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Abstract: Electroencephalography (EEG) signal classification is a challenging task due to the low
signal-to-noise ratio and the usual presence of artifacts from different sources. Different classification
techniques, which are usually based on a predefined set of features extracted from the EEG band
power distribution profile, have been previously proposed. However, the classification of EEG still
remains a challenge, depending on the experimental conditions and the responses to be captured.
In this context, the use of deep neural networks offers new opportunities to improve the classification
performance without the use of a predefined set of features. Nevertheless, Deep Learning architec-
tures include a vast number of hyperparameters on which the performance of the model relies. In this
paper, we propose a method for optimizing Deep Learning models, not only the hyperparameters,
but also their structure, which is able to propose solutions that consist of different architectures due to
different layer combinations. The experimental results corroborate that deep architectures optimized
by our method outperform the baseline approaches and result in computationally efficient models.
Moreover, we demonstrate that optimized architectures improve the energy efficiency with respect to
the baseline models.

Keywords: brain-computer interfaces (BCI); evolutionary computing; multi-objective EEG classifica-
tion; deep learning

1. Introduction

Recent years have witnessed the constant growth of computational power, being
supported by the development of new hardware and software technologies. Consequently,
many problems considered to be unsolvable [1] have been successfully addressed, allowing
for the emergence of new lines of research in different fields. In this sense, bioinformatics
makes intensive use of tools, such as those in computer science [2], mathematics, and
statistics with the aim to analyze, understand, and efficiently use biological signals. DNA
and brain activity analysis are typical examples in which the use of Machine Learning
methods play an important role in the search for complex patterns [3,4].

Biomedical signal processing usually deals with high-dimensional patterns [5–7]. In
this context, Brain–Computer Interfaces (BCIs) are systems that identify the patterns from
brain activity and send interpretable commands to an electronic device. BCI involves five
main steps [8]: (1) signal acquisition of neural activity. (2) Signal preprocessing, which
cleans and removes noise from the raw signals. (3) Feature selection (FS) to extract the most
significant features from signals. (4) Pattern classification to recognize and categorize brain
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patterns. (5) The application module provides a feedback to the user from the recognized
brain activity pattern.

Brain activity signal acquisition can be classified into three main categories, which are
described, as follows: the invasive approach implies surgically implanted technological
devices within the human body. This is the most powerful procedure, but it carries many
risks due to surgery. Electrocorticography (ECoG) is an example [9], which uses electrodes
placed directly on the exposed surface of the brain to record electrical activity from the
cortex. Because surgical intervention is needed to place the electrodes, it is considered to
be an invasive technique.

On the other side, the non-invasive approach only involves external sensors or elec-
trodes that are placed along the scalp; an example of this procedure is the Electroen-
cephalography (EEG) [10], which registers the electrical brain activity and whose main
advantage is the higher temporal resolution [11,12], as compared to Functional Magnetic
Resonance Imaging (fMRI).

In this research, the analyzed data correspond to EEG signals because of their practical-
ity and non-invasive character, as well as several advantages over other alternatives [13–16].

EEG signal classification is a complex, intricate, and challenging task, because EEG
samples suffer from low signal-to-noise ratio and the omnipresence of artifacts, which
are signals not generated by brain activity. Additionally, the curse of dimensionality
problem [17,18] is usually present, due to the nature of biological signals, which produce
samples with high-dimensional patterns, and the high cost of the signal registration pro-
cedure, which limits the number of EEG samples. The use of feature selection techniques
helps to address this issue, which usually results in model overfitting.

Many previous BCI classification techniques make use of FS techniques [19–21] to
select descriptors from the EEG power bands distribution profile, in order to build the set
of selected features, which are used for EEG signal classification. Although this procedure
reduces the computational cost that is associated to the feature extraction stage and reduces
overfitting in the generated models, it is prone to a loss of information due to a set of
unselected (or unknown) features. This way, the accuracy of the classification procedure is
highly dependent on the a priori extracted features. However, different filter and wrapper
methods have been developed to select the most discriminative feature set. Evolutionary
Algorithms (EAs) and multi-objective optimization methods have demonstrated their
usefulness in this field [7,20,22–24].

EEG signal classification still has room for improvement, and the complexity of the
problem makes Machine Learning (ML) techniques appropriate to find the best solutions [25].
ML techniques can help to find the best subset of features, as explained above. However,
the most interesting aspect is the possibility of extracting specific, not a priori known,
features that maximize the classification performance. In this way, Deep Learning (DL)
architectures provide new opportunities to improve the classification performance by
enhancing the generalization capabilities of the predictive models that compute specific
features during a learning process. In fact, Deep Neural Networks (DNNs) have been
used for complex classification problems, outperforming previous classification techniques.
Particularly, Convolutional Neural Networks (CNNs) have been successfully applied to
this end in many image classification tasks [26,27].

However, an efficient DL architecture requires the correct set of hyperparameters [28].
This is hard to find, because there is not an explicit methodology to do that and the number
of hyperparameters is usually high. In this regard, Auto Machine Learning (autoML) refers
to a set of methodologies and tools for automatic optimization of Machine Learning models,
aiming to generate the best models for a specific problem. A representative example is
the process of hyperparameters optimization (HPO), to find the best set of model param-
eters that provide the best classification performance and minimize the generalization
error. Some of the methods that are widely used for HPO are grid search, random search,
manual search, Bayesian optimization, Gradient-based optimization, and evolutionary
optimization [29–31]. More specifically, in the field of DL, [29] implements an iterative
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process to speed up the HPO, where a DNN is trained and its learning curve is extrapolated
using probabilistic methods to predict its performance, which is compared to previous
DNN results with different hyperparameter settings. DNN training continues if the pre-
dicted performance exceeds records, otherwise it ends immediately. The optimization
process continues until the stop criterion is reached. In [30], a proposal using a Genetic
Algorithm (GA) for HPO is shown, with an iterative refinement procedure to find the
optimal solution in the searching space. As usual in EAs, such as GA implementations,
each parameter to be optimized corresponds to a gene in the chromosome used for the
genetic representation. In addition, a fitness function is used to evaluate the quality of
each solution.

The use of evolutionary computing to optimize or train neural architectures has been
previously proposed in different works. Thus, works, such as [32,33], use GAs for the
computation of the neural network weights instead of using a gradient descent-based
algorithm. Moreover, these works has been assessed in networks with more than 4M
parameters. On the other hand, Xie et al. [34] propose the use of GAs to automatically
produce neural architectures for image classification, where each solution is codified by a
binary vector. Additionally, the EvoCNN method [35] is a method for the optimiztion of
CNN networks for image classification. As explained above, the optimization of neural
architectures is a current hot research topic, due to (1) the high number of hyperparameters
included in a deep network and (2) the absence of clear rules for manual optimization.
Hence, this optimization process usually relies on a trial-and-error process that is guided
by the designer’s experience.

However, there are different very important aspects to take into account in order to op-
timize deep architectures. As previously explained, the high number of parameters in deep
networks makes them prone to generating overfitted models, with a reduced generalization
capability [36]. In particular, models with high complexity and high-dimensional training
patterns are more likely to be affected by this problem. Thus, the model performance
decreases with new and unknown data. Finding an adequate CNN configuration becomes
a challenging process of trial and error. This paper aims to minimize the complexity of the
model and maximize the classification accuracy, in order to optimize the generalization ca-
pability of the classifier while decreasing the computational burden. More specifically, our
proposal implements multi-objective optimization procedures by evolutionary computing
for CNNs architectures in order to improve EEG signal classification. This includes the
optimization of hyperparameters, such as the number of filters in the convolutional layers,
the stride, or the kernel size. Additionally, our implementation is capable of including
regularization layers as well as optimizing the regularization parameters. Furthermore, it is
worth noting that our implementation produces deep convolutional architectures that are
trained from the EEG time series data without using any precomputed feature. This way,
the DL architecture is responsible for all stages in EEG classification: feature extraction,
feature selection, and classification, allowing for the CNNs to extract the knowledge that is
contained in the raw signals to achieve accurate signal classification [37].

The main contributions of the paper are:

1. We propose a fully-configurable optimization framework for deep learning archi-
tectures. The proposal is not only aimed to optimize hyperparameters, but it can
also be setup to modify the architecture, including or removing layers from the
initial solutions, covering the inclusion of regularization parameters to reduce the
generalization error.

2. Architecture optimization is performed in a multi-objective way. That means that dif-
ferent and conflicting objectives are taken into account during the optimization process.

3. It is based on multi-objective optimization. Thus, the result is a pool of non-dominated
solutions that provide a trade-off among objectives. This allows for selecting the most
appropriate solution by moving through the Pareto front.

4. The proposed framework uses both CPUs and GPUs to speed up the execution.
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In what follows, Section 2 describes the dataset and methods used in this work. This
section also includes the description of the optimization framework that was presented in
this paper. Section 3 shows the results that were obtained when applying the proposed
method to optimize a CNN for EEG classification along with their statistical validation.
Moreover, the performance metrics used to evaluate the solutions proposed by our frame-
work are described. Section 4 analyzes the results and improvements provided. At the
same time, the power efficiency of the different alternatives is considered. Finally, Section 5
draws the conclusions.

2. Materials and Methods

This section includes the description of the dataset used in this research, followed
by the definitions of deep neural networks and their main drawbacks, as well as the
optimization procedure.

2.1. Data Description

The data used in this work were recorded and proposed by the BCI laboratory at
the University of Essex, UK [38]. Human participants were selected for balanced gender
distribution, a reasonable range of ages, and an appropriate number of participants who
were naive to BCI experiments: the 12 chosen subjects of the experiment were 58% female,
aged from 24 to 50, and half of them naive to BCI. In addition, the participants were
healthy and they were advised to sleep well before data collection. They were paid for
their participation and, before the experiment, they gave their informed consent using a
form that was approved by the Ethics Committee of the University of Essex.

The EEG-BCI signals are based on Motor Imagery (MI), a paradigm that uses a series
of brief amplifications and attenuations conditioned by limb movement imagination, called
Event-Related Desynchronization (ERD) and Event-Related Synchronization (ERS).

Each EEG pattern obtained is a time series consisting of 5120 samples, which were
recorded at the sampling rate of 256 Hz. Thirty-two electrodes were placed on the scalp
during data collection, but the 15 electrodes that are shown in Figure 1 were selected for
EEG feature extraction and classification, which was determined based on BCI perfor-
mance optimization.

Each dataset is composed of 178 training patterns and 179 testing patterns, and
each pattern is labelled according to the corresponding BCI class (imagined left hand
movement, imagined right hand movement or imagined feet movement) which are detailed
in Table 1. Three subjects, coded as 104, 107, and 110, were selected, as they provided the
best performance in previous works dealing with EEG-BCI signal classification [7,20].
Thus, our aim was to use the optimization framework to improve the best results that were
previously obtained by other methods.

Table 1. Number of examples for the different movements of each subject.

Subject Left Hand Right Hand Feet Total
Train Test Train Test Train Test Train Test

104 60 56 66 65 52 58 178 179
107 56 58 57 58 65 63 178 179
110 58 59 60 60 60 60 178 179



Sensors 2021, 21, 2096 5 of 21

Version March 3, 2021 submitted to Sensors 5 of 22

FCzFC1 FC2FC3 FC4

CzC1 C2C3 C4

CPzCP1 CP2CP3 CP4

Figure 1. Electrode positions according to the 10-20 coordinate system used for the acquisition of the
EEG signals
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Figure 1. Electrode positions according to the 10–20 coordinate system used for the acquisition of the
Electroencephalography (EEG) signals.

2.2. Deep Neural Networks

Deep Learning architectures are essentially neural networks, but different layers and
learning algorithms have been developed to solve specific problems [39]. For instance,
convolutional layers have demonstrated their ability to extract relevant features for image
and time series classification. Moreover, features that are learnt from deep architectures are
retrieved at different abstraction levels. However, the most important is that these features
are computed by a learning process that modifies the network parameters to minimize the
output of a loss function.

The so-called (artificial) neuron is the basic processing unit of a neural network, which
computes a simple mathematical function z. The output of this function represents the
activation output of the neuron. In the case of linear activation, z can be expressed, as
defined in Equation (1), where wi is the weight that is associated to the i-th input of the
neuron, ai is the i-th input, and b is a bias term.

z = b +
n

∑
i=1

ai · wi (1)

However, different activation functions are used, as they allow for the computation
of the gradients during backpropagation, along with the creation of deep architectures.
Moreover, vanishing and exploding gradients are well known problems that are related to
the use of unbound activation functions [40], making the learning algorithm unstable or not
converging. These effects can be mitigated using bounded activation functions that limit
the gradient values. Thus, a range of activation functions is usually used and combined at
different layers. The ones considered in this work are the following (see Figure 2):

• Sigmoid: is a logistic function, where the input values are transformed into output
values within a range of (0, 1). The function definition is given by Equation (2).

f (z) =
1

1 + e−z (2)

• Scaled Exponential Linear Unit (SELU): ensures a slope larger than one for positive
inputs. If the input value z is positive then the output value is multiplied by a
coefficient α. Otherwise, when the input value z is equal or less than 0, then the
coefficient α multiplies the exponential of the input value z minus the α coefficient,
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and, finally, the result is multiplied by a coefficient λ.The function definition is given
by Equation (3).

f (z) = λ

{
z if z > 0
αez − α if z ≤ 0

(3)

• Hyperbolic tangent (TanH): is a useful activation function with a boundary range of
(−1, 1), which allows for efficient training. However, its main drawback occurs in
the backpropagation process, due to the vanishing gradient problem that limits the
adjustment of the weight value. Equation (4) provides the function definition.

f (z) =
2

1 + e−2z − 1 (4)

• Rectifier Linear Unit (ReLU): a commonly used function, where, if the input value z is
equal to or less than 0, then z is converted to 0. In the case of a positive input z, the
value is not changed. The function definition is given by Equation (5).

f (z) = max(0, z) (5)

• Leaky ReLU (LReLU): similar to ReLU. The difference occurs when the input value z is
equal to or less than 0, then z is multiplied by a coefficient α which is usually within
the range (0.1, 0.3). Equation (6) provides the function definition.

f (z) =

{
z if z > 0
αz if z ≤ 0

(6)

• Exponential Linear Unit (ELU): compared to its predecessors, such as ReLU and LReLU,
this function decreases the vanishing gradient effect using the exponential operation
ez. If the input value z is negative, then (ez − 1) is multiplied by a coefficient α in the
common range of (0.1, 0.3). The function definition is given by Equation (7).

f (z) =

{
z if z > 0
α(ez − 1) if z ≤ 0

(7)

where the horizontal and vertical axes in Figure 2 represent the inputs and outputs of
the activation functions, respectively.

Figure 2. Sigmoid, Scaled Exponential Linear Unit (SELU), Hyperbolic tangent (TanH), Rectifier
Linear Unit (ReLU), Leaky ReLU (LReLU), and Exponential Linear Unit (ELU) activation functions.

DNN learning is implemented by using the backpropagation algorithm, a supervised
learning method that is usually considered for classification and regression problems,
which uses the gradient of the loss function with respect to the weights of the network,
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enabling the weights adjustment produce expected output values with given input signal.
The process begins from the output layer, continues recursively through the hidden layers,
and concludes when the inputs layer is reached. Each neuron of the network is responsible
for a percentage of the total error. Thus, the neuron error is computed and propagated to
the entire network by using the chain rule for derivatives.

Convolutional Neural Networks

CNNs are deep neural networks that efficiently process structured data arrays, such
as spatial and temporal ones [25]. In a nutshell, CNNs architectures are multi-layer archi-
tectures allowing for the hierarchical learning of features. The layer considered as essential
foundation of CNNs is the so-called convolutional layer [40]. The convolution operation
(denoted as (∗)) between two functions f (x) and g(x) produces a third function s(x). The
function f (x) corresponds to the input and g(x) to the filter, while s(x) corresponds to the
feature maps that were obtained as a product of convolving f (x) and g(x), as defined in
Equation (8).

s(x) = ( f ∗ g)[x] =
n

∑
i=1

f (i) · g[x− i] (8)

where x is a discrete variable, i.e., arrays of numbers, and n corresponds to the filter size.
Moreover, there is another layer specially used in CNNs, called the pooling layer, used

to reduce the dimensionality of the data in order to decrease the computing requirements.
Pooling can be performed by averaging the samples in a specific window (average pooling)
or taking the maximum value (max pooling). On the other hand, variants of the standard
convolutional layer have been devised in recent years, especially for those problems with
multiple input channels. This is the case of the depthwise convolution, which allows for
applying each filter channel only to one input channel. Additionally, since the depth and
spatial dimension of a filter can be separated, it helps to reduce the number of parameters
by means of Depthwise separable convolutions. It is worth noting that one-dimensional
(1D) convolutions can be carried out by conv1D or conv2D Keras functions. In Conv1D, the
convolution operates in the only dimension defined, whereas, in conv2D, the convolution
operates on the two axes defining the data. Thus, conv1D of a signal of size a is equivalent
to conv2D of a signal of size a× 1. Because the original EEGNet network uses conv2D, we
kept conv2D in the architecture to be optimized.

Convolutional layers [40] configured in the optimization process described here are
listed below:

• Convolution 2D: exploits spatial correlations in the data. This layer can be composed
of one or more filters, where each one is sliding across a 2D input array and performing
a dot product between the filter and the input array for each position.

• Depthwise Convolution 2D: aims to learn spatial patterns from each temporal filter
allowing for feature extraction from specific frequencies of the spatial filters. This
layer performs an independent spatial convolution on each input channel and, thus,
produces a set of output tensors (2D) that are finally stacked together.

• Separable Convolution 2D: aims to reduce the number of parameters to fit. This
layer basically decomposes the convolution into two independent operations: the first
one performs a depthwise convolution across each input channel, while the second
one performs a pointwise convolution that projects the output channels from the
depthwise convolution into a new channel space.

At the same time, we include the possibility of using different pooling alternatives as
well as batch normalization, as they may help to speed up and stabilize the learning process:

• Average Pooling 2D: aims to reduce the representation of the spatial size of each
channel. This layer takes the input data array and calculates the average value from
all values of each input channel. This way, it generates a smaller tensor than the
corresponding input data.
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• Batch Normalization [41]: aims to achieve fixed distributions of the input data and
address the internal covariate shift problem. This layer performs the calculation of
the mean and variance of the input data.

2.3. Overfitting

Machine Learning is a process of feature extraction and pattern identification from a
given set of data. It allows for the generation of a model with high capacity of generalization
and, therefore, provides autonomy to the computer in order to perform specific tasks.
However, the capabilities of generalization can be affected when the fit of the model is
extremely close to the data, to the point of mistaking existing noise for relevant information.
This problem is known as overfitting [42].

Overfitting can occur in several circumstances [18,43], such as having few data samples
for the model training process, using a neural network with a large numbers of parameters,
overtraining of the model, having data with considerably more features than available
samples [17], etc.

DL models are likely to suffer from overfitting by nature, since they are usually
composed of a large number of parameters. This way, optimizing the models to obtain
shallower architectures plays an important role to avoid overfitting. However, the number
of layers (and, as a consequence, the number of parameters) of a model greatly depends on
the hyperparameters that have to be adjusted for a specific task [44]. Beyond the selection of
the model with the minimum number of parameters, overfitting can still be present due to
high model variance that is produced by the absence of enough data samples. In this case,
regularization methods can be used to penalize network weights during training, while the
backpropagation algorithm forces the network to generate the correct output. Among the
regularization methods, Dropout [45] is an explicit technique that is used for that purpose,
which makes learning difficult by deactivating some network neurons at random during
the training process, with the aim of preventing over-adaptation by neuronal units, thereby
ensuring generation of more robust models. Kernels and activations can be also regularized
by the introduction of `1 or `2 regularization term that penalizes large weights or large
activations. Examples of `1 and `2 regularized loss expressions are shown in Equations (9)
and (10), respectively.

`1 = error(y− ŷ) + λ
N

∑
i=1
|wi| (9)

`2 = error(y− ŷ) + λ
N

∑
i=1
‖wi‖2 (10)

where y is the data to be predicted, ŷ is the prediction made by the model, λ is a regulariza-
tion parameter, and wi is the i-th weight component.

On the other hand, early stopping [46] of the training algorithm is an implicit regular-
ization method that helps to prevent the problem that is addressed in this section. Early
stopping is triggered by a low loss value over a number of training epochs in the validation
data set.

2.4. Multi-Objective Optimization

Multi-objective optimization problems [47] are usually present today's world. These
problems can be solved using analytical methods or classical numerical methods. Moreover,
several types of heuristic search algorithms have been proposed to address these problems.
There are four categories of optimization algorithms, which are inspired by Biology, Physics,
Geography, and Social culture.

Biologically inspired algorithms try to mimic evolutionary processes or behaviors
found in nature. EAs are inspired by the improvement of individuals in the population
through successive generations by means of a natural selection process: the best individuals
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are selected and reproduced with each other, producing an offspring for the next generation,
while the worse ones are withdrawn from the population.

The optimization approach that is presented in this work is based on a multi-objective
optimization procedure, which aims to find the vector x = [x1, x2, ..., xn] that optimizes a
function vector f (x), whose components ( f1(x), f2(x), ..., fm(x)) represent the objectives to
optimize. Multi-objective optimization often has objectives in conflict, which results in a set
of non-dominated solutions, called Pareto optimal solutions. In a given Pareto front, when
all of the objectives are considered, every possible solution is equally efficient. Therefore, it
is possible to choose the most convenient solution for a given scenario.

2.4.1. NSGA-II Algorithm

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [48,49] has been implemented
to deal with the multi-objective optimization problem that is considered in our hyperpa-
rameter searching problem. Genetic operators and the codification of the individuals are
specific for the problem at hand. This work involves a supervised classification problem,
where the individual and its chromosomes correspond to the architecture of a convolutional
neural network, which is in charge of the signal classification. The performance evalua-
tion of each individual is determined by the complexity of the CNN and its classification
accuracy. Algorithm 1 shows the pseudo-code of the NSGA-II.

Algorithm 1: Pseudo-code of the Multi-objective Optimization Procedure for
Deep Convolutional Architectures using NSGA-II [48,49].

Generation of a random initial population;
Fitness evaluation;
Non-dominated sorting population;
while not met the stopping criterion do

Parents selection;
Crossover;
Mutation;
Fitness evaluation;
Non-dominated sorting population;
Elitist strategy;
New population;

end
Final population;
Result: Final optimal solutions;

2.4.2. Convolutional Neural Networks for EEG Data Classification

Although CNNs are the most popular neural networks for image and video classifica-
tion, they can also be used with time series data. In this case, 1D convolutions are used
instead of 2D convolutions. An input channel here corresponds to each EEG electrode,
since it corresponds to a different signal source. However, EEG signals are different from
images by nature, and so are the features to be extracted. Moreover, as a result of the high
number of channels in comparison to image data (usually, only three channels in RGB
images), it is necessary to use more specific convolutional layers that: (1) make it possible to
perform convolutions in the channel axis and (2) help to reduce the number of parameters
(i.e., while using separable convolutions).

2.5. EEGNet: CNN for EEG Classification

EEGNet [26] is a CNN for EEG-BCI signal classification, which encapsulates the
feature extraction step using Depthwise and Separable convolutions. The architecture of the
EEGNet consists of three blocks: two of them are dedicated to the implicit feature extraction
step and the last one implements the classifier. Figure 3 shows the EEGNet architecture.
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Figure 3. EEGNet baseline architecture.

Block 1 is dedicated to feature extraction and involves two convolutional layers.
The first layer (Convolution 2D) captures information from the temporal frequencies of
the input data, while the second layer (Depthwise Convolution) is dedicated to extract
information from spatial frequencies. After each convolutional layer, the output values are
normalized. The next layer in the block implements the activation function to introduce
non-linearity into the output values. These values are then passed through the average
pooling layer, reducing the size of the input to the next layer. Finally, a dropout layer is
included for regularization.

Block 2 consists of a separable convolutional layer to reduce the number of parameters
with respect to a standard convolutional layer. The output values are then normalized and
activated by a non-linear function. An average pooling layer again reduces the output size.
As in Block 1, dropout is used for regularization. Finally, the input data are collapsed into a
one-dimensional array to prepare the input to the classifier.

Block 3 (Classification Block) implements the classifier with a fully-connected layer
and uses a softmax activation function to provide the probability of the activation of each
neuron at the output.

2.6. Performance Evaluation

In this section, we present the performance metrics that were used in this work to
evaluate the solutions provided by the optimization procedure. The fitness function of
the optimization process includes two objectives: Kappa Index and the number of CNN
parameters, which, together, determine the quality of each individual solution. Definitions
of these metrics are detailed below:

• Pareto front [50]: multi-objective optimization problems consider several objectives
at the same time. Therefore, it is usually not possible to obtain an optimal solution
that satisfies all the conditions. Instead, the optimization process provides a set of
non-dominated solutions with different trade-offs among the objectives: the Pareto
optimal solutions.

• Kappa Index [51]: is a statistic measure that is used for multi-class classification
problems or imbalanced class problems. The Kappa Index k is defined as:

k =
p0 − pc

1− pc
(11)

where p0 is the observed agreement and pc is the expected agreement. The Kappa
Index value is always less than or equal to 1.

• CNN Parameters [25]: They are weights changing during the training process that
are also known as trainable parameters.

2.7. Proposed Optimization Framework and Application to EEG Signal Classification

The main goal of the optimization framework that is presented in this paper is to find
neural network architectures with low complexity and high classification accuracy. To this
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end, the proposed optimization framework implements the following main components.
Figure 4 shows a block diagram with the components of the framework and how they
interact during the optimization process.

The key component is NSGA-II, which is the considered EA to perform the multi-
objective optimization process. This choice was motivated by the fact that NSGA-II can
achieve a good performance with two objectives [52], which makes it a suitable option for
the problem at hand.

Figure 4. Scheme of the implementation for the evolutionary multi-objective procedure for CNN optimization. xij{i} indi-
cated the j-th gene used to code the parameters of the i-th layer.

The framework also includes a database to register the different entities, including the
main building blocks of neural networks, such as layers, parameters of each layer, as well
as the architecture of the neural model to be optimized and the results that were obtained
during the optimization process. Moreover, the ranges of the different parameters to be
optimized (i.e., the values that each gene can take during the optimization process) are also
configured in the database and are further used as restrictions in the EA.

The procedure that is explained here is applied to the optimization of the EEGNet,
which has been used as a baseline. This way, the network entities (layers, regularizers,
normalization layers, etc.) and hyperparameters that are included in the EEGNet have
been registered in the configuration database.

Figure 5 shows the chromosome generation process using the restrictions stored in the
database, specifically for the case of convolutional layers. This way, a flatten layer is always
included to prepare the output of the convolutional layers to feed the classifier, which, in
turn, is a perceptron-like (fully-connected) network. As explained above, the optimization
process is implemented by the NSGA-II multi-objective evolutionary optimization algo-
rithm. The chromosome that is shown in Figure 5 depicts the codification of the solutions,
where the variables are optimized. These include parameters of the convolutional layers:
kernel size, stride, number of filters, and regularization parameters. Moreover, the use of
dropout is also activated by a specific gene, as well as the activation function that is used
to implement the non-linearity.

Figure 6 shows a breakdown of a chromosome into its constituent genes. This codifi-
cation allows for the selection of the different parameters indicated in the figure, according
to the layers that were used in the baseline network. This chromosome is configured in the
database, depending on the restrictions imposed during the optimization process.

The solutions along partial results of the optimization process can be tracked, since
they are stored in a structured, standard PostgreSQL [53] database.

Genes composing the chromosome are of integer type, as shown in Figure 6. This
codification allows for speeding up the searching process and limiting the range of each
gene, by means of a look-up table, where each entry is codified as an integer value.
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Figure 5. Chromosome generation process using the restrictions that were previously configured in the framework database.
xij{i} indicated the j-th gene used to code a parameter of the i-th layer. Gray shaded boxes indicate the fixed layers not
included in the optimization process.

Figure 6. Detailed view of the chromosome that codifies the solutions for evolutionary optimization algorithm (NSGA-II).
Figure shows the values used in the optimization of EEGNet architecture shown in this work. However, specific ranges,
activation functions, regularization types, etc. can be configured in the database, depending on the specific optimiza-
tion problem.
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Optimization Process and CPU-GPU Workload Distribution

The main goal of the optimization process is to increase the classification performance
while decreasing the number of parameters. These are opposed objectives, since a larger
network will usually achieve a better fit to the training data. However, our goal is to
improve the generalization performance, and larger networks will also be more prone
to overfitting. This way, as it has been said before, the fitness functions that are used to
evaluate the solutions are the Kappa Index and the total number of parameters of the
neural network. Moreover, the proposed framework has been implemented as a parallel
application by distributing the different tasks among the processors that are available
in the computing platform: a node of a cluster that comprises CPU cores and Graphical
Processing Units (GPUs). Specifically, the EA has been executed on a Intel Xeon(R) E5-2640
v4 CPU, while the evaluation of the solutions takes place in the TITAN Xp GPUs. It is
noteworthy that the fitness evaluation of a solution requires training and validating a neural
network, which are time consuming tasks that can be accelerated by taking advantage of
the parallelism implemented by GPUs and the several cores included in a multi-core CPU.
Additionally, it is possible to configure the specific combination of CPUs and GPUs to be
used in the configuration database of the framework. This way, we can take advantage of
the available computational resources, scaling the processing time.

The initial population consisting of a set of random solutions is evolved by applying
the genetic operators, as explained in Section 2.4.1. The evaluation of each solution provides
the non-dominated solutions. Thus, the best (non-dominated) solutions in terms of the
objectives to be optimized are selected for applying the crossover and mutation operators.
Table 2 lists the parameters used for the NSGA-II algorithm. The developed optimization
framework stores the set of solutions that survived after each generation in the database,
along with the respective values of the fitness functions.

Table 2. NSGA-II parameters.

Parameter Value

Chromosome length (genes) 40
Population size 100
Number of generations 100
Mutation probability 0.05
Crossover probability 0.5
Maximum CNN training epochs 500

We implemented a look-up table where each entry is codified as an integer value in
order to speed up the searching process and limit the range of each gene, as indicated in
Figure 6. This way, we used the popular Simulated Binary Crossover (SBX) [48], which
tends to generate offspring near the parents. This crossover method guarantees that the
extent of the children is proportional to the extent of the parents [48].

Regarding the execution time, it needs 116.99 h for subject 104, 139.02 h for subject
107, and 142.81 h for subject 110, while using the computing resources detailed above.

3. Results

In this section, we present the results that were obtained for EEGNet optimization,
which is used as a baseline in this work. This way, we describe the solutions provided by
the methodology implemented in the framework described above and the performance of
different optimal solutions according to the Pareto front (the performance of non-dominated
solutions, depending on the objectives). Finally, the results are statistically validated.

3.1. Data Split for Performance Evaluation

Section 2.1 describes the EEG dataset used in this work. As explained in that section,
it consists of two data files per subject: one for training and one for testing. The training
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process carried out during the optimization is performed by using the training data file,
which in turn is split into two sets containing random samples but keeping the label
distribution. The first set is composed of 90% of the training samples, while the remaining
10% is used to validate the solutions by means of the fitness functions. Moreover, 15
bootstrap resampling iterations were carried out to estimate the standard error of the
models, by extracting from the training data file different subsets for training and validation
in each iteration. The test data were always the same and only used after the EEGNet
was optimized using the training and validation data (provided in the test data file to this
end). All of the experiments were carried out using the Adam optimizer [54] for network
training, which is an adaptive learning rate optimization algorithm that was specifically
developed for training deep neural networks.

3.2. Experimental Results

Optimization experiments taking the EEGNet network as a starting point were carried
out. The procedure that was implemented in our framework was independently applied
to EEG training data corresponding to three human subjects, coded as 104, 107, and
110. As a result of these three executions of the optimization method, we obtained the
corresponding Pareto fronts shown in Figure 7. The Pareto front is the geometric place of
the non-dominated solutions, selected from the set of points corresponding to the solutions
generated during the evolutionary process, as explained in Section 2.6. In Figure 7, the
point that corresponds to the solution providing the trade-off between both objectives
(Kappa Index and the number of parameters of the model) is highlighted with a red dot.
Additionally, Table 3 details the models corresponding to these solutions, where all of the
layers composing each model are indicated. The optimization procedure does not only
select the hyperparameter values, but can also decide whether regularization is used or not
as well as the regularization method, as explained in Section 2.7. In Table 3, None means
that this solution is not using that component or layer.

Pareto optimum

, , , , , , , 

(a) Subject 104

, , , , , , , 

Pareto optimum

(b) Subject 107

, , , , , 

Pareto optimum

(c) Subject 110

Figure 7. Pareto front corresponding to the neural network optimization process for different subjects.



Sensors 2021, 21, 2096 15 of 21

The trade-off points of the Pareto fronts that are shown in Figure 7 correspond to
solutions with the hyperparameters detailed in Table 4, where the solutions with optimized
hyperparameters provide a higher classification performance than the non-optimized ones.
At the same time, the trade-off point of each Pareto front corresponds to the architectures
shown in Table 3.

Table 3. Models corresponding to the trade-off point (solution) in the corresponding Pareto front.

Layers Parameters Subject
104 107 110

Conv2D

activation selu sigmoid selu
activity_regularizer None None None
activity_regularizer_type None None None
activity_regularizer_value None None None
filters 4 4 4
kernel_regularizer None Yes None
kernel_regularizer_type None l1 None
kernel_regularizer_value None 0.065 None
kernel_size (1, 1) (1, 2) (1, 1)
strides 1 1 3

BatchNormalization batch_normalization Yes Yes Yes

DepthwiseConv2D

activation relu tanh None
activity_regularizer None None None
activity_regularizer_type None None None
activity_regularizer_value None None None
depth_multiplier 1 1 1
depthwise_regularizer Yes None None
depthwise_regularizer_type l2 None None
depthwise_regularizer_value 0.065 None None
kernel_size 1 1 1
strides 3 4 2

BatchNormalization batch_normalization Yes Yes Yes

Activation activation elu tanh relu

AveragePooling2D pool_size (1, 4) (1, 1) (1, 3)
strides 3 1 3

Dropout rate 0.50 0.40 0.40

SeparableConv2D

activation relu relu tanh
activity_regularizer Yes Yes None
activity_regularizer_type l2 l2 None
activity_regularizer_value 0.040 0.025 None
depthwise_regularizer Yes Yes Yes
depthwise_regularizer_type l2 l2 l2
depthwise_regularizer_value 0.040 0.070 0.045
kernel_size (1, 4) (1, 16) (1, 8)
strides 4 4 2

BatchNormalization batch_normalization Yes Yes Yes

Activation activation selu relu relu

AveragePooling2D pool_size (1, 4) (1, 3) (1, 4)
strides 2 2 3

Dropout rate 0.55 0.40 0.25
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Moreover, Figure 7 graphically depicts the models corresponding to the trade-
off solutions.

The models that were produced by the optimization framework were trained using
the whole training data file (without the validation split) and then tested using the testing
data file. The results that are provided in Table 4 show a clear improvement in the accu-
racy obtained from the optimized models with respect to the original (baseline) EEGNet
model [26] and the DeepConvNet [26]. These results show that the optimized models
achieve an average improvement in the Kappa Index of 43.9%, 87.2%, and 27.5% with
respect to the original EEGNet, for the subjects 104, 107, and 110, respectively.

Table 4. Classification results and statistical validation.

Subject Accuracy Kappa Index p-ValuesAverage Std. Dev. Average Std. Dev.

DeepConvNet [26]

104 0.58 0.03 0.38 0.04
107 0.66 0.04 0.49 0.06
110 0.48 0.02 0.22 0.03

EEGNet (baseline) [26]

104 0.63 0.05 0.44 0.08
107 0.63 0.06 0.44 0.08
110 0.72 0.05 0.58 0.08

Optimized Solution

104 0.75 0.01 0.63 0.01 p < 1.70× 10−6

107 0.88 0.02 0.82 0.02 p < 1.69× 10−6

110 0.83 0.01 0.74 0.01 p < 1.64× 10−6

Figure 8 depicts the comparison among different EEGNet models for the data of
the three subjects that were used in this work. The optimized version always outper-
formed the baseline networks, as can be seen. The EEGNet-based networks compared in
Table 4 mainly differ in the number of filters used in the lower layers: while the so-called
DeepConvNet [26] implements a deeper architecture with five convolutional layers and a
higher numbers of filters. This is the main reason for the lower number of parameters in
the EEGNet baseline.

104 107 110
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Figure 8. Comparison of the performance that was obtained by different EEGNet models, includ-
ing the optimized architecture generated by our optimization framework, corresponding to the
Pareto optimum.
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Power Efficiency of the Optimized Solutions

In this section, we analyze the power consumption of the different networks that
were used in this work. This aims to evaluate the power efficiency of the optimized
network with respect to the ones that were taken as baseline. Figure 9 shows the power
profile when the networks are trained using EEG data from subjects 104, 107, and 110.
The optimized alternative considerably reduces the instantaneous power consumption
and, thus, the average power, as shown in this Figure. Table 5 shows the average power
consumption of the different evaluated models, where the optimized model requires less
power consumption during the training.
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Figure 9. Instantaneous power obtained while training different models and subjects.

The results obtained regarding the power consumption are as expected due to the
reduction in the number of parameters of the optimized model.

4. Discussion

Deep Learning architectures have demonstrated their competitive classification per-
formance in many applications. Specifically, some types of networks, such as CNN, have
outperformed classical statistical learning classifiers in some applications, such as image
classification. This is the case of convolutional neural networks, which are widely and
successfully used in image classification tasks. However, the explicit characteristics of
each model depend on the problem being tackled. This has led to the development of a
wide range of CNN networks, which, although containing convolutional layers, differ in
terms of their combination and the hyperparameters used. In this way, autoML techniques
contribute to the Deep Learning field with procedures to automatically develop or optimize
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existing networks to solve a specific problem. This is the case of EEG signal classification,
where usual CNN-based architectures for image processing are not appropriate due to the
especial characteristics of the EEG signals. Furthermore, the inclusion of layers that allow
for spatial and temporal convolutions adds new hyperparameters that are difficult to select.
The optimization framework that is presented in this paper contributes with a flexible alter-
native to optimize existing networks to improve the classification performance on a specific
problem. The proposal is based on multi-objective evolutionary optimization, which tries
to select the best architecture according to predefined and configurable objectives. In
this paper, we use two performance metrics: the Kappa Index to measure the multiclass
classification performance, and the number of parameters, which forces the algorithm to
select solutions with a smaller number of parameters. The optimization of these metrics is
based on the validation results, aiming to enhance the generalization capabilities of the
optimum model. The proposed framework has been assessed using EEG data for BCI,
composed of 15 channels. Subsequently, a previously developed DL network for EEG-BCI
classification, called EEGNet, has been used as a baseline to optimize its performance. The
results that are shown in Figure 8 show clear improvements with respect to the original
network, achieving up to a 87% improvement with up to 33% fewer trainable parameters.
Notably, the optimization method included regularization layers that act on kernels and
activation functions, whose need is motivated by the improvement on the generalization
capabilities of the network (i.e., to reduce overfitting). Additionally, the results have been
statistically validated while using the classification outcomes that were obtained during
the bootstrap iterations by means of a Kruskal–Wallis hypothesis test, giving small enough
p-values (<10−7) to demonstrate the superiority of the optimized solution.

Table 5. Average Power Consumption during Training.

Model Subject 104 (W) Subject 107 (W) Subject 110 (W)

DeepConvNet [26] 367.8 371.5 368.9
EEGNet (baseline) [26] 268.9 262.9 263.9
Optimized EEGNet 158.3 157.3 156.0

On the other hand, we conducted experiments to measure the power consumption of
the different networks in this paper during the training process with data from subjects
104, 107, and 110 from the BCI dataset of the University of Essex. The obtained results
demonstrate that the reduction in the number of parameters of the network directly impacts
its energy efficiency. This effect is due to the lower GPU usage during training and the
shorter training time that is required for the network to converge. As a consequence,
the objective aimed to minimize the number of parameters is also minimizing the power
consumption of the final architecture.

5. Conclusions and Future Work

In this paper, we present a multi-objective optimization framework for optimizing
Deep Learning architectures that are based on evolutionary computation. The proposed
method is not only intended for hyperparameter tuning, but also for enabling or disabling
some layers, such as those that implement regularization. As a result, the architecture
of the generated models can be different from the original one. On the other hand, the
possibility of using separable convolutions allows for the algorithm to select solutions
with similar performance, but with fewer parameters. Consequently, these models are
less prone to overfitting the data, exhibiting a lower generalization error. The proposed
optimization framework has been assessed using EEG data and the deep neural network
EEGNet as a baseline. The effectiveness of the proposal is demonstrated in the experiments
performed, showing improvements of up to 87% in the classification performance (Kappa
Index) with respect to the EEGNet base model. At the same time, the optimized models
are composed of fewer parameters, resulting in shallower networks, which, in turn, are
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less prone to overfitting. The presented framework can be configured to modify the search
space, allowing for the use of more layer types. This provides an appropriate arena to use it
with a wide range of problems, not only those that are based on CNN networks. As future
work, we plan to improve the framework by allowing the construction of a neural network
by itself according to a set of restrictions configured in the database. At the same time,
the energy that is consumed by the evaluation of each solution during the training stage
will be added as an optimization objective, trying to generate networks that use not only a
smaller number of parameters, but also layers that require less computational resources.
The reduction in the number of parameters directly impacts on the energy efficiency of
the optimized solutions, as demonstrated in Section and further discussed in Section 4.
The main limitation to this end is related to the current parallelism level. Although the
proposed framework can be setup to explore a wide search space by relaxing some of
the restrictions, it is limited, in practice, by the execution time (as usual in evolutionary
computation). In fact, the framework can be used to modify not only the hyperparameters,
but also the architecture, including or removing layers in the quest of the best solution.
As we consider this part a very interesting research direction, the optimization of the
CPU-GPU parallelism is part of our future work, aiming to use the tool for the automatic
generation of deep architectures.
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