling machine learning and robust optimization in the paper [15]. Other approaches design
EWSs for financial risk detection, as in Reference [16], where an EWS model based on data
mining (and developed by means of χ2 Automatic Interaction Detector algorithm) is presented.
Bayesian methods are also widely used. In this regard, in the paper [17], the authors show how
Bayesian networks may be used for the assessment of credit concentration risk by modeling the
destructive power of credit concentrations using the identification of Bayesian graphical models
correlations and correlations among borrowers, which are very difficult for the banking in-
dustry to calibrate. Another example is the paper [18] which represents a novel approach on
banking crisis EWSs by applying dynamic Bayesian networks to systemic banking crisis since
literature on these has been mainly based on the signal extraction and the logit model methods
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(Reviews on EWSs for predicting banking crisis are to be found in both [18] and [16]). A further
example is the paper [19], where the author develops an algorithm for diffusion across networks of
economic agents provided that the networks are weighted Bayesian graphs. The algorithm is then
employed to transfer the cash flow when operating with interbank liquidity networks.

Bayesian networks differ from MRFs in the underlying domain: Bayesian networks rely on
a direct graph while the underlying domain is undirected for MRFs. Our proposal on MRF is
intended for bypassing some problems of the previously mentioned methods. On one hand,
Bayesian‐based methods need large amounts of data: actually, one of their major drawbacks is
that they are data‐intensive which may make them difficult to use in data‐poor contexts. On the
other hand, neural networks and related statistical methods rely on a given data distribution.
The use of MRFs avoids these problems: since the joint distribution depends only on a small
number of nodes, the amount of information needed is much smaller than for Bayesian‐based
methods. Furthermore, the use of MRF means that there is no fixed distribution, which is
highly beneficial for all the dynamic situations that require frequent updates, as happens in
financial scenarios.

3 | PRELIMINARIES AND NOTATION

A graphG V E= ( , ) is a pair consisting of a set of verticesV (also named nodes) and a set consisting
of edges E that connect the nodes in pairs. u v~ means adjacent vertices, that is, vertices u and v
such that u v E( , ) ∈ . An undirected graph is a graph with bidirectional edges. Otherwise, the graph
is called directed (the edges are pointing in one direction). For a node u V∈ , its neighborhood is the
set of nodes such that one edge exists that connects them, N u v V u v( ) = { ~ }∈ ∣ , in such a way
that to define neighborhood of a node is equivalent to defining the set of edges. A subset of V is
called a clique if it is formed either by a single node or by nodes that are fully connected to each
other. In a condensed form, this is usually expressed as: C V⊆ is a clique if and only if
C u N u u C{ , ( )},⊆ ∀ ∈ . The graphs (or networks) whose nodes can be identified with values of a
random variable, X v V{ }v ∣ ∈ , and whose edges stand for the statistical connections between the
variables are called graphical models. Other names for them are spatial stochastic processes or
random fields. Depending on whether the underlying graph is directed or not, graphical models are
commonly categorized into Bayesian or Markov networks, also known as MRFs. With the aim of
reducing the amount of required data, we will focus on MRFs.

Consider a random variable X which takes values in a finite set V , X X v V= { }v ∣ ∈ and let
P X[ ] denote the corresponding joint distribution, as follows:

P X P X x v V P X x v V[ ] = [{ = }] = { [ = ] }.v v v v∣ ∈ ∣ ∈

The joint distribution of X is called a Gibbs distribution if it can be factorized as a product of
clique potentials inG. That is to say, P X[ ] may be written in terms of functions ϕC (C V∈ ⊂

is a clique) such as P X ϕ X[ ] = ( )
Z C C C
1

∏
∈

. These functions ϕ X( )C C are called Cth clique
potentials since they take values only in cliques C and they are required to be positive.
Z ϕ X= ( )

C C C∑∏
∈

is a normalization constant to form a valid probability distribution.
Although they can take many forms, clique potentials are usually of the form
ϕ X f C( ) = exp(− ( ))C C , where f C( ) is called an energy function. Thus, the probability dis-
tribution P X[ ] can be rewritten as follows:
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P X
Z

f C[ ] =
1

exp − ( )
C 

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑

∈

(1)

Generally speaking, a graphical model X X v V= { }v ∣ ∈ is said to be a MRF (with the un-
derlying domain G V E= ( , )) if its distribution P X[ ] depends only on the nearest nodes, when the
term nearest must be specified. The underlying idea is the same as for Markov chains: actually, a
Markov chain is a random process Xn in which the full conditional distribution of each state Xn,
P X x X x k n[ = = , ]n n k k∣ ∀ ≠ , depends solely on the immediately previous state Xn−1:

P X x X x k n P X x X x[ = = , ] = [ = = ].n n k k n n n n−1 −1∣ ∀ ≠ ∣

However, the natural time‐direction for Markov chains (displayed in Figure 1) disappears
when moving to MRFs (as shown in Figure 2).

In fact, since MRFs move across two‐dimensional surfaces, nearest would be defined once
the notions of direction and proximity were specified. Both notions shall be detailed by using
the notion of neighborhood of a node.

The notion of neighborhood of a node v, N v( ), allows us to broaden the Markov property
from Markov chains to MRFs:

P X x X x P X x X x[ = = ] = [ = = ].v v V v V v v v N v N v−{ } −{ } ( ) ( )∣ ∣

The notion of clique may be derived from that of neighborhood: a cliqueC is a set of nodes such
that any pair of elements c c C,i j ∈ satisfies that c N c c N c( ) and ( )i j j i∈ ∈ . Finally, the joint
distribution of a MRF X 0≥ is a Gibbs distribution, according to the Hammersley–Clifford theorem.

4 | THE EWS STRUCTURAL MODEL: A PROPOSAL

This section contains the theoretical framework for the EWS structural model. This will consist
of two alarm functionalities, the first one aimed at covering the whole spatial network. This
shall be achieved by using a probability function which shall trigger an alarm whenever a given
threshold is exceeded (Theorem 4.9 and Corollary 4.11). This function works with very

FIGURE 1 Natural time direction [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Spread time duration [Color figure can be viewed at wileyonlinelibrary.com]
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little information (from a few nodes, the cliques). The secondary alarm notification provides
temporal coverage by recording information as to whether the frequency of cash shortages is
acceptable or not. In the design of the EWS structure, variables which can be freely selected/
enlarged, shall be highlighted.

4.1 | Spatial coverage: Primary alarm notification

We begin by defining a theoretical network. For this, nodes v are identified with the random
variable to be monitored, Xv. To cover all the aspects, Xv shall be extensively detailed by means
of a collection of features x k n, = 1, …,v

k : that is, X x x x( , , …, )v v v v
n t1 2≃ , where both the vector

components (i.e., x k n, = 1, …,v
k ) and number of them may be selected as needed. As a result,

every node can be identified with a collection of of random variables x k n, = 1, …,v
k which can

be taken as weighted ones if required. Hence,

( )v X x x x v V~ = , , …, , for each .v v v v
n t1 2 ∈

The notion of explanatory variable is conducted through the notion of feature vector as an
n‐dimensional vector of numerical scores which represent (label) an item. In this regard, the
following considerations should be taken:

• the passage from the random variable X x x x~ ( , , …, )v v v v
n t1 2 to a realization (of the random

variable) is made by rating the feature coordinates x k n, = 1, …,v
k . To this end, several

methodologies could be considered. Once the rating/scoring process is over, each node v can
be identified with a feature vector score x score x score x( ( ), ( ), …, ( ))n t1 2 which represents the
numerical evaluation of Xv.

• Depending on whether Xv can be described qualitatively or quantitatively, the corresponding
data sets—where each feature coordinate x k n, = 1, …,v

k takes values‐ can be either nu-
merical or wording ones. Once the random variable Xv and its coordinates x k n, = 1, …,v

k

have been selected, what differentiates some nodes from others are the lower and upper
bounds of such variables.

Remark 4.1 (Open‐door 1). The random variable X X v V= { , }v ∈ can be selected as
required by the context as well as the Xv features x k n, = 1, …,v

k , both the number and
the features themselves.

A graphical model should be defined from the set of random variables X X v V= { , }v ∈ ,
once the links between nodes have been described. In fact, once a neighborhood system N has
been defined—which is referred to below‐ this shall determine the links between the nodes
according to the neighboring relationship, namely: v N v v N v v N v• ( )• ( ) ( )j i i j∉ ∈ ⇔ ∈ . The
graphical model thus defined will be denoted by X N( , )v v v V∈ .

Therefore, the distance between nodes could be specified. One possibility (even when the
feature coordinates x k n, = 1, …,v

k are values in wording data sets) is to consider the Euclidean
distance between the corresponding mean feature vectors:
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Definition 4.2. Consider two nodes X x x= ( , …, )v v v
n t1

i i i
, X x x= ( , …, )v v v

n t1
j j j

, i j≠ , and let

Xvi denote the mean value of the random variable over some interval of time,

( )X x x x v V= , , …, , for each ,v v v v
n t1 2 ∈

(i.e., Xv is a specific realization of the random variable). Thus, the distance between
nodes X X,v vi j

, i j≠ , written dij, is the Euclidean distance between X X,v vi j
:

( )d d X X x x= ( , ) = − .ij v v
k

n
k
v

k
v

=1

2

i j i j∑ (2)

Remark 4.3 (Open‐door 2). In some contexts, Euclidian distance may not work well
because the components are taken on different scales. In such situations, the components
should be rescaled (normalized or standarized).

In fact, the definition of distance between two nodes is of free choice. For instance,
Mahalanobis distance is a multivariate measure that determines the distance between
nodes and distributions. In general, any distance function on the given set V could be
considered provided that it meets the requirements of the features of the context. That is
to say, a set V can be viewed as a metric space if there is a function d V V: × → that
satisfies the conditions (for x y z V, , ∈ ) (i) d x y( , ) 0≥ , and d x y x y( , ) = 0 =⇔ , (ii)
d x y d y x( , ) = ( , ) (symmetry) and (iii) d x z d x y d y z( , ) ( , ) + ( , )≤ .

Any metric d on a set induces a topology on the set. In particular, a neighborhood system
N N v v V= { ( ) }∣ ∈ can be defined, where N v( ) denotes the neighborhood of v V∈ . Note that
any definition of the neighborhood on a node is allowed as long as the neighboring relationship
is satisfied.

In our context, where an order on V need not exist, the neighborhood on a node v V∈ is
defined as follows:

Definition 4.4. The neighborhood of a node v Vi ∈ is N v( ) =i

v V d v v k{ ( , ) ϵ, , ϵ 0}j i j ∈ ∣ ≤ ∈ ≠ , where the degree of similarity materializes through
a benchmark ϵ which should be specified for each particular case. Hence, for v N v( )j i∈

an edge (v v,i j) will join them if d v v( , ) ϵ 0i j ≤ ≠ .

A full description of the notion of neighborhood follows:

Proposition 4.5 (Code neighborhoods). The neighborhood of any node v V∈ consists of
all nearby nodes where the term “nearby” means that, regarding Xv, the nodes are very
similar with a degree of similarity ϵ.

Proof. From Definition 4.4,

N v v V v v E

v V d v v

( ) = { ( , ) } =

= { ( , ) ϵ, ϵ , ϵ 0}.

i j i j

j i j 
∈ ∣ ∈

∈ ∣ ≤ ∈ ≠

It is clear that both vi and vj are very similar with regard to Xv since the distance
between v v,i j is as short as ϵ. □
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Using the equivalence between edges and neighborhood systems, the edges in the network
X N( , )v v v V∈ can be fully described as follows: an edge (v v,i j) will join two vertices v v,i j if and
only if d v v k v N v( , ) 0( ( ))i j j i≤ ≠ ⇔ ∈ .

From Proposition 4.5, the next result can also be derived:

Corollary 4.6. Consider X X,v vi j
two random variables. If they belong to the same

neighborhood, then they have equal conditional distributions. If X X,v vi j
do not belong to the

same neighborhood, they are independent variables.

Proof. Let X X,v vi j
be two random variables. Let us suppose that they are in the same

neighborhood. Thus, their distance in similarity to the selected features is as small as
desired, as is the benchmark ϵ. Hence, their marginal distributions are equal,
P X P X[ ] = [ ]v vi j

. By applying the Bayes's theorem:

P X X
P X X P X

P X
P X X[ ] =

[ ] [ ]

[ ]
= [ ],v v

v v v

v
v vi j

j i i

j

j i
∣

∣ ⋅
∣

the result follows. Let it be noticed that, for ϵ small enough, the fact that a node v N v( )i j∉

is equivalent to that Xvi and Xvj have no features in common. Thus, the result follows. □

Finally, the definition of cliques can be given as maximally connected subgraphs.
More specifically, the set of cliques consists of either a single‐node C c= { }i1 , a pair of

neighboring nodes C c c= { , }i j2 , a triple of neighboring nodes C c c c= { , , }i j k3 in such a way that
the collection of all cliques is C C C C= …1 2 3∪ ∪ where Ci are possible sets of larger cliques.
Note that the nodes in a clique are ordered and c c{ , }i j is not the same clique as c c{ , }i j . For
instance, the maximal cliques in Figure 3 are C C= {6, 7}, = {4, 5, 6}2 3 and C = {1, 2, 3, 4}4 .

The following result identifies the cliques:

Proposition 4.7 (Code cliques). A clique C consists of the nodes with a high degree of
similarity, where the term “high” depends on the benchmark ϵ , ϵ ϵi i ≠ . It should be noted

FIGURE 3 Example of cliques [Color figure can be viewed at wileyonlinelibrary.com]
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that the index of similarity shall be different for each Ci, that is, nodes c c C,i i
i1 2 ∈ may be

similar with a degree ki while c c C,j j
j1 2 ∈ may be similar with different degree of similarity

ϵ ϵi j≠ whenever i j≠ .

Proof. A clique Ci is a collection of nodes such that each pair are connected by an edge.
In consequence, both c c C,i i

i1 2 ∈ belong to the corresponding neighborhood from
definition 4.4. Therefore, d c c( , ) ϵ ϵ.i i

i1 2 ≤ ≤ □

Remark 4.1 has significant implications.

Corollary 4.8. In general, cliques are fully connected (sub)groups. Thus, each choice of
the random variable Xv as well as of the feature coordinates x k n, = 1, …,v

k generates
different ways of grouping the nodes.

The aim at this stage is to derive a Gibbs distribution for the previously defined graphical
model. To this end, the following result is crucial:

Theorem 4.9. The graphical model X N( , )v v v V∈ is a MRF.

Proof. To prove that P X x X x P X x X x[ = = ] = [ = = ]v v V v V v v v N v N v−{ } −{ } ( ) ( )∣ ∣ , we
consider a partition of the set of nodes: specifically, for each node v V∈ , V =

N v N v( ) ( )∪ , where N v( ) denotes the complementary set (overV ) of N u( ). According to
the neighboring relationship, since v N v( )∉ , it is assumed that v N v( )∈ . Hence,
V v N v N v v− { } = ( ) ( ( ) − { })∪ . Therefore, random variables XV v−{ } are either XN v( ) or
XN v v( )−{ }. As a result, the above statement follows from the Corollary 4.6, since variables
Xv and XN v v( )−{ } are independent variables. □

Remark 4.10. It should be noted that the graphical model X N( , )v v v V∈ could be referred
to as universal in the sense that neither geographical constraints nor local specifications
have been considered in its definition.

Corollary 4.11. The joint distribution P X[ ] of the graphical model X N( , )v v v V∈ can be
written in terms of clique potentials ϕ X( )c C , where T is known as temperature and V X( )c C

are the energy functions:

P X
Z

ϕ X
Z
e[ ] =

1
( ) =

1

c C

c C T
V X−1 ( )

c C
c C∏ ∑

∈

∈ (3)

Proof. Since X N( , )v v v V∈ is a MRF from the Theorem 4.9, it is associated to a Gibbs
distribution, according to the Hammersley–Clifford theorem. In consequence, the joint

distribution of X is written either as a product of clique potentials P X ϕ X[ ] = ( ),
Z c C c C
1
∏

∈

or in terms of energy functions V X( )c C due to ϕ X e( ) =c C
V X( )T c C

−1
. Thus P X[ ] is

P X
Z

ϕ X
Z

e
Z
e[ ] =

1
( ) =

1
=

1
.

c C

c C

c C

T
V X

T
V X−1 ( ) −1 ( )c C

c C
c C∏ ∏ ∑

∈ ∈

∈

□
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Both the Theorem 4.9 and the Corollary 4.11 state that the designed graphical model
X N( , )v v v V∈ works as an intelligent system which can notify whether misalignments have oc-
curred, depending on whether the values of the joint distribution function P X[ ] exceed a given
threshold or not. In consequence, hereinafter we will refer to X N( , )v v v V∈ as an EWS. The
practical value of these results is that they give access to a joint probability distribution (with a
known expression) which should provide an alert when certain security thresholds are ex-
ceeded. Thus, a spatial monitoring system based on the information from cliques can be derived
for network type situations.

Efficient EWSs should be provided with a simple visual system to identify the different
alarm levels. In most cases this is done through a color system in such a way that the colors are
both linked to the alarm levels as well as to the corresponding probability of occurrence. To this
end, different procedures can be devised to relate probabilities to colors.

A sound, nonexpensive procedure is LATEX (A document preparation system
mainly employed for scientific documents), which shall identify each different color
with a range of probabilities: taking into account the fact that any probability P[–] Should
be between 0 and 1, P0 [‐] 1≤ ≤ , a partition  of [0, 1] should be taken: that is, an ordered
n‐tuple of real numbers x x x= ( , , …, )n0 1 such that x x x0 = < < < = 1n0 1 ⋯ ,

x x x x[0, 1] = [0 = , ] [ , ]0 1 1 2∪ ∪ ⋯ ∪ x x x x[ , ] [ , = 1].n n n n−2 −1 −1∪

An example of this type of partition of the interval [0, 1] is as follows:

[0, 1] = 0,
1

4

1

4
,

1

2

1

2
,

3

4

3

4
, 1

green yellow orange red

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥∪ ∪ ∪

           

such that the programme matches values with colors by simply assigning warm colors to
probability occurrences which either approach or exceed a given limit. The result is a colored
area like the one shown one in Figures 4 and 5.

4.2 | Time coverage: Secondary alarm notification

The main alarm functionality is to cover the spatial network. Nevertheless, this does not register the
frequency of some potentially troubling events. This is the reason why the proposed EWS has to be
endowed with a temporal follow‐up system. To visualize the state of alarm, a color‐coding system
would trigger the corresponding color in the scale of alert as a response to a certain probability of
occurrence at an instant of time t . To assess whether it is just a random event or if there is a real
possibility of liquid shortages, a temporary system is needed to record incidents. To this end,

• the system should register the time moments ti in which the joint probability function P X[ ] is
represented by warm colors.

• Time instants associated to such probability distribution values over time meet a temporal
sequence t{ }i i. These temporal data sets have to be preprocessed into a time series data frame
which includes converting information into dates, indexing the dates and assigning a fre-
quency as well as accounting for missing values.

• Once the corresponding thresholds have been fixed, the analysis (e.g., whether the corre-
sponding probability values increase or decrease) of the time series t{ }i i shall indicate the
evolution, frequency, and duration of the risk of cash shortages.
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FIGURE 4 The color‐coding system [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Surveillance of cash flows [Color figure can be viewed at wileyonlinelibrary.com]
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Let it be noted that, so far, the EWS acts as integral protection for the whole network due to a
joint probability distribution. However, it could be useful to secure some individual node(s) as
well. This shall be carried out when deriving the cash level EWS, as discussed in next section.

5 | CASH LEVEL EWS

5.1 | Securing cash levels in the branch network

In this section an EWS for securing cash levels (a cash level EWS) is derived from the previously
developed structural model. To contextualize this task, we refer to the framework to which central
banks must use To achieve financial stability. The appropriate tools are the banking liquidity stress
tests which should be performed by banking entities to adhere to those policies which set the safety
liquidity levels that banks must attain (Basel III rules with two minimum ratios, “Liquidity Coverage
Ratio” [LCR] a sort of stress test, and “Net Stable Funding Ratio” [NSFR] are particularly important
as they ensure that the assets of a bank are well supported by stable funding sources.).

This section is specifically related to the LCR since it is intended for controlling whether the
bank branches have sufficiently safe liquidity levels. In fact, the LCR was devised to be able to
check if banks hold a sufficient reserve of high‐quality liquid assets that allow them to survive
in conditions of significant liquidity stress lasting for 30 calendar days, see Reference [20]. Such
tests are periodically performed not only to meet the external regulatory standards but also for
internal security reasons to avoid dormant money at branches, since liquidity comes at a cost:
keeping liquid assets in cash involves the corresponding opportunity costs of not investing in
other alternative products which bring clear benefits, see Reference [7].

The reasons that make the proposed cash level EWS specially suitable for the banking
context are: on one hand, as an EWS free of local constraints, it may be employed as an
exportable methodology to be used for banking institutions which expand their branch
networks all over the world. Moreover, this would lead to a reduction in costs when replacing
several approaches with a single global (universal) one. On the other hand, since the joint
probability function is not required to follow a fixed data distribution, it is highly beneficial
in contexts with dynamic data which require frequent updates, as in financial scenarios.
Additionally, our cash level EWS only requires data sets from cliques thereby leading to a
significant reduction in the reporting burden on the remaining nodes (branches).

Let us formulate the cash level EWS. Consider a financial institution and let BN be its Branch
Network. Following References [6,17], branches are the nodes and the business relationships
between them are the edges, distinguishing between headquarters and branch offices in a
directed graph mode. For simplicity, we consider here that the Bank Branch Network BN is an
undirected graph where each branch b BN∈ is a grid node which is characterized by its cash
holdings, that is, the total amount of cash allowed in the branch b, denoted byCHb. That is to say,
here the general random variable X shall be the branch cash holdings CH so that

b X CH~ = .b b

Potential threats for BN are the liquidity risks that comprise either the risk of not reaching
(underperforming branches) or the risk of exceeding (branches with dormant money) the
corresponding security cash levels. The usual categorization of branches by branch practitioners
divides branches into different categories: city center, rural or business center, depending on the
total amount of cash holdings that they are allowed to maintain. As will be detailed shortly,
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the main differences between nodes b are lower and upper bounds for branch cash holdings
corresponding to different kind of branches (note that, in previous sections, it was highlighted
that “once a random variable Xv as well as the n‐tuple of random variables x k n, = 1, …,v

k have
been selected, what differentiates some nodes from others are the lower and upper bounds of
such variables”). The cash level EWS gives a warning about branches whose liquidity levels are
both under and over the required security standards (see next section for further details).

The main determinants of branch cash holdings must be selected as the associated col-
lection of features x k n, = 1, …,b

k of CHb. For simplicity, two features x k, = 1, 2k shall be
considered as determinants ofCHb: nb stands for the maximum number of transactions while vb
denotes the upper volume of cash transactions authorized by the central offices. As mentioned
before, however, the number of features can be freely enlarged as needed. The current selection
of features results from the fact that both n v,b b are the most commonly used features when
branch managers specify branch cash holdings (which can alternatively be specified by means
of the notion of size of a branch by practitioners). Hence,

Proposition 5.1. Each branch b in BN can be viewed as b CH
n
v~ =b

b

b

⎛
⎝⎜

⎞
⎠⎟.

Following the EWS model foundations, BN is viewed as an undirected graph whose nodes
are the random variables CH CH b BN= { , }b ∈ while the (undirected) edges provide financial
similarities between branches. Specifically, using Proposition 4.5, the neighborhood of a branch
may be described as follows.

Proposition 5.2. For a branch b n v= ( , )i b bi i
, its neighborhood N b( )i is the set of all

branches bj with similar features to that of bi in relation to their cash holdings:
N b b BN d b b k( ) = { ( , ) }i j i j∈ ∣ ≤ .

Branch size is an open concept which can be defined by basing it on several parameters.
Practitioners consider that both the number and volume of cash transactions are the values
which act as determinants of the branch size. According to this, the neighborhood of a branch
thus contains all the branches of a very similar size. Cliques are also described in this scenario:

Proposition 5.3 (Code cliques are in the Branch Network). Cliques C in the Branch
Network BN consist of branches of the same (or almost the same) size. It is important to
note that the size varies for each clique, that is, Ci contains all the branches of size si while
the branches of size sj are in Cj, with s si j≠ .

Proof. The result comes from Proposition 4.7. □

However, the main results are the following ones, which can be directly derived from
Theorem 4.9 and Corollary 4.11.

Theorem 5.4. The graphical model CH b BN{ , }b ∈ formed by the branch cash holdings is
a MRF.

Theorem 5.5. A measurement system for branch cash levels in the branch network BN is
given by P CH e[ ] =

Z
V Ch1 − ( )

c C c C∑ ∈ , where V Ch( )c C are functions which solely depend on
groups of branches with the same size (e.g., cliques in BN ).
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5.2 | Variations on the cash level EWS: Monitoring individual
branches

The previous section contains detailed information about how to secure the network as a whole
thanks to a joint probability distribution which provides coverage for the entire network.
Nevertheless, in some specific situations it is useful to know about a single node (e.g., a single
bank branch). This section aims to detail other surveillance options for the cash level EWS
proposed, like complementary alert services for individual nodes of the network. Both the
surveillance of the whole network and that of an individual branch could be executed in
parallel, thus providing comprehensive security. From a computational point of view, these
preferences (both procedures are interchangeable) can be arranged as part of the setting
options.

Securing the cash levels of individual branches can be performed as a particular application
of the EWS structural model, based on the following result.

Theorem 5.6. The neighborhood of any branch considered as a subnetwork of BN is a
MRF itself. Moreover, for any branch b*, the network N b b( *) { *}∪ also is a MRF. As a
consequence, a Gibbs joint probability distribution for N b b( *) { *}∪ can be obtained.

Proof. As mentioned before, the neighborhood of a branch b N b b NB b b* ( *) = { * ~ }∈ ∣

is the set of branches with similar cash holding features according to Proposition
5.2. It should be noted that the general Markov property P CH ch CH[ = =b b NB b−{ }∣

ch P CH ch CH ch] = [ = = ]NB b b b N b N b−{ } ( ) ( )∣ is satisfied in the particular case
of NB N b= ( *),

[ ] [ ]P CH ch CH ch P CH ch CH ch= = = = =b b N b b N b b b b N b N b* * ( *)−{ *} ( *)−{ *} * * ( *) ( *)∣ ∣

since no node belongs to its neighborhood and hence N b b N b( *) − { *} = ( *). As for the
second statement, NB N b b= ( *) { *}∪ , the corresponding Markov property is also sa-
tisfied since

[ ] [
]

P CH ch CH ch P CH ch CH

ch

= = = =

= .

b b N b b b N b b b b b N b

N b

* * ( *) { *}−{ *} ( *) { *}−{ *} * * ( *)

( *)

∣ ∣∪ ∪

(4)

□

Corollary 5.7. Let b* be a single branch in BN whose cash levels must be separately
monitored. The distribution function (which gives the likelihood of branch cash levels
reaching a given threshold) takes the form P CH e[ ] =b Z

V CH
*

1 − ( )
c C c C∑ ∈ , for C the set of

branches with the same size as b*.

Proof. The result comes from applying both Theorem 5.6 and the description of cliques
in BN (Proposition 5.3) to the specific case of the branch network NB N b b= ( *) { *}∪ . □

The next remark thus condenses how to secure the cash levels of individual branches.

Remark 5.8. To secure the cash levels of an individual branch b*,
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• adjust the original set of features nb (the maximum number of transactions) and vb (the
upper volume of cash transactions authorized) so that this best suits the specific
characteristics of b*.

• Consider (the subnetwork N b b( *) { *}∪ which contains) both the branch b* and all the
branches of same size as b*.

• Select appropriate potential functions V CH( )c C (c C∈ means branches in a clique and
hence, “branches of the same size as b*”), according to the b* features.

• Compute the corresponding likelihood of having safe/unsafe cash levels using
P CH e[ ] =b Z

V CH
*

1 − ( )
c C c C∑ ∈ .

Other variations of the cash level EWS would include the surveillance of liquid resources of
the whole banking institution. Then, instead of the LCR, the bank as an entity is related to
NSFR as long as it is intended for assessing the long‐term funding structure for long‐term
assets.

5.3 | An example of the monitoring of cash holdings

This section is devoted to developing an example of the monitoring of cash holdings to illustrate
how our EWS works. In the general model, the branch network BN is formed by a cloud of
branches b NB∈ that can be grouped into n cliques, C C C, , …, n1 2 according to their size: that
is, since cliques are groups of branches with the same branch size, each clique Ci has a
particular size si attached. Moreover, the function P CH P CH b NB[ ] = { [ ] }b ∣ ∈ denotes the
joint probability distribution of all cash holdings in BN whose output is, according to
Theorem 4.5, the probability of the branch cash holdings taking a specific value by aggregating
the corresponding information on cliques. P CH[ ] will be completely determined as soon as the
energy functions are selected.

Energy functions are determinant in a Gibbs probability distribution. These can be chosen
arbitrarily as long as they meet the “energy constraint” which states that they must be de-
creasing functions as for the matching of the features of cliques with regard to a given template.
That is to say, if the features in a clique match the features in a given template, the energy
function should decrease, otherwise it should increase. Moreover, they must be nonnegative
functions. Thus, from the general expression given in Theorem 5.5, each choice of clique energy
functions shall provide different distributions of BN cash holdings, as shown in Table 1.

We shall consider the case of Gaussian energy functions for the ith clique,
V Ch( ) =c C

CH μ

σ

( − )

i

Ci i

i

2

2 , where μi is the mean and σi
2 is the variance of the cash holdings at

TABLE 1 Different distributions of BN cash holdings

Name Clique energy functions Joint probability distribution

Gaussian
CH μ

σ

( − )Ci i

i

2

2 P CH e[ ] =
Z

1 − i
n CHCi μi

σi
=1

( − )2

2
∑

Log linear c w f CHexp( + ( ))
i i i Ci∑

( )P CH e[ ] =
Z

c w f CH1 − exp + ( )i
n

i i i Ci=1∑ ∑

Quadratic form CH ACHC
t

Ci i
P CH e[ ] =

Z
CH ACH1 − i

n
Ci
t

Ci=1∑
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ith‐clique CHCi. Let us suppose that r represents a certain value for branch cash holdings (r is
the initial of ready money since choosing c—the initial of the word cash—can cause confusion
with the notation of cliques). Let us set out the safe levels for branch cash holdings which
would depend on branch size: for underperforming branches of size si, let ri

min be the lower
threshold while ri

Max denotes the corresponding upper threshold which indicates the possible
presence of dormant money at branches of size si. Then, for each Ci whose cash holdings
behave within the established parameters it should be r r ri

min
i
Max≤ ≤ . To reach a common

domain, let r inf r i n= { = 1, …, }i
min ∣ and r sup r i n= { = 1, …, }i

Max ∣ be the infimum and
supremum, respectively so that r r r≤ ≤ .

From the general expression of the joint probability distribution which measures the state of
the BN cash holdings, the probability of BN cash holdings taking the value r is given by

P CH r
Z
e[ = ] =

1
r μ

σ
−

( − )

i

n i

i
=1

2

2∑

For a clique Ci, the probability of having cash holdings for quantities exceeding its upper
threshold, r r r r[ − , ]i

Max∈ should be very small, as happens when this is computed using
Gaussian energy functions: indeed, the further the amount r moves away from the established
maximum, the greater the difference in the exponent and, therefore, the lower the total probability.

The “constant” Z in 5.3 is known as the “partition function” and its primary role is to
ensure that the sum of the probabilities is equal to 1. By using the fact that probabilities must
add up to 1, Z can be isolated:

P CH r
Z
e

Z
e

Z e

1 = [ = ] =
1

=
1

=

r

k

r

r μ

σ

r

r μ

σ

r

r μ

σ

−
( − )

−
( − )

−
( − )

k k

i

n k i

i

k

i

n k i

i

k

i

n k i

i

=1

2

2 =1

2

2

=1

2

2

  



∑ ∑ ∑

∑

⇒

⇒

∑ ∑

∑

∈ ∈ ∈

∈

In reality, the determination of Z entails at an early stage the delimitation of its domain
since, in general, the sum over rk is understood to be a sum over all possible values that the
variable “cash holdings”may take (rk ∈ ). As this example has the purpose of illustrating how
our model works, we will not enter into the process of computing Z . Instead, we will use the
reproductive property to conclude that Z , under certain conditions, can be taken as equal to 1.
We assume for our example that the conditions that make Z equal 1 are met.

The reproductive property (see Reference [21]) states that:

Proposition 5.9 (Reproductive property [21, p. 659]). If two (or more) independent
random variables with a certain distribution are added together, the resulting random
variable has a distribution of the same type as that of the summands.

This property is applied twice: firstly, to the exponent in Z e=
r

−

k

i
n rk μi

σi
=1

( − )2

2


∑
∈

∑
, viewed as a

random variable
i

n r μ

σ=1

( − )k i

i

2

2∑ . Hence, since the variable
i

n r μ

σ=1

( − )k i

i

2

2∑ has a distribution of the

same type as that of the summands, it must be ( )r μ

σ

−k i
n

i

i
n

i

=1

2

=1
2

∑

∑
by the properties of Gaussian

distribution. In consequence,
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Z e μ μ σ σ= , = , =
r

r μ

σ

i

n

i

i

n

i
−

( − )

=1

2

=1

2

k

k
2

2


∑ ∑ ∑
∈

(5)

Second, we apply the reproductive property to the random variable Z itself. Accordingly,
Z has an exponential distribution, Z e= λ− for some parameter λ (a Gamma(λ, 1)
distribution), see References [21] and [22]. As a result, Z can be taken as equal to 1
whenever λ = 0.

Expression (4) allows the corresponding cumulative distribution for a quantity r r r[ , ]∈ to
be fixed:

P CH r P CH r
Z
e

Z
e[ ] = [ = ] =

1
=

1
,

r r

k

r r

r μ

σ

r r

r μ

σ
−

( − )
−

( − )

k k

i

n k i

i

k

i

n k i

i
=1

2

2 =1

2

2∑ ∑ ∑≤
∑ ∑

≤ ≤ ≤

which is finally equal to

P CH r e μ μ σ σ[ ] = , = , =
r r

r μ

σ

i

n

i

i

n

i
−

( − )

=1

2

=1

2

k

k
2

2∑ ∑ ∑≤
≤

by applying the reproductive property and assuming that Z = 1.
In particular, the likelihood that the cash holdings of BN stay in a safe band is given by

P CH r P CH r
Z
e e

μ μ σ σ Z

P CH r P CH r

[ ¯] = [ = ] =
1

=

= , = , = 1,

[ ̲] = 1 − [ < ̲].

r r

k

r r

r μ

σ

r r

r μ

σ

i

n

i

i

n

i

¯ ¯

−
( − )

¯

−
( − )

=1

2

=1

2

k k

i

n
k i

i

k

k

=1

2

2

2

2∑ ∑ ∑

∑ ∑

≤

≥

∑

≤ ≤ ≤

Note that the first formula computes the probability of performing under the permitted
threshold and hence, of not having dormant money (since once this threshold has been ex-
ceeded, there is a risk that liquid resources are not being invested or used). That means that the
probability of having dormant money can be computed as P CH r P CH r1 − [ ] = [ ]≤ ≥ . In
parallel, the second formula provides the probability of performing over the corresponding
threshold and hence, of having enough liquidity so that there is no risk of underperformance.
Accordingly, P CH r P CH r P CH r1 − [ ] = 1 − 1 + [ ] = [ ]≥ ≤ ≤ reflects the probability of a
risk of liquidity underperformance existing. Table 2 thus collects the basic formulas for com-
puting the probability of BN cash holdings suffering liquidity risks (Table 3).

Let us consider the dormant money detection for a specific branch network BN in a
particular example, to show how our model works. We assume that the branch network BN

consists of three cliques, gathering branches of small (clique C1 SS), medium (clique C2 MS),
and large (clique C3 LG) sizes, respectively.

The following information on lower and upper thresholds of the cash holdings r r,i
min

i
Max in

scale 1 to 10n for a positive integer n, is obtained from the cliques, from which r = 1 and r = 4:
We consider the sample r = {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7}k . Thus, the

probability of not having dormant money is given by
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P CH r e e

e e e e e

e e e e e

e e e e

[ ] = = =

= + + + + +

+ + + + + +

+ + + = 0.470826907,

r r

r μ

σ

r r

r−
( − )

−
( −7.5)

0.3

−
(0.5−7.5)

0.3
−

(1−7.5)
0.3

−
(1.5−7.5)

0.3
−

(2−7.5)
0.3

−
(2.5−7.5)

0.3

−
(3−7.5)

0.3
−

(3.5−7.5)
0.3

−
(4−7.5)

0.3
−

(4.5−7.5)
0.3

−
(5−7.5)

0.3

−
(5.5−7.5)

0.3
−

(6−7.5)
0.3

−
(6.5−7.5)

0.3
−

(7−7.5)
0.3

k

i

k i

i

k

k

=1

3 2

2
2

2 2 2 2 2

2 2 2 2 2

2 2 2 2

∑ ∑≤
∑

≤ ≤

computed through the information given by Table 4.

5.4 | Risk behavior depending on branch type

The analysis of risk behavior when unsafe cash levels have occurred will shed light on the cash
level variations thereby allowing their moves to be anticipated. This paragraph is devoted to
this type of study depending on the type of branches.

TABLE 3 Information on thresholds, mean and variance of the cash holdings from cliques

ri
min ri

Max μi σi

Clique C1 SS 1 2 μ = 1.51 σ = 0.11
2

Clique C2 MS 2 3 μ = 2.52 σ = 0.12
2

Clique C3 LS 3 4 μ = 3.53 σ = 0.13
2

μ
i i=1

3
∑ σ σ=

i i
2

=1

3 2∑

μ = 7.5 σ = 0.32

TABLE 2 Detection of unsafe levels of branch cash holdings

Under/over thresholds Probability How to compute the probability

Dormant money detection P CH r[ ]≤ P CH r[ = ] =
r r k¯k

∑
≤

e=
r r

−

k

rk μ

σ

( − )2

2∑
≤

,

μ μ

σ σ

Z

= ,

= ,

= 1

i

n

i

i

n

i

=1

2

=1

2

∑

∑

Underperforming branches detection P CH r[ ]≥ P CH r

P CH r

1 − [ < ̲] =

= 1 − [ = ] =
r r k< ̲k

∑

e= 1 −
r r< ̲

−

k

rk μ

σ

( − )2

2∑ ,

μ μ

σ σ

Z

= ,

= ,

= 1

i

n

i

i

n

i

=1

2

=1

2

∑

∑
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As mentioned, the usual categorization of branches by practitioners divides branches into
different types: city center, rural or business center, depending on the authorized upper and
lower thresholds for their cash holdings. For this reason, the main differences between different
types of branches are the lower and the upper bounds for branch cash holdings.

Under this categorization, the dynamics of the risk of having unsafe cash holding levels is
shown in Figures 6–9, depending on the kind of branch.

To reach conclusions, we have considered both probabilities (dormant money detection
P CH r[ ]i

Max≤ and underperforming branch detection, P CH r[ ]i
min≥ ) as a function of the

variance σi
2 for each clique Ci. As far as σi

2 is concerned, differences between metropolitan and
rural branches should be considered at this stage.

TABLE 4 Computation of P CH r[ ]≤ for a given sample

rk r( − 7.5)k r( − 7.5)k
2

r( − 7.5)

0.3
k

2

−
r( − 7.5)

0.3
k

2
e−

rk( −7.5)2

0.3

0.5 −7 49 163.3333333 −163.3333333 1.16208E−71

1 −6.5 42.25 140.8333333 −140.8333333 6.86848E−62

1.5 −6 36 120 −120 7.66765E−53

2 −5.5 30.25 100.8333333 −100.8333333 1.61674E−44

2.5 −5 25 83.33333333 −83.33333333 6.43863E−37

3 −4.5 20.25 67.5 −67.5 4.84309E−30

3.5 −4 16 53.33333333 −53.33333333 6.88062E−24

4 −3.5 12.25 40.83333333 −40.83333333 1.84633E−18

4.5 −3 9 30 −30 9.35762E−14

5 −2.5 6.25 20.83333333 −20.83333333 8.95774E−10

5.5 −2 4 13.33333333 −13.33333333 1.6196E−06

6 −1.5 2.25 7.5 −7.5 0.000553084

6.5 −1 1 3.333333333 −3.333333333 0.035673993

7 −0.5 0.25 0.833333333 −0.833333333 0.434598209

P CH r[ ]≤ 0.470826907

FIGURE 6 Likelihood of having dormant money for metropolitan branches (σi
2 taking high values) [Color

figure can be viewed at wileyonlinelibrary.com]
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According to bank managers' expertize, the main feature of metropolitan bank branches is a
high client flow, where over 50% of users are not habitual ones, and no complete information
on the habits of these type of branch consumers. Hence, cash entries and withdrawals produce
a heterogeneous cash flow. In consequence, for these kind of branches, the variance σi

2, can take
high values as a result of a higher dispersion. On the contrary, the main features of bank

FIGURE 7 Likelihood of underperforming for metropolitan branches (σi
2 taking high values) [Color figure

can be viewed at wileyonlinelibrary.com]

FIGURE 8 Likelihood of underperforming for rural branches (σi
2 taking small values) [Color figure can be

viewed at wileyonlinelibrary.com]

FIGURE 9 Likelihood of underperforming for metropolitan branches (σi
2 taking high values) [Color figure

can be viewed at wileyonlinelibrary.com]
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branches located in rural areas have a constant medium/low client flow, where less than 20%
are not regular users. In consequence, branch consumer habits are well known by branch staff.
The entry/withdrawal cash flow is homogeneous with medium/low level on cash quantities.
Therefore, the variance σi

2 is low.
As indicated above, Figures 6–9 display the risk behavior of unsafe levels of cash holdings

when measured using the corresponding probability. It becomes apparent that this type of risk
is an increasing function of σi

2 in all cases. Furthermore, the greater the dispersion, the higher
the probability of having unsafe cash levels.

6 | CONCLUSIONS

This paper presents a cash level EWS which provides alerts when unsafe liquidity levels are
reached at a branch level by working as an integral surveillance system for securing the cash
levels of the whole bank network. Among other benefits, this type of integral solution would
provide a unified insight that guarantees that branches with similar cash features are subjected
to similar treatment. Besides its integral coverage, it provides other options that go beyond the
network as a whole, like securing single branches. The implementation of these options may be
executed in parallel. From a computational point of view, these preferences can be arranged as
part of the setting options.

The design of the structural model is based on a MRF framework thereby providing a solid
theoretical groundwork on which the distribution function must no longer be subject to any
fixed distribution. This feature makes it very suitable for scenarios with dynamic data which
require frequent updates as is the case of financial contexts. Additionally, the distribution
function relies only on a few nodes (the cliques) thus reducing the amount of data required.

The cash level EWS has been designed free of local demographic constraints. This last
feature provides export facilities, which is particularly valuable for banking institutions with
branch networks all over the world. Another advantage of this type of integrated solution is the
cost reductions achieved when replacing several proposals with a single global one.

In the cash level EWS presented here, the random variable considered is the discrete
variable cash holdings, CH , which is a hard variable as opposed to a fuzzy one. In contexts
where the analysis of cash holdings would require a fuzzy variable, see Reference [23], MRFs
should be replaced by Fuzzy Markov random fields (FMRFs), which are just MRFs in a fuzzy
space. The main difference between MRFs and FMRFs is the energy functions which turn out
to be membership functions for FMRFs. Future applications of this proposal also include
network‐shaped situations such as social networks, e‐commerce or e‐governance.
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