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Abstract: Yield assessment has been identified as critical topic for grape and wine industry. Com-
puter vision has been applied for assessing yield, but the accuracy was greatly affected by fruit
occlusion affected by leaves and other plant organs. The objective of this work was the consistent,
continuous evaluation of the impact of leaf occlusions in different commercial vineyard plots at
different defoliation stages. RGB (red, green and blue) images from five Tempranillo (Vitis vinifera L.)
vineyards were manually acquired using a digital camera under field conditions at three different
levels of defoliation: no defoliation, partial defoliation and full defoliation. Computer vision was
used for the automatic detection of different canopy features, and for the calibration of regression
equations for the prediction of yield computed per vine segment. Leaf occlusion rate (berry occlusion
affected by leaves) was computed by machine vision in no defoliated vineyards. As occlusion rate
increased, R2 between bunch pixels and yield was gradually reduced, ranging from 0.77 in low
occlusion, to 0.63.

Keywords: precision viticulture; digital agriculture; image analysis; proximal sensing; grapevine

1. Introduction

Grapevines are considered as important crops for economic relevance. The precise
assessment of different relevant grapevine features would lead to better management and
more sustainable practices. Considering this, the objective estimation of vine yield would be
very valuable for growers and other actors in the industry [1]. While an accurate, objective
and rapid estimation of the yield components is needed [2,3], conventional methods are
destructive, labor-demanding, time-consuming and of low accuracy [2]. Accordingly, new
methods for the yield assessment of grapevines are required to replace time-consuming
and traditional procedures.

Computer vision systems are powerful tools to automate inspection tasks in agricul-
ture [4–11]. Typical target applications of such systems include grading, quality estimation,
yield prediction and monitoring, among others [6–8]. With computer vision techniques,
a large set of samples can be automatically measured, saving time and providing more
objective information [4–7]. The capabilities of an artificial vision system go beyond the
limited human capacity to evaluate long-term processes objectively and provide valuable
data to take decisions. Machine vision systems are being used to automate inspection tasks
in agriculture and food processing [4–9].

Machine vision technology has allowed the automation of tasks in viticulture for
different purposes, such as cluster compactness [6], pruning weight [7] or canopy fea-
tures [8] assessments. Image analysis has been widely applied in viticulture for assessing
crop yield [9–15]. Yield forecasting has been carried out at different phenological stages:
Budburst [16], flowering [17], pea-size [10,13] and harvest [10,12]. Most of the previous
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works have focused on visible fruits. These works have suggested a procedure on yield
forecasting for total or partial defoliated vineyards where the number of berries visible in
the images was proportional to the total number of berries. However, the number of visible
berries was only a part of the actual number of berries on the vine, and the percentage of
exposed berries may vary beyond lineal relationships according to canopy conditions in
the fruiting zone. Leaf and berry occlusions are the main challenges for yield forecasting in
commercial vineyards [18].

Canopy features of the fruiting zone are related to fruit microclimate, fruit health
status and grape composition [19,20]. Leaf removal is a common vineyard management
practice to improve clusters’ light exposure and air circulation and to reduce the probability
of disease incidence [20,21]. However, the elimination of a certain number of leaves around
bunches increase fruit exposure, which may affect grape composition [20] but also fruit
exposure [22,23]. Machine vision can be applied in viticulture as a rapid and practical
method to estimate both for assessing yield [9] and for canopy features [8,24]. So, leaf and
berry occlusions in commercial vineyards can be evaluated by image analysis and the effect
on yield forecasting in commercial could be examined. Therefore, the aim of this work was
to analyze the impact of leaf occlusion on yield components assessment using machine
vision in commercial vineyards.

2. Materials and Methods
2.1. Experimental Layout

The experiments were conducted in 2020 in five commercial dry-farmed cv. Tem-
pranillo (Vitis vinifera L.) vineyards located in Rioja wine appellation, Spain (Table 1). All
vineyards were spur pruned and trained on a vertical shoot positioning trellis system with
two pairs of movable wires. All vineyard plots were subject to similar standard cultural
practices during the growing season: de-suckering, shoot positioning and shoot trimming.
No defoliation was performed before image acquisition at harvest.

Table 1. Description of the five Tempranillo vineyard plots analyzed in this study located in Rioja wine appellation, Spain.

Vineyard Plot Cordon Row Spacing (m) Vine Spacing (m) Altitude (m) Row Orientation

A Single 3.0 1.0 700 NE–SW
B Single 3.0 1.0 680 NE–SW
C Double 2.5 1.20 510 E–W
D Double 2.5 1.20 500 NE–SW
E Double 2.5 1.10 555 N–S

To study the impact of leaf and fruit occlusions on yield components assessment using
machine vision, a detailed experimental setup for the acquisition of images was developed,
based on successive defoliations steps of individual vines.

2.2. Assessment of Yield Components and Occlusion Rate

In each vineyard 25 vines were randomly chosen before harvest. All vines were
divided into two segments and labelled accordingly. Two 0.5 m pieces of plastic labelling
tape were positioned on both sides of each vine to delimitate the width of the region of
interest (ROI) (Figure 1). The vine canopy was successively defoliated: first by removing
the first four main basal leaves (partial defoliation), and then the remaining main leaves and
laterals (full defoliation). Images were taken in the vineyard for each individual segment
before each defoliation step.
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Figure 1. Example of a vine segment after the defoliation process and image processing by the computer vision algorithm
from [8,24]. Images on the left correspond to the in-field acquired pictures (no defoliated, (a0,a1); partially defoliated,
(b0,b1); and fully defoliated, (c0,c1). Images on the right represent the processed output of the computer vision algorithm.

Yield components were directly assessed in the vineyards. Bunches were harvested
and counted, and then their total weight was recorded per each vine segment after im-
age acquisition.

2.3. Image Acquisition and Processing

The images were taken manually, directly in the vineyard during a single session
in September 2020 before harvest. For each individual segment vine, a total number of
three images were taken: no defoliation, partial defoliation and full defoliation. Before any
defoliation step, each vine (50 vines per vineyard) was photographed with a conventional
RGB camera mounted on a tripod set normal to the canopy, at 1.0 m from row axis and
1.20 m aboveground, with no artificial illumination. A white screen was placed behind the
canopy to remove the influence of background vegetation. Canopy images were acquired
from the lateral canopy side using a Canon EOS 5D Mark IV RGB camera (Canon Inc.
Tokyo, Japan) equipping a full-frame CMOS sensor (30.4 MP) equipped with a Canon EF
20 mm F/2.8 USM lens, using Aperture-priority AE (Av) mode fixing the aperture on F/5.6,
enabling an adequate focus over the whole canopy and low noise due to the good lightning
conditions. Images were saved in JPG format with the highest quality setting available in
the camera. The full image size was 6720 × 4480 pixels for all the images.

Prior to image analysis, ROI delineation was required to analyze the canopy status pa-
rameters for every plant and defoliation level. The ROI selection was performed manually,
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selecting a rectangle fulfilling the conditions stated in the manuscript (0.5 m over basal wire
vertically, and from one marker to the next horizontally). [24]. The image analysis algorithm
was developed using C++ programming language and OpenCV (Open Source Computer
Vision Library, Version 4.1) for image reading and manipulation. The aforementioned
algorithm is based previous works [8,24], and utilizes Mahalanobis distance to classify
every pixel of an image based on its color. The Mahalanobis distance is a multi-dimensional
scale invariant measure, whose main advantage over Euclidean distance is that it accounts
for correlations inside the training dataset, enabling a more precise classification. These
properties make this clustering algorithm ideal for image segmentation under uncontrolled
conditions, especially when illumination varies among images, because this distance can
compensate that lightning variations in a transparent manner. The algorithm uses a known
sample of color values to classify an unknown batch of pixels into groups or classes based
on a characteristic vector (the color values of each pixel).

The image segmentation algorithm was trained using supervised learning. For that,
the following five classes covering the expected objects in the images were defined: ‘bunch’,
‘trunk’, ‘shoot’, ‘leaf’, ‘gap’ and ‘trellis’. Then, the classifier was trained by manually
selecting 500 pixel samples per class (3000 training instances in total), carefully covering as
much variability as possible for every set. Mathematically, a pixel pi was defined by the
following five-dimensional vector:

pi = (Ri, Gi, Bi, Hi, Si) (1)

Ri, Gi and Bi correspond to the pixel’s red, green and blue values according to the RGB
color space, respectively. Furthermore, Hi, and Si stand for the pixel’s hue and saturation
in the hue saturation value (HSV) color space, obtained by means of space conversion [25].
Note that the value component of the HSV color space was deliberately left out, in order to
favor similar tones in the comparison, as opposed to brightness changes that can be caused
by the natural lightning variation in the image. The transformation between these two
color spaces is nonlinear, and results were more consistent during the experiment using
the same color seeds as opposed to using only the RGB color space or the 6 components of
RGB + HSV color spaces combined.

To further improve the quality of the segmentation, mathematical morphology tech-
niques were applied to the binary mask corresponding to the resulting classes that exhibited
more classification errors. The isolated pixels of some of the defined classes (like shadowed
pixels on the background that have a color which closely resembles epicuticular wax on
some of the berries) were filtered by applying a morphological erosion operation [26] on the
classified image, in order to remove isolated points and small connected components. In or-
der to restore all the information of the group that is lost with this operation, morphological
reconstruction was applied by using dilation on the same group.

With this approach, a single training set was used to evaluate three plots. Since
images on the other two plots exhibited severe changes in the lightning conditions when
compared to the correctly segmented images, the training set of the algorithm was enriched
introducing more pixel values from images showing the most differences in light and color
to have a proper segmentation for all the plots.

2.4. Leaf Occlusion Rate and Canopy Features by Image Analysis

The leaf occlusion rate (bunch occlusion by leaves) was calculated for each no defolia-
tion and partial defoliation images using the following equation:

ORi(%) =
BpiFD − Bpi

BpiFD

× 100 (2)

where:

ORi(%) = Leaf occlusion rate percentage for image i at respectively partial/no defoliation
BpiFD = Number of bunch pixels for image i at full defoliation
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Bpi = Number of bunch pixels for image i at respectively partial/no defoliation

Additionally, levels of porosity, leaf exposure and bunch exposure were computed by
a previously tested methodology described by [8,24].

2.5. Statistical Analysis

Descriptive statistical analysis was performed using Infostat (InfoStat version 2020.
Universidad Nacional de Córdoba, Argentina). Mean, minimum, maximum, standard
deviation, variation coefficient, skewness, kurtosis and histograms were computed for
yield components and canopy status parameters.

Linear regression analysis was performed between fruit pixel count obtained from
image analysis and yield for each defoliation step, and the determination coefficients (R2)
were computed.

3. Results and Discussion
3.1. Yield Components

Table 2 shows different statistical values for yield components in five Tempranillo
commercial vineyards plots. The coefficient of variation of yield exhibited considerable
differences between different segments in the same plot, and this behavior was also repre-
sented in the minimum and maximum yield values, oscillating between 0 to 6.63 kg·m−1.
Furthermore, high yield variability among plots was also observed, with mean yield values
between 1.96 and 2.82 kg·m−1. Variation coefficients in excess of 40% in every plot and
reaching 53.26% globally show high intra plot and inter plot variability, also reflected in the
minimum and maximum values which oscillate from near 0 to 5.3 kg·m−1. These results
indicate that a high number of samples per plot are needed for accurate yield assessment
according to high variability observed within vineyard plots.

Table 2. Descriptive statistics for yield components (yield, bunch number and bunch weight) in five Tempranillo vineyard
plots analyzed in this study.

Plot Mean SD CV Min Max Skewness Kurtosis

Yield
(kg·m−1)

A 2.33 0.97 41.68 0.58 4.04 −0.02 −0.93
B 1.96 1.02 51.77 0.19 5.34 0.86 1.68
C 2.82 1.24 44.07 0.52 6.63 0.60 0.29
D 2.79 1.66 59.51 0.00 6.20 0.23 −0.45
E 2.60 1.47 56.67 0.00 6.18 0.52 −0.02

ALL 2.53 1.35 53.26 0.00 6.63 0.56 0.30

Bunch Number
(Number per

Meter)

A 9.78 2.94 30.04 4.41 15.45 −0.12 −0.89
B 8.70 3.48 40.01 1.33 15.52 0.01 −0.51
C 9.51 3.36 35.31 1.59 17.65 −0.22 −0.20
D 9.00 4.76 52.85 0.00 20.00 −0.10 −0.40
E 8.36 4.16 49.72 0.00 17.19 0.16 −0.84

ALL 9.06 3.84 42.41 0.00 20.00 −0.11 −0.30

Bunch Weight
(kg)

A 0.23 0.05 21.79 0.12 0.31 −0.47 −0.57
B 0.23 0.09 39.64 0.07 0.58 1.80 4.87
C 0.30 0.09 28.99 0.18 0.71 2.13 7.53
D 0.28 0.13 44.89 0.00 0.58 −0.54 0.54
E 0.35 0.12 34.08 0.00 0.65 −0.36 1.81

ALL 0.28 0.11 38.87 0.00 0.71 0.64 3.26

SD: standard deviation; CV: variation coefficient; Min: minimum; Max: maximum.

Other yield components such as bunch number per meter were more homogeneous
between the plots, with approximately 9 bunches per meter in all the cases and a mean
coefficient of variation of 42.41%, This coefficient represents the high variability of number
of bunches in each segment, which ranges from 0 to 20. In relation to bunch weight, 0.28 kg
was the global average when taking into account the measurements for all the considered
plots. Major differences were observed on this as well, with plots A and B exhibiting the
lowest mean bunch weight of the study group, with 0.23 kg per bunch, due to the small
size of their bunches, as opposed to the remaining plots which showed higher weights



Agronomy 2021, 11, 1003 6 of 13

on average. This feature is linked to yield, where it was also observed that the plots with
smaller bunches had less yield as expected. Furthermore, a considerable variability in the
bunch weight was also observed, with a mean coefficient of variation of 38.87%.

3.2. Canopy Status

The canopy images obtained were processed with computer vision using the same
ROI for all subsequent defoliation steps to obtain values of porosity, leaf exposure and
bunch exposure. Descriptive statistics of these canopy features are displayed in Tables 3–5.

Table 3. Descriptive statistics for canopy porosity (percentage of gap pixels) computed by machine vision in five Tempranillo
vineyard plots (individually and all together) under three defoliation practices: no defoliation, partial defoliation and
full defoliation.

Plot Mean (%) SD CV Min Max Skewness Kurtosis

No Defoliation

A 16.31 9.41 57.72 4.24 43.88 1.13 0.66
B 7.62 7.46 97.93 0.34 29.71 1.45 1.27
C 21.78 9.36 42.98 7.50 50.14 0.67 0.44
D 24.40 12.48 51.15 5.77 68.88 1.31 2.32
E 25.75 10.04 39.00 4.72 45.38 −0.14 −0.56

ALL 19.80 11.81 59.65 0.34 68.88 0.65 0.65

Partial Defoliation

A 25.73 11.34 44.08 8.84 50.54 0.57 −0.62
B 12.67 8.94 70.60 1.12 42.94 1.39 1.88
C 31.73 12.37 38.99 8.41 63.90 0.44 0.07
D 34.21 12.33 36.05 9.96 70.76 0.64 0.83
E 35.38 11.97 33.84 13.47 62.83 0.06 −0.70

ALL 28.71 14.01 48.81 1.12 70.76 0.26 −0.35

Full Defoliation

A 60.76 6.65 10.95 41.32 77.46 −0.31 0.80
B 40.51 9.38 23.14 15.79 60.00 −0.40 0.12
C 55.44 9.86 17.79 32.34 76.51 −0.36 −0.50
D 60.13 10.30 17.13 43.61 89.05 0.75 0.10
E 53.95 9.08 16.83 30.09 71.27 −0.46 −0.31

ALL 54.47 11.48 21.08 15.79 89.05 −0.33 0.38

SD: standard deviation; CV: variation coefficient; Min: minimum; Max: maximum.

Table 4. Descriptive statistics for the leaf exposure (percentage of leaf pixels) computed by machine vision in five Tempranillo
vineyard plots (individually and all together) under three defoliation practices: no defoliation, partial defoliation and
full defoliation.

Plot Mean (%) SD CV Min Max Skewness Kurtosis

No Defoliation

A 60.17 15.06 25.02 12.16 82.27 −1.02 1.26
B 54.62 15.12 27.69 19.16 82.32 −0.56 −0.27
C 28.51 12.03 42.20 7.44 60.72 0.31 −0.30
D 41.46 15.42 37.21 3.17 71.70 −0.64 −0.17
E 32.92 13.47 40.91 9.65 72.21 0.28 0.03

ALL 42.33 18.48 43.65 3.17 82.32 0.07 −0.78

Partial Defoliation

A 41.60 12.82 30.82 9.61 66.00 −0.62 −0.14
B 36.42 12.90 35.41 10.10 61.00 0.04 −0.75
C 17.01 8.82 51.83 3.47 44.66 0.72 0.54
D 28.37 11.36 40.04 2.56 52.92 −0.27 −0.59
E 19.48 9.90 50.81 2.31 48.99 0.38 0.17

ALL 27.67 14.44 52.17 2.31 66.00 0.35 −0.66

Full Defoliation

A 0.62 0.24 10.56 0.01 0.86 0.37 −0.50
B 0.35 0.12 10.57 0.02 0.66 0.94 0.14
C 0.48 0.25 22.52 0.01 0.74 0.33 0.91
D 0.07 0.10 46.42 0.00 0.23 0.98 0.56
E 0.56 0.14 46.18 0.00 0.76 0.92 0.70

ALL 0.42 0.17 24.80 0.01 0.86 1.20 1.15

SD: standard deviation; CV: variation coefficient; Min: minimum; Max: maximum.
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Table 5. Descriptive statistics for the bunch exposure (percentage of fruit pixels) computed by machine vision in five
Tempranillo vineyard plots (individually and all together) under three defoliation practices: no defoliation, partial defoliation
and full defoliation.

Plot Mean (%) SD CV Min Max Skewness Kurtosis

No Defoliation

A 5.49 3.28 59.73 0.90 14.69 0.85 0.09
B 5.88 3.59 61.05 1.00 14.96 0.99 0.45
C 11.88 6.03 50.79 1.19 28.60 0.53 0.27
D 13.03 7.18 55.08 0.93 32.08 0.18 −0.58
E 15.12 5.56 36.77 3.10 29.48 0.31 0.21

ALL 10.68 6.63 62.10 0.90 32.08 0.60 −0.21

Partial Defoliation

A 11.15 3.20 28.68 3.95 17.02 −0.31 −0.42
B 11.51 5.13 44.58 3.00 23.47 0.16 −0.52
C 15.81 6.60 41.72 4.10 30.14 0.28 −0.51
D 16.48 7.86 47.68 0.97 36.47 −0.14 −0.18
E 19.15 6.67 34.80 5.98 37.16 0.70 0.40

ALL 15.12 6.88 45.50 0.97 37.16 0.50 0.30

Full Defoliation

A 17.57 4.12 23.45 5.60 26.24 −0.37 0.76
B 17.66 6.40 36.26 5.31 32.59 0.18 −0.13
C 19.18 7.30 38.07 5.23 32.73 0.01 −0.88
D 19.10 8.84 46.26 0.92 37.35 −0.59 −0.14
E 20.54 7.49 36.48 6.07 44.74 0.83 1.05

ALL 18.91 7.15 37.83 0.92 44.74 0.09 0.55

SD: standard deviation; CV: variation coefficient; Min: minimum; Max: maximum.

In the no defoliated vineyards, canopy porosity, leaf exposure and bunch exposure
exhibited high variability. All these parameters showed high variation coefficients. Re-
garding bunch exposure, high variability within plots was also observed. On the other
hand, leaf exposure was the most stable parameter between plots in the no defoliated
vineyards. In a recent work on fruit occlusions, [27] observed that the canopy features
in no defoliated vineyards was affected by the grapevine cultivar. Those conclusions
added to our results suggesting that, in commercial vineyards, the level of variability is
increased due to the influence of the variety and also by the location of vineyards of the
same grapevine variety and grown under the same conditions (as described in Section 2.1).
Canopy porosity has been previously studied by [24] too, and their measurements also
exhibited large variation of canopy features in commercial vineyards planted with different
varieties in several countries.

After leaf removal, canopy porosity (number of gap pixels) improved strongly from
an average of 20% in no defoliated vineyards, to 35% in partial defoliation and 54% in full
defoliated plots (Table 3). With partial and full defoliation, leaf exposure decreased sharply
in contrast with no defoliated vines (Table 4). Leaf removal provoked a notable increase in
bunch exposure, from 11% in no defoliated to 18% in full defoliated vine (Table 5). Huge
variation of canopy features was induced by leaf removal in a commercial Tempranillo
vineyard [8,22].

3.3. Yield Estimation

The in-field yield assessment using computer vision was unsuccessful or challenging
in several no defoliated plots (first column in Figure 2), confirming that, as it would have
occurred with a human visual inspection, the predominant presence of leaves prevents
bunch exposure to correlate with the actual plant yield. Leaf removal improved the
correlation between the number of bunch pixels and the yield. This improvement was
remarkable for vineyards A and B, where determination coefficient (R2) values of 0.10* and
0.22* were obtained at no defoliation, and R2 of 0.69*** and 0.70*** were achieved after full
defoliation. Vineyards C, D and E showed little improvement of R2 in yield assessment,
that suggests that the amount of leaves was considerably lower in C, D and E and therefore
there was little difference between the partial and the full defoliation. This was confirmed
in the visual inspection of all vineyard plots. This can even be more clearly observed in
vineyard D, where very similar R2 values were found among the three stages. Full leaf



Agronomy 2021, 11, 1003 8 of 13

removal resulted in higher correlations in regressions from vineyards A and B (last column
in Figure 2), while the rest showed lower improvements. This, nevertheless, is in agreement
with the fact that the correlation from vineyard plots C, D and E were already higher that
other plots after partial defoliation.
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Determination coefficients (R2) were significant at p = 0.05 (*) and p = 0.001 (***).
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The results for the combination of all vineyards into one dataset are presented in
Figure 3. The R2 from the regression between bunch pixels and yield increased consistently
as leaf removal advanced. In general, defoliation enhanced fruit exposure and improved
the vineyard canopy conditions for an accurate yield estimation using machine vision.
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determination coefficients (R2) were significant at p = 0.001 (***).
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Leaf occlusion rate (fruit occlusion affected by leaves) was determined by machine
vision in vineyards with no canopy defoliation, defining three levels of leaf occlusion
rate: Low (<30%), intermediate (31–60%) and high leaf occlusion (>61%). The impact of
leaf occlusion on yield assessment is showed in Figure 4. As occlusion rate increased, R2

between bunch pixels and yield was gradually reduced, ranging from 0.77 in low occlusion,
to 0.63 in medium occlusion, and finally to 0.33 in high occlusion level. These results
indicate that leaf occlusion rate had a very notable impact in the yield assessment by image
analysis in commercial vineyards. Yield assessment was accurate in vines showing low
leaf occlusion rate, as would be expected, but the assessment results from vines showing
medium occlusion levels could be also considered as satisfactory (Figure 4b). Only with
high occlusion was harder to effectively estimate yield, since too many leaves were hiding
a big part of the bunches. In fact, in high leaf occlusion vineyards, high vigorous and high
yield vines can exhibit a similar amount of visible bunch pixels than low yield defoliated
vines, making the linear correlations between the number of fruit pixels and the total
yield to fail. These results seem to be in concordance with works from other authors,
in which the bunch exposure area was significant correlated with yield in no defoliated
vines [9,12,23]. Additionally, the lack of correlation between exposed fruit and actual
yield in non-defoliated vines was confirmed by [27] too. These authors also observed that
the linear regression between yield and visible bunch area was affected by the grapevine
variety and phenological stage.

Our results can also be compared with several works from other authors. [10] reported
R2 values between 0.60 and 0.73, with models individually calibrated per grapevine variety
and phenological stage. In all cases, the correlation between the number of detected
berries and the yield on vines were obtained after severe leaf removal. [23] applied an
approach similar to the one presented in this work for predicting yield: a Mahalanobis color
segmentation for the extraction of bunch pixels. Linear regressions were also employed
to estimate the yield from the fruit pixels, achieving R2 values up to 0.73, higher than the
R2 obtained for the no defoliation and partial defoliation steps, and lower than the results
obtained after full defoliation in Figure 3. Reference [13] reported R2 values from the
correlation of the number of detected berries and the actual yield of 0.74 on fully defoliated
vines. These results were also lower than our work in full defoliated vines (R2 of 0.86,
Figure 3), but may be explained as, in that work, image acquisition was performed at
pea-size stage, in contrast to the images used in this work, acquired close to harvest.

Our results, aligned with previous, similar works [27], indicate that leaf occlusion in
vineyards is a challenge to overcome for yield assessment methods-based on computer
vision and linear relationships, and that depending on the vigor of the vineyard, a greater
or lesser number of leaves will occlude the clusters and prevent visual exposure to correlate
with actual yield. In this work we tried to consistently confirm this with a continuous
vineyard monitoring at several levels of occlusion. For accurate yield estimation using
machine vision procedures a low leaf occlusion is needed if only linear relationships are
considered, that have the advantage do not need for heavy computational modelling.
Furthermore, leaf removal is a common practice in viticulture, it improves fruit health and
fruit composition [20,21]. Yield assessment can also be beneficed by this practice to reduce
the fruit occlusion affected by leaves. The image acquisition could be carried out on-the-go
by mobile sensing platforms moving at conventional tractor speed in in vineyards trained
to a vertical shoot position (VSP) system [8,17], allowing for a rapid image processing
for determining leaf occlusion rate and/or yield. The next steps towards the automation
of vineyard canopy assessment using new proximal sensors were recently shown; a new
system equipped with matrix-based optical RGB sensors was mounted in a tractor to assess
the leaf layer number and vineyard canopy gaps [28].

Future work would involve analyzing the impact of other canopy vineyard elements
that affect bunch occlusion (berries, shoots, cordon and trellis elements), and discovering
non-linear latent features between those canopy features and yield. Machine and deep
learning techniques could be very beneficial for this modelling, to quantify the number of
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actual berries (visible and not visible) as an early yield indicator and, potentially, at later
stages if non-linear relationships can be modelled.

Agronomy 2021, 11, x FOR PEER REVIEW 12 of 14 
 

 

 

 

 

Figure 4. Linear regressions between the number of fruit pixels computed by machine 

vision and yield in Tempranillo vines under three levels of leaf occlusion (fruit occlusion 

affected by leaves) rate: (a), Low (<30%); (b), intermediate (30–60%); and (c), high leaf 

occlusion (>60%). All determination coefficients (R2) were significant at p = 0.001 (***). 

Future work would involve analyzing the impact of other canopy vineyard elements 

that affect bunch occlusion (berries, shoots, cordon and trellis elements), and discovering 

non-linear latent features between those canopy features and yield. Machine and deep 

learning techniques could be very beneficial for this modelling, to quantify the number of 

actual berries (visible and not visible) as an early yield indicator and, potentially, at later 

stages if non-linear relationships can be modelled. 

4. Conclusions 

In this work, a consistent, continuous evaluation of the impact of leaf occlusions on 

yield assessment from computer vision was presented, considering three different levels 

of defoliation over five different commercial vineyard plots. Our results, aligned with 

other previous works, strongly suggest that occlusions over the fruit present in the vines 

Figure 4. Linear regressions between the number of fruit pixels computed by machine vision and
yield in Tempranillo vines under three levels of leaf occlusion (fruit occlusion affected by leaves) rate:
(a), Low (<30%); (b), intermediate (30–60%); and (c), high leaf occlusion (>60%). All determination
coefficients (R2) were significant at p = 0.001 (***).

4. Conclusions

In this work, a consistent, continuous evaluation of the impact of leaf occlusions on
yield assessment from computer vision was presented, considering three different levels of
defoliation over five different commercial vineyard plots. Our results, aligned with other
previous works, strongly suggest that occlusions over the fruit present in the vines do
affect the capability of machine vision of automatically assess the total yield of grapevine
plants. Although this assessment was unsuccessful in non-defoliated vineyards, it showed
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promising in partially defoliated stages, and strongly feasible in defoliated vineyards, that
are not rare in the current practice. The outcomes presented in this paper also point out
that high differences in canopy conditions and features can be found for vineyards that are
from even the same variety and wine region, but, if this variability is considered during the
development of the regression equations, an automated system based on computer vision
can perform successfully in the task of yield assessment after an usual stage of defoliation.
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