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Abstract: In this article, a wave propagation model is presented as the first step in the development
of a new type of transluminal procedure for performing elastography. Elastography is a medical
imaging modality for mapping the elastic properties of soft tissue. The wave propagation model is
based on a Kelvin Voigt Fractional Derivative (KVFD) viscoelastic wave equation, and is numerically
solved using a Finite Difference Time Domain (FDTD) method. Fractional rheological models, such as
the KVFD, are particularly well suited to model the viscoelastic response of soft tissue in elastography.
The transluminal procedure is based on the transmission and detection of shear waves through the
luminal wall. Shear waves travelling through the tissue are perturbed after encountering areas of
altered elasticity. These perturbations carry information of medical interest that can be extracted by
solving the inverse problem. Scattering from prostate tumours is used as an example application to
test the model. In silico results demonstrate that shear waves are satisfactorily transmitted through the
luminal wall and that echoes, coming from reflected energy at the edges of an area of altered elasticity,
which are feasibly detectable by using the transluminal approach. The model here presented provides
a useful tool to establish the feasibility of transluminal procedures based on wave propagation and
its interaction with the mechanical properties of the tissue outside the lumen.

Keywords: transluminal elastography; shear wave; fractional viscoelasticity; kelvin voigt fractional
derivative; finite difference

1. Introduction

Palpation has been used since ancient times as a technique for evaluating hardness due
to abnormal tissue [1]. It is broadly known that some pathologies manifest as an alteration
in the elastic properties of the affected tissues, for example liver fibrosis, steatosis, and
many types of cancerous tumours. Elastography is a family of imaging modalities that
evaluates the elasticity of tissue for medical diagnosis. First elastography techniques were
developed in the late 1980s to early 1990s with the aim of improving ultrasound-based
imaging methods [2–5]. Conventional ultrasound differentiates body structures based on
the changes of the acoustic impedance, which in turn depends on the bulk modulus of
the tissue. However, the variation of the bulk modulus for soft tissue is significantly less
than an order of magnitude [6–8]. On the other hand, elastography senses the deformation
of tissue that ultimately depends on the value of the shear modulus, which varies over
several order of magnitude for soft tissue [8,9].

Many clinical applications of elastography are performed from outer surfaces of the
body using surface ultrasound probes, for instance, in liver fibrosis assessment and breast
cancer detection. However, there are cases where the target is better accessible from a body
lumen. Some of the most relevant examples of this are intravascular elastography and
transrectal elastography of the prostate. Intravascular elastography using Strain Elastogra-
phy (SE) (also known as Intravascular Ultrasonic Palpation) [10,11], Acoustic Radiation
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Force (ARF) imaging [12,13], and more recently Shear Wave Elastography (SWE) [14,15],
have been widely investigated with the aim of assessing the rupture risk of lipid plaques
in atherosclerosis. Transrectal elastography of prostate for cancer detection is also a highly
active front with numerous published studies using different elastography approaches [16].
Amongst all these, the most widely used is SWE, which has been found to improve the effi-
ciency of prostate cancer diagnosis [17,18]. Other examples of applications of transluminal
elastography can be found in transvaginal, endoscopic and gastrointestinal imaging [19].

Modelling the mechanical response of soft tissue is often required in elastography.
Soft tissue is well known for behaving viscoelastically. Classical linear viscoelastic con-
stitutive models, such as Zener, Kelvin Voigt (KV) and Maxwell, have been extensively
used, however, theses models are based on single relaxation processes, which are not
representative of the soft tissue mechanical response [20,21]. Fractional linear viscoelastic
models, such as the Fractional Zener, the KVFD or the spring-pot, overcome this limitation
by reproducing the power law behaviour of cumulative multiple relaxation processes [21].

On the other hand, it is well known that absorption as a function of frequency, for both
compressional and shear waves, often follows the power law [22]:

αk(ω) = α0ωy (1)

where αk(ω) is the absorption law as a function of frequency, α0 is the absorption coefficient
at a linear frequency f = 1/(2π), ω is the angular frequency, and y is the power law expo-
nent. The exponent y of the power law (Equation (1)) takes values from 0 to 2 depending
on the frequency region of the application compared with the relaxation time τ. The low-
frequency region, where ωτ � 1, usually can be found in ultrasound imaging, with
exponent y between 1 and 2 [23]. On the other hand, shear waves in elastography applica-
tions fall within both the low- and high-frequency region, experiencing absorption laws
with exponent y from less than 1 to 2 [22]. The classical viscoelastic models can only model
limited values of exponents for power law absorption [24]. In the case of the KV-based
wave equation models absorption with y = 2 for the low-frequency region, and y = 0.5
for the high-frequency region. Fractional order wave equations have been proved to fill
these gaps and produce models that fit well experimental absorption power laws with a
variable exponent [25]. Many studies have suggested the use of a fractional generalised
version of the KV law for modelling elastography [22,23,26,27], the KVFD constitutive law.
Furthermore, Holm and Näsholm [23] demonstrated that some of the most used fractional
wave equations, such as the fractional Szabo equation and the fractional Laplacian wave
equation, are low-frequency approximations of the KVFD wave equation. According to the
KVFD law, the stress σ depends on the fractional time derivative of order α of the strain ε,
as shown in the following equation for the shear stress case:

σ = µε + ηs
∂αε

∂tα
(2)

where µ is the second Lamé’s parameter and ηs is the shear viscosity. µ is also known as
the shear modulus.

Some examples of wave propagation modelling using KVFD are the studies of
Caputo et al. [26], Zhang and Holm [27], and Sinkus et al. [28]. Caputo et al. [26] mod-
elled compressional waves for biological applications, assuming a KVFD constitutive law.
The model was in silico validated against an analytical solution in a homogeneous breast
fatty tissue-like medium. Using a similar approach, Zhang and Holm [27] modelled in 1D
shear waves generated by ARF in different viscoelastic media.

In this paper, a forward model is presented as the first step in the development
of a new transluminal procedure for performing elastography. The examination of the
propagation mechanism outside the lumen is key for further investigating the feasibility of
the procedure. The model is based on a Kelvin Voigt Fractional Derivative (KVFD) wave
equation solved by a Finite Difference Time Domain (FDTD) scheme. An in silico example
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based on prostate cancer detection is built to test the wave propagation model and illustrate
the new transluminal approach. The novelty of this work is therefore the application of the
KVFD forward model to the new transluminal procedure.

2. Materials and Methods
2.1. A New Transluminal Elastography Approach

The new transluminal procedure is based on the transmission of shear waves and the
detection of its echoes through the luminal wall [29]. Figures 1 and 2 show the conceptual
idealisation of the approach. The rotational oscillation of a disk in contact with the lumi-
nal wall creates a pseudo-spherical pattern of shear waves that interacts with the tissue
architecture. Echoes are created when the wavefront encounters an area of altered elasticity.
This method of transmission minimises the generation of undesired compressional waves
and yields a particular arc-shape particle vibration pattern (see Figure 2). The rotational
oscillatory displacement is applied along the whole circumference of the contact surface
between the disk and lumen wall. This induces shear stress acting tangentially to the ure-
thral wall along its whole circumferential dimension, while avoiding compressional stress
in any direction. Three previous studies did not observe the presence of any compressional
waves using a similar wave generation mechanism [30–32].

Some general inherent advantages of this new transluminal approach over other elas-
tography techniques may be: (1) The ability of reaching deep organs by using body cavities,
thus getting closer and eliminating possible obstacles in the way to the target and (2) the pos-
sibility of using higher frequencies, e.g., above 500 Hz, thus improving the image resolution
and the capacity of detecting smaller targets, although there is a trade-off against a higher
attenuation and potentially a poorer Signal-to-Noise Ratio (SNR). Although the frequency of
shear waves generated by most commercially available SWE systems is in the range between
50 and 400 Hz, the generation of shear waves at higher frequencies is feasible [33]. For
example, as observed in ex vivo porcine liver, frequencies up to 1 kHz can be excited using
Shear Wave Dispersion Ultrasound Vibrometry (SDUV) [34,35]. The practical frequency
range of the transluminal procedure will nevertheless be determined by the attenuation of
the medium and the sensitivity of the probe; (3) the possibility of simultaneous 3D scanning;
(4) flexibility of the probe design, thus producing low deformation of tissue; and (5) low
levels of energy, and therefore a lower thermal index compared with ARF-based techniques.
Other particular advantages could also be found depending on the clinical application.

Tissue

Cylindrical array 

of sensors

Rotational 

oscillator

Lumen

Figure 1. Conceptual idealisation of the transluminal elastography approach. The transluminal
probe, composed for at least one rotational oscillator and a cylindrical array of sensors, is inserted
through the lumen.
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Figure 2. Cross section scheme of the proposed transluminal elastography approach. Shear waves
propagates radially (orange arrow) from the rotational oscillator disk. Particles vibrate in an arc-
shaped manner perpendicular to the propagation (yellow arrows). Echoes are generated as the shear
waves interact with the area of altered elasticity.

2.2. Wave Propagation Model
2.2.1. Model Geometry and Equations

The equations that govern the propagation of mechanical waves can be described by
the classical Navier equation in an isotropic elastic solid medium [36], in vector notation:

ρ
∂2u
∂t2 = (λ + µ)∇(∇ · u) + µ∇2u + f (3)

where ρ is the local density of the medium, u is the vector of displacements, λ is the first
Lamé’s parameter, and f is the external body force vector.

Equation (3) can be obtained by combining three different types of equations: The lin-
ear conservation of momentum (Equation (4)), the strain-displacement linear relationship
(Equation (5)), and a constitutive law (also known as the material law or rheological law)
(Equation (6)) [36]. Index notation is hereinafter used:

∂2ui
∂t2 =

∂2σij

∂xj
+ fi (4)

εij =
1
2

(
∂uj

∂xi
+

∂ui
∂xj

)
(5)

σij = λδijεkk + 2µεij (6)

where i, j are the index components, u is the displacement field, σ is the stress tensor,
x represents the spatial variables, f is the external body force, ε is the strain tensor, and δ is
the Kronecker delta.

The spatial domain of the model consisted in a solid cylinder containing a coax-
ial straight lumen-like conduit (Figure 3). A cylindrical coordinate system (r, θ, z) was
considered as indicated in Figure 3.
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rotational 
oscillator

disk

Figure 3. Geometry and system of coordinates used in the wave propagation model. The grey disk
represents an emitter.

The conservation of momentum equations in cylindrical coordinates are as follows [37]:

ρ
∂2ur

∂t2 =
∂σrr

∂r
+

1
r

∂σrθ

∂θ
+

∂σrz

∂z
+

1
r
(σrr − σθθ) + fr (7)

ρ
∂2uθ

∂t2 =
∂σrθ

∂r
+

1
r

∂σθθ

∂θ
+

∂σθz
∂z

+
2
r

σrθ + fθ (8)

ρ
∂2uz

∂t2 =
∂σrz

∂r
+

1
r

∂σθz
∂θ

+
∂σzz

∂z
+

1
r

σrz + fz (9)

where u is the displacement of particles and f the external forces. Suffixes r, θ, z represents
the three components of each magnitude according the system of coordinates.

The linear strain-displacement relationships are as follows [36]:

εrr =
∂ur

∂r
(10)

εθθ =
1
r

∂uθ

∂θ
+

ur

r
(11)

εzz =
∂uz

∂z
(12)

εrθ =
1
2

(
1
r

∂ur

∂θ
+

∂uθ

∂r
− uθ

r

)
(13)

εrz =
1
2

(
∂uz

∂r
+

∂ur

∂z

)
(14)

εθz =
1
2

(
∂uθ

∂z
+

1
r

∂uz

∂θ

)
. (15)

Viscoelasticy implies that the mechanical response of tissue also depends on the vis-
cosity. Therefore, the elastic constitutive law (Equation (6)) is not suitable and a viscoelastic
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law, the KVFD law in this case, is used. The equations for a KVFD constitutive law [26] in
cylindrical coordinates are:

σrr =

(
λ + ηp

∂αp

∂tαp

)
(εrr + εθθ + εzz) + 2

(
µ + ηs

∂α

∂tα

)
εrr (16)

σθθ =

(
λ + ηp

∂αp

∂tαp

)
(εrr + εθθ + εzz) + 2

(
µ + ηs

∂α

∂tα

)
εθθ (17)

σzz =

(
λ + ηp

∂αp

∂tαp

)
(εrr + εθθ + εzz) + 2

(
µ + ηs

∂α

∂tα

)
εzz (18)

σrθ = 2
(

µ + ηs
∂α

∂tα

)
εrθ (19)

σrz = 2
(

µ + ηs
∂α

∂tα

)
εrz (20)

σθz = 2
(

µ + ηs
∂α

∂tα

)
εθz (21)

where, ηp is the bulk KVFD viscous parameter and αp is the order of the fractional derivative
for the volumetric components of the strain. The range of values of α goes from 0 to 2,
but the most common values in dynamic elastography are lower than 1 [27].

Axial symmetry was taken into account to reduce the spatial domain of the model.
The wavefront generated by the rotational oscillator propagates axisymmetrically (see Figure 2).
This fact, together with the axisymmetric geometry of the model, yielded a reduction in
the displacement field to only one component, the angular displacement uθ . The resulting
2D domain after the simplification is an r-z plane. The system of equations of conserva-
tion of momentum was reduced to Equation (22), the strain-displacement relationships
were reduced to Equations (23) and (24), and the KVFD constitutive law was reduced to
Equations (19) and (21).

ρ
∂2uθ

∂t2 =
∂σrθ

∂r
+

∂σθz
∂z

+
2
r

σrθ (22)

εrθ =
1
2

(
∂uθ

∂r
− uθ

r

)
(23)

εθz =
1
2

∂uθ

∂z
. (24)

The boundary conditions of the problem were: The excitation source at the points
on the luminal wall where the rotational oscillator disk is placed (Equation (25)), and the ab-
sence of shear stress on the rest of the luminal wall as a free boundary
(Equations (26) and (27)).

uθ(rlumen, zemitter) = uexcitation (25)

σrz(rlumen, z /∈ zemitter) = 0 (26)

σθz(rlumen, z /∈ zemitter) = 0. (27)

All the relevant geometrical elements of the model are shown in Figure 4. The de-
scription and set value of these parameters are detailed in Section 3. Depending on each
specific situation, absorption boundaries can be set at the remaining edges of the domain
in order to fade out undesired reflected waves, for instance, by using Perfectly Matched
Layer (PML).
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Figure 4. Scheme of the geometrical parameters of the wave propagation model. Real spatial domain
contoured in red. Perfectly Matched Layer (PML) boundary conditions for absorbing undesired
reflections were set at the edges with the exception of the luminal wall. Rotational oscillator disk in
grey in contact with the luminal wall.

2.2.2. Numerical Method

A FDTD approach was chosen for modelling the propagation of shear waves. An elas-
tic model based on FDTD was developed by Gomez et al. [38] for a transurethral elastogra-
phy approach. The model used a velocity-stress formulation adapted from Virieux [39].
This approach reduced the amount of time derivatives, and therefore the computational
overhead. However, the history of the displacement field needs to be stored for computing
the fractional derivative as demonstrated further below. For this reason, a displacement-
stress formulation, composed by Equations (19) and (21)–(24), is chosen.
Strain-displacement relationship equations (Equations (23) and (24)) are fused into the
KVFD constitutive equations (Equations (19) and (21)), thus reducing the memory required
for computing the algorithm.

Spatial discretisation was achieved by a staggered grid as illustrated in Figure 5 [38].
The displacement component was placed at grid positions that are offset by a half-step
from the corresponding stress and strain components. Space was uniformly sampled,
with r = i∆r/2 and z = j∆z/2 for integers i, j and space step of discretisation ∆r and ∆z.

Time was uniformly sampled via t = n∆t for an integer n and a time step ∆t. All stress,
strain, and displacement components were computed at the same time value, thus pro-
viding verifiable magnitudes at each time step. Medium properties, such as density and
KVFD viscoelastic parameters, were introduced into the model by setting their values at
the grid cells of the discretised space domain.
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Figure 5. Staggered grid discretisation showing the locations of variables: Displacements (uθ),
stresses (σrθ , σθz) and strains (εrθ , εθz).

In order to apply the FDTD method to the system of equations (Equations (19) and
(21)–(24)), the expressions (28)–(31) were used. These expressions were derived from Taylor
series expansions and details can be found in general FDTD literature. The centred finite
difference scheme was chosen for the derivatives with respect to one of the spatial variables.
In this case, the staggered grid yielded a second order approximation of the derivative:

∂g(x, t)
∂x

∣∣∣∣
xi ,tn

=
g(xi+1/2, tn)− g(xi−1/2, tn)

∆x
+ O

(
∆x2

)
(28)

where g is an arbitrary differentiable function within the domain of interest, x represents
one of the spatial variables r and z, t represents time, and ∆x is one of the spatial steps
used for the spatial discretisation.

For the first and the second order time derivatives, backward finite differences were
chosen, since during the computation, the future states of the functions were unknown:

∂g(x, t)
∂t

∣∣∣∣
xi ,tn+1

=
g(xi, tn+1)− g(xi, tn)

∆t
+ O(∆t). (29)

∂2g(x, t)
∂t2

∣∣∣∣
xi ,tn+1

=
g(xi, tn+1)− 2g(xi, tn) + g(xi, tn−1)

∆t2 + O
(

∆t2
)

(30)

For the fractional derivatives of order α, a backward difference formulation based on
the Grünwald–Letnikov (GL) approximation was chosen [40,41]:

∂αg(x, t)
∂tα

∣∣∣∣
xi ,tn+1

=
N

∑
k=0

(−1)k

∆tα

(
α

k

)
g(xi, tn−k+1) + O(∆t) (31)

where N is the maximum value for n. The derivation of Equation (31) can be found in
Carcione et al. [41].

As can be noticed by analysing Equation (31), the approximated value of the derivative
is given in terms of the summation of all previous states of the function g(x, t). This sum-
mation of states leads to an iterative and storing process that may result in huge memory
consumption. The binomial coefficients that appear in the expression are negligible for k
exceeding an integer J. This allows the application of the so-called short-memory principle,
through which the summation can be truncated at k = L, with L ≤ N being the so-called
effective memory length [40].

Higher order approximations for the derivatives could have been used to reduce
truncation errors. However, higher order schemes require the computation of more space-
time grid nodes. This generates complications around the boundaries, where extra grid
nodes have to be added to satisfy the high order approximation scheme. Nevertheless,
by using small enough values of the space and time steps, ∆x and ∆t, the truncation errors
are also reduced, as can be deduced from Equations (28)–(31). The discrete equations
derived from the application of the FDTD expressions can be found in Appendix A.

Two types of numerical errors may occur when modelling with FDTD methods.
The first type is linked to the spatial steps of the discretisation and generates phase errors
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known as numerical dispersion [42]. Gomez et al. [38] considered a conservative rate of a
minimum of 20 space intervals per wavelength λ. However, the FDTD model employed
was elastic. In viscoelastic cases, since viscoelasticity naturally shows dispersion effects, an
appropriate verification test for numerical dispersion errors must be carried out. The second
type is linked to the time step of the temporal discretisation. It affects the stability of the
wave amplitude during the simulation. In the case of fractional derivatives, the inference of
the criterion is not immediate and requires a thorough mathematical development. As an
alternative, a trial-and-error approach was used. Additionally, an appropriate analysis to
avoid errors due to a poor implementation of the short-memory principle must also be
carried out.

The rotational oscillator disk was not physically modelled. Instead, the excitation
displacement signal was directly implemented at the mesh elements of the luminal wall
where the disk would be placed. Similarly, the array of sensors was not modelled, instead,
the displacement values at the mesh elements in physical contact with the sensors’ locations
were recorded.

A PML for absorbing the incoming reflections from the outer boundaries, was incor-
porated surrounding the spatial domain (see Figure 4). The PML scheme was adapted
from the formulation in cylindrical coordinates developed by Liu [43] and was directly
merged into the discrete equations of the problem. Details of the PML formulation can be
observed in the appendix section.

The FDTD wave propagation model was implemented in MATLAB® (Release 2017a)
using the Parallel Computing Toolbox™ (Release 2017a, MathWorks, Natick, United States).

3. Results

The transluminal wave propagation model was tested on a example case of potential
clinical utility: Imaging of prostate cancer using a transurethral elastography approach.

3.1. Prostate Cancer

Worldwide, prostate cancer is the second most common cancer in men and the fifth
leading cause of death from cancer, with an estimation of 1.3 million men diagnosed
and 360,000 associated deaths worldwide in 2018 [44]. It has been shown that prostatic
cancerous nodules are usually stiffer than adjacent normal prostatic tissue, which suggests
great potential for elastography to identify prostate cancer [45,46]. Furthermore, correlation
between stiffness and the Gleason score, a grading system (from 2 to 10) used to evaluate the
prognosis of men with prostate cancer, have been observed. The higher the score, the more
aggressive the tumour, and according to some studies, the higher the stiffness [47–49]. The
clinical use of elastography for imaging the prostate has mainly been carried out by SE and
SWE [50,51].

Shear wave scattering from prostate cancer is here used as an example of potential
application for the new transluminal procedure. Since shear waves are sensitive to changes
in the elastic properties of the tissue, techniques based on these waves are particularly well
suited for detecting and characterising regions of elevated stiffness in the prostate [38]. In
this particular case, the data for future image reconstruction would be based on the recep-
tion at the urethral wall of shear wave echoes generated by stiff areas in the gland that can
be associated with cancer. Some overlap may be expected since other benign pathologies,
such as Benign Prostatic Hyperplasia (BPH) and acute and chronic inflammation, also show
elevated stiffness. Nevertheless, cancerous tumours show the highest stiffness variation
compared with normal surrounding tissue [48,52]. The signals detected at the urethral wall
carry information about the medium of propagation and the stiff areas located within it,
i.e., features of the stiff lesion, such as location, size, and viscoelastic properties.

While the proposed approach uses the urethral passage, current elastography tech-
niques are transrectal. For this reason, one additional potential advantage of the transurethral
approach is the possibility of monitoring transrectally delivered therapies that yields
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changes in the elasticity of the treated tissue. A good example of this is High Intensity
Focused Ultrasound (HIFU) ablation of prostate cancer [53].

A particular clinical scenario was used to test the wave propagation model. The simu-
lated scenario consisted in a normal prostate-like medium that contained a tumour located
at the longest possible distance with respect to the emitter (see Figure 6). The size and
mechanical properties of the tumour were estimated from elastography studies for a min-
imum clinically significant prostate cancer. This was a tumour of 4 mm with a Gleason
score of 6 [54]. Additionally, the stability analysis of the model, as well as the study for the
numerical dispersion and the error due to the short-memory principle, were addressed.
The dimensions of the model (see Figure 6 and Table 1) were chosen according to the usual
size of human prostates with pathological conditions [55,56]. Although the diameter of
the human male urethra is variable along its length (from 4 mm to 10 mm), its value was
taken constant at 6.50 mm as in other models from the literature [57,58]. It is clear that any
area of altered elasticity in the 2D geometry will be translated to the 3D space as a solid of
revolution, in this case a toroid. Although this is not representative of prostate cancer it is
considered admissible for the testing purpose of this work.

Emitter

Coordinate r (mm)

C
o

o
rd

in
at

e 
z

(m
m

)

Array of 

32 

receivers

Tumour 4 mm 

Gleason score 6

Normal 

prostatic tissue

Figure 6. A particular clinical scenario used to test the wave propagation model for transluminal
elastography imaging of prostate cancer. The rotational oscillator emitter was set at the top end of
the urethral conduit. The remaining urethral wall was used for placing the array of receivers.

Table 1. Values of the spatial dimensions of the model domain for the particular clinical scenario.

Parameter Description Value

rd Radial dimension of the domain 20.00 mm
zd Depth dimension of the domain 40.00 mm
ru Radius of the urethra 3.25 mm

3.2. KVFD Viscoelastic Parameters of Prostatic Tissue

Shear mechanical properties for normal and cancerous prostatic tissue based on the
KVFD model (µ, ηs, and α) were required for simulating the clinical scenario. For conve-
nience, the shear KVFD viscous parameter is hereinafter denoted as a simple η. The val-
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ues of theses parameters were inferred by combining data from several elastography
studies [27,47,48,52,59–61] as no clear and consistent values were found after a literature
review. As can be seen in Equation (32), the KVFD expression for the complex shear
modulus G∗ is a function of the three shear KVFD parameters:

G∗(ω) = µ + η(iω)α. (32)

The shear modulus of normal tissue, taken as the absolute value of the complex shear
modulus G∗, is expected to take values from 2 to 10 kPa [47,48,52,59].

The parameter α was set as 0.35, which is representative of the findings
by Zhang et al. [59] and Zhang and Holm [27]. The rest of shear KVFD parameters were
estimated to match the expected range of absolute values of the complex shear modulus.
In the studies by Zhang and Holm [27] and Mitri et al. [60], the ratio of the elastic µ and
viscous η parameters was found to be of two orders of magnitude. For this reason, and also
to produce a velocity dispersion curve resembling that provided by Mitri et al. [60], µ and
η were chosen to be 3.0 kPa and 35 Pa·sα, respectively.

The shear phase velocity of a monochromatic plane shear wave according the KVFD
model can be derived from the combination of the following equations:

ρc2
s (ω) =

2
(
G′2(ω) + G′′2(ω)

)
G′(ω) +

√
G′2(ω) + G′′2(ω)

(33)

with [27]:

G′(ω) = µ + ηωα cos
(απ

2

)
(34)

G′′(ω) = ηωα sin
(απ

2

)
(35)

where ρ is the density, and G′ and G′′ are the real and imaginary parts of the complex shear
modulus G∗, respectively.

Tissue density, ρ, was considered to be 1000 kg/m3. The combination of the three
shear KVFD parameters produces values of the shear modulus ranging from 3.2 to 3.6 kPa
(according to Equation (32)) and velocities from 1.8 to 1.9 m/s (according to Equation (33))
for frequencies between 100 and 1000 Hz (see Figure 7), which is in agreement with the
reviewed studies [27,47,48,52,59–61].
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Figure 7. Shear velocity dispersion curve cs and absolute value of the complex shear modulus G∗, for
the shear Kelvin Voigt Fractional Derivative (KVFD) parameters inferred for normal prostatic tissue.

The shear modulus contrast ratio between cancerous and normal tissue was chosen to
be 1.2, based on the minimum ratio found by Woo et al. [48] for a Gleason score 6 tumour.
The value of α can be considered nearly the same for normal and cancerous tissue, according
to the results from the dynamic mechanical analysis by Zhang et al. [59]. For both µ and η,
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the ratio between cancerous and normal tissue was assumed to be the same. The values
used for the shear KVFD parameters are summarised in Table 2.

Table 2. Values for the three KVFD shear parameters proposed for modelling all tissue conditions in
the Finite Difference Time Domain (FDTD) wave propagation model.

Type of Prostatic Tissue

KVFD Parameter Normal Cancerous

µ (kPa) 3.0 3.6
η (Pa·sα) 35.0 42.0

α 0.35 0.35

3.3. Numerical Dispersion and Stability Analysis

Numerical modelling inevitably adds numerical dispersion to the natural dispersion of
the viscoelastic medium. In order to study this phenomenon, a continuous monochromatic
plane shear wave propagation was simulated. The velocity measured from the simulation
was compared against the theoretical velocity derived from Equation (33). The number
of discretisation elements per wavelength is key for controlling the numerical dispersion.
Accordingly, normal prostatic tissue was used as the medium of propagation, since it
experiences shorter wavelengths compared to cancerous tissue. The frequency of the
excitation varied from 100 to 1000 Hz. ∆r and ∆z were given the same values, from 70 µm
to 6000 µm. ∆t was set as 20 µs after an initial estimate. The effective memory length L
was set at its maximum value corresponding with the total time of propagation, 20 ms.

2D FDTD simulations were carried out under the described setup. No instabilities
were observed during the simulation. Shear velocity was calculated using a time-to-peak
approach at two points located in the same radial coordinate (located in dashed black line
in Figure 8 at z = 20 mm). The two points were located at 5 and 15 mm respectively from
the urethral wall.

Figure 8. Displacement field produced by a monochromatic shear wave of 700 Hz at 5 ms after the
start of the simulation. The black dots show the points where the measurements for calculating the
shear velocity were taken from.

The calculated shear velocity from the time-to-peak measurements in the 2D model
was normalised by the theoretical shear KVFD velocity (Equation (33)). These normalised
values were expressed as a function of the number of ∆r elements per wavelength (λ/∆r)
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at six frequencies: 100, 200, 400, 600, 800, and 1000 Hz. Results are shown in Figure 9,
where the numerical dispersion effect is clearly observable. Numerical errors decrease
when increasing the number of elements per wavelength, with an identical tendency at all
frequencies tested. Values ranging from 18 elements per wavelength showed acceptable
low levels of errors. Specifically, 18 and 25 elements per wavelength yielded errors below
0.42% and 0.25% respectively.
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Figure 9. Numerical shear wave velocity dispersion as a function of the number of elements per
wavelength (λ/∆r). Cross marks represent the normalised velocity by the theoretical velocity
(Equation (33)).

As mentioned in Section 2.2.2, the smaller the value of ∆t, the more accurate the
finite-difference approximation of the time derivatives. However, ∆t has a huge impact
on the computational overhead of the simulations. For this reason, a trade-off between
accuracy and computational cost was sought. Several values of ∆t were tested considering
the most computationally demanding scenario, i.e., the propagation in cancerous tissue
and at the highest frequency (in this case 1000 Hz). Both ∆r and ∆z were set to provide a
minimum of 18 elements per wavelength. By a trial-and-error process, the stability of the
model was ensured by using ∆t values lower than 25 µs.

3.4. Analysis of the Short-Memory Principle

In order to obtain an optimum L, a convergence study was carried out. The short-
memory parameter L varied from 0 to N, the total number of time discretisation elements.
L = 0 means that none of the previous states is used, whereas L = N, the reference sce-
nario, means that all the previous states are considered. The Euclidean distance (also
known as l2-norm) was used to measure the difference between each simulation and the
reference scenario.

Four simulations of plane monochromatic shear waves were performed for each of
the two types of tissue (normal and cancerous) using frequencies from 100 to 1000 Hz and
a total time of simulation of 20 ms. Measurements of the displacement generated were
taken at 15 mm from the urethral wall on a centred line. ∆r and ∆z were set to provide a
minimum of 18 elements per wavelength. ∆t was set as 20 µs.

Results are shown in Figure 10. Average results were expressed as the error of the
approximation relative to the reference case L = N. The L parameter was taken in terms of
time. The error of approximation converged to 0% at around 0.9 ms.
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Figure 10. Results from the convergence study for optimising L, expressed as the error of approxima-
tion due to L relative to simulations with L = N. Data are shown in terms of mean and standard
deviation values.

3.5. Simulation of an Extreme Clinical Scenario

The description and values of the remaining model parameters for the particular
clinical scenario are listed in Table 3. A general probe setup was chosen, comprising
one emitter located at the upper z position in the urethra and 32 receivers uniformly
distributed along the remaining urethral wall. The excitation signal was set as a Gaussian
monocycle with a centre frequency of 700 Hz and maximum amplitude of 0.3 radians,
which is equivalent to 1 mm of displacement at the emitter surface of contact with the
urethral wall. ∆r and ∆z were both set at 150 µm. The value of 20 µs chosen for ∆t ensured
numerical stability. And tL, the time associated to L, was set at 1 ms.

Figure 11 shows four instants of the wave propagation. The expected propagation of
the wave was clearly observable. Refraction and reflection phenomena were also noticeable
after the wavefront reached the stiff area.

Figure 11. Displacement field during the wave propagation in the clinical scenario, at several time
instants. Emitter as a red triangle. Array of 32 receivers uniformly distributed along the urethral wall
as blue triangles. Rounded tumour of 4.0 mm as a dark shaded circle. Readout at each receiver’s
location is shown in Figure 6.
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The displacement recorded at each receiver’s location is shown in Figure 12. The direct
wave propagation along the surface of the urethral wall was detected at all the receivers.
The direct propagation is observable in Figure 12 between 0 and 24 ms. The reflection of
the shear wave is observable between times 26 and 42 ms. The peak-to-peak displacement
of the reflected wave was in the order of 2 µm.
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Figure 12. Displacement measured at each receiver’s location over the total time of simulation of
the clinical scenario analysed (shown in Figure 6). The position of each receiver is shown in the
vertical axis.

Table 3. Values of the model parameters for the particular clinical scenario. PML: Perfectly Matched Layer.

Param. Description Value

Discretisation parameters

∆r r spatial dimension interval 150.00 µm
∆z z spatial dimension interval 150.00 µm
∆t time interval 20.00 µs
tT Total time of simulation 42.00 ms
tL Time reference for L param. 1.00 ms

nPML Number of PML elements 60

Probe setup

ne Number of emitters 1
ze z coordinate of the emitter 1.00 mm
le Length of the emitter 2.00 mm
fe Centre frequency of the excitation 700 Hz
ae Max. amplitude of the excitation 0.30 rad
nr Number of receivers 32

∆zr Distance between receivers 0.80 mm
lr Length of each receiver 0.50 mm

Tumour features

rc r coordinate of the tumour centre 16.00 mm
zc z coordinate of the tumour centre 36.00 mm
c Diameter of the tumour 4.00 mm

4. Discussion

A wave propagation model in fractional viscoelastic media for a new transluminal pro-
cedure has been presented in this article. The model implements a KVFD constitutive law,
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which allows a continuous range of exponents for modelling power law absorption. To the
best of the authors’ knowledge, this article shows the first application of a KVFD law for
numerically modelling shear wave propagation in a transluminal configuration. The model
will be a fundamental part in the future development of any image reconstruction strategy
for the new transluminal procedure.

The model was not validated against other computational studies due to the lack
of compatible work. One study that modelled the propagation of shear waves in 1D
implementing a KVFD constitutive law was found [27]. However, the shear waves from
that study were generated by ARF, which implies that the direction of particle vibration
was not compatible with that generated by the proposed transluminal approach. A second
and more recent study [62] used a 1D semi-analytical model for ARF-generated shear
wave propagation using KVFD data extracted from the mechanical characterisation of
viscoelastic phantoms. However, apart from occurring in the same incompatible direction
of particle vibration, the model assumed negligible wave velocity dispersion, which might
be acceptable for a short propagation length but not for the transluminal procedure here
presented. As an alternative method of model validation, an experimental strategy using
high-speed camera testing will be undertaken in a follow-up study.

Scattering from a prostate tumour was used for both testing the wave propagation
model and illustrating an example application of potential interest. The clinical scenario
comprised a tumour with the minimum characteristics to be considered of clinical relevance,
to be specific, a tumour of 4 mm in diameter and Gleason score 6. According to the
literature, this type of tumour shows the lowest change in elasticity compared with normal
tissue [47–49], therefore generating the weakest level of scattered energy among all the
clinically relevant type of tumours. Furthermore, it is obvious that the distance between
the emitter source and the tumour is one of the factors that compromises the sensitivity of
the technique due to attenuation. To consider this limiting factor, the tumour was placed
at the longest expected distance from the emitter’s location. The emission was assumed
viable as achieved in other non-related experimental studies using rotational oscillatory
disks as emitters [31,32].

The results show that shear waves were satisfactorily transmitted through the urethral
wall. The scattered energy from the tumour reached the urethral wall, inducing particle
displacement in the order of a micrometer (see Figure 6), which can be considered detectable
by current elastography techniques [27,63,64]. Yet, the results must be taken prudently as
the prostate model was built with limited data in terms of geometry and real values for the
KVFD parameters. Furthermore, a realistic outcome will also depend on the performance
of the receivers, the real structural noise of the prostate, and the noise introduced by the
transluminal device itself. In any case, larger amplitude echoes can be expected from
higher clinically relevant tumours, i.e., those showing a larger size and higher Gleason
score. Apart from a stiff tumour, no other type of elasticity heterogeneity was considered in
the simulation. The presence of other pathologies and their effect on the wave propagation
will need to be addressed in future investigation. In summary, prostate cancer detection
seems to be a potential candidate application for the proposed transluminal elastography
approach, as the level of achieved sensitivity is enough to pick up changes in the tissue
elasticity due to the presence of a tumour.

The transluminal approach may provide some interesting advantages when compared
with current extra-corporeal elastography methods, for instance, reaching deep body struc-
tures while avoiding obstacles such as bones or other cavities. Unlike most of the current
elastography techniques, the transluminal approach does not use ARF to generate the
shear waves, which ensures a lower thermal index. In the example shown, the maximum
amplitude of particle displacement was 1 mm, at the contact surface between emitter and
urethral wall. The maximum shear strain generated was 4.5%, which is within the linear
elastic regime for most soft tissues, this is 5–10%, and is below the irreversible damage
threshold [65]. The amplitude of the wave rapidly decreased due to attenuation. The max-
imum amplitude of the reflected wave was in the order of a few micrometers, which is
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in agreement with other elastography applications that are in clinical use. An additional
specific advantage of the transurethral application is that the rectal passage remains free,
so transrectal therapies, such as HIFU ablation of prostate cancer, can be simultaneously
carried out.

The frequency of the shear wave generated in the transluminal approach is determined
by the frequency of the driving signal of the emitter. In the case of most of the commer-
cially available SWE systems, the peak frequency of the shear waves is not higher than
400–500 Hz, in part, due to the limited power output of standard ultrasound equipment
being used [33]. With the transluminal approach, shear waves at a higher frequency may
be generated as long as the rotational actuator provides high torque and the mechani-
cal contact between disk emitter and lumen wall is perfect. Despite this, the functional
frequency range will have to be experimentally investigated for each particular appli-
cation. Additionally, current elastography methods rely on multiple 2D scans to image
volumes [19,50]. In the case of the proposed transluminal approach, a simultaneous 3D
scan modality would be theoretically possible as the source will produce shear waves
pseudo-spherically and a cylindrical arrangement of receivers will sense waves coming
from the entire volume.

The proposed transluminal method is not exempt of possible limitations. However,
at this preliminary stage, only limitations associated with the wave generation, propagation,
and interaction with the medium can be determined. As discussed before, one limiting
factor is the distance between the emitter and region of altered elasticity. A larger distance
of propagation implies greater attenuation, which could lead to a poor SNR. In the opposite
scenario, where the region of altered elasticity is close to the emitter, the signals due to the
direct propagation along the lumen wall overlap with the echoes coming from the region
of altered elasticity. This will introduce further complexity for the inverse approach for
reconstructing the location and mechanical properties of the region of altered elasticity.
Strategies to overcome these two challenges can be based on the use of multiple emitters.
Another additional limiting factor, also mentioned before, is the quality of the mechanical
contact between the emitter and lumen wall. In the simulated scenario, a perfect contact
was assumed, which in reality can be challenging to achieve due to the irregularities of the
lumen geometry, the presence of fluid on the contact surface, and the fact that the diameter
of the transluminal probe has to be smaller than the diameter of the lumen to allow the
insertion. Despite this, case dependent strategies to maximise the quality of the mechanical
contact can be investigated. In the prostate case, suction can be applied so the prostatic
urethra collapses onto the transluminal device [58]. For intravascular imaging, a compliant
stent-like emitter can be used to transmit the oscillatory rotation after increasing in diameter
and making contact with the vessel wall. Research on the contact mechanics and the use of
multiple emitters will be part of future investigations.

The technical aspect of the transluminal procedure to reach clinical practice are also
specific for each application. In the case of prostate cancer detection, the transluminal probe
will form part of a urethral Foley-type catheter. The catheter will be lubricated to reduce
patient discomfort during insertion. After anchoring an inflatable balloon located at the tip
of the catheter to the bladder neck, a sheath will be retrieved to expose the probe segment
of the catheter. Suction will be applied to aspire the fluid in the prostatic urethra and to
ensure a mechanical lock between the probe and urethral wall. Furthermore, if the cost
of the sensing components are kept low, the whole catheter-probe can be disposable, and
sterilisation will not be required. This will facilitate the use of the transurethral procedure
in standard clinical facilities, as an advantage against transrectal elastography which is
performed in surgery rooms and requires full sedation of the patient.

5. Conclusions

This article showed the application of a KVFD-based wave propagation model to
a new transluminal procedure for performing elastography. The model is planned to
be part of an image reconstruction algorithm in future work. The model uses a FDTD
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scheme for solving the KVFD-based wave equation. The KVFD model belongs to the
family of fractional lineal viscoelastic rheological models. In the last two decades, the use
of fractional rheological models for modelling elastography have gained relevance. These
models could accurately reproduce in the time and frequency domains the cumulative
effect of multiple relaxation processes found in soft tissue mechanics. For wave modelling,
this implies that fractional viscoelastic models could model power law absorption with
variable exponent, something that could not be achieved by using classical viscoelastic
models. The developed wave propagation model provided a useful tool to establish the
feasibility of transluminal procedures based on wave propagation and interaction with
areas of altered viscoelastic property outside the lumen.

The new transluminal procedure opens a new way of performing elastography from
body lumina. Prostate cancer detection using the transluminal method through the urethra
stands as a first potential application. Further exploration to analyse other potential
applications is encouraged, as other medical applications, such as the characterisation of
atherosclerotic plaques, might also be benefited from the proposed transluminal approach.
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Appendix A. FDTD Discrete Equations

This appendix describes the derivation of the discrete equations used in the wave
propagation model. The discrete equations are derived after applying the space-time
discretisation to the domain, and the FDTD expressions to the equations that describe the
physical phenomenon of wave propagation in a KVFD viscoelastic medium.

First, the equations of the problem are split and the PML parameters are incorporated
following the procedure for cylindrical coordinates developed by [43]. The split expressions
are adapted to a KVFD constitutive law.

The conservation of momentum equation in cylindrical coordinates (Equation (22)) is
split in the following expressions:

ar
∂2uθ(r)

∂t2 + ωr
∂uθ(r)

∂t
=

∂σrθ

ρ∂r
(A1)

Ar
∂2uθ(θ)

∂t2 + Ωr
∂uθ(θ)

∂t
= 2σrθ (A2)

az
∂2uθ(z)

∂t2 + ωz
∂uθ(z)

∂t
=

∂σθz
ρ∂z

(A3)

where uθ = uθ(r) + uθ(θ) + uθ(z) according to the notation employed by [43]. ar, Ar, az, ωr,
Ωr, and ωz are the PML variables as described by [43]. ar = az = 1, whilst Ar = 1/r. ωr, Ωr
and ωz are the absorbing parameters. Ωr = 0, whilst ωr and ωz are 0 in the space domain
of the problem and a parabolic law that shows values from 0 to 1.6ω, with ω the centre
frequency of the excitation. The value of 1.6 was obtained by a trial-and-error process.

The strain-displacement relationship (Equations (23) and (24)) are fused into the KVFD
constitutive law equations (Equations (19) and (21)), thus reducing the memory required
for computing the algorithm. Then, the resulting equations are differentiated respecting
time and then split in the following expressions:

ar
∂σrθ(r)

∂t
+ ωrσrθ(r) = µ

∂

∂t

(
∂uθ

∂r

)
+ η

∂α+1

∂tα+1

(
∂uθ

∂r

)
(A4)

Ar
∂σrθ(θ)

∂t
+ Ωrσrθ(θ) = −µ

∂uθ

∂t
− η

∂α+1uθ

∂tα+1 (A5)

az
∂σθz(z)

∂t
+ ωzσθz(z) = µ

∂

∂t

(
∂uθ

∂z

)
+ η

∂α+1

∂tα+1

(
∂uθ

∂z

)
. (A6)

Then, the FDTD expressions are applied to approximate the above shown equations.
Equation (28) for the spatial derivatives, Equation (29) for the first temporal derivatives,
Equation (30) for the second temporal derivatives, and Equation (31) for the fractional
temporal derivatives. The derived expressions listed below are the discrete equations that
are implemented in the algorithm.

Equation (A1) yields the following discrete equation:

uθ(r)

∣∣∣n
i,j
= Hu(r) uθ(r)

∣∣∣n−1

i,j
−Mu(r) uθ(r)

∣∣∣n−2

i,j

+ Mu(r)
∆t2

ρar∆r

(
σrθ |n−1

i+ 1
2 ,j − σrθ |n−1

i− 1
2 ,j

) (A7)

with:

Mu(r) =
1

1 + wr∆t
ar

(A8)
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Hu(r) =

(
2 +

wr∆t
ar

)
Mu(r). (A9)

The notation g|ni,j indicates that the g function is evaluated at the spatial (i, j) grid
node for the nth time step.

Equation (A2) yields the following discrete equation:

uθ(θ)

∣∣∣n
i,j
= Hu(θ) uθ(θ)

∣∣∣n−1

i,j
−Mu(θ) uθ(θ)

∣∣∣n−2

i,j

+ Mu(θ)
∆t2

ρAr

(
σrθ |n−1

i+ 1
2 ,j + σrθ |n−1

i− 1
2 ,j

) (A10)

with:

Mu(θ) =
1

1 + Wr∆t
Ar

(A11)

Hu(θ) =

(
2 +

Wr∆t
Ar

)
Mu(θ). (A12)

Equation (A3) yields the following discrete equation:

uθ(z)

∣∣∣n
i,j
= Hu(z) uθ(z)

∣∣∣n−1

i,j
−Mu(z) uθ(z)
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+ Mu(z)
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2
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i,j− 1
2

) (A13)

with:

Mu(z) =
1

1 + wz∆t
az

(A14)

Hu(z) =

(
2 +

wz∆t
az

)
Mu(z). (A15)

Equation (A4) yields the following discrete equation:

σrθ(r)
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= Hσ(r) σrθ(r)
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k
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with:

Mσ(r) =
1

1 + wr∆t
2ar

(A17)

Hσ(r) =

(
1− wr∆t

2ar

)
Mσ(r). (A18)

Equation (A5) yields the following discrete equation:
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σrθ(θ)
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Equation (A6) yields the following discrete equation:

σθz(z)

∣∣∣n
i,j+ 1

2

= Hσ(z) σθz(z)

∣∣∣n−1

i,j+ 1
2

+ Mσ(z)
µ

az∆z

(
uθ |ni,j+1 − uθ |ni,j

)
−Mσ(z)

µ

az∆z

(
uθ |n−1

i,j+1 − uθ |n−1
i,j

)
+ Mσ(z)

η

az∆z∆tα

L

∑
k=0

(−1)k
(

α + 1
k

)(
uθ |n−k

i,j+1 − uθ |n−k
i,j

) (A22)

with:

Mσ(z) =
1

1 + wz∆t
2az

(A23)

Hσ(z) =

(
1− wz∆t

2az

)
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