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Pre-Columbian Mesoamerica was a fertile crescent for the development of number systems. A form of vigesimal 
system seems to have been present from the first Olmec civilization onwards, to which succeeding peoples 
made contributions. We discuss the Maya use of the representational redundancy present in their Long Count 
calendar, a non-power positional number representation system with multipliers 1, 20, 18 × 20, …, 18 × 20𝑛. 
We demonstrate that the Mesoamericans did not need to invent positional notation and discover zero at the 
same time because they were not afraid of using a number system in which the same number can be written in 
different ways. A Long Count number system with digits from 0 to 20 is seen later to pass to one using digits 0 
to 19, which leads us to propose that even earlier there may have been an initial zeroless bijective numeration 
system whose digits ran from 1 to 20. Mesoamerica was able to make this conceptual leap to the concept of a 
cardinal zero to perform arithmetic owing to a familiarity with multiple and redundant number representation 
systems.
1. Introduction

Alongside the decimal positional number system, Fibonacci popu-
larized a new number in Europe: zero. Partially owing to this historical 
link, it has almost been, as it were, a truth universally acknowledged 
that a civilization in possession of a good number system must be in 
want of a zero. But this is not necessarily so. It is perfectly possible 
to have a positional number system without a zero (see the Methods 
section for an introduction to number representation systems). This is 
called bijective numeration, and we argue that Mesoamerica may well 
have invented the positional number system first as a bijective system 
without a zero. Only some time later do we see zeros beginning to ap-
pear in the Maya Long Count, depicted in Fig. 1. Because the Maya were 
used to a redundant number system they were not afraid of writing the 
same number in various ways, and they found that the zero they had 
discovered and initially used in a non-positional system could be intro-
duced into their positional system with minimal problems. Thus they 
were able to make the conceptual leap to a cardinal zero — a zero used 
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in arithmetic — in stages aided by their familiarity with multiple num-
ber representation systems.

The organization of this work is as follows: Section 2 introduces 
the Maya calendar; Section 3 introduces the necessary mathematics; 
and Section 4 contains the results. The central result is encapsulated in 
Fig. 4c. Section 5 gives our conclusions and Section 6 provides details 
on the mathematics involved.

2. The Maya Long Count calendar

“No people in history has shown such interest in time as the Maya. 
Records of its passage were inscribed on practically every stela, on 
lintels of wood and stone, on stairways, cornices, friezes and panels”

[J.E.S. Thompson [1]]

The Maya [2, 3, 4] understood well what we now call deep time. The 
Long Count is a positional notation system that, as its name indicates, 
enables complicated arithmetical calculations over arbitrarily long pe-
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Fig. 1. The Maya Long Count calendar. The stela on the left contains the dates shown enlarged on the right, including the date of the last completion of a full cycle 
of the Maya calendar, which occurred on 13.0.0.0.0, 23rd December 2012, many centuries in the future when this stela was inscribed. (Museo Maya de Cancún, 
Instituto Nacional de Antropología e Historia, México.)
riods of time. By the classical period as it reached its apogee under the 
Maya, scribes were writing of time periods of millions of years into the 
past and thousands of years into the future [5].

The Maya developed a very sophisticated astronomical culture [6] in 
their civilization centred around the Yucatán peninsula in what is today 
Mexico, Guatemala and Belize, whose classic period of greatest splen-
dour ran from around 3rd century to 10th century CE before falling into 
decline [7]. A numerical calendar is a revolutionary idea: to enumerate 
the passage of time, rather than merely giving it a descriptive label; 
the year the big tree in the village blew down; the day the sun rises over 
that mountain, etc. Enumerating rather than just labelling time permits 
one to know how long ago in the past something occurred, or how far 
into the future it will occur. The Maya used their calendar to record as-
tronomical events for astrological purposes [1, 8] and there continues 
to be much interest in understanding the Maya concepts of time and 
on what astronomical observations it may have been based [9]. It has 
been asserted that the Maya numeration system would be superior to 
today’s, at least for the ease of recognizing small divisors of large num-
bers [10]. They certainly inherited parts of their number system, such 
as base 20, which was common across Mesoamerica, from earlier civi-
lizations such as the Olmecs, and shared these aspects with succeeding 
peoples of Mesoamerica such as the Aztecs [11, 12].

In Mesoamerica there emerged a concept of zero, at first as a place-
holder (an ordinal zero), before entering into arithmetic (a cardinal 
zero) [5, 13]. As we shall discuss below, it is questioned whether the 
concept of zero was another such inheritance from the Olmecs to the 
Maya [14]. It is possible that the concept of zero has been discovered 
only twice: once in the Old World, where it seems to have first appeared 
as a placeholder in Sumerian Mesopotamia four to five thousand years 
ago, and once in the New. What seems certain is that the New World 
discovered zero on its own and that it was the Maya who fully devel-
oped the idea into a cardinal zero, used for calculations.

A significant characteristic of the Maya calendar is the concurrent 
use of three separate number systems: the Haab, the Tzolk’in and the 
Long Count; the former two formed the Calendar Round, in which all 
dates are repeated every 52 years [9, 15]. This combination of calendars 
2

is similar to our use today, without a second thought, of a year-month-
day calendrical system together with an incommensurate week system, 
where repetition comes after 28 years.1 The Maya civil calendar, the 
Haab, represents an annual solar cycle of 365 days, composed of 18 
months (winals) of 20 days (kins) each, plus — as in many calendar 
systems — five extra epagomenal days at the end of the year, which 
were called unlucky days or days without name (wayeb, for the Maya) 
[16]. On the other hand, the divine calendar, the Tzolk’in, used to de-
termine the time of religious and ceremonial events and for divination, 
has a cycle of 260 days, composed of 20 periods of 13 days each (tre-
cena) [17], possibly owing to the 260-day span of time between zenithal 
sun positions at the latitude of 15𝑜N in Mesoamerica [18].

Much debate has focused on who developed these calendrical sys-
tems. The Isthmus of Tehuantepec has long been seen as an impor-
tant area of elaboration and differentiation of the first calendar in 
Mesoamerica, although opinions differ as to which side of the isthmus 
can claim precedence. Some scholars look to the Olmec society on the 
north side of the isthmus on the coast of the Gulf of Mexico, in the mod-
ern Mexican states of Veracruz and Tabasco. Others look to the south, 
to the Pacific coast, present-day Chiapas (Mexico) and Guatemala. And 
others indicate west, to modern-day Oaxaca [19]. Grove [20, 21] points 
out that the numeral glyph found in the Olmec culture, with a 260-day 
count in its calendrical inscription, may be the oldest. Similarly, Edmon-
son [22] proposes as the oldest calendrical record, one corresponding 
to the Olmec culture in the year 679 BCE. Diehl [23] indicates that in 
the decadence of Olmec culture, the epi-Olmec period, in Chiapa de 
Corzo in Chiapas and Tres Zapotes in Veracruz stelae were erected with 
the earliest known inscriptions of the Long Count. Blume [5] notes that 
the earliest Mesoamerican Long Count is inscribed on Stela 2 at Chi-
apa de Corzo with a date of 7.16.3.2.13, corresponding to 36 BCE.2 In 

1 Disregarding the complications introduced in the Gregorian Calendar where 
centuries are not leap years unless divisible by 400.

2 The date corresponding to the beginning of the Long Count, 0.0.0.0.0, is 
Monday, 11th August, 3114 BCE, according to the most accepted Goodman–
Martínez–Thompson correlation with our Gregorian calendar. It is supposed 
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terms of the development of mathematical ideas, we may affirm that 
the epi-Olmec and the proto-Maya came together something over 2 000 
years ago in this fertile crescent and the Long Count, and zero, were the 
eventual results.

For everyday activities, the Maya used a pure vigesimal, base-20, 
numeral system (although there are no extant Maya documents showing 
this, and we know it only from what bishop Diego de Landa told of 
cacao bean counting in sixteenth century Yucatán)3 [25]. In their Long 
Count calendar (Fig. 1), however, they would use a slightly modified 
version of this. The first and second place values were 200 and 201 as 
usual, but the third was 20 ×18. This is presumably because 20 ×18 = 360
represents much more accurately than 202 = 400 the number of days in a 
year. All subsequent place values were multiplied by 20. Thus we have 
1 kin (= 1 day), 1 winal = 20 kins, 1 tun = 18 winals, 1 katun = 20 tuns 
and 1 baktun = 20 katuns. Accordingly, a number would be expressed 
in this system as

𝑁 = 𝑑𝑘(18 × 20𝑘−1) +…+ 𝑑3(18 × 202) + 𝑑2(18 × 20) + 𝑑120 + 𝑑0.

This is an example of a non-power positional number representation 
system.4 Since the digits go up beyond 9, to avoid using extra non-
decimal digit symbols to write Long Count numbers the convention is to 
use the following notation with intercalated dots between digits written 
in decimal to avoid any confusion between numbers:

𝑁 = 𝑑𝑘.⋯ .𝑑1.𝑑0.

In a regular base-20 system, when a place value is completely filled, 
we simply write 0 and carry a 1 to the next power. For instance, we can 
fill up the units place with numbers 1 up to 19, but on reaching 20 we 
have to write it as 1.0 = 201 +0 ×200, and similarly for higher powers. In 
the calendar count, however, the third place being 18 ×20 creates some 
difficulties. If the second place (201) is filled up, we would have 20 
sets of 20 which cannot be carried over to the next power: only 18 × 20
can, leaving 2 × 20 back. The same happens if we have 19 × 20 in the 

that this initial value was decided a posteriori in a similar fashion to how the 
current calendar era was proposed by Dionysius Exiguus in the sixth century 
and widely implemented by Charlemagne in the 9th century. Similarly, we have 
Unix epoch time, the number of seconds (minus leap seconds) elapsed since 
00:00:00 UTC on 1st January 1970, retrospectively decided upon in 1972. Com-
pare the earliest known numerical calendar, the Seleucid Era, which did begin 
with year 1 in 312/11 BCE [24].

3 “Que su cuenta es de V en V, hasta XX, y de XX en XX hasta C, y de C en 
C hasta 400, y de CCCC en CCCC hasta VIII mil. Y desta cuenta se servían mucho 
para la contratación del cacao. Tienen otras cuentas muy largas, y que las protienden

in infinitum, contándolas VIII mil XX vezes que son C y LX mil, y tornando á XX 
duplican estas ciento y LX mil, y después yrlo assí XX duplicando hasta que hazen un 
incontable número: cuentan en el suelo ó cosa llana” [25]. Landa’s account, written 
circa 1566, in which he does not mention zero, demonstrates that Hindu-Arabic 
numerals were still being used little in Europe. Landa, who ordered the burning 
of almost all Maya texts, probably did not appreciate that he was destroying one 
zero in America just as another was struggling to emerge in Europe from the 
hegemony of Roman numerals. Ironically, Landa’s original manuscript is also 
lost, so we cannot be sure that the version we have with Roman numerals is 
how he wrote it.

4 Chrisomalis [26] has argued that “there was no Maya positional numerical no-

tation system” because extant evidence shows the Maya using the Long Count 
only for measuring time, and because — he maintains — ‘ “9 millennia, 4 cen-

turies, 3 decades, 6 years” is read and understood differently from “9436 years” ’, 
and he opines that the former, unlike the latter, is not a positional number rep-
resentation system. Whether or not it was the case that the Maya only used the 
Long Count system in this one setting of the calendar (the absence of evidence 
may be owing to the destruction of most Maya codices), however, we disagree 
with his latter assertion, because the key point here is that the Long Count pos-
sesses the formal structure of a positional number representation system. There 
are manifold instances in the history of mathematics in which the general util-
ity of a formal structure has not become apparent to mathematicians until long 
after its invention. This may, or may not, be another one of those cases.
3

Fig. 2. Instances from the Dresden codex of Maya numbers written with an 18 
or a 19 in the second place. The dot and bar notation of the Maya seen here 
composes the digits 1–19 using zero to four dots to represent ones and zero to 
three bars to represent fives, so that 1 is one dot, and 19 is three bars below 
four dots. Generally numbers were written vertically with the most significant 
figure at the top. (a) 390 written as 19.10 rather than as 1.1.0 on page 72; (b) 
10.11.3.19.14 or 10.11.3.18.14, i.e., 1 520 654 or 1 520 674 in decimal, on page 
70. It is unclear whether is there a dot missing in the second place digit owing 
to wear of the codex, but the unequal dot spacing — compare with 19 as written 
in (a) — makes it plausible that there were originally four dots, with this digit 
thus reading 19 rather than 18.

20’s place: it can be carried over leaving 1 × 20 behind. So for example, 
3.19.3 = 4.1.3 and 7.18.11 = 8.0.11. Thus, if the digits can go up to 19 
in the second place, this non-power positional number representation 
would not be unique starting from Maya Long Count numbers from 
18.0 = 1.0.0 to 19.19 = 1.1.19, corresponding to the base-10 numbers 360 
to 399. In other words, the number system is partially nonunique, with 
the nonuniqueness affecting about 10% of numbers.

So did the Maya ensure uniqueness in the Long Count by having the 
second digit go only to 17? That might make sense considering that this 
number representation system was used as a calendar (recall 18 20-day 
‘months’ plus five extra days made up the Maya year). In that context, 
one might naturally carry directly into the larger units. Indeed, Fre-
itas and Shell-Gellasch [27] did not find any examples: “no Maya Long 
Count numbers with an 18 or 19 in the second place appear on known 
monuments or documents” they wrote. But this is not so. Closs [28] 
notes an example in the Dresden codex, of 39010 (the subscript refers to 
the base) expressed in the form 19.10. We show this instance in Fig. 2a. 
Note that Closs was expecting the number to appear as 1.1.10, and was 
surprised to find it written in this other manner. Cauty and Hoppan 
[29] found this same example and noted a further instance in the Dres-
den codex, which we show in Fig. 2b, where instead of 10.11.4.1.14 
there is written 10.11.3.19.14. Again, they see these instances as being 
irregular variants where the scribe has omitted to carry into the larger 
units.

We may note that many old units of money and measure functioned 
in this same way. E.g., in the old British monetary system (imported 
from Charlemagne’s continental Frankish empire) of pounds, shillings 
and pence, 12 pennies made a shilling and there were 20 shillings in a 
pound: 𝑁 = 𝑑2(20 × 12) + 𝑑112 + 𝑑0, where the digits 𝑑0, 𝑑1 go only to 
11, 19; that is, to 𝑏𝑖+1∕𝑏𝑖 − 1. Likewise the linear measures 12 inches =
1 foot, 3 feet = 1 yard, 220 yards = 1 furlong, 8 furlongs = 1 mile etc, 
ensured uniqueness by having the digit go only to 1 less than the next 
level [30]. And of course we do precisely the same with our modern 
calendar and our timekeeping: we write dates as days (< a month), 
months (< a year) and years, and the same with hours, minutes (< an 
hour) and seconds (< a minute). We would not generally think of giving 
a date as 13/13/2018, rather than 13/1/2019, nor a time as 12:65 
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Fig. 3. Today one occasionally finds an example of Maya-style notational non-
uniqueness in our representation of time. Information on restaurant opening 
hours at Tokyo Haneda airport; notice the opening hours and time for Last 
Orders of the second entry.

rather than 13:05; but see Fig. 3. However, one instance where we are 
perfectly comfortable with such nonuniqueness today is in currency, 
where coins and notes in denominations often based on 1, 2, 5 permit 
us to pay a given sum of cash in multiple ways.

It is notable that we are worse off today with our calendar with a 
jumble of months with different lengths than the ancient Maya with 
their 20-day months, as we have to remember that “30 days hath 
September...” etc, in order to perform calendar calculations with our 
very irregular length months inherited from the Romans. Moreover, al-
though we are happy to consider the first minute of the hour, minute 
zero, and the last minute, 59, only in the 24-hour clock do we conde-
scend to have an hour zero, and we refuse to consider a day zero or 
a month zero, just as there is no year zero in today’s Gregorian calen-
dar. It should also be noted that the Tzolk’in — perhaps the earliest 
Mesoamerican calendar [5] — has days 1 to 13, without a zero in the 
same way as the days of our months lack a zero day. On the other hand, 
the days of the solar Haab calendar use the same digit notation of dots 
and bars as we see in Fig. 2 used for coefficients of Long Count quanti-
ties, so it is natural to ask how the Maya got to be more logical than us, 
to arrive at a day zero.

3. Bijective numeration

It is not widely appreciated that a positional number representation 
system does not need a zero. Instead of digits in the range from 0 to 
𝑏 −1, we can simply shift them by one to the range from 1 to 𝑏 [31] (see 
the Methods section for a discussion of digit shifting). We have done 
away with zero — whose introduction is often held to have been essen-
tial for the development of positional number systems — yet we can still 
represent all numbers uniquely. For instance, if we do this with base 10, 
we simply need a new digit symbol for ten; let us borrow from the Ro-
mans and use X. Then the digits are from 1 to X, and most numbers 
remain written as in normal base 10. Only those containing 0 are al-
tered: 10 becomes X, twenty, 1X, one hundred, 9X, and so on (Fig. 4a). 
It is still the case that 1 + 1 = 2, but now 9 + 1 =𝑋 [32]. This zero-less 
number system has sometimes been called bijective numeration [33]; it 
is bijective or one to one because in this system there is no possibility 
to have leading zeros in front of a number. It keeps on being rediscov-
ered [34, 35, 36]5 We see, then, that the introduction of zero, although 

5 Note that one may combine bijective numeration with non-power number 
representation systems in the same way as with a fixed base system (Fig. 4c).
4

viewed historically as linked to the development of our Hindu-Arabic 
decimal positional number system, was not necessary for a positional 
number system.

A key point in exploring the Maya number systems is this: given a 
positional number system that uses an unfamiliar set of symbols, how 
may we know whether the symbols include a zero, or not? How do we 
know whether the Maya in their Long Count were writing their calen-
dar using days from 0 to 19, or from 1 to 20? Clearly this question is 
pertinent given that today our calendar does not include a day zero. 
That is to say, did the Maya really begin their months with day zero 
and end them with day nineteen, or did they begin with one, like us, 
and end with twenty? If the meaning of the digit symbols is completely 
unknown a priori then only way to answer this question is to look at 
arithmetical operations with these symbols [34].6 In the four surviving 
Maya codices, written on astronomical and calendrical themes between 
the classical Maya period and the arrival of the Europeans, a shell sym-
bol — thought to be a stylized image of the shell of a gastropod mollusc 
of the genus Oliva [5] — represents zero. That it does represent zero 
is clear from, for example, multiplication tables in the Dresden codex 
that would be incorrect if we tried to interpret the shell symbol as 20. 
(Although it should be noted that the arithmetic in the codices con-
tains errors.) So, certainly by their post-classical period during which 
the codices were written, we do have a zero-based positional system, 
with digits 0–19.

There is a variety of evidence pointing towards an earlier bijective 
system, with digits 1–20, both within the codices themselves and in 
the stone inscriptions on the earlier classical stelae. Within the codices 
there is evidence for an earlier, non-positional system with an explicit 
symbol for twenty. In the Dresden Codex, distance numbers between 
20 and 39 are frequently expressed by prefixing with the dot and bar 
notation a number between 0 and 19 to a moon glyph representing 
twenty, and similar “x+20” notation was used earlier on stelae, as has 
been discussed by Thompson [38]. Although an explicit zero is first 
used for a Long Count inscription of 8.16.0.0.0 (357 CE), at Uaxactun 
on Stelae 18 and 19, a later 711 CE inscription at Stela 5 at Pixoy is not 
written as 9.14.0.0.0, but as 9.13.20.0.0, as Closs has pointed out [39]. 
And at the Temple of the Cross (Palenque, Chiapas) there are the forms 
20 Mol (in 13 Ik 20 Mol = 13 Ik 0 Ch’en) and 0 Zac (in 9 Ik 0 Zac) 
entered in two Haab dates written side by side [29].

4. The development of zero

The route to zero that Mesoamerica took must be teased out from 
the sparse evidence available. Mathematics can help with this task. Ini-
tially there was a non-positional number system with digits from 1–13, 
without a zero, in the Tzolk’in calendar. Archeological evidence of this 
calendar has been found in Olmec cave paintings dated 800–500 BCE 
[20, 21].

Then there is the Haab, again a non-positional number system. The 
Haab may possibly have been set up around 500 BCE [40]; there is 
archeological evidence from 500–400 BCE from Monte Albán, Oaxaca 
[41]. As we have indicated, the days of the Haab generally run not from 
1–20, but from an initial day, followed by the 1st, 2nd, etc, up to the 
19th day. And as we have pointed out above, in the Haab on occasion 
a glyph for the end of a month, i.e., for day 20, was used instead of 
that for the beginning of the month. Of course then it is natural today 
to translate the glyph for the initial day, often referred to as chum, by 

6 It reminds us of the passage in Alice’s Adventures in Wonderland “I’ll try if I 
know all the things I used to know. Let me see: four times five is twelve, and four 
times six is thirteen, and four times seven is — oh dear! I shall never get to twenty at 
that rate!” [37], which can be understood if Alice is counting in a varying base: 
she is expressing 4𝑛 in base 3𝑛 + 3, and she cannot get to 20 — as many people 
have pointed out — since after 4 × 12 = 1939 , 4 × 13 = 1𝑋42 .
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a)

Bijective base 10 Decimal
1 1
2 2
⋮ ⋮
9 9
𝑋 10
11 11
12 12
⋮ ⋮
19 19
1𝑋 20
21 21
⋮ ⋮
99 99
9𝑋 100
𝑋1 101
𝑋2 102
⋮ ⋮

𝑋𝑋 110
111 111
⋮ ⋮

b)

Bijective base 20 Base 20 with zero Decimal
1 1 1
2 2 2
⋮ ⋮ ⋮

(19) (19) 19
(20) 10 20
11 11 21
⋮ ⋮ ⋮

(19)(19) (19)(19) 399
(19)(20) 100 400
(20)1 101 401
⋮ ⋮ ⋮

(20)(20) 110 420
111 111 421
⋮ ⋮ ⋮

c)

Bijective Long Count Long Count with zero & twenty Long Count with zero Decimal
1 1 1 1
2 2 2 2
⋮ ⋮ ⋮ ⋮
19 19 19 19
20 1.0 or 20 1.0 20
1.1 1.1 1.1 21
⋮ ⋮ ⋮ ⋮

17.19 17.19 17.19 359
17.20 1.0.0 or 17.20 or 18.0 1.0.0 or 18.0 360
18.1 1.0.1 or 18.1 1.0.1 or 18.1 361
18.2 1.0.2 or 18.2 1.0.2 or 18.2 362
⋮ ⋮ ⋮ ⋮

18.20 1.1.0 or 18.20 or 19.0 or 1.0.20 1.1.0 or 19.0 380
1.1.1 or 19.1 1.1.1 or 19.1 1.1.1 or 19.1 381

⋮ ⋮ ⋮ ⋮
1.1.10 or 19.10 1.1.10 or 19.10 1.1.10 or 19.10 390

⋮ ⋮ ⋮ ⋮
1.1.20 or 19.20 1.2.0 or 19.20 or 20.0 or 1.1.20 1.2.0 400
1.2.1 or 20.1 1.2.1 or 20.1 1.2.1 401

⋮ ⋮ ⋮ ⋮
1.2.20 or 20.20 1.3.0 or 20.20 or 1.2.20 1.3.0 420

1.3.1 1.3.1 1.3.1 421
⋮ ⋮ ⋮ ⋮

Fig. 4. (a) Bijective base 10 with digits 1–X differs from base 10 with a zero — our usual decimal system with digits 0–9 — only when we write the numbers that 
would have a zero in decimal; otherwise the two are the same. (b) Similarly, to move between a bijective numeration system with digits 1–(20) and one using a zero, 
with digits 0–(19) (which of course would require symbols for the digits (10)–(19) or (20), which are written for this reason with parentheses around the number), 
the differences are only with numbers involving a zero. The conversion works similarly with any base, and (c) with mixed base systems, as we see with the different 
versions of the Long Count. The bijective Long Count with digits 1–20, the Long Count with digits 0–20, and a version with digits 0–19, can easily coexist. Most 
numbers are written the same in all three versions. Only those numbers involving digits 0 and 20 in the first place, and 0 and 18 onwards in subsequent places, can 
differ. There is redundancy in the three versions, the same but shifted in the 0–19 and 1–20 versions, and the combination of these two sets of redundancies in the 
0–20 version.
zero. However, it is not one of the same glyphs as the zero later found 
in the Long Count. Maya scholars have debated for many years about 
the meaning of chum for the Maya [5]. Some have thought it to be 
the end of the preceding month, i.e., a species of 20, and others the 
beginning of the new month, i.e., a type of zero. Some translate it in a 
non-numerical way as the “seating of” the month [38, 42, 43]. What we 
can put forward for our purposes about chum with relative certainty, 
however, is twofold: (1) that it does not perform the same function as 
the zero in the Long Count, being an ordinal, not a cardinal zero; and, 
however, (2) that it may well have influenced the development of the 
zero placeholder to come in the Long Count.

Now let us move to the Long Count, for which the earliest evi-
dence is several hundred years later than the two preceding calendars. 
The eight earliest known Long Count inscriptions (which are generally 
designated epi-Olmec rather than Maya [23]) are 7.16.3.2.13 (Chi-
apa de Corzo Stela 2), 7.16.6.16.18 (Tres Zapotes Stela C), 7.18.9.7.12 
or 7.19.15.7.12 (El Baúl Stela 1), 8.3.2.10.15 and 8.4.5.17.11 (Taka-
5

lik Abaj Stela 5),7 8.5.3.3.5 and 8.5.16.9.7 (La Mojarra Stela 1) and 
8.6.2.4.17 (the Tuxtla statuette) [47]. It is tantalizing that in none of 
the eight known inscriptions that show the earliest development of po-
sitional notation in the Long Count can we find the full range of digits 
that were necessarily then in use, which would enable us to understand 
whether the calculations behind the Long Count were being performed 
with digits 1–20, 0–19, or 0–20. Neither 0 nor 20 appears in any of the 
earliest examples written from 36 BCE to 162 CE. We know that there 
necessarily has to have been one of these three systems in use in or-

7 Davletshin [44], Justeson [45], and Macri [46] have proposed a different 
interpretation of the dates inscribed on Takalik Abaj Stela 5. In their inter-
pretation, the inscriptions, which read as 8–3–2–10–5–[damaged day sign] 
and 8–4–5–17–11–[damaged day sign] would correspond to Long Counts 
8.3.2.[0].10 and 8.4.5.[0].17, where [0] represents an implicit zero. If this 
alternative interpretation is correct, an implicit zero here also supports our ar-
guments.
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der to satisfy the mathematics of the Long Count; in order to be able to 
write all numbers (Fig. 4c). With fewer digits with the same multipli-
ers not all numbers can be represented and so some calculations simply 
could not be performed.

Then there appear in the archeological record examples with an im-
plicit zero denoted by the lack of a digit, before finally we get examples 
with the explicit written cardinal zero, as well as the example with an 
explicit twenty on Stela 5 at Pixoy. (Since the Tzolk’in and Haab con-
tinued to be used alongside the Long Count, we can use this calendrical 
redundancy for error checking, to make sure that we understand cor-
rectly whether a glyph is a zero or a twenty.) As in the case of the solar 
calendar glyph chum, within Maya scholarship there has been a great 
deal of debate about how to read the Long Count glyphs that are not 
bar and dot numerals. In contradistinction to the case of the solar cal-
endar, here we can check Maya arithmetic and see that we really do 
have a glyph for zero in the two forms in common use, one a species of 
quatrefoil, and the other a hand. By the time we have archeological evi-
dence these are glyphs for zero, but might these same glyphs once have 
been glyphs for twenty, whose meaning had altered over time? That 
is an idea that has occurred to a number of Maya scholars over many 
decades [5, 38, 42, 43].

In terms of the mathematics, when altering a digit from a twenty to a 
zero, one is moving from bijective numeration to a non-bijective system 
which merely requires incrementing the digit in the superior position by 
one, so the idea of a shift in meaning of these glyphs is quite tenable. 
Moreover, in fact one can use the system with digits 0–20, with both a 
20 and a 0, without any confusion, as we show in Fig. 4c. Given that 
at its first sightings the zero is present only implicitly, as an absence 
— as a missing digit — we can understand that it was a new concept 
whose usage caused deep conceptual problems, in a similar way to how 
irrational numbers, imaginary numbers, non-Euclidian geometries, etc, 
have caused problems at various times to mathematicians. All of which 
strengthens the idea of a previous usage of an explicit twenty in the 
system. Although — barring fresh archeological finds — we do not see 
the first part of the process with digits 1–20 in extant inscriptions, we 
see precisely this latter stage with digits 0–20 in the Long Count written 
on Stela 5 at Pixoy.

Thus we see the mathematics of the development of the Long Count 
as being one in which a non-power positional system was being de-
rived, with the mixed multipliers of 20 and 18 that we have described 
— possibly alongside a pure base-20 system like Fig. 4b for civil use — 
together with a set of digits that initially ran from 1–20, and then, much 
more nontrivially, was changed to include the possibility of absence: of 
a zero.8 All these digits and multipliers could be used together because 
the Maya mathematicians were happy with the flexibility of their num-
ber representations leading to non-uniqueness, to redundancy, so that 
they could write both a zero and a twenty side by side in a number such 
as 9.13.20.0.0 at Pixoy. That is to say, their positional number system 
broke both sufficient conditions for uniqueness listed in the Methods 
section: neither are the positional weights powers of a base 𝑏, nor are 
the digits limited to a range from 0 to 𝑏 − 1, or to a shift of that range. 
The Long Count with zero and twenty gradually gave way to a Long 
Count with zero. By the time the extant codices were written, when 
Maya civilization was on the wane, the Long Count was worked almost 
always with digits with the explicit zero, using the shell glyph which 
is characteristic of the codices, and the use of twenty as a digit had 
become vestigial.

5. Ex nihilo nihil fit?

In the Old World, zero first emerged from the development in Sume-
rian Mesopotamia of a sexagesimal positional number system for ac-

8 It is notable that Justeson [14], who comes at this question from a com-
pletely different approach to our own, arrives at a similar conclusion on this 
point.
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counting purposes. This was to begin with an implicit zero, by which 
we mean that at first it had no symbol associated with it, but was simply 
a lack of a digit. This makes perfect sense within the scheme of tallying 
goods: a lack of something corresponds to a missing number in its cor-
responding column. But it became awkward that the lack of something 
could be misinterpreted when writing tallies in columns, in a positional 
notation, and so after some time the implicit zero was given its own 
symbol and became explicit as a placeholder in the base-60 notation. 
So it was natural, from this Old World point of view of counting goods, 
that a positional number system and a zero should go together. In the 
New World, however, the impulse for the positional number system 
came not from counting goods, but from the calendar, from counting 
days. And in counting days, what would be the lack of a day? It is much 
more natural to use the counting numbers, 1, 2, 3. We see this today in 
our Gregorian calendar with no day, month, or year zero. So from the 
American point of view, it made sense that there could be a positional 
notation without a zero.

Mesoamerica did not have to discover zero at the same time as in-
venting positional notation; the two are independent concepts. With a 
bijective positional number system one can represent all numbers, and 
one does not need a zero. One has to ask whether the Maya used it; 
that is, was the symbol they used a 0 or a 20? That the Maya discov-
ered the concept of zero beginning from a bijective non-power number 
system is a plausible hypothesis when one considers on one hand the 
available historical evidence, which has led Maya scholars to debate 
whether chum meant zero or twenty, and on the other hand the ease 
with which one can move from a bijective system to a system with a 
zero. We infer that initially they used 20 and only later 0, and they 
shifted via an intermediate Long Count with both a twenty and a zero 
that we see in the historical record. To go between these different sys-
tems affects only the numbers whose representation contains the digit 
(20), in which one replaces a (20) with a (0), at the same time adding 
1 to the digit in the superior position.9 If one adds to this mixture of 
mathematics and anthropology the point that the Maya, owing to the 
redundancies built in to their mixed-based system, were used to the 
idea of the same number being represented by more than one differ-
ent sequences of symbols, one can understand that they could make 
the momentous conceptual leap to using a cardinal zero owing to their 
familiarity with multiple and redundant number representation sys-
tems.

Zero is a slippery and difficult concept that took a long time to be 
accepted as a number with its own symbol to use in calculations. In 
Europe zero arrived in the Middle Ages as one of the Hindu-Arabic digits 
with the decimal positional number system, but these two ideas did not 
have to come at the same time. Zero is not needed for a positional 
number system. Different ways to write calendar dates developed in 
Mesoamerica two millennia ago helped to invent a number system in 
which the same number can be written in different forms even without 
a zero. America discovered zero on its own and later it was added by 
the Maya to this, the Long Count.

6. Methods

The history of mathematics has an intrinsically interdisciplinary 
character. In order to make matters clear for a diverse readership, and to 
provide a reasonably self-contained argument, in this section we spend 
a little time in an outline of the mathematics involved in number repre-
sentation systems.

9 Of course as the number gets larger, the probability of it containing a (20) 
tends to one. However, although on occasion the Maya did represent numbers 
with a large number of digits, most of the numbers written have five or fewer 
digits.



B. Rojo-Garibaldi, C. Rangoni, D.L. González et al. Heliyon 7 (2021) e06580
6.1. Number representation systems

“The mirror of civilization” is what Hogben termed mathematics in 
his Mathematics for the Million [48], “interlocking with man’s common 
culture, his inventions, his economic arrangements, his religious belief-
s”. It may be that the initial use of the symbolic management of numbers 
through visual signs corresponded to utilitarian needs, for example, for 
the exchange of goods; the first form of commerce. However, numbers 
became part of the human endeavour for knowledge very early. Per-
haps astronomy — the counting of the elapsed time between recurring 
events of day–night, winter–summer, relative positions of planets and 
stars, eclipses, and so on — was the earliest ‘scientific’ application of 
number systems.10 Geodesy also has represented an important practical 
aspect in early civilizations that led rapidly into geometric develop-
ments. We find the apex of number in the Pythagorean doctrine that 
the entire universe is governed by numbers; for the Pythagoreans, that 
meant integer and rational numbers [49].

The felicitous choice of a numeration system is relevant for solving 
specific problems and also for developing and improving mathemat-
ical models and algorithms [30, 50]. We can see from our position 
of hindsight that civilizations that used inconvenient number systems 
were held back in their development of mathematical knowledge. To-
day’s decimal number system is a positional system, but there are many 
historical examples of non-positional numeration systems [51]. A fa-
miliar example is that of Roman numerals. In the Roman system the 
values of the symbols are in general independent of their position; nu-
merals are written from left to right in descending order, writing the 
biggest numeral possible at each stage. There is only a relative posi-
tional dependence that determines whether a particular number should 
be added to or subtracted from its neighbour for obtaining the repre-
sented number. For example, I represents 1 and V, 5, and there are two 
ways to write 4, IV and IIII (with the latter version generally seen on 
clocks; the subtractive rules leading to forms like IV were alternatives 
that only became usual in later Roman periods). Thus Roman numerals 
constitute primarily a non-place-value system, but because of the use of 
the subtractive principle — e.g., IV represents four while VI represents 
six —, the Roman system may be classified as a mixed system. Arith-
metical operations are very difficult to implement with non-positional 
systems. Cultures that used non-positional representation systems gen-
erally relied on mechanical aids for performing operations between 
numbers, the most popular of these being the abacus. On the con-
trary, positional number systems allow a compact representation and 
easy implementation of arithmetical operations. Mainly owing to this 
last feature, positional number systems have historically prevailed over 
non-positional ones. The current decimal representation system with 
Hindu-Arabic symbols representing the digits was spread in the West 
by Leonardo Pisano, better known as Fibonacci, with his 1202 book 
Liber Abaci (the Book of Calculations) [52], and gradually replaced the 
cumbersome Roman system. In Mesoamerica a positional number sys-
tem was in use much earlier.

Most of the numeration systems that we know and use are univocal, 
that is, they are not redundant; univocity means that any symbol rep-
resents only one number and, conversely, any number is represented 
by only one symbol (except for the minor point of leading zeros that 
we shall discuss below). This is usually achieved using a power posi-
tional system, defined by a small set of integers given symbols, called 
digits, that, depending on their position along a representation string, 
are multiplied by the powers of a given base or radix. However, there 
have existed in the past, and there continue to exist, non-power posi-
tional number representation systems in which the multipliers are not 

10 Until the scientific revolution of the 15th–16th centuries, astronomers were 
also astrologers or priests, and astronomical data were used for astrological or 
religious rather than what we would think of as scientific purposes. Nonetheless, 
as numbers were used to document, explain and predict natural phenomena, we 
may consider this a proto-scientific application.
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the powers of a given base. Such mixed-radix systems were studied by 
Cantor [53]. One historical example in which the necessity to describe 
more adequately annual timescales led to a non-power number repre-
sentation system is the Maya Long Count calendar, depicted in Fig. 1. 
Others are the old systems of money, weights and measures from around 
the world not based on multiples of ten. While these systems were of-
ten employed in such a way as to preserve univocity, non-power number 
representation systems, mainly employed in computing for transmission 
and storage of data, are today used so as to be redundant. The reason 
for this redundancy is to have error detection, and so the possibility for 
error correction, built in to the system [54].11 It is thus most interest-
ing that in DNA, the biological molecule of information transmission 
and storage, we find in the genetic code the structure of a non-power 
number representation system [58, 59].

6.2. Positional number systems

A counting system is said to be positional if each digit is weighted 
with a different value according to its location in the string. The most 
common positional numeral systems are power representation systems 
where the positional weights are powers of some number 𝑏, called the 
base or radix, and the digits are allowed to take any value from 0 to 
𝑏 − 1. The main advantage of such a system is that any integer 𝑁 has a 
unique representation of the form

𝑁 = 𝑑𝑘𝑏
𝑘 + 𝑑𝑘−1𝑏

𝑘−1 +…+ 𝑑0𝑏
0, 0 ≤ 𝑑𝑖 ≤ 𝑏− 1 ∀𝑖.

The decimal system, base 10, is undoubtedly the most familiar and 
widespread example, but it is not the only one. The first place-value 
system, developed by the Mesopotamians, was sexagesimal, base 60, 
which is why we still measure angles and time in units of 60. In more 
recent times, the binary, base 2, system has become a fundamental tool 
in informatics; base 16, hexadecimal, and base 8, octal, are also impor-
tant in computing.

6.2.1. Uniqueness of the representation

As previously stated, in a positional system with base 𝑏 each number 
has a unique representation. This can be proved by contradiction, i.e., 
assuming that an integer 𝑁 can be written in two different ways:

𝑁 = 𝑑0𝑏
0 + 𝑑1𝑏

1 +…+ 𝑑𝑘𝑏
𝑘, 0 ≤ 𝑑𝑖 ≤ 𝑏− 1 (1)

𝑁 = 𝑎0𝑏
0 + 𝑎1𝑏

1 +…+ 𝑎𝑘𝑏
𝑘, 0 ≤ 𝑎𝑖 ≤ 𝑏− 1 (2)

and assuming that ∃𝑖 such that 𝑑𝑖 ≠ 𝑎𝑖. In particular, assume 𝑎𝑖 > 𝑑𝑖, and 
∀𝑗 > 𝑖, 𝑑𝑖 = 𝑎𝑖. Subtracting (2) from (1),

0 = (𝑑0 − 𝑎0)𝑏0 + (𝑑1 − 𝑎1)𝑏1 +…+ (𝑑𝑖 − 𝑎𝑖)𝑏𝑖

⇒ (𝑎𝑖 − 𝑑𝑖)𝑏𝑖 = (𝑑𝑖−1 − 𝑎𝑖−1)𝑏𝑖−1 +…+ (𝑑0 − 𝑎0)𝑏0.

By assumption, 𝑎𝑖 − 𝑑𝑖 > 0 and so

𝑏𝑖 ≤ (𝑎𝑖 − 𝑑𝑖)𝑏𝑖 ⇒ 𝑏𝑖 ≤ (𝑑𝑖−1 − 𝑎𝑖−1)𝑏𝑖−1 +…+ (𝑑0 − 𝑎0)𝑏0.

Since 𝑑𝑗 is a digit, 𝑑𝑗 ≤ 𝑏 −1 and thus 𝑑𝑗 − 𝑎𝑗 ≤ 𝑏 −1 ∀𝑗. So one obtains

𝑏𝑖 ≤ (𝑑𝑖−1 − 𝑎𝑖−1)𝑏𝑖−1 +…+ (𝑑0 − 𝑎0)𝑏0

≤ (𝑏− 1)𝑏𝑖−1 +…+ (𝑏− 1)𝑏0

11 The redundancy of overspecifying calendrical information performs pre-
cisely this function of error detection in our present calendar, as for example 
when we write Saturday 17th November 2018. (Algorithms to determine the 
day of the week for any given date have been devised by mathematicians from 
Gauss [55], through Lewis Carroll [56], to John Horton Conway [57].) We can 
presume that Maya scribes understood and used this same redundancy for error 
checking purposes when they wrote dates using the three Maya calendars. The 
same date in the Long Count is 13.0.5.17.17, 3 kab’an, 10 Keh.
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⇒ 𝑏𝑖 ≤ (𝑏− 1)(𝑏𝑖−1 +…+ 𝑏0).

But (𝑏𝑖−1 +… + 𝑏0) is a geometric series, and we know that

𝑖−1∑
𝑗=0

𝑏𝑖 = 𝑏𝑖 − 1
𝑏− 1

,

and so we obtain

𝑏𝑖 ≤ 𝑏𝑖 − 1,

which is a contradiction; the proof is complete.

6.3. Signed-digit representation

It is clear from the above proof that the uniqueness of the power 
representation is given by two key assumptions:

1. the digits are limited to a range varying from 0 to 𝑏 − 1, and
2. the positional weights are the powers of 𝑏.

We can develop non-standard positional numeral systems, where one of 
these two conditions is not fulfilled.

A first relaxation of the above conditions is where digits are allowed 
to go beyond the prescribed range. A particular example is the signed-
digit representation, where each digit is given a positive or negative 
sign, hence its name. Uniqueness cannot be guaranteed anymore; it is 
easy to see that this representation is in fact redundant. Let us take for 
instance the binary signed-digit case: the positional weights are powers 
of 2, just like the usual binary, but the digits can now take values −1, 0
and 1. The number 9, for example, can be written in three different 
ways:

1001 = 111̄1̄ = 1011̄

with the convention that 1̄ = −1.
Redundancy can be eliminated by considering the so called balanced 

form of the representation. Given a base 𝑏, the allowed digits are 𝑏 − 1
numbers 𝑑𝑖 taken from the range

−
⌊
𝑏

2

⌋
≤ 𝑑𝑖 ≤ (𝑏− 1) −

⌊
𝑏

2

⌋
where the floor function ⌊𝑥⌋ maps 𝑥 to the largest integer smaller or 
equal to it. For simplicity, we will only consider the case where 𝑏 is an 
odd integer, which implies⌊
𝑏

2

⌋
= 𝑏− 1

2
and hence

− 𝑏− 1
2

≤ 𝑑𝑖 ≤
𝑏− 1
2

.

We can prove that the balanced form is unique in the following way. 
We have shown above that every integer has a unique representation in 
base 𝑏 of the form

𝑁 = 𝑑𝑛𝑏
𝑛 + 𝑑𝑛−1𝑏

𝑛−1 +…+ 𝑑0𝑏
0, 0 ≤ 𝑑𝑖 ≤ 𝑏− 1 ∀𝑖. (3)

First consider the coefficients 𝑑𝑘 = 𝑏 − 1. Noting that

𝑑𝑘𝑏
𝑘 = (𝑏− 1)𝑏𝑘 = 𝑏𝑘+1 − 𝑏𝑘

one can substitute this expression for 𝑑𝑘𝑏𝑘 into (3) to get

𝑁 =

𝑑𝑛𝑏
𝑛 + 𝑑𝑛−1𝑏

𝑛−1 +…+ 𝑑𝑘+1𝑏
𝑘+1 + 𝑏𝑘+1 + (−1)𝑏𝑘 +…+ 𝑑0𝑏

0

=

𝑑𝑛𝑏
𝑛 + 𝑑𝑛−1𝑏

𝑛−1 +…+ (𝑑𝑘+1 + 1)𝑏𝑘+1 + (−1)𝑏𝑘 +…+ 𝑑0𝑏
0.
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If 𝑑𝑘+1 + 1 = 𝑏 − 1, we repeat the previous step until there are no more 
coefficients equal to 𝑏 − 1. Then, we seek to eliminate every coefficient 
of the form 𝑑𝑡 = 𝑏 − 2, replacing it with

(𝑏− 2)𝑏𝑡 = 𝑏𝑡+1 − 2𝑏𝑡.

Finally, we get to the digits of the form

(
𝑏− 𝑏− 1

2

)
𝑏𝑠 = 𝑏𝑠+1 −

(
𝑏− 1
2

)
𝑏𝑠

and we plug this expression into 𝑁 . Therefore, with this process we 
have found a unique representation for 𝑁 with digits drawn from the 
range

− 𝑏− 1
2

≤ 𝑑𝑖 ≤
𝑏− 1
2

as required.
In intuitive terms, what we have done is simply to shift down the 

allowed interval for the digits; the proof shows that in this case unique-
ness is preserved. For example, consider a normal base-3 representation 
(observe that the allowed digits are 0, 1, 2). Take the number

2113 = 30 + 31 + 2 × 32,

where the subscript refers to the base. In order to reduce it to a balanced 
form representation, we seek to have only −1, 0, 1 as digits. We eliminate 
the digit 2 as follows:

30 + 31 + 2 × 32 = 30 + 31 + (3 − 1)32

= 30 + 31 − 32 + 33

= 111̄1,

as desired.

6.3.1. An application of signed-digit representation

An interesting example of how the balanced form of signed-digit rep-
resentation was used in the past can be found in the work of Fibonacci. 
With his Liber Abaci, Fibonacci spread Hindu-Arabic numbers in Europe 
together with practical applications, generally of a commercial nature. 
Zero and the positional number system developed in the Old World on 
the back of trade and bookkeeping, while in America the calendar was 
the driving force, and we argue that this difference was to prove crucial.

The problem is presented as follows:

A certain man in his trade had four weights with which he could 
weigh integral pounds from one up to 40; it is sought how many 
pounds was each weight.

Fibonacci provides a solution, stating that the four weights are 1lb, 3lb, 
9lb and 27lb respectively. Clearly, each weight can be used on either 
side of the balance. We can then give a weight three possible values 
as a digit: −1 if it is used on the pan with the unknown weight on, 
1 if used on the other pan and 0 if the weight is not used at all. The 
most natural choice for a counting system is then the balanced ternary 
system12 In this way, the highest number we can express is 40 (written 
as 1111 = 27 + 9 + 3 + 1) and the lowest is −40 (1̄1̄1̄1̄). Every number 
within the range −40 to 40 has a unique representation. Observe that, 
from a practical point of view, the weights cannot be negative, so the 
system is useful only for representing one half of the integer set, that is, 
the positive ones from 0 to 40.

12 It is interesting that this balanced form of representation minimizes the 
number of carries in addition, at least when the base is an odd prime [60].
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6.3.2. The shifting property of digits

There is another way to think about the foregoing scales problem: 4 
weights with 3 possible positions each give rise to 34 = 81 combinations. 
On the scale, these combinations would read as the 81 numbers from 
−40 to 40. If we were to use a standard ternary system with digits 0, 
1, 2, we could still express exactly 81 consecutive numbers; however 
these numbers would go from 0 to 22223 = 8010 (recall the subscript 
refers to the base). This idea can easily be generalized: if all digits are 
shifted by the same quantity, the representation remains non-redundant 
but the interval of represented numbers is also shifted. Note that our 
reasoning proves not only the uniqueness of the representation, but its 
converse as well; every number is guaranteed to be representable. When 
using strings of a given length, if we shift all the digits, the interval of 
representable numbers moves up or down accordingly, but leaves no 
gaps.13

Consider an ordinary base-𝑏 system and a string of digits of length 
𝑘,

𝑑𝑘−1𝑑𝑘−2…𝑑0 = 𝑑𝑘−1𝑏
𝑘−1 + 𝑑𝑘−2𝑏

𝑘−2…+ 𝑑0𝑏
0,

0 ≤ 𝑑𝑖 ≤ 𝑏 − 1 ∀𝑖. Clearly, the smallest representable number is 0 and 
the largest is

(𝑏− 1)(𝑏𝑘−1 +…+ 𝑏0) = (𝑏− 1)
(
𝑏𝑘 − 1
𝑏− 1

)
= 𝑏𝑘 − 1,

thus defining an interval of 𝑏𝑘 numbers. Again, keeping in mind that 
we have 𝑏 possibilities for 𝑘 positions, the number of combinations is 
indeed 𝑏𝑘. Suppose now that all the digits are shifted by a quantity 
𝑠 ∈ℤ, i.e.,

𝑠 ≤ 𝑑𝑖 ≤ 𝑏− 1 + 𝑠 ∀𝑖.

As a result, the lower bound of the interval of representable numbers is

𝑠(𝑏𝑘−1 +…+ 𝑏0) = 𝑠

(
𝑏𝑘 − 1
𝑏− 1

)

and similarly the upper bound is

𝑠(𝑏𝑘−1 +…+ 𝑏0) = (𝑏− 𝑠− 1)
(
𝑏𝑘 − 1
𝑏− 1

)
.

Thus, a shift by 𝑠 in the digits range results in a shift by 𝑠(𝑏𝑘 −1)∕(𝑏 −1)
in the range of represented numbers.

6.4. Non-power number representation systems

As we have noted, there are two ways to obtain redundant repre-
sentation systems. Having seen the signed-digit case, we now move to 
the other case, that of a non-power representation system. This means 
that instead of having a given base or radix, the positional weights are 
numbers of a sequence that grows more slowly than the powers of some 
number. If this is the case, then every number can be represented and 
generally has more than one expression within the system.14

We can pick any sequence of numbers that grows more slowly than 
do powers of two. A famous choice is to use the Fibonacci numbers 
[30, 61]. Fibonacci numbers are the elements of a sequence where each 
number 𝐹𝑛 is the sum of the previous two; 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2, with 𝐹1 =
𝐹2 = 1. The first terms of the sequence are then 1, 1, 2, 3, 5, 8, 13, 21, 

13 Note, however that, as in the case of the Fibonacci weights (see below), 
the useful represented numbers are the positive set. In power systems, negative 
numbers are externally defined by a minus sign. We can interpret the external 
minus sign as the additional possibility of making all signs of all digits negative 
for a given represented number.
14 With a sequence of positional weights growing more rapidly than a power 
and a fixed set of digits, the positional representation system has gaps, that is, 
some integer numbers cannot be represented. This is overcome in the factorial 
number system [32].
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…. These grow more slowly than powers of two. If one uses these as 
positional weights, and 0, 1 as digits, it can be seen that every number 
is representable. Moreover, this representation is unique provided that 
there are no two consecutive 1’s [62]. In fact, since every term is the 
sum of the previous two, it is easy to see that any string of the form 
… 011 … can be replaced with … 100 ….

Another, more ancient example is a Maya calendrical counting sys-
tem, the Long Count, which is the subject of this work.
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