
UNIVERSITY OF GRANADA
Doctoral Program in Information and Communication Technologies

Doctoral Dissertation

LEARNING RULES IN DATA STREAM MINING:

ALGORITHMS AND APPLICATIONS

Author

Elena Ruiz Sánchez

PhD Advisor

Jorge Casillas Barranquero

Granada, March 2021

UNIVERSIDAD DE GRANADA
Programa de Doctorado en

Tecnoloǵıas de la Información y la Comunicación

Tesis Doctoral

LEARNING RULES IN DATA STREAM MINING:

ALGORITHMS AND APPLICATIONS

Autora

Elena Ruiz Sánchez

Director

Jorge Casillas Barranquero

Granada, Marzo 2021

Editor: Universidad de Granada. Tesis Doctorales
Autor: Elena Ruiz Sánchez
ISBN: 978-84-1306-877-0

URI: http://hdl.handle.net/10481/68575

http://hdl.handle.net/10481/68575

2

This doctoral thesis has been supported by the Spanish National Research Project
TIN-2014-57251-P including the associated FPI scholarship BES-2015-073689 holded by
the PhD Student.

Agradecimientos

Culmina para mı́ una etapa de aprendizaje con mayúsculas. Un aprendizaje que no se
limita meramente al ámbito de investigación de esta tesis, sino que se ha desarrollado
en multitud de sentidos simultáneamente. Durante estos años, he tenido la oportunidad
de conocer desde dentro el mundo de la investigación, hacer mis pinitos como docente,
colaborar con distintos profesores e investigadores de distintas universidades, disfrutar de
estancias en el extranjero, embarcarme en proyectos que parećıan pequeños y puntuales
pero que a d́ıa de hoy siguen creciendo, entre otras cosas. Más allá del desarrollo profesional,
ha sido sin duda una etapa de descubrimiento y crecimiento personal. Aśı, quiero dar las
gracias a todas aquellas personas cuyo apoyo ha sido fundamental para que este viaje haya
sido posible.

En primer lugar, a mis padres, estoy tentada de decir que por todo. Ambos son un
ejemplo de esfuerzo, trabajo duro y constancia. Gracias por todo el cariño y apoyo que
siempre me brindáis y por estar siempre ah́ı. Sabéis que sois un pilar esencial para mı́.

A Jose, por el ánimo y apoyo diarios, por la paciencia y la comprensión, especialmente
en estos últimos meses. Durante estos años, hemos tenido la oportunidad de apoyarnos
mutuamente en nuestras respectivas andaduras predoctorales. Gracias por las risas y las
distracciones que tanto ayudan a superar los d́ıas más complicados.

Como no podŕıa ser de otra manera, gracias a mi director, Jorge, por el tiempo y la
dedicación puesto en el desarrollo de esta tesis. Desde luego, que sin su conocimiento,
ideas y supervisión, no hubiera sido posible. Asimismo, gracias al Dr. Leandro Minku
por acogerme y permitir realizar una estancia bajo su supervisión en la Universidad de
Leicester (Reino Unido).

Gracias a mis amigos, Clara, Natalia, Antonio, Rubén, Isaac y Rafa, por los muchos
ratos de conversación y risas durante estos años. Mención especial aqúı para Clara, buena
amiga y compañera de piso durante varios años (confinamiento pandémico incluido), que
siempre me demuestra su apoyo y empat́ıa. También gracias a mis compañeros de fatigas
del CITIC, Sergio, Jesús, Francisco, Jose, Jorge, entre otros. Por haber hecho mucho más
ameno e interesante el camino.

Por último, me gustaŕıa agradecer a mis compañeros de trabajo en PerkinElmer que me
han facilitado mucho mi proceso de adaptación, permitiéndome compaginar estos últimos
meses mi trabajo en la empresa con el trabajo en esta tesis.

7

Resumen

Los flujos de datos son secuencias infinitas de registros estructurados que llegan conti-
nuamente. La caracteŕıstica clave de estos sistemas es que los datos producidos por estos
flujos no se almacenan de forma permanente sino que se procesan “sobre la marcha”, es
decir, cada dato se recibe, se procesa y finalmente es desechado, pudiendo aśı tratar con
enormes cantidades de datos en tiempo real incluso con capacidades de almacenamiento y
cómputo reducidas. Los flujos de datos permiten manejar fuentes de datos que generan
continuamente información en orden cronológico y que superan las capacidades habituales
de almacenamiento y procesamiento. Las aplicaciones reales de este problema crecen cada
d́ıa, siendo frecuente su uso en telecomunicaciones, consumo energético, fisioloǵıa o redes
sociales, entre otros.

La investigación en mineŕıa de flujo de datos ha estado centrada principalmente
en clasificación y cambio de concepto (concept drift). Además, dentro del ámbito de
clasificación se ha prestado interés principalmente a la precisión de los modelos, dejando
de lado otros factores, como la legibilidad, que afectan a la utilidad de los métodos en
entornos reales. Esta tendencia a priorizar ante todo la precisión de los modelos no es
exclusiva de flujo de datos, sino que se enmarca dentro de la que hab́ıa venido siendo
la tendencia general en tareas predictivas de mineŕıa de datos. No obstante, en el caso
de flujos de datos, las limitaciones de un enfoque únicamente centrado en la precisión
predictiva son mayores.

En clasificación en flujos de datos, la distribución de clases subyacente puede variar
a lo largo del flujo debido a posibles cambios de concepto. Por lo tanto, las propuestas
de clasificación en flujos de datos asumen que todos los datos se continúan recibiendo
etiquetados a lo largo del flujo. Si se pone el foco solo en la precisión, estamos continuamente
entrenando un modelo que en el mejor de los casos será tan preciso como la entidad que
está generando las etiquetas en primer lugar pero seguiremos sin poder prescindir de dicha
entidad. Por esta razón, consideramos que el uso de modelos legibles y descriptivos que
puedan aportar conocimiento adicional sobre el problema puede resultar más realista. En
el caso de existir una variable dependiente clara, la precisión de estos modelos descriptivos
sigue siendo importante puesto que evalúa si el modelo está siendo capaz de comprender
adecuadamente el problema.

En esta tesis, se propone un algoritmo completamente online basado en el aprendizaje

9

10

de reglas para clasificación en flujos de datos, CLAST. El algoritmo aprende dinámicamente
una población de reglas que conjuntamente representan la solución al problema. Las reglas
son una forma legible de representación del conocimiento que representan relaciones entre
variables y, en consecuencia, ofrecen la posibilidad de alcanzar un considerable nivel de
detalle de interpretabilidad. Comparada con otros clasificadores de flujos de datos, la
propuesta obtiene resultados muy competitivos en términos de precisión predictiva en los
experimentos llevados a cabo.

En problemas reales con tasas de llegada muy altas e inmensos volúmenes de datos
suele ser dif́ıcil encontrar datos que estén completamente etiquetados y estructurados.
Por lo tanto, exploramos otros paradigmas de aprendizaje, distintos al supervisado, que
permitan evitar la dependencia de la disponibilidad a tiempo de las etiquetas.

En esta ĺınea, se realizan dos propuestas algoŕıtmicas. La primera de ellas es Fuzzy-
CSar-AFP; una propuesta de aprendizaje no supervisado para extracción directa de reglas
de asociación en flujos de datos (association stream mining). Se trata de una propuesta
online, que procesa los datos uno a uno en el momento de su llegada, y es capaz de construir
y mantener directamente las reglas de asociación, sin necesidad de una etapa previa de
identificación de itemsets frecuentes.

La última de las propuestas, PAST, consiste en un método semi-supervisado que extiende
los dos enfoques anteriores al combinar la capacidad de extraer conocimiento del etiquetado
de los datos con la capacidad para aprender de datos no etiquetados. En términos de
precisión predictiva, el método presenta un buen rendimiento en los experimentos realizados;
mejorando los resultados obtenidos utilizando solo datos etiquetados. Esto significa que el
algoritmo es capaz de extraer conocimiento de los datos no etiquetados que le permite
mejorar su compresión del problema.

Adicionalmente, se estudia la viabilidad de la extracción de reglas de asociación en
flujos de datos en dos aplicaciones reales. La primera de las aplicaciones se basa en datos
sobre uso del smartphone, mientras que en el segundo casos se explotan flujos de tweets de
contenido poĺıtico. En ambos casos, el análisis de las reglas de asociación generadas resulta
muy útil para comprender lo que va ocurriendo a lo largo del tiempo, aportándonos un
conocimiento que seŕıa muy complicado obtener de otra manera.

Abstract

Data streams are infinite sequences of structured records that arrive continuously. The
key feature of these systems is that the data produced by these streams are not stored
permanently but are processed “on the fly”, i.e., each sample is received, processed and
finally cast aside, thus being able to deal with huge amounts of data in real time even
with reduced storage and computational capacities. Data streams make it possible to
handle data sources that continuously generate information in chronological order and that
exceed the usual storage and processing capacities. The real applications of this problem
are growing every day, with frequent use in telecommunications, energy consumption,
physiology or social networks, among others.

Research in data stream mining has been mainly focused on classification and concept
drift. Furthermore, within the field of classification, the main focus has been on model
accuracy, leaving aside other factors, such as readability, that affect the usefulness of the
methods in real-world environments. This tendency to prioritize model accuracy above all
is not exclusive to data streams, but rather is part of what had been the general trend in
predictive data mining tasks. However, in the case of data streams, the limitations of an
approach focused solely on predictive accuracy are more significant.

In data stream classification, the underlying class distribution may vary along the
stream due to possible concept changes. Therefore, proposals for classification in data
streams assume that all data continues to be received labeled throughout the stream. If
the emphasis is placed on accuracy alone, we are continuously training a model that at
best will be as accurate as the entity that is generating the labels in the first place but
we will still not avoid needing that entity. For this reason, we believe that the use of
legible and descriptive models that can provide additional insight into the problem may
be more realistic. In the case where there is a clear dependent variable, the accuracy of
these descriptive models is still important as it assesses whether the model is being able
to adequately understand the problem.

In this thesis, a fully online algorithm based on learning rules for classification in data
streams, CLAST, is proposed. The algorithm dynamically learns a population of rules that
together represent the solution to the problem. Rules are a legible knowledge representation
form that represent relationships between variables and, consequently, offer the possibility
of reaching a considerable level of interpretability detail. Compared to other data stream

11

classifiers, the proposal obtains very competitive results in the experiments carried out.

In real-world problems with very high arrival rates and immense volumes of data is often
difficult to find data that are completely labeled and structured. Therefore, we explore
other learning paradigms, besides supervised learning, that allow us to avoid dependence
on timely available labels.

In this line, two algorithmic proposals are made. The first one is Fuzzy-CSar-AFP; an
unsupervised learning proposal for direct extraction of association rules in data streams
(association stream mining). It is an online proposal, which processes the data one by one
at the time of arrival, and is able to directly build and maintain association rules, without
the need for a previous stage of frequent itemset identification.

The last of the proposals, PAST, consists of a semi-supervised method that extends
the two previous approaches by combining the ability to extract knowledge from the
data labeling with the ability to learn from unlabeled data. In terms of predictive ability,
the method presents a good performance in the experiments conducted; improving the
results obtained using only labeled data. This means that the algorithm is able to extract
knowledge from unlabeled data that allows it to improve its understanding of the problem.

Moreover, the viability of association rule extraction in data streams is studied in
two real applications. The first application is based on smartphone usage data, while the
second one exploits streams of tweets with political content. In both cases, the analysis of
the generated association rules is very useful to understand what is happening over time,
providing knowledge that would otherwise be very difficult to obtain.

Table of Contents

I Introduction 15

I.1 Motivation . 15

I.2 Objectives . 19

I.3 Structure . 21

II Related work 23

II.1 Classification in data streams . 23

II.2 Frequent pattern mining and association rules in data streams 31

II.2.1 Heavy hitters . 33

II.2.2 Frequent pattern mining . 38

II.2.3 Mining closed frequent itemsets . 43

II.2.4 Rare itemsets mining . 45

II.2.5 Top-k frequent itemsets . 46

II.2.6 Sequential pattern mining . 47

II.2.7 Frequent closed graph mining . 48

II.2.8 Mining rules . 49

II.3 Semi-Supervised Learning in data streams 51

II.3.1 Label scarcity in data streams . 51

II.3.2 Chunk-based proposals . 52

II.3.3 Online proposals . 59

III CLAST: Learning rules for classification in data streams 61

III.1 Introduction . 61

III.2 CLAST: CLAssification in data STreams 62

III.2.1 Knowledge representation . 62

III.2.2 Exploration mode . 65

III.2.3 Exploitation mode . 73

III.3 Comparison of CLAST to several machine learning techniques 73

III.3.1 Comparison with other data stream approaches 75

III.3.2 Comparison with batch approaches 82

III.3.3 Real world data stream problems 87

13

14 TABLE OF CONTENTS

IV Adaptive Fuzzy Partitions for association stream mining 93
IV.1 Introduction . 93
IV.2 Fuzzy-CSar-AFP: Fuzzy-CSar with Adaptive Fuzzy Partitions 94

IV.2.1 Knowledge representation . 95
IV.2.2 Learning process . 97

IV.3 Physiological signals analysis through association stream mining 104
IV.3.1 Some background on the problem of exploring networks instead of

single physiological signals . 105
IV.3.2 Addressing the difficulty of evaluating association stream mining . . 106
IV.3.3 Experimental setup . 111
IV.3.4 Results . 113
IV.3.5 Interpretation of obtained results in psychophysiology 119

V PAST: Learning rules in data stream semi-supervised learning 133
V.1 Introduction . 133
V.2 PAST: PArtially labeled data STream mining 134

V.2.1 Knowledge Representation . 135
V.2.2 Exploration Mode . 136
V.2.3 Exploitation mode . 137

V.3 Comparison of PAST to several machine learning techniques 138
V.3.1 Comparison with other data stream approaches 138
V.3.2 Comparison with batch approaches 149
V.3.3 Real world data stream problems 161

VI Applications 177
VI.1 Smartphone usage analysis through association stream mining 177

VI.1.1 Some context on the real-world data: Friends and Family Study . . 180
VI.1.2 Data stream preparation . 181
VI.1.3 Experimental setup . 184
VI.1.4 Association rule analysis . 184

VI.2 Real-Time relational analysis on Twitter 195
VI.2.1 Text mining . 196
VI.2.2 Sentiment analysis . 198
VI.2.3 Experimental setup . 199
VI.2.4 Case 1: 2016 United States presidential election 202
VI.2.5 Case 2: 2019 Spain investiture process 214

VII Conclusions and future work 227
VII.1 Concluding remarks . 227
VII.2 Future work . 229

Chapter I

Introduction

I.1 Motivation

Today human activity is subject to a high degree of computerization where almost
everything is recorded (or susceptible to be recorded) and sometimes stored and processed.
Normally this information is stored exclusively for later consultation, although on many
occasions it is also used to obtain models (data mining) that simplify the complex reality
that exists in this information, generally with the aim of predicting behavior or trends.
However, on other occasions the interest lies in monitoring the system to prevent situations,
understand dynamics, support decision making, etc. The process of obtaining models,
either for prediction or monitoring, is often difficult or impossible to perform because the
amount of data to be analyzed is too large to be stored before processing. In addition,
it is increasingly common to find data sources that continuously generate information in
chronological order and that exceed the usual storage and processing capacities.

To address this problem, data streams can be handled, which are infinite sequences
of structured records that arrive continuously (i.e., they are not transient data but flows
of information that last over time) (Gama, 2010). The key feature of these systems is that
the data produced by these streams are not stored permanently but are processed “on
the fly”, i.e., each data is analyzed, processed and finally forgotten, thus being able to
deal with huge amounts of data in real time even with reduced storage and computation
capacities. The real applications of this problem grow every day, being frequent the use in
telecommunications, vehicle traffic, energy consumption, commerce, finance, physiology,
robotics or social networks, among others.

Data streams pose new challenges for machine learning and data mining, since
traditional methods have been designed for static datasets and are not capable of efficiently
analyzing rapidly growing amounts of data and taking into account features such as:

� Limited computer resources such as memory and time, as well as tight needs to make
predictions in a reasonable time.

15

16 Chapter I. Introduction

� The phenomenon called concept drift (Gama et al., 2014), i.e., changes in the
distribution of data that occur in the sequence over time. This could dramatically
deteriorate the performance of the model used.

� Data can arrive at such a high rate in some applications that the labeling of all
elements may be delayed or even impossible.

We can distinguish two ways to characterize this field. On the one hand, we can
attend to the models (such as sampling, load shedding, sketching, synopsis, or aggregation)
and computational techniques (approximate algorithms, sliding window or algorithm
output granularity) used to manage data streams (Gama, 2010).

On the other hand, depending on the learning problem to be solved (Gama, 2010;
Sayed-Mouchaweh and Lughofer, 2012), it is intended to address it through automatic
learning algorithms, either by adapting them to the characteristics of this type of data
or by developing new approaches capable of better managing this information (Lughofer,
2011). The main problems addressed in this case can be divided into three:

� classification (supervised learning; the existence of data streams labeled with a class is
assumed (Orriols-Puig et al., 2008b) and algorithms are studied to not only maximize
the success rate but also to react and adapt to changing situations—concept drift
(Scholz and Klinkenberg, 2007; Orriols-Puig and Casillas, 2011)—),

� clustering (Guha et al., 2000; Silva et al., 2013) (unsupervised learning; it is a
problem widely studied in data mining literature, however, it is more difficult to
adapt the clustering to data flows due to the limitations of being able to analyze
each data only once) and

� frequent patterns (unsupervised learning; sets of frequent elements are maintained
incrementally as data stream is received).

Of these problems, classification (and concept drift) is the most studied in the
specialized literature in recent years. Thus, we can find a considerable number of proposals
based on different types of models, such as decision trees (Domingos and Hulten, 2000;
Hulten et al., 2001; Bifet and Gavaldà, 2009a), k-Nearest Neighbors (Zhang et al., 2011;
Losing et al., 2016) or Support Vector Machines (Bordes et al., 2005; Rai et al., 2009).
Nevertheless, ensembles have become the most widely studied classifiers in the data stream
research field in the last few years (Krawczyk et al., 2017).

However, the main research focus has been on prediction accuracy, disregarding
other factors, such as readability, that affect the real usefulness of the methods. It is
worth mentioning that this phenomenon is not exclusive to data streams but has been
a general trend within the machine learning models proposed for all types of predictive
tasks. Indeed, research areas, such as eXplainable Artificial Intelligence (XAI) (Gunning,
2017), that try to revert this trend are gaining increasing attention. Nevertheless, in a

I.1 Motivation 17

data stream context, the usefulness of generating highly accurate black box models (or
with very limited interpretability) may be especially questionable.

One of the characteristics of data streams is that the underlying class distribution is
likely to undergo changes over time. Therefore, data stream classification methods expect
all data to arrive labeled over the entire duration of the stream. The trained models aim
to be at best as accurate as the entity that is providing the labels in the first place despite
that such entity will continue to be needed. For this reason, we believe that the use of
legible and descriptive models (e.g., rule-based models) that can provide additional insight
into the problem may be more realistic.

Moreover, having structured and class-labeled data at all times is difficult in many
real data stream environments. This results in a shortage of real problems that can be used
for experimentation. Although it should be noted that this limitation is circumscribed to
supervised learning for classification, in the case of regression, much less studied in the data
stream mining literature, it is common that the dependent variable to be predicted is the
result of measuring a natural phenomenon (e.g., energy consumption) where the real-time
approach is realistic. This is also applicable to classification problems that really come
from simplifications of regression problems; for example, energy consumption could be
labeled as high and low, and this is done in one of the most commonly used data sets in the
field, the airlines problem (Bifet et al., 2010a) of flight delay, where the dependent variable
is really continuous —time of delay—and from there the class is extracted according to
whether or not a threshold is exceeded.

Furthermore, learning as the data comes one by one can entail an efficiency gain
before data sets with immense instances. While its usefulness is unquestionable in the
era of big data, this is not strictly speaking data stream mining, but incremental learning
(online approach to a problem that is actually off-line). In those classification cases where
the predictive model does not have much relevance, generating descriptive models with
good interpretability that allow monitoring the system can be more useful.

In contrast, unsupervised or semi-supervised learning, although less studied in the
literature, can be more directly applicable to real data stream problems. In unsupervised
learning, we work directly with the information that flows structured in variables, without
the need to have a system that previously labels all the training data.

Within unsupervised learning, incremental clustering has experienced a significant
development (Guha et al., 2000; Silva et al., 2013). Despite this, the knowledge that is
extracted (segmentation) is often insufficient to support decision making on real problems.
The aggregations are difficult to understand, they are not self-explanatory, but require a
calm “manual” analysis of the segmentation generated in order to draw useful conclusions
on the problem under study. This is complicated in dynamic problems that can fluctuate
rapidly.

Frequent pattern and association rule discovery is an ideal way to address many data
stream problems where the aim is to monitor (not predict) the system using meaningful,
readable and simple independent models. The models can be highly readable themselves,

18 Chapter I. Introduction

as they are expressed with a syntax easily understandable by human.

A real case that well reflects the type of problems to be addressed would be that of
detecting potential attacks on websites and computer networks (Corral et al., 2011). In this
scenario, there is a set of characteristics that indicate suspicious acts on the network (e.g.,
strange characters in login interfaces, port access, unusual traffic flows, etc.) by malicious
users trying to identify system vulnerabilities in order to take possession of it. Thus,
instead of dealing with the problem in a traditional way based on supervised learning with
labeled examples, the system is continuously monitored, dynamically obtaining models
that explain the system situation and help humans to detect possible threats, with the
advantage of adapting to previously unknown network attack techniques.

In these problems, the approaches proposed so far have been based on providing
solutions such as heavy hitters (finding elements that exceed a frequency threshold, i.e., it
would be the most basic case with a single item) (Karp et al., 2003; Cormode et al., 2008)
or obtaining sets of frequent items by means of sliding windows (Yang et al., 2007; Tan
et al., 2010; Wang and Chen, 2011; Patnaik et al., 2013). Anyway, the main limitation of
the current state of the art in pattern learning from data streams lies in the difficulty to
extract rules that define causal relationships, which would be much more powerful and
useful. This is due to the impossibility of applying the traditional two-phase approach used
in static data, where first frequent objects are obtained and then rules are extracted by
analyzing the reliability of the causal relationship as a function of the data set, something
impossible when the data arrive in flow fashion. However, there are a few proposals
based on maintaining association rules and updating them as data is received (Fan et al.,
2009; Chen et al., 2010; Tan et al., 2010), but they are very inefficient and impractical in
problems with relatively high data influx.

On the other hand, semi-supervised learning extends both unsupervised and super-
vised learning by incorporating additional information characteristic of the other learning
paradigm. It allows to take advantage of both unlabeled data, which would be discarded
by a supervised approach, and labels, with which unsupervised methods are not prepared
to deal. Hence, semi-supervised learning has been proven useful to address problems
where there is a target variable of interest and only a small amount of labels are available
compared to a greater proportion of unlabeled data. Data labeling can be costly due to
different reasons, for example, due to the combination of a “manual” labeling process and
a large amount of data to be labeled.

As it has been already mentioned, the characteristics of data streams often make it
difficult to maintain a high percentage of labeled data. For instance, consider a center for
bank fraud detection which daily reviews credit card transactions to identify which are
fraudulent. To build an automatic fraud-detection predictive model is key that banking
experts provide a certain number of fraudulent transactions as training (labeled) examples.
The labeling ability of the experts is limited and probably no bank is willing to pay experts
for manually labeling every single transaction, provided that thousands of transactions
may be received on a daily basis. Thus, interest in semi-supervised learning approaches for

I.2 Objectives 19

data streams has increased over the past few years (Masud et al., 2012; Haque et al., 2016;
Feng et al., 2016; Wang and Li, 2018). The different alternatives mentioned for addressing
data stream mining problems are summarized in Figure I.1.

I.2 Objectives

The objective of this PhD dissertation is to address some of the gaps identified in the
literature on data stream mining. Research efforts in data stream mining have been
highly focused on classification and, within this field, priority has been given to designing
and developing algorithms that are as accurate as possible over proposing legible models.
This presents certain limitations on real utility and applicability, as discussed in the
previous section. In this thesis, we aim to research on descriptive models that are able
to dynamically adapt to the data and to provide interesting knowledge about what is
happening in the system. In this sense, we will study the use of rule learning models
in data stream classification, but we also consider important to explore other learning
paradigms, such as unsupervised and semi-supervised learning, which we believe can better
fit the real conditions of data streams. Thus, the main objective of the thesis can be
divided into the following research lines or subobjectives:

1. Interpretability in data stream classification models. The development of a
fully online classifier for data streams, which employs a descriptive knowledge repre-
sentation based on rules, is proposed. The algorithm should be able to dynamically
evolve a set of rules as new labeled training data are received. The use of fuzzy sets
to deal with continuous variables will be explored, along with the idea of using an
evolutionary algorithm for rule discovery. Furthermore, we will try to minimize the
number of configuration parameters of the proposal to facilitate its use. In this sense,
the use of a Hoeffding bound (Hulten et al., 2001; Hoeffding, 1994) will be studied.

2. Association stream mining. We will work on the improvement of the Fuzzy-CSar
algorithm (Sancho-Asensio et al., 2016) with the design of an advanced version
oriented to increase the diversity of the obtained set of rules, facilitate its use and
improve its capacity of adaptation to the particularities of each problem. Furthermore,
in this context, issues such as the difficulty of a fair assessment in association rules
mining and the importance of result interpretability will be addressed. Using
evaluation measures based only on the quantity of quality rules is in many cases
insufficient. There may be a high percentage of rules that are very similar to each
other, which in practice is not very useful for helping the expert decision making.
New measures and representations of the quality of the results, taking into account
the heterogeneity of the set of rules, will be proposed. In addition, an adequate
graphic representation of the results can facilitate their understanding. Different
types of visualizations will be studied to help the analysis of the results of association
rule mining, in general, and of association stream mining, in particular.

20 Chapter I. Introduction

Figure I.1: Usefulness of the different approaches in data stream mining.

I.3 Structure 21

3. Semi-supervised classification in data streams. The characteristics of data
streams often make difficult to get high percentages of labeled training data. The
objective is to develop a semi-supervised method for data streams able to learn from
both labeled and unlabeled data to generate an accurate and descriptive model.
When the amount of available labels is low, the method should be able to improve
its performance thanks to the use of unlabeled instances.

4. Application of the developed algorithms in real-world problems. The aim
is to address real applications, with original data, in which large volumes of data
are received as a chronologically ordered sequence with high arrival rate, and use
descriptive online models to monitor what is happening in the system.

I.3 Structure

The remaining of this PhD dissertation is organized as follows. Chapter II reviews the
background of the field describing the main research studies in the data stream mining
problems addressed. The following three chapters are devoted to presenting the algorithmic
proposals and their results. Thus, Chapter III describes a supervised learning proposal
for classification problems in data streams. Chapter IV is focused on an association
stream mining proposal aimed at maintaining a dynamic and interpretable model capable
of explaining at any time what is happening. Chapter V introduces a semi-supervised
learning approach. This proposal is an adaptation of the supervised proposal presented
in Chapter III to environments where there is a dearth of labels. Furthermore, Chapter
VI provides examples of original real applications of some of the proposed techniques.
Finally, Chapter VII summarizes the main conclusions reached and discusses possible lines
of future work.

Chapter II

Related work

II.1 Classification in data streams

Classification is one of the most widespread data mining techniques, and the most important
case of supervised learning. Hundreds of different classifiers have been developed that
belong to a wide number of paradigms, such as divide-and-conquer methods, rule learners,
lazy learners, kernel methods, graphical models, etc. Decision trees are one of the most
popular classification techniques since they are interpretable models that can be visualized
graphically. Nonetheless traditional machine learning methods have been designed for
static data sets and are not capable of efficiently analyzing rapidly growing amounts of
data. Thus, classical decision tree learning algorithms like CART (Breiman et al., 1984),
ID3 (Quinlan, 1986) or C4.5 (Quinlan, 2014) assume that all training examples can be
stored simultaneously in the main memory and are therefore very limited in the number of
examples they can learn from. And, in particular, they are not applicable to data streams,
where potentially the number of examples can be infinite.

The main problem of building a decision tree in data stream setting, where not
all the data can be stored, is the necessity of reusing training examples to calculate the
best splitting attributes. Domingos and Hulten (2000) addressed this problem with the
development of the Hoeffding Tree, an incremental decision tree algorithm that is capable
of learning from massive data streams, assuming that the distribution generating examples
does not change over time. The key of the Hoeffding Tree is the use of Hoeffding bound to
assess the sample size needed to estimate a variable with sufficient precision (for example,
the information gain). This guarantees that the classifier is independent from the sample
size. Thus, without keeping the full data stream in memory, the algorithm is able to
ensure its output is asymptotically nearly identical to that of a non-incremental learner
using infinitely many examples (as shown by the authors in (Domingos and Hulten, 2000)).
The Hoeffding Tree algorithm maintains in each node the statistics needed for splitting
attributes. A majority class strategy is used to classify the examples at the leaves. VFDT
(Very Fast Decision Tree) is the implementation of the Hoeffding Tree algorithm, with

23

24 Chapter II. Related work

some practical improvements added, described in (Domingos and Hulten, 2000). Several
methods extending VFDT have been proposed over the years.

A key feature of the data stream model is that the streams evolve over time, and
the algorithms must adapt to the changes. Change management strategies can be broadly
grouped into three categories, or a combination of them. They can use adaptive estimators
for relevant statistics, and then an algorithm that keeps a model in sync with those
statistics. They can create models that are adapted or reconstructed when a change
detector indicates that a change has occurred. They can be ensemble methods, which
maintain dynamic populations of models. The first strategy relies on the fact that many
model builders monitor a set of statistics from the stream and then combine them into a
model. This strategy works by having a dynamic estimator for each relevant statistic in a
way that reflects its current value, and letting the model builder feed on those estimators.
The simplest estimator algorithm for the expected value is the linear estimator, which
simply returns the average of the data items contained in the Memory. The Memory can
be, for instance, a sliding window that stores the most recent W items received.

In the second strategy, one or more change detection algorithms run in parallel
with the main model-building algorithm. When they detect a significant change in the
stream, a revision algorithm is activated. A particular case of this strategy is when the
change is detected not by observing the incoming stream but observing the performance
of the model, for example, watching for decreases in the accuracy of a predictor. In the
third strategy, the responsibility for detecting and reacting to change lies mainly with the
ensemble manager, although the individual models may have this capability as well.

Two of the most popular change detectors are the Drift Detection Method (DDM)
(Gama et al., 2004) and ADaptive sliding WINdow (ADWIN) (Bifet, 2010; Bifet and
Gavaldà, 2007). DDM is applicable in the context of predictive models. It monitors the
number of errors produced by a model learned on the previous stream items. Typically,
the error of the model should decrease or remain stable as the amount of data used
increases, provided that the learning method controls overfitting and that the data and
class distribution is stationary. Therefore, if, instead, DDM observes the prediction error
increasing, it interprets this as evidence that change has happened. This approach is generic
and simple to use, but it may be sometimes too slow in responding to changes. Moreover,
for slow change, the number of instances kept in memory may get large. ADWIN is a
change detector and estimation algorithm based on exponential histograms (Datar et al.,
2002). It resolves the trade-off between reacting quickly to changes and having few false
alarms by checking change at many scales simultaneously. There is no need for the user to
guess at which frequency the change will occur or how large the deviation should be to
trigger an alarm. The use of exponential histograms allows this to be done more efficiently
in time and memory than by brute force. On the other hand, it is computationally more
expensive (in time and memory) than simpler methods, so it should be used when the
scale of change is unknown and this may be problematic.

In theory, Hoeffding trees are able to adapt to some extent to concept drift. Leaves

II.1 Classification in data streams 25

that would no longer grow in a stationary context may begin to grow again if evidence
is detected that such growth would improve accuracy. However, this is often too slow a
process in practice. Concept-adapting Very Fast Decision Tree algorithm (CVFDT) was
presented in Hulten et al. (2001) as an extension of VFDT to deal with continuously-
changing data streams. The algorithm maintains a model that is consistent with the
examples included in a sliding window. An alternative subtree is grown whenever an old
one becomes questionable, and the old subtree is replaced by the new one when the new
gets to be more accurate. The model learnt by CVFDT is similar in accuracy to the one
that would be learnt if VFDT were reapplied to a moving window of examples every time
a new example arrives, but with O(1) complexity per instance. Unfortunately, the trees
built by CVFDT do not have the same theoretical guarantees of Hoeffding trees.

Bifet and Gavaldà (2009a) introduced the Hoeffding Adaptive Tree (HAT), an
adaptive extension to the Hoeffding Tree that uses ADWIN as change detector and error
estimator. As opposed to CVFDT, HAT has theoretical guarantees of performance and
requires no parameters related to change control. CVFDT requires parameters as the
example window size, or the numbers of examples that are used to build or to test the
accuracy of the alternate tree. Choosing these parameters implies preconceptions on how
fast or how often the data are going to evolve. Since we could make the wrong choices or,
even more, the stream may experience a combination of different types of changes (making
any fixed choice wrong), HAT is aimed at adapting to the scale of change in the data,
instead of relying on a priori assumptions made by the user. In addition, ADWIN has
rigorous guarantees of performance that can be transferred to decision tree learners as
follows: if a change is followed by a long enough stable period, the classification error of
the learner will tend, and the same rate, to the error rate of VFDT.

Most strategies for dealing with time change contain hardwired constants, or else
require input parameters, concerning the expected speed or frequency of the change; some
examples are a priori definitions of sliding window lengths, values of decay or forgetting
parameters, explicit bounds on maximum drift, etc. These choices represent preconceptions
on how fast or how often the data are going to evolve and, of course, they may be completely
wrong. Even more, no fixed choice may be right, since the stream may experience any
combination of abrupt changes, gradual ones, and long stationary periods.

Other proposals have aimed to improve VFDT classification performance via the
use of Naive Bayes learners at the leaves instead of majority class classifier. Gama
et al. (2003) introduced VFDTC that extends the Hoeffding Tree to handle numeric
attributes and concept drifts, and incorporates the Naive Bayes learners at the leaves for
prediction. VFDTC handles numeric values using binary trees and uses DDM as change
detector. The trees contain a Naive Bayes classifier at each node. Nonetheless, Holmes
et al. (2005) identified situations where the standard VFDT is overtaken initially but
eventually outperforms the alternative using Näıve Bayes at the leaves, and proposed a
hybrid adaptive method: when making a prediction for a test example, the leaf will return
the prediction of Näıve Bayes or the majority class classifier depending on which was more
accurate overall. The only overhead needed is maintaining the two counts for the number

26 Chapter II. Related work

of times each method has been right.

Despite Hoeffding inequality has been widely used for estimating measures like
information gain or the Gini index, these measures cannot be expressed as a sum of
independent random variables and, therefore, Rutkowski et al. (2012) argue Hoeffding
bound to be the wrong tool. They proposed the use of the McDiarmid inequality, a
generalization of Hoeffding inequality that works explicitly on functions of the data. Thus,
they presented The McDiarmid Tree algorithm (Rutkowski et al., 2012); a version of the
Hoeffding Tree algorithm (Domingos and Hulten, 2000) that replaces the use of Hoeffding
bound in the computation of the splitting attribute by the McDiarmid bound. Rutkowski
et al. (2014) introduces the dsCART algorithm that, inspired by VFDT, adapts the CART
offline algorithm to data streams. The authors compared the accuracy of dsCART with
their previous proposal the McDiarmid Tree algorithm. The trees obtained by both
algorithms are similar, so the final accuracy tends to the same value. However, dsCART
needs fewer data elements to make a split, therefore, requiring less examples to reach the
top accuracy levels. This is especially important in some particular concept drifting cases.

The use of McDiarmid bound represents a relatively new result. Although Hoeffding
trees may, in the future, be demonstrated to be mistaken in the sense of being based on
assumptions that do not hold, they are still very effective in practice and widely used in
different implementations. Their reasonable results may be due to the fact that Hoeffding
bound provides, in most cases, an overestimation of the true probability error.

Apart from decision trees, there are many other classification methods, but only
a few can be applied to the configuration of data streams without losing accuracy and
efficiency. k-Nearest Neighbors (kNN) (Read et al., 2012) may be the most obvious batch
method to try in the streaming context. Instance based learning is inherently incremental.
The change to streaming is simply achieved by limiting the search space for determining
the k-nearest neighbors to a sliding window. Indeed, in Read et al. (2012) the method
using a sliding window with the 1,000 most recent instances was found to be significantly
effective. If implemented ingenuously, the method can be inefficient at prediction time
due to the neighbor search. However, it is possible to improve prediction efficiency by
indexing the instances in the sliding window (Zhang et al., 2011).

Thanks to the lazy learning scheme, no model that could get outdated is generated.
Thus, the method can naturally respond to concept drift as the window slides. However,
different types of concept drift (abrupt or gradual) can appear and the lazy learner should
respond differently to them (Beringer and Hüllermeier, 2007). In Losing et al. (2016), this
issue is addressed by proposing the use of two different memories: a short-term memory
for the current concept, and a long-term memory to keep knowledge from past concepts.
The authors claimed that the method is useful in practice since it does not need any
meta-parameters to be tuned. Furthermore, they were able to obtain very competitive
results in benchmark tests.

More recently, IBLStreams was introduced by Shaker and Hüllermeier (2012), an
instance-based approach that can be applied to both classification and regression problems.

II.1 Classification in data streams 27

IBLStreams is based on adding and removing instances from the case base (instances than
form the classifier). An instance should be retained as long as it is useful to improve the
predictive performance. IBLStreams based its decision on retaining or not an instance
on three indicators of usefulness: temporal relevance, spatial relevance and consistency.
As in traditional kNN, the neighborhood is defined by the kcand-nearest neighbors. The
idea is that the most recent examples are the most relevant. When a new example is
received, it is added to the case base and neighboring (redundant) examples are checked
for removal. The most recent examples are not included in the candidates for removal to
prevent removing as noise what is actually the beginning of a new concept. The algorithm
is intended to have a more or less uniform coverage of the data space, and to eliminate
data that are believed to be inconsistent with the current concept. Moreover, IBLStreams
employs a drift detection method to detect abrupt changes. In case a change is detected,
a large number of instances is removed from the base.

Very Fast Decision Rules (VFDR) (Kosina and Gama, 2015) algorithm is an online,
any-time and one-pass method for learning decision rules in the context of data streams.
The paths from the root of a tree to the leaves can be expressed as a set of unordered
IF-THEN rules. This set of rules encapsulates the main characteristics of the decision
problem. Rule sets present, though, some advantages over decision trees. They are not
hierarchically structured, i.e., each rule can be handled independently from the rest of the
rules in the set. Therefore, the set of rules can be altered more easily. Individual rules
which are considered outdated can be just removed without hardly affecting the learning
efficiency, with no need to rebuild the classifier from scratch or execute a complicated
change in the tree structure. VFDR is partially inspired by VFDT. Each rules contains the
sufficient information needed to expand the rule and to classify the test instances. These
statistics are continuously updated based on the training examples that the rule covers.
The number of observations required to expand a rule or induce a new one is determined
by the Hoeffding bound. Two different strategies can be used to classify test examples:
majority class or Näıve Bayes classifier.

Support Vector Machines (SVMs) achieve prominent performance in many offline
machine learning problems although their application in large-scale datasets is costly due
to their high time and memory complexity. Different incremental approaches have been
proposed to make viable the used of SVM techniques in problems where the amount of
incoming data is extremely large, such as data stream environments. LASVM (Bordes
et al., 2005) is an online algorithm that converges to the SVM solution. Experimental
evidence shown by the authors indicates that it reaches competitive accuracy rates after
one single pass over the training data. Rai et al. (2009) developed StreamSVM, a one-pass
SVM approach for data streams. It is a streaming extension of CVM (Tsang et al., 2005).
CVM uses Minimum Enclosing Balls (MEBs), hyper-spheres that represent the set of
examples inside the, to reduce its complexity. In StreamSVM, the radius of a MEB is
flexible and it is updated every time a new training example is added. The authors
performed experimental results that showed StreamSVM to be able to learn efficiently
in just one pass and reach accuracies comparable to other SVM approaches (batch and

28 Chapter II. Related work

online). Nonetheless, neither LASVM or StreamSVM are prepared to react to concept
changes.

In Domeniconi and Gunopulos (2001), the authors proposed an incremental SVM
approach that needs the incoming stream to be divided in chunks of a given size. A set
of w models representative of the last w chunks is kept in memory. Every time a new
chunk is received, the oldest model is removed from memory, the rest of the models are
incrementally updated to take into account the new chunk, and a new model is created
based exclusively in the new data chunk. At each step, the oldest model kept in memory,
the one trained in the last w chunks, is the one used to predict the labels of new data.
Several techniques are discussed for the incremental updates. This algorithm is aimed at
maintaining an accurate representation of recent data. However, the chunk size can be a
critical parameter to get the algorithm to properly react to change.

We mention two more single-model proposals that have the potential to adapt to
data stream setting. Last et al. (2002) proposes an Info-Fuzzy Network (IFN) classification
system, which uses a fuzzy information network as the base classifier. IFN is a network-
based classification model, designed to minimize the total number of prediction attributes.
The underlying principle of the IFN method is to build a multi-layered network to test the
mutual information between input and output attributes. A standard decision tree can
easily be extracted from the IFN structure by re-moving the target layer and associating
a single classification rule with each terminal node in the network. Each hidden layer
is related to a specific input attribute and represents the interaction between this input
attribute and the others. The IFN algorithm uses the previous pruning strategy: a node is
divided if this procedure produces a statistically significant decrease in the entropy value
(or an increase in mutual information) of the target attribute. If none of the remaining
input attributes provide a statistically significant increase in mutual information, the
construction of the network is stopped. The stability of the IFN algorithm is ensured by
restricting the tree structure to using the same feature for all nodes of the same tree level
and by the built-in statistical significance tests.

AWSOM (Arbitrary Window Stream mOdeling Method) is a method to discover
interesting patterns from sensors proposed by Papadimitriou et al. (2003). It is a one-step
algorithm that updates the patterns incrementally. This method requires only O(logn)
memory where n is the length of the sequence. It uses wavelet coefficients as compact
information representation and correlation structure detection, applying a linear regression
model in the wavelet domain.

However, ensembles are currently the most often studied classifiers in the data
stream research field. Krawczyk et al. (2017) surveys research on ensembles for data
stream classification and regression tasks. In addition, the paper discusses several advanced
learning concepts, as well as open research problems and future research lines. According to
Krawczyk et al. (2017), ensemble classifiers for data streams can be categorized according
to different criteria but the following categorizations are the most common ones:

� Stationary versus non-stationary stream classifiers: approaches for stationary environ-

II.1 Classification in data streams 29

ments do not contain any mechanism to react to concept drifts, while approaches for
non-stationary environments are specifically designed to address possible conceptual
deviations.

� Active versus passive approaches: approaches to address concept drift are generally
distinguished between active and passive approaches (Ditzler et al., 2015; Stefanowski,
2015; Žliobaitė, 2010). Active algorithms contain drift detectors that trigger changes
in classifiers (Gama et al., 2014). Passive approaches, on the other hand, do not use
any special techniques to detect concept drift. Instead, they continuously update
the classifier every time a new data instance is received (regardless whether a real
drift is occurring or not). Most of the current ensembles follow a passive adaptation
scheme.

� Chunk based versus online learning modes: chunk-based approaches process data
into chunks, where each chunk contains a fixed number of training examples, while
online learning approaches process training examples one by one, upon arrival. In
chunk-based approaches, the learning algorithm may be able to iterate over the
training examples in each chunk more than once. This allows to use batch algorithms
to learn base classifiers. Online learning approaches are meant for applications
with strict time and memory limitations, or, in general, applications where it is not
affordable to process each training example more than once, for instance, due to a
very large amount of incoming data.

� Differentiating techniques for updating base classifiers and aggregating their predic-
tions: four basic strategies are distinguished (Kuncheva, 2004), namely, dynamic
combiners, updating training data, updating ensemble members, and structural
changes of the ensemble. In the first case, the ensemble adapts by changing the
combination phase, for example, by tuning the classifier weights inside the voting
rule (Jacobs et al., 1991; Littlestone and Warmuth, 1994). The updating training
data approach is based on using recent training examples to online-update the base
classifiers (Oza, 2005; Bifet et al., 2010b; Wang et al., 2014). Some approaches
online update the ensemble members or retrain them in batch mode (using chunks)
(Bifet and Gavaldà, 2009b; Fern and Givan, 2003; Kolter and Maloof, 2007; Oza
and Russell, 2001; Rodŕıguez and Kuncheva, 2008), while others adopt an strategy
based on making structural changes on the ensemble, e.g., dynamically evaluating
the classifiers and replacing the worst one by a new one trained on the most recent
data (Jackowski, 2014; Kotler and Maloof, 2003).

Krawczyk et al. argue that the main criteria for categorizing classification ensemble
approaches are the data processing method, that is, if examples are processed in chunks
or one-by-one, and whether the approaches are designed for stationary or non-stationary
streams. These two criteria determine the type of data stream applications the approaches
tackle. Thus, they proposed a taxonomy with the following four main categories: chunk-
based ensembles for stationary streams, online ensembles for stationary streams, chunk-
based ensembles for non-stationary streams, and online ensembles for non-stationary

30 Chapter II. Related work

streams. Within some of these categories, further criteria are used to distinguish between
existing classifiers.

Chunk-based ensembles for stationary data streams have received less attention
from the research community than their online counterparts and, therefore, are not so well
developed. Chunk-based approaches are also related to batch processing of larger datasets,
and usually do not explicitly refer to this as data stream mining (Polikar et al., 2001;
Minku et al., 2009; Zhao et al., 2010). Due to a general popularity of online learning and
its various real-world applications, online ensembles for stationary streams have received
significantly more attention (Oza, 2005; Bifet et al., 2009a, 2010b; Gama, 2010; Gama
et al., 2005; Saffari et al., 2009; Denil et al., 2013).

When addressing non-stationary environments, chunk-based approaches usually
adapt to concept drifts by creating new base classifiers from new chunks of training data.
Constructing a new component on the most recent chunk is a natural way of adapting to
drifts (Žliobaitė, 2010). In general, the different base classifiers are learned from chunks
that correspond to different parts of the data stream. Thus, the ensemble may combine
representation of different concepts. In addition, learning base classifiers from complete
chunks allows applying standard, batch algorithms. Old classification knowledge can be
forgotten by removing classifiers that are performing too poorly. This allows to limit the
amount of memory required for the ensemble model but, on the other hand, impedes
that the eliminated classifiers can be reused in case their corresponding concept reoccurs.
Therefore, some chunk-based approaches keep an additional buffer to store old classifiers
as a way to handle potential recurring concepts as the classifiers stored in the buffer could
be reused if needed. It is common among chunk-based ensembles to periodically assess
their base classifiers on the newest chunk. This assessment is often used to update the
weights associated to the components so they can emphasize the classifiers that best reflect
the data distribution of the most recent chunk, or they can be used to decide which useless
classifiers should be discarded.

Two different kinds of chunk-based ensembles for non-stationary environments can
be distinguished based on whether or not they always create new classifiers for each new
incoming data chunk to deal with concept drifts. On the one hand, typical chunk-based
approaches always build a new classifier on each incoming data chunk. This makes these
approaches especially sensitive to proper tuning of chunk size. A too large chunk size
would mean slow adaptation to drifts, while too small chunk size would not be enough
to properly learn an entire stable concept, resulting in poor classification performance,
and would increase computational costs. Examples of approaches following this learning
scheme are Streaming Ensemble Algorithm (SEA) (Street and Kim, 2005) and Accuracy
Weighted Ensemble (AWE) (Wang et al., 2003a). The key idea of AWE is to assign weights
to each component classifier based on their prediction error on the newest training chunk.
This approach assumes that the newest training chunk is likely to present a more similar
distribution to the current test examples.

On the other hand, some researchers proposed alternative chunk-based approaches

II.2 Frequent pattern mining and association rules in data streams 31

that deviate from the traditional chunk-based learning schema in an attempt to reduce the
sensitivity of the approaches to chunk size tuning, or cut down the potential unnecessary
learning overhead from learning every new data chunk even when the existing classifiers
may be considered good enough for the current concept. These approaches establish
some criteria to decide whether it is necessary or not to create a new classifier to learn
the new incoming chunk (Deckert, 2011; Brzeziński and Stefanowski, 2011; Brzezinski
and Stefanowski, 2013). Furthermore, some approaches specifically aimed at addressing
recurring concepts have been studied (Ramamurthy and Bhatnagar, 2007; Sobolewski and
Woźniak, 2017; Jackowski, 2014).

Finally, online ensembles are able to learn the data stream in one pass, potentially
being faster and with lower memory requirements than chunk-based approaches. They are
able to do so because they learn each incoming example individually, instead of in chunks,
and then discard it. This also allows them to avoid the need for choosing a proper chunk
size. However, online approaches would often have other parameters affecting the speed of
reaction to concept drifts (e.g., sliding window or fading factors parameters).

As discussed above, one of the main features for distinguishing between different
online learning approaches for non-stationary environments is the use of concept drift
detection methods, distinguishing between passive (concept change adaptation) or active (
concept change detection) categories. Most of the passive approaches contain mechanisms to
continuously adapt to concept drifts that may appear, whereas the speed of the adaptation
and its sensitivity to noise often depends on parameters (Kolter and Maloof, 2007, 2005;
Brzezinski and Stefanowski, 2014; Yoshida et al., 2011). Dynamic Weighted Majority
(DWM) (Kolter and Maloof, 2007) is one of the most well known passive approaches. It
maintains a weight for each of the component classifiers that is reduced by a multiplicative
constant every time the classifier makes a prediction error. The active approaches are
much less frequent, but there are some methods such as Adaptive Classifiers-Ensemble
(ACE) (Nishida and Yamauchi, 2007), Todi (Nishida, 2008), ADWINBagging (Bifet et al.,
2009b) or Diversity for Dealing with Drifts (DDD) (Minku and Yao, 2011).

II.2 Frequent pattern mining and association rules in

data streams

In broad terms, a pattern can be defined as an entity that is present (or absent) with a
frequency that deviates from the random. In frequent pattern mining, the input to the
data mining process is a dataset (or stream) of transactions D, where each transaction
can be viewed as a pattern with an associated id. It is said that a transaction t supports
a pattern p, if p is a subpattern of the pattern defined by t. The support of a pattern p
in a set (or stream) of transactions D is the number of transactions in D that support p.
Thus, given a dataset D and a support threshold σ in [0, 1], the frequent pattern mining
problem can be defined as finding all σ-frequent patterns in D, that is, finding all the

32 Chapter II. Related work

patterns with a support in D equal or greater than σ.

Frequent pattern mining is an important unsupervised learning task, which has
multiple application fields. It is a widely studied field in the literature, in both batch
mining and data stream mining areas. Probably, the most näıve implementation of a
solution to the frequent pattern mining problem would consist on going through the entire
dataset, keeping track of the frequency of every pattern in the dataset. However, this
approach is very inefficient and since the number of subpatterns in the dataset tends to
rapidly grow with dataset size, it quickly turns unfeasible. Thus, other more efficient
approaches are required and have been proposed.

Apriori (Agrawal and Srikant, 1994) relies on the antimonoticity property (or
Apriori property) to restrict the search for frequent patterns to only a subset of the
subpatterns present in the dataset. This property stipulates that any subpattern of a
frequent pattern is also frequent. This is equivalent to saying that any superpattern of an
infrequent pattern will also be infrequent, which allows Apriori to narrow down the list of
frequent pattern candidates without risking losing any truly frequent patterns. Another
well-known approach to batch itemset mining is the FP-growth algorithm (Han et al.,
2004). FP-growth avoids the expensive candidate generation phase thanks to the use of
an FP-Tree. A data structure that allows FP-Growth to store the dataset in a compact
way employing two passes, and from which the frequent itemsets can be directly retrieved.
The Eclat algorithm (Zaki et al., 1997) uses a depth-first search and is able to find the
frequent patterns performing only one pass over the dataset.

Nonetheless, as it happens in classification and other data mining domains, data
streams raise new challenges for which batch-oriented proposals for frequent pattern mining
are not prepared. The approaches outlined above are not designed to return results in an
anytime way, and the amount of patterns they store is too high for streaming settings.
Therefore, over the last years different proposals have been developed to address the
problem of frequent pattern mining in streams.

Algorithms for extracting frequent patterns from data streams can be classified
according to different criteria (Bifet et al., 2018; Sancho-Asensio et al., 2016). We use
the categorization proposed in Sancho-Asensio et al. (2016) as a guideline to review the
proposals that can be found in the literature of frequent pattern mining in data streams.
This categorization is based on the following criteria:

� Category. The pattern mining algorithms can be categorized according to the
specific problem they address: (1) heavy hitters—find the singleton items with a
support greater than the given threshold—, (2) top-k frequent itemsets—find the
k most frequent itemsets in a stream—, (3) frequent pattern mining—find all the
itemsets (of any length) with a support greater than the given threshold—, (4) mining
closed frequent itemsets—find those itemsets that do not have any frequent superset
with the same frequency (avoiding reduncancy (Bifet et al., 2010a))—, (5) rare
itemset mining—itemsets that do not occur frequently—, (6) ratio rules—find the
quantitative knowledge between distinct itemsets inside a rule—, (7) frequent closed

II.2 Frequent pattern mining and association rules in data streams 33

graph mining—find those graphs that have no frequent supersets with the same
frequency—, (8) frequent sequence mining—find sequences of itemsets with a support
greater than a given threshold—, (9) probabilistic pattern mining—find those itemsets
with a probability greater than a minimum threshold—, (10) association rules—find
all the frequent (quantitative) rules—, and (11) fuzzy association rules—find all the
frequent fuzzy rules.

� Type. The approaches employ different types of algorithms to extract the frequent
patterns from the streams. Some of the most extended ones are: (1) counting-
based—an iterative counting algorithm—, (2) tree-based—a tree structure is built
for pattern identification and extraction—, and (3) hashing-based—hash tables are
employed for frequent itemset discovery. Although queue-based, graph-based and
hyper-structure-based proposals are also present in the literature.

� Data. Different types of data can form the streams. The approaches can manage
the following data types: (1) categorical, (2) real or continuous, (3) uncertain and
(4) fuzzy data. The categorical data is the most commonly supported by far.

� Approach. As mentioned before, algorithms for mining frequent patterns in data
stream can also be distinguished depending on whether they consider the frequency
of the patterns from the beginning of the stream (landmark-window), or they confer
more importance on recent items (sliding window, tilted-time window or decay
factor).

� Rules. Most frequent pattern mining methods do not produce rules. Nonetheless, a
small fraction of these methods can generate rules naturally.

� Experiments. The experimental setups in the literature are basically two: (1)
synthetic environments and (2) real-world datasets. Both setups are often combined.

We would argue that, from the mentioned classification criteria, Category can be
considered the main one. It allows to differentiate the proposals according to the type of
task they intend to solve, i.e., proposals in different categories pursue different objectives.
Along the following subsections, we review the main techniques proposed in the literature
of data streams for each of these categories of pattern mining. Moreover, Table II.1 shows
a survey of the proposals in the area.

II.2.1 Heavy hitters

Heavy hitters is a reduction of the frequent pattern mining problem, where only frequent
singleton items are targeted. Thus, given a threshold σ and a stream, having read a
segment of length t of the stream, the set of heavy hitters consists of all those items
whose relative frequency exceeds σ. The relative frequency is understood as the absolute
frequency of the item divided by t.

34 Chapter II. Related work

Table II.1: Characteristics of frequent pattern mining algorithms for data streams.

Reference Category Type Data Approach Rules Experiments

(Manku and Motwani, 2002) Heavy hitters, Frequent pattern mining Counting Categorical - No Mixed
(Karp et al., 2003) Heavy hitters Counting Categorical - No -
(Jin et al., 2003) Heavy hitters Hashing Categorical - No Mixed
(Chang and Lee, 2003) Frequent pattern mining Tree Categorical Decay factor No Synthetic
(Giannella et al., 2003) Frequent pattern mining Tree Categorical Tilted-time window No Synthetic
(Charikar et al., 2004) Heavy hitters Hashing Categorical - No -
(Metwally et al., 2005) Heavy hitters Counting Categorical - No Synthetic
(Chi et al., 2006) Closed itemsets mining Tree Categorical Sliding window No Mixed
(Wong and Fu, 2006) Top-k frequent itemsets Counting Categorical Sliding window No Synthetic
(Marascu and Masseglia, 2006) Sequential pattern mining Tree Categorical Tilted-time window No Mixed
(Yang et al., 2007) Frequent pattern mining Tree Categorical - No Synthetic
(Räıssi and Poncelet, 2007) Sequential pattern mining Counting Categorical Sliding window No Mixed
(Cormode et al., 2008) Heavy hitters Counting Categorical - No Mixed
(Cheng et al., 2008) Closed itemsets mining Inverted index structure Categorical Sliding window No Synthetic
(Wang and Chen, 2009) Frequent pattern mining Hashing Categorical - No Mixed
(Leung and Hao, 2009) Frequent pattern mining Tree Uncertain Sliding window No Synthetic
(Yen et al., 2009) Closed itemsets mining Tree Categorical - No Synthetic
(Fan et al., 2009) Ratio rules Counting Quantitative* Sliding window Yes Mixed
(Chen et al., 2010) Fuzzy association rules Tree Fuzzy Sliding window Yes Mixed
(Tu et al., 2010) Frequent pattern mining Tree Categorical Sliding window No Mixed
(Cormode and Muthukrishnan, 2011) Heavy hitters Counting Categorical - No Mixed
(Wang and Chen, 2011) Frequent pattern mining Hashing Categorical - No Mixed
(Memar et al., 2011) Frequent pattern mining Queue Categorical Sliding window No Synthetic
(Bifet et al., 2011) Frequent closed graphs mining Graph Categorical Sliding window No Mixed
(Huang et al., 2012) Rare itemsets mining Tree Categorical Sliding window No Mixed
(HewaNadungodage et al., 2013) Frequent pattern mining Hyper-structure Uncertain Sliding window No Mixed
(Akbarinia and Masseglia, 2013) Probabilistic pattern mining Counting Uncertain Sliding window No Mixed
(Zihayat and An, 2014) Top-k frequent itemsets Tree Categorical Sliding window No Mixed
(Braverman et al., 2016) Heavy hitters Hashing Categorical - No -
(Woodruff, 2016) Heavy hitters Hashing Categorical - No -
(Roy et al., 2016) Heavy hitters Hashing Categorical - No Mixed
(Sancho-Asensio et al., 2016) Fuzzy association rules Counting Fuzzy - Yes Mixed
(Basat et al., 2017) Heavy hitters Counting Categorical - No Real
(Dawar et al., 2017) Top-k frequent itemsets List structure Categorical Sliding window No Mixed
(Zihayat et al., 2017) Sequential pattern mining Tree Categorical - No Mixed
(Kusumakumari et al., 2017) Frequent pattern mining Tree Categorical Sliding window No Real
(Basat et al., 2018) Heavy hitters Counting Categorical Sliding window No Mixed
(Yun et al., 2018) Frequent pattern mining Tree Categorical Decay factor No Real
(Li et al., 2018) Probabilistic pattern mining Tree Uncertain Sliding window No Mixed
(Liu et al., 2018) Frequent pattern mining Tree Uncertain Sliding window No Mixed
(Bustio-Mart́ınez et al., 2019) Frequent pattern mining Hashing Categorical Sliding window No Mixed
(Ovi et al., 2019) Frequent pattern mining Tree Uncertain Sliding window No Mixed
(Xie and Tan, 2019) Frequent pattern mining List structure Uncertain Sliding window No Mixed
(Choi and Park, 2019) Frequent pattern mining Tree Categorical Sliding window No Real
(Ventruto et al., 2020) Heavy hitters Hashing Categorical - No Synthetic
(Xiao et al., 2020) Heavy hitters Hashing Categorical - No Real
(Veloso et al., 2020) Heavy hitters Counting Categorical Decay factor No Real
(Yang et al., 2020) Closed itemsets mining Tree Uncertain Decay factor No Synthetic
(Goyal et al., 2020) Frequent pattern mining Tree Categorical Decay factor No Mixed

II.2 Frequent pattern mining and association rules in data streams 35

Several algorithms have been proposed in the literature to tackle the heavy hitters
problem. There are two main approaches: counter-based, and hash-based. Counter-based
methods maintain counters for a certain set of elements of the stream. Thus, only this
limited number of elements is monitored. If an item of the stream arrives and it is being
already monitored, the associated counter is incremented. Otherwise, the algorithm decides
whether the item is included in the set or discarded.

Historically, most of the counter-based algorithms are evolutions of the method
proposed by Boyer and Moore (1991) to find the majority element, that is, the one with a
frequency of at least 0.5, if it exists. FREQUENT (Karp et al., 2003; Misra and Gries,
1982; Demaine et al., 2002) is an improvement of Boyer and Moore’s method that is
able to obtain a list of elements among which all σ-heavy hitters are guaranteed to be
included. However, the main drawback of FREQUENT is that it does not provide any
reliable estimation of the frequency of these σ-heavy hitters. Examples of counter-based
algorithms that are able to provide approximations of such frequencies are the proposals
by Manku and Motwani (2002), Lossy Counting and Sticky Sampling, and the proposal
by Metwally et al. (2005), Space Saving.

Lossy Counting is a deterministic algorithm that conceptually divides the incoming
stream into buckets of width w = 1

ε
transactions. The algorithm maintains a set of entries

D, each of which has the form (e, f,∆), where e is an element from the stream, f represents
its estimated frequency (counter) and ∆ is the maximum possible error for f . When an
item arrives, if the item already exists in D, its estimated frequency f is incremented, else
a new entry is created. At the end of each bucket, D is pruned by deleting every entry for
which f + ∆ ≤ bcurrent, where bcurrent is the index of the current bucket. The output of
the algorithm is a list of items composed by those entries in D with f ≥ (σ − ε)/N . The
authors show that Lossy Counting uses at most 1/ε · log(ε ·N) space where N denotes the
current length of the stream.

As opposed to Lossy Counting, Sticky Sampling is a probabilistic algorithm. It
maintains a set S of pairs item-frequency. Each time an item from the stream is received,
if the item was already included in S, its frequency (counter) is incremented, else the new
item is added to S with probability 1/r. The sampling rate r evolves over the lifetime of
the input stream. Each time the sampling rate is updated, all the entries of S are revisited
and some of them deleted, so S is transformed to the state it would have been in if the
new rate had been used from the beginning. Like Lossy Counting, the algorithm returns
those items of S for which f ≥ (σ − ε)/N . Additionally, the authors compared them and
experimentally showed that Lossy Counting performs better in practice, even though it
has a theoretically worse worst-case bound.

SpaceSaving keeps in memory a maximum of k different elements together with
their occurrence counters. When a new element that is not one of the elements included in
that set is received from the stream, the new element replaces the element in the set that
had the counter with the lowest value and that counter is incremented by one. SpaceSaving
is a simple algorithm but at the same time presents rigorous guarantees on the quality

36 Chapter II. Related work

of the approximations. The frequency approximations estimated by SpaceSaving do not
underestimate the true frequencies and do not overestimate them by more than t/k, where
t is the number of elements received so far. The Stream-Summary data structure proposed
in Metwally et al. (2005) implements the sketch ensuring constant time per update. In
addition, it has been claimed in various occasions to achieve a better performance than
several other heavy hitter algorithms (Cormode and Hadjieleftheriou, 2009; Liu et al.,
2011; Manerikar and Palpanas, 2009).

On the other hand, hash-based (also called sketch-based) methods employ hashing
techniques to map items to a reduced set of counters. They maintain approximate frequency
counts of all elements in the stream.Therefore, as opposed to counter-based methods,
hash-based methods are able to monitor all elements in the stream, instead of just a
limited set of them. Two of the most well-known hash-based sketches are Count-Min
Sketch (Cormode and Muthukrishnan, 2011) and CountSketch (Charikar et al., 2004).
They support both item additions and subtractions and can be used to solve various
problems related to item frequencies, including heavy hitters.

CountSketch (Charikar et al., 2004) employs an array A of w counters and two
hash functions (both assumed to be random enough). Function h hashes items to positions
in the array and σ maps items to the set +1,-1, i.e., mapping to addition or subtraction.
Therefore, for a given item all the updates are either additions or subtractions. The
algorithm takes as estimated frequency of an item x fx = σ(x) ·A[h(x)]. Some approaches
have been presented to improve the memory efficiency of CountSketch (Braverman et al.,
2016; Woodruff, 2016).

Count-Min sketch (Cormode and Muthukrishnan, 2011) consists of a two-
dimensional array of counters with d rows and w columns. Furthermore, d independent
hash functions, chosen at random, map each item to a column in the sketch. Thus,
when an item arrives, one counter in each row is incremented. The output of the hash
functions points to the counter to be incremented in each row. For any item, the minimum
of its associated counters is taken as its estimated frequency. The j-th counter of the
i-th row contains the sum of the frequencies of all those items mapped to it by the i-th
hash function. Therefore, the frequency of an item can only be overestimated. hCount,
presented in Jin et al. (2003), implements a Count-Min Sketch to keep an approximation
of the frequency of every item. In this work, a brute force approach, which checks the
estimated frequency of every possible item, is used to extract the heavy hitters from the
Count-Min Sketch. Nonetheless, this approach is unviable for large item universes. There is
no obvious efficient way to locate the heavy hitters inside the Count-Min Sketch. Keeping
additional information about the frequencies of groups of items or using a hierarchical
implementation can help speed up the query process, at the expense of increasing the
space requirement (Manerikar and Palpanas, 2009).

Some approaches have been proposed to try to reduce the error rate of Count-Min
Sketch. In Roy et al. (2016), Augmented Sketch (ASketch) is proposed to increase the
frequency estimation accuracy of the most frequent items and reduce the misclassification

II.2 Frequent pattern mining and association rules in data streams 37

of low-frequency items. The proposed solution is based on trying to reduce the collisions
with frequent items by removing the frequent items from the sketch. This is done by means
of a pre-filtering stage in which frequent items are dynamically identified and removed
from the main sketch into a second data structured, called a filter. The filter is formed
by a set of k counters shaped as (item[i], new count[i], old count[i]), where i = 1, 2, . . . , k
and item[i] is the item monitored by the i-th counter. The sketch can take different forms
depending on the frequency estimation algorithm on which ASketch rests, what adds
to the solution a degree of generalization. The algorithm can generate false negatives if
the filter is not sized properly. Furthermore, ACMSS (Ventruto et al., 2020) has been
recently proposed to improve the accuracy of ASketch. Like ASketch, ACMSS uses two
data structures: a filter and a sketch. The frequent items are inserted into the filter after
being identified as such in the sketch. The main differences of ACMSS over ASketch are:
(1) the fact that the sketch is based on a space optimized version of the CMSS sketch
(Cafaro et al., 2019), (2) a conservative sketch update policy (Goyal and Daumé III, 2011),
and (3) a different swap policy to determine which items must be moved from the filter
data structure to the sketch.

Hash-based methods provide useful information in addition to the heavy hitters.
However, following Manerikar and Palpanas (2009), if the aim is strictly limited to
discovering the frequent items (heavy hitters), counter-based approaches are probably
preferable. They are likely to perform better in time, memory, and accuracy. In Manerikar
and Palpanas (2009), Count-Min Sketch and CountSketch were found to be less stable and
perform worse for some parameter ranges. Moreover, counter-based methods are normally
easier to implement.

Mining heavy hitters from a stream is an important problem from both theoretical
and application perspective. One of the most relevant application fields of heavy hitters is
network traffic monitoring. In the last years, several approaches have been presented for this
application field (Cormode et al., 2008; Xiao et al., 2020; Basat et al., 2017, 2018). Many
of these studies manage the concept of Hierarchical Heavy Hitters (HHH) (Cormode et al.,
2008). The hierarchy is defined based on the type of prefixes in a certain application (e.g.,
IP prefixes), i.e., frequent flow aggregates based on common prefixes values. Cormode et al.
(2008) introduces deterministic methods for both single-hierarchical and multi-hierarchical
problems. In the case of the multi-dimensional problem, the proposed algorithms exploit
the mathematical lattice structure, resulting from the product of hierarchical dimensions,
which allows them to track approximate HHHs using a fixed number of statistics per
stored item, independently of the number of dimensions. Basat et al. (2018) propose
randomized constant time algorithm for mining HHHs. This method uses a matrix of H
independent heavy hitters algorithms, where each node is responsible for a single prefix
pattern. For each packet, the approach updates at most a single randomly selected heavy
hitter algorithm. These two previous algorithms give identical importance to each item
from the beginning of the stream. A family of methods for mining both HHs and HHHs in
the single-device and network-wide settings is presented in Basat et al. (2018).

For a similar application field, two different algorithmic solutions are proposed

38 Chapter II. Related work

in Veloso et al. (2020). The specific target problem is called the Interconnect Bypass
Fraud and the aim is to rapidly detect numbers with abnormal behaviors (bursts of calls,
repetitions, mirror behaviors...). The proposed solutions use the heavy hitters to detect
such abnormal behaviors. The first solution explored is based on the incorporation of
forgetting factors in the Lossy Counting algorithm. The other solution explored is a single
pass algorithm for mining hierarchical heavy hitters that also adopts a fast forgetting
mechanism. This second proposal is based on the offline algorithm proposed in Cormode
et al. (2004).

II.2.2 Frequent pattern mining

Schemes designed for heavy hitters are often extensible to other problems related to
frequent pattern mining. In fact, Manku and Motwani (2002) extends Lossy Counting to
sets of items (or itemsets). This extension of Lossy Counting maintains, as the heavy hitter
approach, a data structure D. However, in this case, each entry of D has the form (set, f,
∆), where set is a subset of items instead of a singleton item, and the incoming stream is
not processed transaction by transaction but divided in batches. The algorithm tries to fill
the available main memory with as many transactions as possible, and then process such
batch of transactions together. If an itemset that is not already in D occurs β or more
times in the current batch, where β is the number of buckets in the current batch, the
itemset is added to D. The amount of memory available may increase/decrease over time.
Small values of β can cause more spurious subsets get into D. Nevertheless, when it comes
to finding frequent itemsets, counting and hashing are not the only types of solutions that
can be found in the literature. Tree-based approaches (Giannella et al., 2003; Chi et al.,
2006; Yang et al., 2007; Yun et al., 2018; Ovi et al., 2019) are numerous, but queue-based
(Memar et al., 2011) or hyper-structure-based approaches (HewaNadungodage et al., 2013)
have also been introduced.

In general terms, most of the proposals for mining frequent itemsets in the literature
follow a strategy in which the frequency of itemsets is estimated while monitoring the
incoming transactions and a data structure is maintained with those itemsets that are
estimated to be frequent or close to frequent (they are not frequent but may end up
becoming frequent). When a query is performed to return the frequent itemsets, those
itemsets that currently exceed the specified minimum support threshold are extracted
from the data structure. This scheme is referred to in some publications as a two-steps
method (Yang et al., 2007) or as “immediate” mining mode (Leung and Hao, 2009).

Wang and Chen (2009) presented hMiner. A hashing-based algorithm that employs
a data structure, referred as hSynopsis, to summarize the data stream. This data structure
comprises a hash table and frequent nodes. Each entry of the hash table is linked to a
list of f-nodes (frequent nodes), and stores the total number of accesses to the entry and
the time stamp of the last access. The f-nodes are exploited to keep the information of
the frequent itemsets. When a new transaction arrives, all the itemsets contained in the
current transaction are enumerated, sorted by increasing length and sequentially hashed.

II.2 Frequent pattern mining and association rules in data streams 39

When an itemset is hashed into an entry, the total accesses and last access fields of the
entry are updated. If the itemset is identified by one of the f-nodes linked to the entry,
the true count of the node is increased by one. Otherwise, a new f-node to keep track
of the itemset will be created and linked to the entry only if the itemset is estimated to
be frequent enough. Once all the itemsets in the current transaction are hashed all the
accessed entries in hSynopsis are checked for removing the f-nodes for which the sum of
the counter of occurrences since its insertion plus the estimated previous frequency is less
than σN , where N is the number of transactions received so far. Later, in Wang and
Chen (2011), the authors propose a distributed computation framework to extend hMiner
approach to mine global frequent itemsets from a collection of data streams distributed at
distinct remote sites. They use hSynopsis (Wang and Chen, 2009) to summarize the local
streams, and present communication strategies rooted in hSynopsis.

The frequent pattern mining approaches mentioned consider all the transactions
received equally relevant. Nonetheless, in the frequent pattern mining literature, it is
common to find proposals that give more importance to the most recent transactions by
means of techniques such as sliding window (Memar et al., 2011; Akbarinia and Masseglia,
2013; Bustio-Mart́ınez et al., 2019), tilted-time window (Giannella et al., 2003; Marascu
and Masseglia, 2006) or decay factor (Chang and Lee, 2003; Yun et al., 2018; Goyal et al.,
2020).

Chang and Lee (2003) propose estDec, an approximate algorithm for mining recent
frequent itemsets. The proposal employs a decay factor, d ∈ (0, 1), to reduce the weight of
old transactions in the results. A prefix tree lattice structure (Brin et al., 1997; Agarwal
et al., 2000) (monitoring lattice) is used to maintain the different combinations of items
generated by the stream of transactions. estDec estimates the decayed frequency of a new
n-itemset X, such that n ≥ 2, based on the frequencies of its (n-1)-subsets. When the
updated support of an itemset in a monitoring lattice becomes lower than a predefined
threshold, the itemset is pruned from the monitoring lattice. Except for 1-itemsets, which
are not pruned from the monitoring lattice because it would be impossible to estimate their
count later. Then, the algorithm tries to find any new itemset that has a high possibility
to become a frequent itemset in the near future according to its estimated frequency. In
Chang and Lee (2005), the authors of estDec explore several frequency estimation methods
that could be used in the last step (delayed-insertion) of estDec. The methods are analyzed
in terms of mining accuracy, memory usage and processing time.

A prefix tree structure is also used in FP-Stream (Giannella et al., 2003). FP-stream
employs a FP-Tree structure as in FP-growth and a tilted-time window to maintain the
set of frequent itemsets. Each itemset in the FP-Tree is represented by a root-to-node
path. The node at the end of the path has a titled-time window that keeps track of the
frequency of the itemset at a finer granularity for more recent time frames and at a less
smooth granularity for older time frames. The algorithm processes the data stream in
batches. Every time a new batch is collected, a new FP-Tree is computed and added to
the global FP-Tree. FP-Stream computes frequent and subfrequent (its support is greater
than σ′ but lower than σ). Pattern occurrences in a batch with a frequency below σ′ will

40 Chapter II. Related work

not be added to the global FP-Tree, so they will be undercounted and may eventually
become false negatives. However, this leaves out of consideration a large amount of truly
infrequent patterns, saving memory and time. As the sliding window model, the tilted-time
window concedes more importance to recent data than to old data. Nonetheless, it does not
completely lose the information in the historical data. Hence, FP-stream allows answering
more expressive time-sensitive queries at the expense of storing more than one frequency
record per itemset.

The proposals for frequent pattern mining visited so far follow an “immediate”
mining mode, i.e., the frequencies of the itemsets are estimated the moment a new
transaction or batch is received in order to decide which itemsets are worth keeping.
However, this strategy may involve wasting computational effort. Thus, other proposals
opt to follow a “delayed” or lazy mining mode. In this case, the computation or estimation
of the frequency of the itemsets is delayed until it is completely indispensable, i.e., until
the algorithm is required to return the list of frequent itemsets. The algorithms using
this mining mode keep in memory a compressed representation of the data stream (or of
a window of the stream), from which it is possible to infer the frequency of the itemsets
when required.

A delayed method for data streams, called DELAY, is presented in (Yang et al.,
2007). DELAY first just stores necessary information from the incoming transactions.
The algorithm employs two main data structures: a list to keep track of items and a
tree for the itemsets. The list has a fix length and its updating procedure is inspired by
Space Saving (Metwally et al., 2005). In order to save space, some itemsets are pruned
based on the count of occurrences of their single items (i.e., without performing any actual
frequency estimation). The frequency is not calculated until the query for frequent itemsets
is submitted. When this happens, a pattern fragment growth step analogous to the second
step of FP-growth is triggered to answer the query. A similar logic to save space is depicted
in Bustio-Mart́ınez et al. (2019), where the top-k frequent 1-itemsets detection is used as
preprocessing and all the single items detected as infrequent are removed.

A queue-based approach is proposed in Memar et al. (2011), MFI-CBSW (Mining
Frequent Itemset within Circular Block Sliding Window). This method employs a sliding
window approach and considers the incoming transactions to be grouped in blocks. To
improve the efficiency of the window sliding process, the authors propose a new technique
referred as Circular Block Sliding (CBS). The algorithm uses a blocked-bit-sequence
representation of items with a queue of non-zero block numbers to store all the transactions
in the current window in a compressed format. Each bit in the blocked-bit-sequence
corresponds to a transaction in the window and indicates if the item is present in such
transaction. The queue of non-zero block numbers maintains the indices of the blocks of
the current window where the item appears in at least one transaction (non-zero blocks).
The bit sequence of an itemset in a block can be calculated as the conjunction of the bit
sequences of its single items. Thus, to compute the support of an itemset, its blocked-
bit-sequence is constructed using its subsets. For extracting frequent itemsets within the
current window, MFI-CBSW first identifies frequent single items and then follows a depth

II.2 Frequent pattern mining and association rules in data streams 41

first method of traversing the prefix tree of itemsets.

MPM (Yun et al., 2018), designed to mine high utility itemsets, employs a tree-based
data structure (DAT) to keep track of the incoming transactions. Each transaction is
arranged in a lexicographic order of item identifiers so the arrived data processing is done
in a single data scan. The average utility information is continually accumulated in this
data structure until the user submits a mining request. It is when a mining request is
performed that the data structure is updated to reflect recent average utility information
according to a damped window model and MPM conducts its mining process over DAT
based on a pattern growth approach. The algorithm recursively constructs conditional
trees for selected prefixes in order to generate candidate patterns. Finally, one additional
data scan is conducted for the candidate validation step, when the actual damped average
utilities are calculated.

II.2.2.1 Managing data uncertainty

Sometimes, due to the presence of noise or to the nature of the data, there is a certain
degree of uncertainty present in the data from the stream. In the context of frequent
pattern mining, the difference between precise and uncertain data is that an uncertain
transaction contains an existential probability for each item, which indicates the likelihood
of the item being actually present in the transaction. Algorithms designed for precise (or
deterministic) data are not directly applicable in uncertain (or probabilistic) data. Two
main support measures are used for uncertain data in the literature: (1) expected support
(Chui et al., 2007), which is an approximate measure of support, and (2) probabilistic
support (Bernecker et al., 2009), which is an exact measure of support in probabilistic
data.

Leung and Hao (2009) present two (one approximate and one exact) tree-based
proposals for mining frequent itemsets from streams of uncertain data. The first one, UF-
streaming, is an approximate method based on the algorithm for static datasets UF-growth
(Leung et al., 2007, 2008), and the method for precise data streams FP-stream (Giannella
et al., 2003). Similarly to FP-stream, when a new batch is received, UF-streaming mines
those itemsets that are frequent or subfrequent in the current batch, and they are added
to a prefix tree structure called UF-stream. UF-growth is used to mine such “frequent”
itemsets in the current batch. Every node in the UF-stream includes both an item and
a window table containing one expected support value per batch of transactions in the
window. Every time a new batch of transactions is received, the window slides and
the expected support values of each node in the tree shift. The authors put forward
some potential problems associated to this approximate proposal, such as: the need of a
post-processing step to find the truly frequent itemsets (discarding the subfrequent ones);
the possibility of missing truly frequent itemsets if the subfrequent threshold is too close
to the frequent threshold; the necessity of an additional data structure (the UF-stream)
to store the mined itemsets; and the potential waste of computation derived from using
an “immediate” mode of mining, especially when many batches are processed before the

42 Chapter II. Related work

mining results (frequent itemsets) are requested. Hence, they present an exact proposal,
SUF-growth, which tries to overcome these limitations and potential problems. Being an
exact algorithm, SUF-growth returns all and only those truly frequent itemsets (no false
positives or false negatives are returned). Furthermore, SUF-growth does not follow an
“immediate” mining mode but a “delayed” one and, therefore, does not need the UF-stream
structure to maintain the mined itemsets. It builds a global tree called the SUF-tree
which is always kept up-to-date with the sliding window. Given an appropriate minimum
support threshold, the frequent itemsets can be mined from this up-to-dated SUF-tree in
a similar manner to the UF-growth algorithm. Tree-based proposals for data uncertainty
settings are also proposed in Liu et al. (2018); Ovi et al. (2019).

HewaNadungodage et al. (2013) argue that the consideration of existential proba-
bilities causes FP-growth (Han et al., 2004) to lose its compression power on uncertain
data. Thus, as opposed to tree-based proposals, two hyper-structure-based algorithms are
proposed in HewaNadungodage et al. (2013) to efficiently mine frequent itemsets from
streams of uncertain data: UHS-Stream and TFUHS-Stream. The main difference between
both algorithms is that while UHS-Stream is designed to find all frequent itemsets up
to the current moment, TFUHS-Stream does it in a time-fading manner. UHS-Stream
processes the incoming stream in batches, applies the UH-mine algorithm to find potentially
frequent and subfrequent itemsets in each batch, and stores these itemsets in a global tree
structure referred as IS-tree. The main novelty is that instead of a FP-tree, UH-mine
uses a hyper-linked array structure called the UH-struct. UH-mine first scans the input
database and remove the infrequent items from the transactions. The frequent single items
left are sorted following a certain global order. An array structure stores the transformed
database, where each row corresponds to one transaction and each entry in a row has
three fields: an item-id (corresponding to a frequent item present in the transaction), the
existential probability of the item in the transaction, and a hyper-link pointing to the next
transaction containing that item. A header table is constructed with each frequent item
entry having three fields: an item-id, a expected support count, and a hyper-link to the
starting point of the projected transactions. UH-mine can find the frequent itemsets by
scanning the projected transactions linked together by the hyper-links. TFUHS-Stream
also employs the UH-struct to mine frequent itemsets and stores them in the IS-tree
structure. Nonetheless, it fades the recorded estimated frequency count and the maximum
possible error by a decay factor λ.

Akbarinia and Masseglia (2013) presents FEMP (Fast and Exact Mining of Proba-
bilistic data streams), a proposal for exact PFI (Probabilistic Frequent Itemsets) mining in
data streams based on sliding window approach. Instead of expected support (Leung and
Hao, 2009; HewaNadungodage et al., 2013), FEMP maintains the probabilistic support
of the itemsets. This means that the support of an itemset is given as a probability
distribution function, i.e., each possible value s for the support (from 0 to the size of the
window) of an itemset X is associated to a probability (the probability of s being the
support of X in the database). FEMP is able to obtain the exact probabilistic frequency
distribution function for any monitored itemset, at any time. FEMP uses a recursion

II.2 Frequent pattern mining and association rules in data streams 43

on transactions to update the probabilistic support of the itemsets. Every time a new
transaction is added to the window, the probabilistic support of an itemset X in the set
of transactions T = t1, ...tn−1, tn is computed based on the probabilistic support in T − tn.
Similarly, for the case of transaction deletion, the algorithm computes the probabilistic
support in T − tn applying an equation on the probabilistic support of the itemset in T .

Due to the high cost of computing probabilistic support, a method to estimate the
range of probabilistic support based on the support and the expected support is proposed
in Li et al. (2018). This work introduces an in-memory index named PFIT (Probabilistic
Frequent Itemset Tree), to store the data synopsis of probabilistic frequent itemsets in
a bottom-up manner, and presents the PFIMoS (Probabilistic Frequent Itemset Mining
over Streams) algorithm to incrementally discover the probabilistic frequent itemsets
over a sliding window. PFIMoS estimates the upper and lower bounds of probabilistic
support, therefore, reducing the probabilistic support computing cost. Nonetheless, when
the minimum support is low or the data are dense, massive probabilistic supports have to
be computed. An improved version of PFIMoS, PFIMoS+ (Li et al., 2018), incorporates
a heuristic rule to reduce the count of the probabilistic support computing that is not
pruned by the bounds. PFIMoS+ receives an error parameter ω, that is the main factor
conditioning the improvement achieved by PMFIoS+. This error parameter determines
during how many sliding window updates, the computation of the probabilistic support
is avoided. If ω is always 0, the PMFIoS+ algorithm will have the same performance as
PMFIoS.

II.2.3 Mining closed frequent itemsets

In practice, the patterns obtained by frequent pattern mining algorithms can be redundant
or non-relevant in obvious or subtle ways. Let p and q be two different patterns such
that p ≺ q and both have the same or very similar support. Then, if we know that q
is frequent, knowing that p is frequent does not add much information and could be
considered redundant. Some works focus on looking for frequent closed patterns without
computing all frequent patterns as a more efficient way, in both time and memory, of
obtaining the same knowledge. A pattern is closed if it has higher support than every
one of its superpatterns. Given all frequent closed patterns, we can infer all frequent
patterns. Furthermore, if the frequency of all closed patterns is known, the frequency of
every frequent pattern can be deduce.

Similarly to the way in which frequent pattern mining methods often maintain not
only the frequent itemsets but also the subfrequent (or promissing) ones, frequent closed
itemset mining algorithms monitor other selected itemsets, in addition to Frequent Closed
Itemsets (FCIs), in order to be able to detect new itemsets when they become frequent
(and/or closed). Moment (Chi et al., 2006) is an exact algorithm for mining closed frequent
itemsets on a sliding window. This method uses a compact data structure called a Closed
Enumeration Tree (CET) to keep all the itemsets needed at any moment, which include:
(1) closed frequent itemsets, and (2) itemsets on the boundary between closed frequent

44 Chapter II. Related work

itemsets and the rest of the itemsets. Concretely, four types of nodes are distinguished
in the tree: infrequent gateway node, unpromising gateway node, intermediate node and
closed node. In addition, the transactions in the sliding window are stored in a FP-tree.
To build a CET, a depth-first procedure visits the itemsets in lexicographical order. For a
certain itemset, the FP-tree is consulted to obtain the support of the itemset. Then, the
type of the node conditions if the algorithm further explores the node. For instance, if
a node is found to be infrequent, then the algorithm marks it as an infrequent gateway
node and it does not explore the node further but it still stores the support of the node
because it will provide important information during a CET update when an infrequent
itemset can potentially become frequent. Every time the window slides, Moment traverses
the parts of the CET that are related with the new transaction added to the window and
with the transaction that is to be removed from the window, and updates each related
node. If the type of a node changes, re-exploring originally pruned branches (transaction
addition) or pruning certain branches (transaction deletion) may be required. The addition
algorithm will not decrease the number of nodes in a CET, in the same way that the
deletion algorithm will not increase the number of nodes in a CET.

IncMine (Cheng et al., 2008) is an approximate algorithm for mining frequent
closed itemsets. As Moment, IncMine follows a sliding window approach and it is aimed
at reporting the frequent closed itemsets in the window. However, as opposed to Moment,
IncMine does not process the transactions from the stream one by one but groups them
in batches of size b. Thus, the window stores a set of w batches (w · b transactions).
The two keys of IncMine are: (1) the notion of semi-FCIs, and (2) the inverted index
structure. IncMine stores a superset of the FCIs, referred as semi-FCIs. The minimum
support threshold for an itemset to be considered a semi-FCI progressively increases as
the itemset is retained longer in the window. Let σ be the desired minimum support for
an FCI, IncMine sets up a schedule of augmented supports r(i) for i = 1 . . . w, such that
r(1) < r(2) < . . . < r(w − 1) < r(w) = 1. If a pattern in the ith batch of the window has
a frequency lower than r(i) · σ · i, the itemset is removed from the current set of semi-FCIs
C because it is considered unlikely that its frequency will reach σ · w · b after w − i more
batches.

When a new batch of transactions arrives, IncMine incrementally updates C.
Roughly speaking, it first mines the set of FCIs in the new batch C2, and then updates
C based on C2 and according to a set of rules that also implementes the forgetting of
the transactions in the oldest batch of the window. C2 is generated using an existing
non-streaming FCI mining algorithm (Pasquier et al., 1999; Zaki and Hsiao, 2002; Wang
et al., 2003b). To improve the efficiency of the update operations, an inverted index
structure is used to store the semi-FCIs. To build such structure, the set of semi-FCIs over
the last window L is partitioned according to the size of the semi-FCIs in L, so all the
semiFCIs of the same size belong to the same partition. An array called FCI-array stores
each partition. Each entry of an FCI-array stores: a semi-FCI; an assigned ID, which
corresponds to the position of the semi-FCI in the array, and the approximate support of
a semi-FCI computed over each time unit. A garbage-queue is also associated which each

II.2 Frequent pattern mining and association rules in data streams 45

FCI-array, so that the ID of every semi-FCI deleted from a FCI-array is pushed into the
corresponding garbage-queue.

CloStream (Yen et al., 2009) employs two in-memory data structures, called Closed
Table and Cid List, to mine frequent closed itemsets from data streams. Closed Table
maintains the information of the closed itemsets. Thus, each entry of the table contains
three fields: the closed itemset, a unique id assigned to the itemset and the support of the
itemset. Cid List is used to keep for each single item, the list of closed itemsets that include
the item. In addition, when a new transaction arrives, the algorithm also uses a hash
table to temporarily store those itemsets to be updated. Every time a new transaction is
received, CloStream creates a new empty temporal table Temp. Each entry of Temp will
include an itemset and a Closure Id that points to the closed superset with the highest
support. In a second phase, CloStream updates the support of the itemsets included in
Temp. For each record in Temp, if the itemset was already included in Closed Table its
support is increased by one. On the other hand, if the itemset was not included in Closed
Table, the itemset is assigned an identifier and a new entry is added to Closed Table with a
support value equal to one plus the support of the closed itemset indicated by Closure Id.
All frequent closed itemsets can be found by scanning Closed Table once. CloStream does
not incorporate any forgetting mechanisms (sliding window or decay factor). It generates
the list of closed itemsets from the beginning of the stream. In some settings, this could
derived in a really high number of closed itemsets to be maintained.

II.2.4 Rare itemsets mining

In some domains, patterns representing events that are unusual are considered more useful
than frequent patterns. Examples of this are the detection of computer attacks or of
fraudulent credit transactions. The input data for these problems (network logs and
banking transactions) are often received in the form of flows (or streams). An itemset
is considered a rare itemset if its support is lower than a certain threshold (minimum
frequent support threshold). One of the challenges associated with rare itemset mining is
the difficulty to differentiate between noisy itemsets and the actual rare itemsets.

SRP-Tree (Streaming Rare Pattern Tree) (Huang et al., 2012) is a tree-based
approach for mining rare itemsets from data streams using a sliding window, which defines
a noise filter threshold (minimum rare support) to discard the noisy itemsets. Thus, an
itemset is considered to be rare in a window if its support in the window is below the
minimum frequent support threshold but surpasses the minimum rare support. SRP-Tree
relies on three main data structures: (1) a list to maintain the frequency count of every
single item in the window; (2) an item list called the Connection Table to keep track
of every single item in the window and the items that co-occur with them along with
their respective frequencies; and (3) a tree structure that allows to capture the content
of the incoming transactions, using appearance order as a canonical order to build the
tree. The Connection Table is designed using a hash map which allows for O(1) access.
In a given window, for each incoming transaction, the algorithm first updates the list of

46 Chapter II. Related work

item frequencies. After that, the Connection Table and the tree are also updated. The
transactions are considered to be organized in blocks (or batches). At the end of each block,
SRP-Tree lists all the rare items and all the items they co-occur with which also surpass
the minimum rare support, build the conditional FP-Tree of each of these items, and then
uses each conditional tree and the corresponding item as arguments for FP-Growth. The
union of the outputs from all these calls to FP-Growth is a set of rare item itemsets.

II.2.5 Top-k frequent itemsets

A variation of the problem of mining frequent itemsets is the problem of mining the top-k
frequent itemsets. The main argument in favor of this problem refactoring is that it may
be easier for the user to set a bound on the size of the result to be obtained, rather than
specifying an appropriate minimum support threshold (Wong and Fu, 2006; Zihayat and
An, 2014; Dawar et al., 2017). The number of highly useful patterns can be quite high
so finding only the top-k patterns can be more attractive. However, this is done at the
expense of adding complexity to the problem. The methods need to estimate the minimum
support threshold that allows to find the k most frequent itemsets. This means that there
is an extra dimension of guessing in the algorithms and, therefore, a source of error.

Two different methods for mining top-k frequent itemsets from data streams are
proposed in Wong and Fu (2006). Both methods process the data stream in batches.
The first one is based on the Chernoff bound. For every batch, the algorithm estimates
the support threshold sk in such batch. Then, based on sk and on the Chernoff bound,
the itemsets in the batch are distinguished between potential k-frequent itemsets and
unpromising itemsets, and a local pool Pl is formed with the potential k-frequent l-itemsets
in the batch. After that, the local pool Pl is combined with the global pool Fl and the
algorithm updates the support of each entry in the global pool. If the maximum size of
the global pool is reached, the unpromising itemsets are pruned according to the support
threshold estimated based on all the transactions seen so far. The algorithm is an any-time
response method that returns the top k frequent itemsets in the current global pool. The
Chernoff-based algorithm assumes data independency. However, the authors introduce
some techniques that allow the algorithm to handle data dependencies.

The second proposal is an adaptation of Lossy Counting (Manku and Motwani,
2002). It follows the same pool-based approach as the Chernoff-based proposal. The main
difference is the criterion used to distinguish between potential k-frequent itemsets and
unpromising itemsets. In this case, any itemset with a frequency of, at least, β, where β
is the number of buckets in the batch, is added to the local pool Pl, and an entry of the
global pool is considered unpromising if f + ∆ ≤ d n

w
e, where f is the estimated frequency,

∆ is the maximum estimation error, n the number of transactions seen so far, and w the
bucket size. Furthermore, adaptations of both Chernoff-based algorithm and Top-k Lossy
Counting algorithm to incorporate a sliding window approach are also introduced in Wong
and Fu (2006). Basically, this adaptations consist of keeping the local pools for all the
batches in the current window. Every time the window slides, the supports of the entries

II.2 Frequent pattern mining and association rules in data streams 47

of the global pool are updated according to both the new batch and the batch that drops
the window.

T-HUDS (Zihayat and An, 2014) addresses the problem of mining the top-k
High Utility Itemsets (HUI) over sliding windows. The algorithm relies on a prefix tree
structure to maintain an up-to-dated compressed version of the transactions in the sliding
window, and two auxiliary lists that are used to estimate the support bound to distinguish
between itemsets that are Potential Top-k HUIs (PTKHUIs) and the unpromising ones.
A pattern growth approach similar to FP-Growth is used to identify PTKHUIs. Then,
the transactions in the current window are scanned to obtain the exact utility of each
PTKHUI, so the true top-k HUIs can be identified.

The same problem is addressed in Dawar et al. (2017), where a data structure
called iList and an algorithm based on such data structure are proposed for mining top-k
high-utility itemsets from a data stream. iList is an adaptation of utility-list (Liu and
Qu, 2012), proposed for static transaction database scenarios. It captures the utility
information associated with an itemset across windows by maintaining a FIFO (First In
First Out) queue of the batches in the current window. Each batch contains a list of
〈Tid, EU,RU〉 tuples, where Tid is the transaction identifier which contains an itemset,
EU is the exact utility of an itemset and RU is the remaining utility of an itemset. The
iList data structure is built by scanning the sliding window twice. In the first scan,
Transaction Weighted Utility (TWU) of items is computed. During the second scan, items
in each transaction are sorted according to ascending order of TWU and an iList for each
item is created. The iList for an itemset is generated by intersecting the iLists of individual
items. The proposed algorithm is a single-phase method that obtains the top-k utility
itemsets based on an iList data structure and does not generate any candidates in the
mining process.

At the beginning of this section, we have defined patterns as entities that are present
or absent with a frequency that deviates from the random. So far, we have identified
patterns with itemsets. However, other combinatorial structures such as sequences and
graphs are also often used to embody this broad definition of pattern.

II.2.6 Sequential pattern mining

In its most basic form, a sequence is an ordered lists of items: S = 〈i3, i7, i2, i10, i6〉, where
both 〈i7, i10〉 and 〈i3, i7, i6〉 are subsequences of S. A generalization of this basic idea
derives on every element of the ordered list being an itemset: S = 〈I1, I2, . . . , In〉, where
each Ii is a subset of the set of items I = i1, . . . , in. Sequential pattern mining allows the
discovery of frequent sequences and can be useful to identify relations between itemsets.
Nonetheless, it is a difficult task given the great size of the search space (Zaki, 2001).
Indeed, only a few proposals for mining sequential patterns from data streams are found
in the literature.

SMDS (Sequence Mining in Data Streams) (Marascu and Masseglia, 2006) is an

48 Chapter II. Related work

algorithm for mining frequent sequential patterns from web usage data streams that relies
on a greedy clustering algorithm associated to an alignment method and on the prefix
tree structure of PSP (Masseglia et al., 1998) for managing the frequent sequences mined.
The algorithm processes the data stream in fixed-size batches and employs a prefix tree
structure to store the approximate frequent sequential patterns mined from the incoming
batches. Each navigation sequence in the batch is compared to each cluster and inserted
in the one that, among those that meet a series of conditions, have the closest centroid
to the sequence. If no such cluster is found, a new cluster is created. Every time a new
sequence is inserted into a cluster, the centroid of the cluster is incrementally updated
using the alignment technique presented in Kum et al. (2003), and then filtered according
to parameter k to obtain the approximate sequential pattern. At the end of each batch, the
filtered aligned sequence (or approximate sequential pattern) from each cluster, considered
as a summary of the cluster, is inserted into the prefix tree. The method is provided with a
logarithmic tilted-time window. An intermediate window system allows to merge windows
when needed and tail pruning is implemented to delete the oldest records.

In Räıssi and Poncelet (2007), a method based on reservoir sampling is proposed
to address sequential pattern mining over data streams. In reservoir sampling (Vitter,
1985) the probability of the insertion of a data point in the reservoir decreases as the data
set length increases, which is a clear disadvantage for data stream contexts. Instead, the
approach proposed in Räıssi and Poncelet (2007) uses an exponential bias function to
regulate the sampling. Each data point is defined as a pair formed by a customer and its
associated transaction. The algorithm starts with an empty reservoir of capacity 1

λ
, where

λ is the bias rate of the exponential bias function. Each new data point from the stream
is deterministically added to the reservoir by flipping a coin: the point is simply inserted
into the reservoir or it replaces a customer and all its transactions. To bound the size of
the list of transactions associated to each customer included in the reservoir, the method
uses a sequence-based sliding window to maintain the most recent transactions for a given
customer in the sample.

II.2.7 Frequent closed graph mining

A graph G is a pair composed by a set of nodes V together with a set of edges E among
nodes. We say that a graph G = (V,E) is a subgraph (or graph subpattern) of another
graph G′ = (V ′, E ′) if V ⊆ V ′ and E ⊆ (V × V) ∩ E ′. When addressing frequent graph
mining from data streams, each element of the stream is in itself a graph and the algorithms
are aimed at mining the subgraphs of these incoming graphs that are frequent and closed.

Bifet et al. (2011) presents two coreset-based algorithms for mining the approximate
set of closed frequent graphs over a sliding window: WinGraphMiner and AdaGraphMiner.
Given a problem, a coreset of a set C can be defined as a small subset of C such that
solving the problem on the coreset gives an approximate solution for the problem on C.
Both WinGraphMiner and AdaGraphMiner exploit the concept of ∆-support in order
to improve the time efficiency of the operations of adding and removing patterns from

II.2 Frequent pattern mining and association rules in data streams 49

the summary (or coreset). The ∆-support (or relative support (Bifet et al., 2011)) of a
pattern can be calculated as its support minus the sum of the absolute supports of all
its closed, proper superpatterns. Conversely, the absolute support of a closed pattern
can be calculated as the sum of the ∆-supports of all its closed superpatterns (including
itself). Hence, keeping the ∆-support of each closed pattern in the summary, to add a
pattern p to the summary, we just need to add 1 to the ∆-support of p and we will be
implicitly adding 1 to the (regular) support of all its subpatterns. The same logic applies
for removals. The algorithm will need to compute the actual regular supports only when a
query to output the frequent closed graphs is submitted.

WinGraphMiner employs a fixed-size sliding window. The algorithm maintains at
all times a summary G that contains the approximate set of frequent closed subgraphs in
the current window.Every time a new batch of graphs is received, it is mined for closed
frequent graphs using the batch miner CloseGraph (Yan and Han, 2003), and transformed
to the relative support representation. In addition, WinGraphMiner subtracts the coreset
corresponding to the batch that drops from the sliding window.

AdaGraphMiner is an extension of WinGraphMiner that is able to adapt to changes
in the stream. The algorithm is aimed at outputting the graphs that are frequent and closed
in the current distribution. In Bifet et al. (2011) two different versions of AdaGraphMiner
are presented. The simplest one monitors the total number of closed graphs. It uses
ADWIN as change detector and shrinks the window if change is detected. The other
version uses an individual ADWIN instance to monitor the support of every frequent closed
subgraph. Thanks to this, the algorithm is more sensitive to changes in individual graphs
and avoids keeping all the batches in a sliding window in memory. This second version
experimentally requires less memory even though an ADWIN instance is maintained for
every graph.

II.2.8 Mining rules

When the interest resides in the associations between items, beyond knowing that they
co-occur with some frequency, rule mining can be highly useful. We can distinguish
different categories of rule mining depending on the kind of associations extracted. Ratio
rule mining, for instance, is aimed at capturing quantitative association knowledge. Using
the classical shopping cart example, a ratio rule milk, diapers, beer = 1 : 2 : 1 can be
translated as: “if a customer spends 1 amount on milk, then he/she is likely to spend 2
amounts on diapers and 1 amount on beer”. Fan et al. (2009) presents a method to mine
ratio rules at changing data streams in an incremental and adaptive way. Two key steps
can be identified in the proposal: the detection of emerging trends and the actual mining of
ratio rules. The algorithm uses the technique for data stream evolution diagnosis proposed
in Aggarwal (2003) to detect partially coagulated intervals in the data distribution as
emerging trend intervals. Then, the algorithm adopts an automated Incremental Principal
Component Analysis (IPCA) to mine ratio rules at these emerging trends. In addition, a
generalized multiple regression measurement is used to evaluate how good the generated

50 Chapter II. Related work

ratio rules are at each new incoming data point.

Association rule mining is a well-studied field which is aimed at extracting asso-
ciations between variables in the form of production rules. An association rule R is an
implication of the form X → Y , where both X and Y are frequent itemsets and X ∩Y = ∅.
Association rules are typically obtained by first mining frequent itemsets from datasets or
data streams, then building the frequent rules from the mined frequent itemsets. This
relegates the rule generation to a second place in an offline process. Since there is nothing
essentially specific to the streaming setting in this offline rule generation process, in the
streaming context, efforts have been mainly focused on the frequent itemset mining step.

Moreover, despite in real-world applications the streaming data sources often
include quantitative attributes, most of the algorithms that have been proposed for mining
frequent itemsets and association rules in data streams can only handle categorical data.
In order to deal with continuous attributes, two different strategies were initially explored
for generating quantitative association rules: (1) discretize the features and then deal
with them in a purely qualitative fashion (Wang et al., 1998), and (2) using an interval-
based representation (Mart́ınez-Ballesteros et al., 2011). Later on, fuzzy modeling was
introduced. The use of fuzzy sets allows to build highly legible models, and to avoid the
loss of information that can be derived from discretization and the unnatural boundaries
caused by interval-based representation (Dubois et al., 2006; Hong et al., 2001).

FFI-Stream (Chen et al., 2010) is a method for mining fuzzy association rules from
data streams over a sliding window. This proposal employs clustering to determine the
fuzzy sets. Concretely, some of the techniques included in SWEM (Dang et al., 2009)
are used. First, it applies the micro-clustering stage ensuring enough information about
the data distribution is collected and then, in the second stage, the macro-clusters and
the correspoding fuzzy sets are obtained. In addition, Selectively Updating Mechanism
and Projected Summaries are proposed to update the fuzzy sets dynamically. Due to the
possibility of concept drift, Membership Function Bias measure is introduced to evaluate
the membership function in each sliding window and detect significant changes. To find
frequent itemsets with fuzzy sets, FFI-Stream adapts UF-Streaming (Leung and Hao,
2009), which was, as we detailed before, originally proposed for mining frequent itemsets
in uncertain data streams. The existential probability from data uncertainty context is
altered into the membership degree in the context of mining frequent itemsets with fuzzy
sets. When the user submits a query, FFI-Stream finds the frequent itemsets in the current
window and generates the association rules.

However, if we are interested on extracting the interesting associations among the
forming attributes of the data and keep track of their evolution as the dynamics of the data
flow change, the typical offline rule generation is unpractical. In the association stream
mining field, the mined rules have to be present immediately and adapt to the changing
dynamics of the data stream. Although association stream mining is closely related to
mining frequent itemsets in data streams and both share similar challenges (single pass
limitation, memory constraints, handling concept drift (Bifet et al., 2010a)), methods for

II.3 Semi-Supervised Learning in data streams 51

the latter do not identify the whole pattern while the process is running and, therefore,
are usually ill-suited for handling association stream problems.

Fuzzy-CSar (Sancho-Asensio et al., 2016) is an online genetic fuzzy system designed
to mine interesting association rules from streams of data in a single step, i.e., it does not
build any list of frequent itemsets. Instead, Fuzzy-CSar directly evolves the set of fuzzy
association rules. Fuzzy-CSar-AFP (Ruiz and Casillas, 2018), one of the proposals of this
thesis, extends Fuzzy-CSar to be able to handle adaptive fuzzy partitions, better adapt to
the requirements of real-world environments and increase the diversity of the mined rules.

II.3 Semi-Supervised Learning in data streams

II.3.1 Label scarcity in data streams

In many different fields (from Web mining to bioinformatics), it is significantly easier to get
unlabeled than labeled data since it requires less effort, expertise and time consumption.
Labeling can be costly due to different reasons ranging from great amount of human labor
to required expensive, intrusive or destructive laboratory tests. In this context, supervised
learning is limited to using labeled training data to build a model.

The conditions associated to data streams (high arrival rate, potential infinite length,
changing distribution...) favor the existence of many real-world problems where it may be
unreasonable or unaffordable to require true labels for all incoming instances (Matuszyk
and Spiliopoulou, 2015; Noorbehbahani et al., 2017; Tang et al., 2017; Iosifidis and Ntoutsi,
2019). Hence, proposals prepared to deal with label scarcity in data streams have gained
attention over the past few years. Various types of approaches have been explored. Two
of the main fields of research are: Active Learning (AL) and Semi-Supervised Learning
(SSL). In both cases the proposals assume that, in addition to unlabeled data, a certain
(although maybe small) amount of labeled data will be readily available (SSL) or could be
requested (AL).

Active Learning (Masud et al., 2010; Žliobaitė et al., 2011; Dyer et al., 2013) is
based on the premise that it is not affordable to label every instance. The main aim
of AL is to reduce training cost selecting those key instances whose labels - if available
- would provide the higher learning profit. Thus, these techniques require few labeled
instances for training but they do not use unlabeled data for training the classification
model. The most important limitation of AL is, however, the implicit requirement that
the true label be provided for any instance for which the algorithm requests it; this is not
always a realistic assumption. On the other hand, the semi-supervised learning paradigm
(Zhu and Goldberg, 2009) is grounded in the assumption that unlabeled examples can also
contribute to the learning process. SSL is an extension of unsupervised and supervised
learning by including additional information typical of the other learning paradigm. Hence,
both unlabeled and labeled data are involved in training and work together to improve

52 Chapter II. Related work

system performance.

Offline semi-supervised classification methods are often classified depending on
the assumptions they make about the relationship between the underlying distributions
of labeled and unlabeled data. In broad terms, two different assumptions are distin-
guished:manifold assumption and cluster assumption. The first assumption is met if data
lie approximately on a manifold of lower dimensionality than the input space. The cluster
assumption states that similar examples should be likely to be of the same class. Different
type of approaches can be used to implement any of these assumptions. For instance, the
manifold assumption is commonly implemented through graph-based models, and genera-
tive models or semi-supervised support vector machines are examples of models based on
the cluster assumption. Furthermore, there are also other semi-supervised techniques that
do not make any specific assumptions about the input data, e.g., self-labeled techniques.
Over the past few years, proposals based on several of the aforementioned approaches have
been made for semi-supervised classification in data streams, such as graph-based (Bertini
et al., 2012), cluster-then-label (Castellano and Fanelli, 2016) or self-labeled (Wu et al.,
2006; Loo and Marsono, 2015; Feng et al., 2016; Wang and Li, 2018) models.

Table II.2 shows a survey of the proposals in the literature and categorizes them
according to the following characteristics: (1) Strategy—indicates if there is only one
single classifier or if an ensemble of classifiers is built—, (2) Type—references the type of
classification method used—, (3) Clustering—whether clustering techniques are employed
or not—, (4) Scheme—the incoming instances can be process independently as they arrived
or grouped in chunks or batches—, and (5) Experiments—the experimental setup may
include synthetic environments, real-world datasets or a combination of both.

As shown in the table, data stream classification proposals can be categorized
according to the way they process the incoming flow of data, distinguishing between:
chunk-based and instance-based proposals. In the first case, the data stream is divided
into batches or chunks, normally of fixed size, and the algorithm processes each of them
as a unit. In the case of instance-based (also referred as online) proposals, each instance
is processed individually at the moment of its arrival, i.e., the model can be updated every
time a new instance is received. Strategies for chunk-based learning may not be applicable
to online settings (e.g., if they rely on offline learning algorithms).

II.3.2 Chunk-based proposals

Within the field of semi-supervised learning in data stream, there are some proposals that
explore the Extreme Verification Latency (EVL) case. These proposals take to the limit
the constraint of the existence of a certain delay in the reception of the labels. In EVL
the duration of this lag is set to infinity. Hence, the proposals work on the assumption
that the only labeled data they receive are part of a starting set which allows the system
to be initialized, and that afterwards they will just receive a flow of unlabeled data. In
Dyer et al. (2013) and Ferreira et al. (2019) two EVL approaches are proposed. Both of

II.3 Semi-Supervised Learning in data streams 53

Table II.2: Characteristics of semi-supervised classification methods for data streams.

Reference Strategy Type Clustering Scheme Experiments

(Wu et al., 2006) - - Yes Chunk-based Mixed
(Masud et al., 2008) Ensemble SSC Yes Chunk-based Mixed
(Yu et al., 2008) Single-model SSC Yes Chunk-based Real-world
(Woolam et al., 2009) Ensemble SSC Yes Chunk-based Mixed
(Zhang et al., 2010) Ensemble - Yes Chunk-based Real-world
(Li et al., 2010) Single-model Tree Yes Online Mixed
(Xu et al., 2011) Single-model Tree Yes Online Mixed
(Ditzler and Polikar, 2011) Ensemble - Yes Chunk-based Synthetic
(Bertini et al., 2012) Single-model Graph-based No Chunk-based Mixed
(Masud et al., 2012) Ensemble SSC Yes Chunk-based Mixed
(Zhang et al., 2012) Single-model SVM Yes Chunk-based Mixed
(Wu et al., 2012) Single-model Tree Yes Online Mixed
(Ahmadi and Beigy, 2012) Ensemble Tree No Chunk-based Mixed
(Dyer et al., 2013) - - No Chunk-based Synthetic
(Loo and Marsono, 2015) - - Yes Chunk-based Mixed
(Castellano and Fanelli, 2016) Single-model SSC Yes Chunk-based Real-world
(Haque et al., 2016) Ensemble SSC Yes Chunk-based Mixed
(Hosseini et al., 2016) Ensemble SSC Yes Chunk-based Mixed
(Shao et al., 2016) Single-model Lazy learning Yes Online Mixed
(Feng et al., 2016) Single-model Lazy learning No Chunk-based Mixed
(Tang et al., 2017) Single-model SSC Yes Chunk-based Real-world
(Noorbehbahani et al., 2017) Single-model Lazy learning Yes Online Real-world
(Wang and Li, 2018) Ensemble Tree No Chunk-based Mixed
(Qin and Wen, 2018) Ensemble SSC Yes Chunk-based Mixed
(Ferreira et al., 2019) - - No Chunk-based Mixed
(Wen and Liu, 2020) Ensemble SSC Yes Chunk-based Mixed
(Din et al., 2020) Single-model Lazy learning Yes Online Mixed

54 Chapter II. Related work

them are designed for gradual drift scenarios and follow the same framework structure
where an offline semi-supervised algorithm is trained on the starting set (which contains
labeled and unlabeled data) and is used to label the remaining upcoming samples divided
in equal-sized chunks. Once the samples in a chunk have been labeled, a filtered is applied
to select a subset of optimal instances that will pass as labeled training data for the next
chunk of unlabeled samples. The base semi-supervised classifier is retrained each time a
new chunk is received. However, both approaches differ in the strategy used to select the
optimal instances from each chunk.

COMPOSE (Dyer et al., 2013) uses geometric techniques in order to map core
support regions. It first builds an α-shape (a generalization of convex hull) for each class,
where an α-shape is a set of connected faces (simplexes) creating a hull that describes a
finite set of points at a certain level of detail (defined by the parameter α ≥ 0). Then, the
algorithm compacts (shrinks) these shapes and extracts the instances from the compacted
shape that represent the geometric center (core support region) of each class distribution.
This compaction of the α-shapes is achieved by iteratively removing a layer of simplexes
from the edges of the α-shape, until a certain compaction percentage is reached. Each
time a layer of simplexes is removed, the number of instances in the compacted α-shape is
decreased. The data remaining in the α-shape after compaction are considered the core
supports and will be used as labeled training samples for the next chunk.

In the case of AMANDA (Ferreira et al., 2019), a density-based algorithm measures
the relevance of the classified samples and weights them, and only those considered to be
the most representative ones are selected. The aim is, as in COMPOSE, to identify which
samples are included in the core region of the existing class distributions. Thus, the kernel
density estimation method employed calculates density curves that take into account the
distance of each point from a central value (kernel). Each instance is associated with a
probability density function value, which indicates the denser instances in the distribution.
The α-most-dense instances from the set of weighted instances are selected. Two different
versions of AMANDA are proposed in Ferreira et al. (2019): AMANDA-FCP (AMANDA
Fixed Cutting Percentage) and AMANDA-DCP (AMANDA Dynamic Cutting Percentage).
In the case of AMANDA-FCP, α is a user-defined parameter with a fixed value, while
AMANDA-DCP dynamically calculates α for every batch based on the distance between
the past distribution and the distribution in the new batch.

Other data stream semi-supervised approaches, outside EVL area, assume that
labeled and unlabeled samples will alternate throughout the flow of data. Some of these
approaches adapt traditional semi-supervised paradigms to stream environments, such as
self-labeled methods. These methods iteratively seek to obtain one (or several) enlarged
labeled set(s), based on their most confident predictions to properly represent the training
set. Self-labeled techniques can use one or more classifiers (of the same or different type of
learners) during the enlarging phase of the labeled set. They also can be distinguished
between single-view or multi-view depending on how the input feature space is taken into
consideration by the self-labeled technique. Thus, the most basic self-labeled technique
is self-training. In self-training, the training set is expanded using the most-confident

II.3 Semi-Supervised Learning in data streams 55

predictions of the uniquely used classifier, which uses the full input feature space for
training. Therefore, a hypothesis is initially learned from labeled data; such hypothesis
is then used to classify unlabeled data, and the most confident unlabeled data, along
with the labeled instances, are added into the training set. The hypothesis is repeatedly
refined with the updated training set. In Wu et al. (2006) and Loo and Marsono (2015)
self-training cluster-based methods are proposed. In both cases, k-prototypes (Wu et al.,
2006) and k-means (Loo and Marsono, 2015) clustering approaches are used to expand
labels to unlabeled instances and select the most confident ones to join the training set for
retraining or updating the classifier. The proposal presented in Wu et al. (2006), bases the
instance selection in the comparison between the label predicted by the k-prototypes and
the one inferred by a supervised classifier. The method assumes the existence of an initial
labeled training set that allows to initialize this classifier, which would be re-trained every
time new confident instances are added to the training set.

The main drawback of self-training is the possibility of error propagation since the
own predictions of the classifier are later used to train it (He and Zhou, 2011; Zimmerann
et al., 2014). To avoid this problem co-training was introduced (Blum and Mitchell,
1998), whose intrinsic intuition is that different classifiers will make different mistakes
and, therefore, they can learn from each other. In co-training two classifiers are trained
on two different attribute subsets (multi-view), which are supposed to be sufficient and
redundant, and each classifier labels unlabeled data. The most confident predicted data
from one classifier are used to improve the training set of the other classifier, and each
classifier refines its hypothesis with the updated training set. Co-training avoids the error
propagation risk associated with self-training but verifying that the assumptions made by
co-training are met in a real-world problem is not trivial. These assumptions are: (1) the
view used to train each classifier is sufficient to fulfill the learning task, and (2) both views
are independent given the class. Nevertheless, co-training have achieved good performance
in certain real-world problems where the mentioned conditions were not ensured.

Co-training techniques are employed in Feng et al. (2016) to select the most confident
exemplars that will be used to augment the training set. An incremental self-representative
data selection strategy is first applied to find the most representative exemplars from
the sequential data chunks. Then, these exemplars are labeled by means of co-training.
The features of each sample are randomly split in two views and k-Nearest Neighbors
classifiers are used to estimate the labels of the exemplars. The most confident ones
along with their predicted labels are added to the training set. Based on this training set,
the testing samples are classified using kNN. In Ahmadi and Beigy (2012), the authors
propose an ensemble learning method in which, for each classifier in the ensemble, the
majority vote of other classifiers is used to label a subset of unlabeled instances that
is then employed to update the classifier. This idea is further developed in Wang and
Li (2018) with the proposal of SCo-Forest, which combines co-training paradigm with
Random Forest (Breiman, 2001) for data streams. Furthermore, it employs ADWIN2
(Bifet and Gavaldà, 2007) for concept drift detection. For every data chunk received, the
concept drift detector is adopted. If change is detected, the low accuracy classifiers in

56 Chapter II. Related work

the ensemble are replaced by new ones. Otherwise, the ensemble is kept in its current
state. To build new classifiers, an online bootstrap sampling method is applied to sample
the labeled set in the current window and generate the training set for the new random
tree. In addition, SCo-Forest tries to improve the performance of the individual random
trees by augmenting the labeled set with the most confident unlabeled examples. Thus,
for each random tree hj, the algorithm employs the concomitant ensemble Hj (generated
by excluding hj from the global ensemble) to select the most confident examples in the
unlabeled set, which are added to the labeled training set used to update hj.

Nonetheless, self-labeled techniques are not the only traditional offline semi-
supervised strategies whose adaptation to data stream has been explored. Bertini et al.
(2012) presents a graph-based semi-supervised approach that extends the offline classifier
based on the k-associated optimal graph. This approach maintains a dynamic principal
graph that is repeatedly updated over time. For each new data chunk, the system generates
the k-associated optimal graph and some of its components are added to the principal
graph. Labeled and unlabeled examples constitute the graph vertices and the similarity
measurements between vertices correspond to the graph edges. Each vertex vi connects to
its k-nearest neighbors whose classes are not different from the class of vi. This means
that vertices corresponding to labeled samples connect to those, among their k-nearest
neighbors, which belong to their same class or are unlabeled, and unlabeled samples
connect to all their k-nearest neighbors without considering their classes. The graph can
be seen as a set of groups of connected samples (components). Since unlabeled vertices
can be connected to labeled vertices of any class, components with more than one class
may be formed. These components are split by cutting edges based on the purity of the
vertex. The cutting process finishes when the component is separated into single class
components. The class labels are spread within every component. Finally, the purity
measure is calculated for all components and each component of the current k-associated
graph is compared to the corresponding components in the principal graph. If the new
component increases or maintains the purity, it will substitute the old ones. The process
continues by increasing k and generating new graphs until the number of components
matches the number of classes.

Cluster-then-Label methods, closely related to generative models, have also been
explored for semi-supervised classification in data streams. Instead of using a probabilistic
model, these techniques apply a previous clustering step, and then they label each cluster
with the help of labeled data. The proposal in Castellano and Fanelli (2016) applies
SSFCM (Pedrycz and Waletzky, 1997), an offline semi-supervised fuzzy k-means algorithm,
to cluster the instances on every chunk. The cluster prototypes obtained from a chunk
are added as pre-labeled data points to the next chunk, and SSFCM is applied again to
derive k clusters and k labeled prototypes. After every run of SSFCM, data included in
the k-th cluster are predicted as belonging to the class of the k-th prototype. Clustering
techniques allow to take advantage of unlabeled examples to try to discern the true class
boundaries, although they present some limitations. In high dimensional space, sparse
data can cause the proximity measured between instances by distance metrics to be hardly

II.3 Semi-Supervised Learning in data streams 57

ever meaningful (Aggarwal et al., 2001; Beyer et al., 1999). Furthermore, the approaches
based on k-means or similar are restricted to spherical clusters.

Ensemble techniques present some appealing characteristics to deal with data
streams. Hence, as well as in the case of supervised classification, several ensemble
methods have also been proposed for semi-supervised classification in data streams. In
Ditzler and Polikar (2011), the labeled data are used to build the base classifiers. The
voting weights of such classifiers are determined based on the distances between Gaussian
mixture model components trained on both labeled and unlabeled data in an environment
with limited gradual drift.

Ensemble proposals for semi-supervised classification in data streams often combine
the ensemble scheme with cluster-based techniques. This combination was first explored
by Masud et al. (2008); Woolam et al. (2009); Masud et al. (2012). In Masud et al. (2012),
they propose an ensemble classification model where each base model is built as a set of
micro-clusters using semi-supervised impurity based k-means. The ensemble is composed
of L different models, each of which has been built on a different data chunk. Each time a
new data chunk is received, a new base model is generated. The first step to build such
model is to apply clustering on the last data chunk generating k clusters. Then, each of
these k clusters is divided into pure micro-clusters, where a pure micro-cluster contains
unlabeled instances or labeled instances of only one class. This new set of micro-clusters
is combined with the labeled micro-clusters (those corresponding to true labeled instances)
from the previous r chunks, and a label propagation technique is adopted to classify the
unlabeled micro-clusters. Due to concept evolution, a new particular class, which is not
present in any of the current L models in the ensemble, may be present in the new model.
If this happens, the ensemble is refined by injecting micro-clusters from the new model
into the models currently included in the ensemble. Finally, the best L models from the
L+ 1 existing ones are selected to form the new ensemble. The decision is based on the
accuracy of the models on the labeled instances of the present chunk.

Impurity based k-means clustering is also exploited by SAND (Haque et al., 2016),
which also considers the concept evolution scenario. SAND requires an initial warm
up training set. Once the warm up period is over, each instance received is checked to
determine whether it is an outlier. If the instance is not considered an outlier, the instance
is labeled based on the majority vote of the classifiers in the ensemble. Otherwise, it
is temporarily stored in a buffer. When the buffer reaches a certain size, a novel class
detector is applied to determine if the instances in the buffer are labeled as belonging to a
new class or if, on the contrary, they should be labeled by the existing ensemble. Each
model in the ensemble is represented by a collection of k pseudopoints. Each of these
pseudopoints summarizes a cluster and can be seen as a hypersphere in the feature space.
The class predicted by a specific classifier in the ensemble for a sample x, will be the most
common class in the cluster represented by the closest pseudopoint to x. SAND delimits
the size of each chunk based on the detection of a change in the distribution, instead
of assuming fixed-size chunks. This change detection is based on the confidence of the
predictions of the ensemble. When change is detected, a chunk boundary is set and the

58 Chapter II. Related work

ensemble model needs to be updated to adapt to the changed concept. To that aim, a new
model is trained and inserted in the ensemble. On the other hand, if no significant change
in the confidence scores is found, the current ensemble is retrained and the size of the
current chunk continues increasing until the maximum size (based on available memory)
is reached, and the model has to be updated and the chunk reinitialized.

Hosseini et al. (2016) proposes SPACS, an ensemble of cluster-based classifiers
focused on detecting recurring concepts and exploiting information on previously known
concepts. Each classifier in the ensemble has an associated weight that is dynamically
updated based on the accuracy of its predictions on the labeled incoming samples. Every
time a new data chunk is received, the classifier with the maximum weight is chosen
to sequentially classify the instances in the chunk. SPACS assumes data chunks to be
single-concept. A similarity-based method is proposed for detecting the recurring concept-
drifts. If no recurring concept-drift is detected and the pool of classifiers is not full,
a new classifier is built on the current chunk and added to the pool. Otherwise, the
most similar classifier is incrementally updated. A extended version of SPACS, which
incorporates local component replacement to update the classifier pool in case the detected
concept-drift is not recurrent, is presented in Qin and Wen (2018). Along the same lines,
another ensemble of cluster-based models is also proposed in Wen and Liu (2020). In this
case, a BIRCH-like method (Zhang et al., 1996) is used to build the base models. To
perform concept detection, local structure mapping strategy, based on Gao et al. (2008),
is combined with semi-supervised Bayesian method.

In Zhang et al. (2012), a framework to categorize the incoming chunks according to
the labeling ratio and the potential presence of concept drift is proposed. Depending on
the categorization of the chunk a different learning scheme is adopted, although offline
algorithms are applied on each chunk in any scenario. Four different learning cases are
distinguished: (1) labeling rate is high and concept drift probability is low, (2) both
labeling rate and concept drift probability are low, (3) both labeling rate and concept drift
probability are high, and (4) labeling rate is low and the concept-drift probability is high.
In the first case, a generic SVM model is trained using only the labeled data that belong
to the target domain. In the second scenario, both labeled and unlabeled samples from
the target distribution are used to train a semi-supervised SVM model. In the third case,
three different types of samples (both labeled and unlabeled from the target domain, and
labeled samples from a similar domain) are used and a novel transfer semi-supervised SVM
model is presented. Finally, all samples are used in the fourth case to train a model that
combines relational k-means model (Zhu and Jin, 2009) and the transfer semi-supervised
SVM proposed for the third scenario.

Meanwhile most of the previously mentioned works (except for EVL proposals)
consider semi-supervised scenarios where there are both unlabeled and labeled instances
in every chunk, Zhang et al. (2010) contemplates a different semi-supervised scenario
where instances in a chunk might be all labeled or all unlabeled. An ensemble model is
constructed by combining classifiers and clusters together. Each time a new data chunk is
received, the incoming examples are clustered. If the chunk is labeled a new base classifier

II.3 Semi-Supervised Learning in data streams 59

is also built. Class label of each cluster is inferred through a label propagation method
that takes into account both class labels from classifiers and clusters internal structure. A
weighted average mechanism is employed to combine together all classifiers and clusters
for prediction.

Chunk-based approach can offer some advantages since each time the models are
trained or updated it is done based on a subset of data instead of on a single instance but
they can also present some important drawbacks. The time for retraining the model (or
training new base models) is highly dependent on batch size. Too large chunks may result
on high learning times while too small chunks may reduce model reliability. Moreover, most
of the chunk-based models assume that every batch contains both labeled and unlabeled
data, therefore, linking chunk size and arrival frequency of labeled data.

II.3.3 Online proposals

Instance-based approaches are significantly less frequent than chunk-based ones, and most
of them employ clustering techniques. Clustering Feature Decision Tree (CFDT) (Xu
et al., 2011) extends the supervised method VFDT (Domingos and Hulten, 2000) by
combining micro-clustering and clustering feature techniques (Zhang et al., 1996) on tree
leaves to maintain the statistics needed for the splitting heuristic evaluation and to conduct
the label induction process on test samples. Each leaf of CFDT comprises at most k
entries, where k is the number of classes. Two main parameters affect the structure of
the leaves: a threshold that defines the maximum radius of the micro-clusters and the
maximum number of micro-clusters per entry. Since CFDT works in a pure online way,
each instance is inspected only once. First, the example traverses the tree from the root
to a leaf. If the example is labeled, an entry whose class label matches the one of the
example is chosen, and then the micro-cluster with the closest centroid is selected. On the
other hand, if the example is unlabeled, the micro-cluster whose centroid is the closest
from all the entries in the leaf is selected. If the selected micro-cluster can incorporate
the example, its clustering feature vector is updated. Otherwise, a new micro-cluster is
generated based on the example. When a sufficient number of examples have been seen at
a certain leaf, the heuristic function is calculated to decide the best cut-point. CFDT uses
a recursive binary partition strategy and applies an exhaustive method at each stage of
this process, i.e., all attributes and all possible cut-points for each attribute are evaluated.
Regarding classification, the label predicted for an example is the class label of the nearest
micro-cluster in the corresponding leaf.

REDLLA (Li et al., 2010) and SUN (Wu et al., 2012) also combine incremental
decision trees and clustering. In both schemes, all instances in each leaf of the tree are
clustered and majority-class method is used to infer the labels of unlabeled instances. If
the number of examples in a leaf exceeds a limit, split-test is evaluated in a heuristic
way based on information gain and Hoeffding bounds inequality (similarly to CVFDT
(Hulten et al., 2001)). k-means (Li et al., 2010) or k-modes (Wu et al., 2012) clustering
is periodically used to produce concept clusters at leaves, which are used to distinguish

60 Chapter II. Related work

potential concept drifts from noise. The new set of concept clusters is compared with past
concept clusters to detect concept drifts. The estimation of the deviation between both
sets of clusters is based on the radius of each set of clusters and on the average distance
between them. Based on the values of these measures, three different possible scenarios
are distinguished: (1) a potential concept drift is considered, (2) the deviation between
concepts is considered noise, and (3) a true concept drift is considered. In the case of SUN,
if a potential concept drift is considered, the new set of clusters is incorporated into the
historic set of concept clusters. In case the deviation is considered as noise, the historic
set of clusters is not modified and the new set is discarded. If an actual abrupt drift is
detected, the historic clusters are replaced by the new ones. Meanwhile, when a potential
or actual drift is detected by REDLLA, the method judges whether the new concept is
actually a recurring concept. If the concept is brand new, the current clustering is added
to a concept list. Otherwise, the current clustering is integrated into the historic set of
concept clusters.

An incremental semi-supervised stream-based Intrusion Detection System (IDS)
is presented in Noorbehbahani et al. (2017). The system includes two different learning
phases: offline and online. First, in the offline phase, an initial set of clusters and an
initial classification model are generated based on an initial labeled training set. The
classification model is composed of a set of prototypes. During the online phase, the set of
clusters is incrementally updated with the new data. Labeled samples are also used to
update the prototypes of the classification model. During this phase, the system can label
new instances by means of the set of prototypes and the nearest neighbor classification
method. The approach assumes that future labeled training sets could be available for
periodical applications of the offline phase, generating up-to-date models.

In Din et al. (2020), an algorithm that dynamically maintains a set of micro-clusters
is proposed for semi-supervised classification on evolving data streams. This method has
three main parts: (1) the initialization of the learning model, (2) classification, and (3)
online data maintenance. The proposal assumes the existence of an initial training set that
is used to initialize a learning model based on micro-clusters. Afterwards, a kNN classifier
is used to predict the class label for every incoming instance. Any instance (labeled or
unlabeled) received is employed to update the model. If the instance is labeled, it is
used to assess the prediction performance of the model and, based on that, to infer the
reliability of neighboring micro-clusters. Moreover, the instance is added to an existing
micro-cluster or, if needed, a new micro-cluster is created and incorporated to the model.
During the online maintenance phase, micro-clusters with low reliability or considered
outdated are removed from the model so it can evolve along with the concepts in the
incoming stream. A similar approach, which is also based on the application of kNN
classifier on micro-clusters, had been previously presented in Shao et al. (2016).

Chapter III

CLAST: Learning rules for
classification in data streams

III.1 Introduction

Research efforts on data stream classification have mainly focused on improving the accu-
racy of the predictive models, disregarding other aspects. This has led to the development
of models with very limited descriptive power. Considering a data stream classification
approach which assumes that all the examples coming from the stream are labeled, one
may wonder how much sense it makes to focus exclusively on the accuracy of a predictive
model which aspires to be, in the best case, hardly as accurate as the entity (human,
community, machine...) that has been labeling each data in the first place.

On the other hand, a descriptive classification model would be able to provide
insights on the problem and on how it is determined to which class belongs an example.
The model still needs to predict accurately, otherwise we would be dealing with a model
that does not well represent the reality of the problem. Here, we explore the use of rules
as knowledge representation in data stream classification.

The chapter is devoted to present CLAST (CLAssification in data STreams), a
system that works under a supervised learning paradigm to address data stream classi-
fication. The algorithm builds and dynamically maintains a population of rules, which
jointly represent a solution to the classification task. The examples are processed one by
one as they arrive, without need to store them or repeat the full learning process on all
the observed examples. The only information needed in memory is the set of rules itself,
the rules contain a series of parameters sufficient for evolving the population.

The remainder of this chapter is composed of two sections: Section III.2 gives a
detailed description of the proposed CLAST algorithm, and Section III.3 presents the
different experiments along with their results.

61

62 Chapter III. CLAST: Learning rules for classification in data streams

III.2 CLAST: CLAssification in data STreams

CLAST operates in two different modes: exploration and exploitation. Figure III.1
schematically represents the functioning of the system during a exploration (or training)
interaction. In exploration mode the algorithm aims at evolving a maximally general
rule population that minimizes the prediction error. The algorithm makes use of a set
of histograms, which are incrementally updated as new data are received, to summarize
data distribution information. On the other hand, in the exploitation mode the algorithm
uses the knowledge harbored by the evolved population to infer the class of unlabeled
test examples. Thus, every rule in the population that matches the test sample with a
sufficient degree casts a weighted vote, and the most voted class is predicted.

This kind of ensemble design in which each rule works in a cooperative way with the
rest of the population to build a solution is specially suitable for data stream environments.
The easiness to add, remove or replace individual classifiers (rules) allows to incrementally
evolve the ensemble (population) as new data are received in a very natural and efficient
way.

The algorithm functions in a completely online fashion. Indeed, CLAST meets all
the main requirements that, according to Bifet et al. (2009b), a classification algorithm
for data stream must meet. The following can be considered the most significant ones:
First, process one example at a time and inspect it at most once. Each example must be
accepted in the order in which it is received and once inspected or ignored, the example
is discarded and never retrieved. Data streams typically have very high incoming rates
and, therefore, there is not enough time to reprocess examples several times. Second,
memory usage must be limited since memory will be easily exhausted without limiting its
allocation due to the potentially infinite nature of data. Third, the training complexity
must be linear to the number of samples. Fourth, the system must be able to perform
classification at any time, i.e., the induction model can be applied at any point between
training examples.

III.2.1 Knowledge representation

As mentioned, the algorithm evolves a population [P] of classifiers that jointly represent
the solution to the classification problem. Each classifier is composed of a weighted fuzzy
classification rule, whose condition is in conjunctive normal form, and a set of parameters.
Hence, the structure of the rule can be represented as:

Rk : IF X1 is Âk1 and . . . and Xn is Âkn THEN ck WITH wk (III.1)

where Âki is the fuzzy set used for the ith input variable in the kth rule; ck, in the
consequent of the rule, is the class the rule itself advocates, and the weight wk in [0,1]
signifies the soundness with which the rule advocates class ck. This kind of rules which
include a weight in the consequent are known as fuzzy rules of type II (Cordón et al.,

III.2 CLAST: CLAssification in data STreams 63

Instance: (3.2, 1.8) Class: c

Population

cond. class F num
([3.0,3.5,4.0], [1.2,1.6,2.0]) 1 1 12
([2.0,2.7,3.0], [1.0,1.5,3.0]) 0 .8 15
([3.0,3.3,3.4], [1.7,2.0,2.1]) 0 .6 11
([1.5,1.8,1.9], [2.5,2.8,2.9]) 1 1 16
(*,[1.6,1.8,2.0]) 1 .9 21

….

Match Set

cond. class F num
([3.0,3.5,4.0], [1.2,1.6,2.0]) 1 1 12
([3.0,3.3,3.4], [1.7,2.0,2.1]) 0 .6 11
(*,[1.6,1.8,2.0]) 1 .9 21

Correct Set

cond. class F num
([3.0,3.5,4.0], [1.2,1.6,2.0]) 1 1 12
(*,[1.6,1.8,2.0]) 1 .9 21

Covering

Genetic Algorithm

Class Matching

Matching

Apply
GA?

Histogram Update

Check
subsumption?

Subsumption

Data Stream

Figure III.1: Schematic illustration of the learning interaction of CLAST.

2001). The four main parameters that form part of every classifier are: 1) fitness F , which
estimates the accuracy of the rule; 2) correct set size cs, the average size of the correct sets
in which the classifier has been included; 3) experience expk, keeps count of the number of
times fitness has been updated, and 4) numerosity num which denotes how many copies
of the rule there are in the population.

The fuzzy sets employed in the condition of the rule make a direct use of fuzzy
variables instead of using linguistic terms. Thus, each fuzzy rule presents its own semantics,
i.e, the variables take different fuzzy sets as values instead of linguistic terms from a global
term set. In this case, triangular-shaped fuzzy sets are used and, therefore, each variable in
a rule k is represented by three continuous values ak (left vertex), bk (middle vertex) and ck
(right vertex). Since Radial Basis Function (RBF) Networks are functionally equivalent to
certain types of fuzzy systems (Jang and Sun, 1993) and considering that the membership
function of the fuzzy sets used is represented by a radial basis function, such fuzzy sets
can be referred as RBF fuzzy sets (Shimojima et al., 1995). Concretely, the membership
function µAk(ei) of the input sample ei to the fuzzy set Aki (or matching degree between
ei and Aki) is computed as:

µAk(ei) =



ei − ak
bk − ak

if ak ≤ ei < bk

ck − ei
ck − bk

if bk < ei ≤ ck

0 otherwise

(III.2)

64 Chapter III. CLAST: Learning rules for classification in data streams

This type of fuzzy systems, which are equivalent to fuzzy graphs (Alcalá et al., 2001;
Zadeh, 1965), allows to ignore the restriction imposed when using linguistic terms by
which the membership function in each fuzzy rule must belong to a common set (Alcalá
et al., 2001). Furthermore, it also enables the algorithm to deal with both continuous and
categorical variables in a very direct way. In the case of categorical variables singleton
fuzzy sets are used, i.e., the three vertices of the fuzzy set are assigned the same category
of the variable, being µAk(ei) = 1 if ei represents the same category as the vertices and
µAk(ei) = 0 otherwise. Moreover, RBF fuzzy sets allow generalization on their own when
dealing with continuous variables, since each variable can be represented by a different
fuzzy set with different vertices and shape.

On the other hand, since no global semantic is used, these fuzzy sets cannot be
linguistically interpreted. RBF representation allows maximum flexibility by permitting
tuning each individual fuzzy set of each rule thus resulting more complex and less inter-
pretable. Nevertheless, interpretability is a controversial and subjective concept that is
usually not guaranteed by just producing simple fuzzy rule sets since, in these situations,
explanation capability may be degraded (Ishibuchi et al., 2009). Moreover, this structure
allows the model to be more flexible. Despite the deriving process is more complex due to
the higher freedom degrees and, therefore, this additional flexibility does not ensure the
obtainment of more accurate results (Alcalá et al., 2001), it is expected to do so.

As mentioned before, the system keeps a set of histograms that summarize data
distribution information that may be useful during the evolution process of the population.
The system maintains a histogram per class and variable which is updated according to
each new sample received. In a problem with n input variables {X1, ..., Xi, ..., Xn} and m
different classes {c1, ..., cj, ..., cm}, n×m histograms Hij are kept, i.e., m histograms (one
per class) are maintained for each input variable i. If Xi is a continuous variable, the bins
of its histograms are defined as:

Gi
l =


[gil−1, g

i
l), ∀l ∈ {1, ..., η − 1}

[gil−1, g
i
l] l = η

(III.3a)

gil = mini + l · si, si =
maxi −mini

η
(III.3b)

where [mini,maxi] delimits the range of the ith variable and η is the number of bins (a
user-defined parameter). If Xi is categorical, its histograms have one bin per category of
the variable.

The data distribution information summarized by these histograms is used at several
points of the learning interaction. Concretely, it affects the decisions of: which variables to
include i the condition of a rule generated by covering; or to what extent we can expand
(covering or mutation) or contract (mutation) a certain fuzzy set.

III.2 CLAST: CLAssification in data STreams 65

III.2.2 Exploration mode

Under exploration mode, each time a datum is received a learning (training) iteration is
performed. At each learning iteration, a series of steps are taken in order to update the
population based on the information contained in the received sample.

First, the matching degree between the input sample e and every rule in the
population is checked and all those rules with a matching degree greater than zero are
grouped to create the matchset [M]. Once [M] is built, those rules from [M] that advocates
the true class of e are used by the system to create the correctset [C]. If none of the rules
in [C] matches e with a sufficient degree for all the input variables, the covering operator is
launched. Through the covering operator the system creates a new classifier that matches
e with maximum degree and which is added to [C], [M] and [P]. Next, the fitness of those
classifiers in [M] (which cover a region of the feature space that includes e) is updated.
Afterwards, the rule discovery component may be applied. The rule discovery component
allows the system to discover new promising rules via a genetic mechanism applied to
the classifiers included in [C]. To control runtime and reduce the risk of overfitting, this
component only acts if the average time since its last application upon the classifiers
in [C] exceeds a certain threshold. Finally, histograms are updated and subsumption is
checked in [P]. Checking subsumption is aimed at reducing the number of rules in [P],
pushing toward maximally generalized rules and reducing redundancies between rules. The
user-defined parameter θsub allows to control the frequency with which this subsumption
check is performed. The different components involved in the exploratory behavior of the
algorithm are further described below.

III.2.2.1 Matchset creation

Given an input sample e, those classifiers from [P] that match e with a degree greater
than zero become part of the matchset [M]. To compute the matching degree between an
input sample e and a classifier k, the algorithm calculates the membership degree µAki (ei)
for each input variable xi in the condition of the classifier. Then, the matching degree
of the classifier is determined by the T-norm (conjunction) of such membership degrees.
In our case the product (

∏
µAki (ei)) is used as T-norm. The system is enabled to deal

with missing values by considering that if the value of the feature ei is not known, then
µAk(ei) = 1.

From the classifiers forming [M], those which advocate for the true class of e become
part of the correctset [C].

III.2.2.2 Covering operator

The covering operator generates a new classifier whose condition is generalized based
on e and that advocates the class associated to e. This mechanism is only trig-
gered when there is no classifier k in [C] which satisfies that: for any variable xi in-

66 Chapter III. CLAST: Learning rules for classification in data streams

cluded in its condition, the membership degree of ei to Aki is greater or equal than θµ
(min([µAk1 (e1), ..., µAki (ei), ..., µAkn(en)]) ≥ θµ).

To build the new classifier, the covering operator has to decide which variables
are included in its condition and which not. Each variable has a probability of being
selected equals to the relative frequency of the input value ei among the seen samples of
ce according to the histogram. At least one variable must be included in the condition
of the classifier. For each variable xi selected to be included in the classifier, a fuzzy set
has to be generalized from the corresponding input value ei. This generalization process
also relies on the histograms maintained by the algorithm for each class-variable pair. The
underlying idea is to lead the generalization process towards the direction that allows to
cover a higher ratio of ce examples.

The relative frequency hice(ei) of the value ei in the histogram maintained for

class ce and variable xi and the associated probability ĥice(ei) of xi being selected for the
condition of the new classifier are calculated as:

φi = l s.t. ei ∈ Gi
l (III.4a)

ϕi =


l − 1, ei ∈ Gi

l, l > 1, ei <
gil−1+g

i
l

2

l + 1, ei ∈ Gi
l, l < η, ei >

gil−1+g
i
l

2

l, otherwise

(III.4b)

wi(ei) =



0.5 +
ei−gil−1

gl−gl−1
, ϕi = l − 1

0.5 +
gil−ei
gl−gl−1

, ϕi = l + 1

1, otherwise

(III.5a)

hice(ei) =
wi(ei)Hiceφi + (1− wi(ei))Hiceϕi∑m
j=1wi(ei)Hicjφi + (1− wi(ei))Hicjϕi

(III.5b)

ĥice(ei) =
hice(ei)∑n
k=1 hkce(ek)

(III.5c)

where φi indicates the bin where ei lies and ϕi is the next closest bin. Note that, with the
purpose of achieving better estimations, an interpolation (with weight wi) is performed
between bins φi and ϕi. Figure III.2 depicts three different sample scenarios for the
computation of wi. In the case of categorical variables, the number of bins matches the
number of categories and no interpolation is applied, bin φi is the only one taken into
account.

Algorithm 1, describes the process followed to generalized a fuzzy set from a single
input sample. Starting from the core of bin φi where ei lies and bk is placed, in an iterative

III.2 CLAST: CLAssification in data STreams 67

𝑚𝑖𝑛𝑖 𝑚𝑎𝑥𝑖

𝑋1

𝜙1 = 𝑙

𝑤1 𝑒1 = 0.5 +
𝑒1 − 𝑔𝑙−1

1

𝑔𝑙
1 − 𝑔𝑙−1

1

𝑒1

𝜑1

𝐻1𝑐𝑒𝜙1

𝐻1𝑐𝑒𝜑1

𝑔𝑙−1
1 𝑔𝑙

1

(a)

𝑚𝑖𝑛𝑖 𝑚𝑎𝑥𝑖

𝑋𝑖

𝑒𝑖

𝜑𝑖

𝜙𝑖 = 𝑙𝐻𝑖𝑐𝑒𝜙𝑖

𝐻𝑖𝑐𝑒𝜑𝑖

𝑔𝑙−1
𝑖 𝑔𝑙

𝑖

𝑤𝑖 𝑒𝑖 = 0.5 +
𝑔𝑙
𝑖 − 𝑒𝑖

𝑔𝑙
𝑖 − 𝑔𝑙−1

𝑖

(b)

𝑚𝑖𝑛𝑛 𝑚𝑎𝑥𝑛

𝑋𝑛

𝑒𝑛

𝜑𝑛 = 𝜙𝑛
= 𝑙

𝐻𝑛𝑐𝑒𝜙𝑛

𝐻𝑛𝑐𝑒𝜑𝑛

𝑔𝑙−1
𝑛 𝑔𝑙

𝑛

𝑤𝑛 𝑒𝑛 = 1

(c)

Figure III.2: Illustration of the computation of wi(ei) in different scenarios.

way, every bin core is being tested as a potential fuzzy set (left or right) vertex. That is,
until a vertex is found that would provoke the relative frequency of ce in the hypothetical
fuzzy set to be lower than the one in φi. Hence, if placing the vertex in the bin core being
tested means that the relative frequency of ce in the fuzzy set would be lower that that in
bin φi, the searching process stops and the previous bin core is established as expansion
limit. Once both expansion limits (left and right) have been found, ak and ck are randomly
assigned a value between bk and the corresponding expansion limit. Figure III.3 illustrates
the different steps of this generalization process. Note that the vertices of the fuzzy set
may exceed the range of the input variable. This works as a way to enable the coverage
of the minimum and maximum values of the variable, when appropriate. This process is
much simpler when dealing with categorical variables. In such case, the three vertices of
the fuzzy set are assigned the same value: ei.

III.2.2.3 Fitness update

Each classifier internally maintains a vector of class weights {ωk1 , ..., ωkm}. Such weights
are incrementally updated during the learning process. This class weight vector allows to
determine which class the classifier advocates, as well as, to compute the fitness of the
classifier. At each exploration iteration, the class weights of those classifiers in [M] are
updated. The class ck with maximum weight ωkj is the one advocated by rule k. Given
that these class weights are updated along the learning process, the class advocated by
a classifier is not set when the classifier is born but it may change as the rule matches
different examples and its parameters are consequently updated. The process followed to
update the class weights of each classifier in [M] is now detailed.

First, the sum of correct matchings for each class is calculated:

cmk
jt+1

= cmk
jt +m(k, j) · λce (III.6)

where λce can be specified as a user-defined parameter or estimated based on the class

68 Chapter III. CLAST: Learning rules for classification in data streams

Algorithm 1: Description of the generalization process followed by the covering

operator to define the fuzzy set Âki for the ith input variable based on the value

of the received training sample. The fuzzy set Âki is defined by three continuous
values: ak (left vertex), bk (middle vertex) and ck (right vertex).

Function hInFuzzySet(v1, v2, v3, ce):
h← hice(v2) /* Frequency of ce for value v2 according to the

histograms */

for x← v1;x < v2;x = x+ si do
line1 ← line(point(x, 0), point(x, 1))
line2 ← line(point(v1, 0), point(v2, 1))
h← h+ hice(x)·IntersectionHeight(line1, line2)

end
for x← v2 + si;x <= v3;x = x+ si do

line1 ← line(point(x, 0), point(x, 1))
line2 ← line(point(v2, 1), point(v3, 0))
h← h+ hice(x)·IntersectionHeight(line1, line2)

end
return(h) /* Return ce frequency in the fuzzy set defined by

{v1, v2, v3} */

Function FuzzySetCoveringInit (i, φi, c
e, start, end):

/* i is the index of the input variable, φi the bin where the

input sample lies and ce the class of the input sample */

ak, bk, ck ← giφi−1 + si
2

limit← bk
for x1 ← bk + si;x1 ≤ end;x1 = x1 + si do /* Look for right expansion

limit */

aux←hInFuzzySet(ak, bk, x1, c
e)

if aux ≥ min(hce , hice(bk)) then
limit← x1

else
break

end

end
ck ←rand([bk, limit]) /* Right vertex definition */

limit← bk
for x1 ← bk − si;x1 ≥ start;x1 = x1 − si do /* Look for left expansion

limit */

aux← hInFuzzySet(x1, bk, ck, c
e)

if aux ≥ min(hce , hice(bk)) then
limit← x1

else
break

end

end
ak ←rand([limit, bk]) /* Left vertex definition */

return(ak, bk, ck) /* Return the three vertices defining the fuzzy

set */

III.2 CLAST: CLAssification in data STreams 69

𝑚𝑖𝑛𝑖 𝑚𝑎𝑥𝑖

𝑎𝑘 = 𝑏𝑘 = 𝑐𝑘

𝒆𝒊

𝑐1𝑐2

(a)

𝑐1

𝑚𝑖𝑛𝑖 𝑚𝑎𝑥𝑖𝒆𝒊
𝑙𝑖𝑚𝑖𝑡

𝑐𝑘 = 𝑟𝑎𝑛𝑑(𝑏𝑘 , 𝑙𝑖𝑚𝑖𝑡)

𝑐2

𝑏𝑘

(b)

𝑚𝑖𝑛𝑖 𝑚𝑎𝑥𝑖𝒆𝒊 𝑐𝑘

𝑐1𝑐2

𝑏𝑘

(c)

𝑚𝑖𝑛𝑖 𝑚𝑎𝑥𝑖

𝑏𝑘

𝒆𝒊 𝑐𝑘

𝑐1𝑐2

𝑎𝑘 = 𝑟𝑎𝑛𝑑(𝑙𝑖𝑚𝑖𝑡, 𝑏𝑘)

𝑙𝑖𝑚𝑖𝑡

(d)

𝑚𝑖𝑛𝑖 𝑚𝑎𝑥𝑖𝒆𝒊 𝑐𝑘

𝑐1𝑐2

𝑎𝑘

𝑏𝑘

(e)

𝑚𝑖𝑛𝑖 𝑚𝑎𝑥𝑖

𝑏𝑘

𝒆𝒊 𝑐𝑘

𝑐1𝑐2

𝑎𝑘

 𝑨𝒊
𝒌

(f)

Figure III.3: Schematic example of the process followed in covering to define a fuzzy set
based on the input value ei.

balance among the processed samples, and

m(k, j) =


µAk(e) if j = ce

0 otherwise
(III.7)

λce adjusts the weight e has on the fitness based on its class and the class balance
observed in the samples received so far. Next, each weight ωkjt+1

is computed based on

cmk
jt+1

:

∀j : ωkjt+1
=

cmk
jt+1∑

i cm
k
it+1

(III.8)

70 Chapter III. CLAST: Learning rules for classification in data streams

Thus, if a rule k has only matched examples from class j, ωkj will be 1 and the
remaining weights 0. Those rules which match examples from different classes will have
weights ranging from 0 to 1, the sum of all the weights always remaining 1.

Lastly, the class weights previously updated are used to compute the fitness of the
rule F k

t+1 as follows:

F k
t+1 = ωkmaxt+1

−
∑

j|j 6=max

ωkjt+1
(III.9)

where we subtract the values of the other weights from the weight with maximum value
ωkmax. It is worth noting that: (1) this way of computing fitness is aimed at favoring
classifiers which match samples of one single class, and (2) zero or negative fitness is
possible (e.g., if there are more than two classes and all the class weights are the same).

Once fitness has been updated, the experience of the rule expk is increased by one
and the correct set size of the classifiers in [C] is updated. This correct set size is computed
as the arithmetic average of the sizes of all the correct sets in which the classifier has
participated.

III.2.2.4 Rule discovery component

This component is aimed at discovering new promising rules. For this purpose, a steady-
state niche-based genetic algorithm (GA) is used. The GA is applied to the classifiers
included in [C]. The niching is, therefore, provided by the GA being applied to rules that
match the same input with a degree greater than zero and advocate the same class.

The GA is triggered only when the average time since its last application on the
classifiers in [C] surpasses the threshold θGA (user-defined parameter). This discovery
component selects two parents p1 and p2 from [C] to generate offspring ch1 and ch2
by means of crossover and mutation. Note that the non-generational but steady-state
character of this GA allows it to function in an online way.

Proportionate selection (Godberg, 1989) is employed for parent selection, and the
probability for a classifier k of being selected is:

pksel =


(Fk)v ·µ

Ak
(e)∑

i∈[C]|F i>0

(F i)v · µAi(e)
if F k > 0

0 otherwise

(III.10)

where v > 0 is a constant that regulates the pressure towards maximally accurate rules.
The crossover operator works in a parent-centric way (Garćıa-Mart́ınez et al., 2008; Lozano
et al., 2004) creating one child in the neighborhood of each of the parents and defining the
range of the neighborhood based on the distance between both parents. The condition of
the child includes the same variables as the condition of the main parent. Lets {ap1 , bp1 , cp1}

III.2 CLAST: CLAssification in data STreams 71

be the left, middle and right vertices of the fuzzy set of the ith variable in the condition of
p1; {ap2 , bp2 , cp2} the vertices of that same variable in p2, and ch1 the offspring centered
on p1. The parent-centric crossover operator generates a fuzzy set for ch1 defined by the
following ach1 , bch1 and cch1 vertices:

Iv = vp2 − vp1 ; v ∈ {a, b, c} (III.11a)

bch1 = rand([min(bp1 , bp1 + Ib · α),max(bp1 , bp1 + Ib · α)]) (III.11b)

ach1 = rand([min(bch1 , ap1 , ap1 + Ia · α),min(bch,max(ap1 , ap1 + Ia · α))]) (III.11c)

cch1 = rand([max(min(cp1 , cp1 + Ic · α), bch1),max(cp1 , cp1 + Ic · α, bch1)]) (III.11d)

where α ∈ [0.5, 1] determines the spread associated with the probability distributions used
to create offspring. If a variable is included in p1 but not in p2, the fuzzy set from p1 is
just copied into ch1. For ch2, p1 and p2 roles are interchanged.

Then, the offspring created through the crossover operator may be mutated. Each
variable in the condition of the new classifier is impacted by mutation with probability µ. If
selected, the variable is affected in one of the two following ways: expansion or contraction.
In expansion, new vertices a′ch and c′ch are generated such that a′ch <= ach and c′ch >= cch,
where ach and cch are the vertices before mutation. In the case of contraction, instead of
looking for increasing the area covered by the fuzzy set we are looking for decreasing it.
Therefore, new vertices a′ch and c′ch are generated such that a′ch >= ach and c′ch <= cch. In
both cases, expansion and contraction, the logic of the process followed to generate new
external vertices is analogous to the one of the fuzzy set generalization process used in
covering. In addition, the mutation operator can also add or remove variables from the
condition of the classifier, provided that the condition is not left empty. The probability
of adding or removing one variable is based on the class ratios of the variables forming
the condition of the classifier. Such class ratios are estimated based on the histograms
maintained by the algorithm.

Before being inserted in the population, the new offspring is compare with both
its parents. If it is not identical to any of them, we look for the most general classifier
from [C] that can subsume the offspring. If no subsumer is found, the new classifier
is inserted in the population. Subusmption mechanism (Section III.2.2.7) prevents the
creation of classifiers with specific conditions when there already are more general and, at
least, equally accurate rules in the population which cover the same region of the feature
space.

III.2.2.5 Replacement mechanism

If the maximum size of the population has been reached, classifiers need to be removed
from [P]. Each classifier in [P] has a deletion probability proportional to its numerosity
num and its average correct set size cs. Furthermore, if the power of its fitness (F k)v,
taking into account on how many samples it is based (expk), is lower than the population

72 Chapter III. CLAST: Learning rules for classification in data streams

average fitness power ((F k + εk)v < F[P] where F[P] = (1/N)
∑

j∈[P](F
j)v), the deletion

probability of the classifier is further increased. Thereby, the deletion probability pkdel of
each classifier k is computed as follows:

εk =

√
R2 · log(1/δ)

2 · expk
(III.12a)

dk =


cs·num·F[P]

(Fk)ν
, if (F k + εk)ν < F[P]

cs · num, otherwise

(III.12b)

pkdel =
dk∑

∀j∈[P]

dj
(III.12c)

Note that a Hoeffding-kind bound (Hulten et al., 2001; Hoeffding, 1994) is used to decide
if the deletion probability of the classifier should be further increased or not. In the
computation of εk, R is the range of the fitness, and δ and ν are user-defined parameters.
δ establishes the confidence level (1− δ) with which F k ∈ [F k− εk, F k + εk]. The inclusion
of ε allows to take into account the experience of the rule and, therefore, the soundness
of its fitness. Hence, it is possible to avoid penalizing certain apparently poorly fit rules
based on unreliable fitness values. The threshold is more demanding when the fitness of
the classifier is consider sounder. Moreover, rigid user-defined threshold are avoided.

This kind of deletion probability pushes toward the removal of classifiers belonging
to large correct sets at the same time that it encourages the search of highly fit classifiers
by increasing the deletion probability of those rules whose fitness is significantly lower
than the population average. Therefore, it pursues to avoid the search for fit classifiers
being done at the expense of significant diversity reduction, which would mean ceasing to
cover certain areas of the feature space.

III.2.2.6 Histogram update

At the end of each learning iteration, the algorithm updates the histograms of class ce to
which e belongs. The histogram of ce for each input variable is updated as follows:

H t+1
iceφi

= H t
iceφi

+ 1, ∀i ∈ {1, ..., n} (III.13)

where φi is the bin where ei lies.

III.2.2.7 Subsumption Mechanism

As mentioned before, this mechanism allows to reduce redundancies between the rules
included in the population and acts as a mean to push [P] towards generalization (Wilson,

III.3 Comparison of CLAST to several machine learning techniques 73

1998). For a rule ri to be considered as a candidate subsumer of another rule rj, it must
meet the following two requirements: (1) ri must have a similar or better fitness than rj
(that is, F i − εi ≥ 0.9 · (F j + εj)), and (2) ri needs to be more general than rj. A rule ri
is more general than rj if all the variables in the condition of ri are also included in rj,
and the area covered by the fuzzy set in rj is included in the area of the fuzzy set in ri for
each one of its variables. Every time a rule ri subsumes a rule rj, the numerosity of the
subsumer ri increases while rj is removed from the population.

This mechanism is employed under exploration mode at two different points: (1) in
GA before inserting the offspring into [P], and (2) at the end of learning iterations when
each rule in [P] is checked for subsumption with each other rule in [P].

III.2.3 Exploitation mode

Under exploitation mode, the rules in [P] work together to predict the class of a test sample.
The population is searched for those classifiers that meet the following two conditions: (1)
the membership degree of the test sample for each of the variables in the condition of the
classifier is greater than θµ, and (2) the fitness of the classifier can be said to be greater
than zero with a high level of confidence (F k − εk > 0). Each classifier k in [P] that meets
these two conditions emits a weighted vote vkc for the class c it advocates:

vkc = (F k − εk) · µAk(e) (III.14)

The votes of all the classifiers are counted and the most voted class is returned as the
predicted one. In case of a tie between classes the fittest rule decides.

Figure III.4 represents which areas of the feature space for the banana dataset
(KEEL Repository (Alcalá-Fdez et al., 2011)) are covered by the rule population that
CLAST generates for this dataset. The area covered by each rule is colored based on which
class the rule advocates. In Figure III.4 (a) the whole area covered by the rule is colored,
that is, the membership degree of any sample in the colored area will be greater than zero
for both input variables. In Figure III.4 (b), the colored area match that in which the
membership degree for both variables is greater than 0.5. Therefore, each sample of the
banana dataset is represented covered by those rules that, in exploitation mode, would
vote to predict its class if (a) θµ = 0 or (b) θµ = 0.5. The color balance gives us an idea of
which class would be the most voted one at each point.

III.3 Comparison of CLAST to several machine

learning techniques

In this section, we analyze the performance of CLAST in comparison with different machine
learning techniques. For this purpose, we compare CLAST with two sets of classifiers:

74 Chapter III. CLAST: Learning rules for classification in data streams

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
At1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

At
2

(a)

0.0 0.2 0.4 0.6 0.8 1.0
At1

0.0

0.2

0.4

0.6

0.8

1.0

At
2

(b)

Figure III.4: Rule covering area for banana dataset (KEEL Repository (Alcalá-Fdez et al.,
2011)): (a) full covering area of the rules, and (b) central half of the covering area of the
rules (µAk(ei) ≥ 0.5). The color of the covering area of a rule is set according to which
class it advocates.

III.3 Comparison of CLAST to several machine learning techniques 75

data stream classifiers and traditional batch classifiers. With the former comparison, we
analyze the behavior of CLAST with respect to other data stream approaches that also
function in an incremental way, which may limit the maximum performance that can
be attained in some domains. With the latter comparison, we analyze whether, even
with the inherent limitations that an incremental learning design may impose, CLAST is
competitive with several of the most representative batch learners. Finally, we analyze
the behavior of CLAST and other data stream classifiers on four different real-world data
streams.

Below, we first describe the experimental methodology for each case, and then
present and analyze the results of the different algorithms.

III.3.1 Comparison with other data stream approaches

Throughout this section we compare the performance of CLAST with other data stream
classifiers based on different types of models.

III.3.1.1 Experimental setup

The behavior of CLAST is compared with the following seven data stream learners:
CVFDT, CVFDTNB, CVFDTNBA, HAT, VFDR, AWEC and DWM. CVFDT (Hulten
et al., 2001) is an extension of the well known Very Fast Decision Tree (VFDT) (Domingos
and Hulten, 2000) suitable for data streams in which there is concept changing. CVFDTNB

incorporates to CVFDT the Näıve Bayes classification strategy at leaves as proposed by
Gama for VFDT (Gama et al., 2003). CVFDTNBA (Bifet et al., 2010a) is an extended
version of CVFDT which monitors the error rate of majority class and Näıve Bayes
decisions at every leaf and decides to employ the option that has been more accurate
in past cases. HAT (Bifet and Gavaldà, 2009a) is based on an adaptive Hoeffding Tree
that uses ADWIN to monitor performance of branches on the tree and replace them with
new branches when their accuracy decreases in case the new branches are more accurate.
VFDR (Kosina and Gama, 2015) is an incremental rule learning classifier that follows a
similar learning process to VFDT. AWEC (Wang et al., 2003a) is an ensemble approach
where each classifier is weighted based on its expected classification accuracy. DWM
(Kolter and Maloof, 2007) is also an ensemble approaches; it uses four different mechanisms
to cope with concept drift.

The performance of the different approaches is compared based on their results in
22 different datasets. A summary of the main characteristics of each of these datasets is
shown in Table III.1.

To evaluate and compare the performance of the classifiers, a test-then-train scheme
is followed. This evaluation scheme is designed specifically for streaming settings. Using
test-then-train evaluation each example has a double function: first it is used for testing
and then for training the classifier. The examples are processed sequentially, in the same

76 Chapter III. CLAST: Learning rules for classification in data streams

Table III.1: Properties of the datasets. The columns of the table describe: the name of
the dataset (Dataset), the number of instances (#Inst), the number of attributes (#Att),
the number of real attributes (#Re), the number of integer attributes (#In), the number
of nominal attributes (#No), the number of classes (#Cl), the proportion of instances of
the minority class (%Min), and the proportion of instances of the majority class (%Maj).

Alias Dataset #Inst #Att #Re #In #No #Cl %Min %Maj

app appendicitis 106 7 7 0 0 2 19.80 80.20
aut automobile 156 25 7 8 10 5 8.30 30.80
ban banana 5300 2 2 0 0 2 44.80 55.20
bnd bands 365 19 11 8 0 2 37.00 63.00
bre breast 277 9 0 1 8 2 29.20 70.80
car car 1728 6 0 0 6 4 3.80 70.00
cov covtypeNorm 581012 54 10 44 0 7 0.50 48.80
eco ecoli 332 6 0 6 0 6 1.51 43.10
hay hayes-roth 160 4 0 4 0 3 19.40 40.60
hea heart 270 13 0 13 0 2 44.40 55.60
kdd kddcup 494043 41 15 23 3 23 1.6e-3 56.80
mam mammographic 961 4 0 4 0 2 46.30 53.70
pag page-blocks 5472 10 4 6 0 5 0.50 89.80
pim pima 768 8 2 6 0 2 34.90 65.10
sah saheart 462 9 5 3 1 2 34.60 65.40
skn skin 245057 3 0 3 0 2 20.80 79.30
tae tae 151 5 0 5 0 3 32.50 34.40
tic tic-tac-toe 958 9 0 0 9 2 34.70 65.30
tit titanic 891 9 1 3 5 2 38.38 61.62
veh vehicle 846 18 0 18 0 4 23.50 25.80
yea yeast 1484 8 8 0 0 10 0.30 31.20
wdb wdbc 569 30 30 0 0 2 37.26 62.74

III.3 Comparison of CLAST to several machine learning techniques 77

order they are received. In this way, the model is tested in all the available examples and
testing is always done on examples that the algorithm has not yet seen, from which it has
not been able to learn. For each dataset, the classifiers are tested on a random sample of
100,000 examples. Thus, the average number of times the algorithms will see each example
will depend on the original size of the dataset.

The performance is assessed based on two measures: (1) the test accuracy rate,
i.e., the ratio of correct predictions in previously unseen instances; and (2) the G-mean.
G-mean is included as evaluation measure due to the class imbalance ratios present in
some of the datasets. In a binary problem, G-mean is calculated as the geometric mean of
the True Positive Rate (TPR) and the True Negative Rate (TNR):

G-mean =

√
TP

TP + FN
· TN

TN + FP
=
√
TPR · TNR (III.15)

where TP or True Positives is the number of correct positive predictions; FN or False
Negatives is the number of positive examples wrongly classified as negative; TN or True
Negatives is the number of correct negative predictions, and FP is the number of negative
examples wrongly classified as positive. In an imbalance problem where the negative class
is the minority one, classifiers are keen on increasing TP at the expense of also increasing
FP. G-mean tries to maximize the success in both classes with a good balance between
them. Moreover, G-mean can be easily defined for a multiclass problem as:

G-mean =
(true c1
|c1|

· true c2
|c2|

· ... · true cm
|cm|

)1/m
(III.16)

where trueci is the number of ith class examples correctly classified; |ci| the total number
of examples in class ci, and m is the number of classes.

All the classifiers, except for CLAST, were run using Scikit-multiflow (Montiel
et al., 2018), a python library that implements several data stream classifiers (many of
them based on MOA (Bifet et al., 2010a)). We followed the recommended parameter
values given in Scikit-multiflow for each classifier. Likewise, we also maintain the same
CLAST parameters for all the experiments: N = 5000 (population maximum size), η = 20,
θsub = 500, θGA = 50, δ = 0.05 and ν = 10. The results shown below are averages over
thirty runs with different seeds

The results were statistically analyzed according to the considerations and rec-
ommendations pointed out in Derrac et al. (2011). We used non parametric statistical
tests to compare the results achieved by the different learning approaches. Parametric
tests are based on assumptions which must be satisfied for the tests to be effective. Such
assumptions are usually violated when analyzing the performance of stochastic algorithms
(Sheskin, 2020; Garćıa et al., 2009). Therefore, nonparametric statistical tests are rec-
ommended (Derrac et al., 2011; Demšar, 2006) since they relax the requirements on the
input data and provide a practical tool to be used when the assumptions required by the
parametric tests cannot be satisfied.

78 Chapter III. CLAST: Learning rules for classification in data streams

We apply multiple comparison statistical procedures to test the null hypothesis which
states that all the algorithms perform equally on average. In particular, the well-known
Friedman’s test (Friedman, 1937, 1940) is used. The Friedman’s test is the equivalent of the
repeated measures ANOVA in nonparametric statistical procedures; thus, it is a multiple
comparisons test that seeks to detect significant differences between the behavior of two or
more algorithms. If Friedman’s null hypothesis is rejected, we employ the nonparametric
post-hoc Finner procedure (Finner, 1993) to compare CLAST (control-method) to every
other learner. From the ranking obtained through Friedman’s test, the p-values of the
required family of hypotheses for such comparisons can be computed. However, these
p-values are not valid for multiple comparisons (Derrac et al., 2011), because they do not
take into account the remaining comparisons belonging to the family. Adjusted p-values can
deal with this problem. The Finner procedure adjusts the value of α in a step-down manner.
It rejects hypotheses H1 to Hi−1 if i is the smallest integer so that pi > 1− (1− α)(k−1/i)

where pi is the unadjusted p-value of Hi, and the adjusted p-value of each hypothesis Hi is
computed as APVi = minv, 1, where v = max1− (1− pj)(k−1)/j : 1 ≤ j ≤ i. Finner test
was considered a good option because, being easy to comprehend, it usually offers better
results than other post-hoc tests like Bonferroni-Dunn test (excessively conservative) or,
even, Holm, Hochberg or Rom (Derrac et al., 2011).

Pairwise comparison tests, such as Wilcoxon signed ranks test, are not recommended
to extract conclusions involving more than one pairwise comparison because an accumulated
error coming from its combination will be obtained. However, in a multiple comparison,
the set of algorithms included can determine the results of the analysis, whereas a
pairwise comparison is not influenced by any external factor. Hence, we also compare the
performance of CLAST with each other learner by means of the nonparametric Wilcoxon
singed-ranks test (Wilcoxon, 1992) to complement the statistical analysis.

III.3.1.2 Results

Below, we compare CLAST to the mentioned set of data stream classifiers. Tables III.2
and III.3 show the performance of the classifiers on the collection of datasets in terms
of accuracy and G-mean, respectively. Both tables also include the ranks of the learners
according to their performance in each of the problems.

Moreover, the results shown in these two first tables are summarized in Figure III.5
and Table III.4. Figure III.5 represents the distribution of the values of accuracy and
G-mean for each learner, while Table III.4 shows the average per algorithm. The range of
the accuracy or G-mean values obtained by the classifiers varies considerably depending
on the dataset. To avoid that the particularities of the different problems can affect the
weight they have on the global comparison, we normalized the accuracy and G-mean values
for each problem. Both Figure III.5 and Table III.4 are based on such normalized values.

Some remarks can be commented based on the experimental results. First, CLAST
is the classifier that exhibits the highest level of performance. It achieves both the best

III.3 Comparison of CLAST to several machine learning techniques 79

Table III.2: Test accuracy and ranking positions of the different online approaches for
each dataset (Data). The results collected in the table are referred to the final time stamp
when all the examples in the stream have been used for both test and train.

Data CLAST CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

app 93.71 (3) 91.97 (5) 95.73 (2) 95.78 (1) 88.13 (7) 93.51 (4) 88.55 (6) 86.32 (8)
aut 98.11 (1) 60.33 (7) 83.84 (2) 83.83 (3) 73.64 (4) 72.01 (5) 71.49 (6) 53.70 (8)
ban 85.01 (1) 44.83 (2) 44.68 (7) 44.69 (6) 44.64 (8) 44.72 (5) 44.74 (4) 44.83 (3)
bnd 93.33 (1) 72.35 (5) 82.47 (2) 82.39 (3) 67.93 (8) 73.87 (4) 70.17 (6) 68.12 (7)
bre 95.04 (1) 82.30 (5) 90.30 (3) 90.39 (2) 78.77 (6) 82.95 (4) 75.57 (7) 74.66 (8)
car 96.59 (1) 81.43 (5) 92.37 (2) 92.33 (3) 79.44 (6) 90.67 (4) 76.40 (7) 71.47 (8)
cov 68.09 (1) 59.57 (6) 64.17 (4) 65.54 (3) 63.37 (5) 65.92 (2) 57.50 (7) 54.17 (8)
eco 94.81 (1) 71.09 (8) 86.90 (3) 87.35 (2) 81.21 (6) 86.33 (4) 84.19 (5) 75.87 (7)
hay 86.71 (4) 83.48 (5) 88.22 (1) 88.21 (2) 77.66 (6) 87.18 (3) 74.11 (8) 77.34 (7)
hea 91.53 (3) 84.00 (7) 92.80 (1) 92.80 (1) 83.40 (8) 87.89 (4) 84.27 (6) 85.60 (5)
kdd 98.16 (1) 86.51 (7) 96.70 (4) 97.87 (2) 54.24 (8) 96.70 (3) 96.66 (5) 96.56 (6)
mam 80.25 (2) 79.26 (4) 79.29 (3) 81.62 (1) 75.91 (8) 78.92 (6) 79.13 (5) 78.67 (7)
pag 93.79 (2) 91.88 (5) 86.76 (7) 94.02 (1) 91.95 (4) 84.30 (8) 92.27 (3) 88.59 (6)
pim 86.09 (1) 76.98 (6) 81.60 (3) 81.96 (2) 75.02 (8) 77.88 (4) 77.04 (5) 75.76 (7)
sah 90.72 (1) 75.08 (5) 81.18 (3) 81.47 (2) 71.91 (7) 76.07 (4) 72.42 (6) 71.39 (8)
skn 93.23 (6) 95.87 (4) 97.82 (2) 97.86 (1) 93.80 (5) 97.29 (3) 91.97 (8) 92.41 (7)
tae 88.82 (1) 62.41 (5) 72.98 (3) 73.05 (2) 54.70 (6) 65.64 (4) 52.47 (7) 52.19 (8)
tic 96.31 (1) 79.93 (5) 88.23 (3) 88.21 (4) 73.87 (6) 90.90 (2) 72.10 (7) 70.27 (8)
tit 88.01 (6) 94.14 (4) 98.92 (3) 98.92 (2) 98.99 (1) 88.21 (5) 79.48 (7) 77.96 (8)
veh 87.60 (1) 59.49 (6) 72.98 (2) 72.93 (3) 60.27 (5) 65.31 (4) 55.04 (7) 43.49 (8)
wdb 94.98 (6) 95.15 (5) 98.08 (3) 98.35 (2) 98.77 (1) 96.17 (4) 94.80 (7) 93.86 (8)
yea 63.91 (1) 46.18 (7) 55.37 (3) 55.35 (4) 52.07 (6) 54.40 (5) 58.32 (2) 31.98 (8)

Table III.3: G-mean and ranking positions of the different online approaches for each
dataset (Data). The results collected in the table are referred to the final time stamp
when all the examples in the stream have been used for both test and train.

Data CLAST CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

app 93.27 (2) 84.59 (5) 93.37 (1) 92.83 (3) 78.54 (8) 89.09 (4) 81.61 (6) 79.56 (7)
aut 98.24 (1) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 69.72 (2) 0.00 (3)
ban 84.84 (1) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2)
bnd 92.80 (1) 59.71 (6) 79.51 (2) 78.87 (3) 46.38 (8) 64.80 (4) 60.27 (5) 47.10 (7)
bre 93.00 (1) 72.21 (5) 86.74 (2) 86.23 (3) 69.28 (6) 76.19 (4) 66.64 (8) 66.73 (7)
car 90.93 (1) 27.14 (8) 75.48 (2) 75.13 (3) 54.35 (5) 73.07 (4) 31.19 (7) 34.23 (6)
cov 26.63 (1) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2)
eco 93.98 (1) 1.33 (8) 84.23 (3) 84.18 (4) 76.50 (6) 85.26 (2) 83.66 (5) 69.85 (7)
hay 86.46 (1) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2)
hea 91.40 (1) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2)
kdd 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1)
mam 80.38 (2) 79.35 (4) 79.36 (3) 81.77 (1) 75.87 (8) 79.04 (6) 79.32 (5) 78.87 (7)
pag 60.26 (1) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2)
pim 84.43 (1) 71.80 (6) 78.55 (2) 78.19 (3) 66.83 (8) 73.57 (4) 71.94 (5) 71.25 (7)
sah 89.81 (1) 64.96 (7) 77.08 (2) 76.13 (3) 63.48 (8) 70.92 (4) 68.72 (6) 68.87 (5)
skn 95.10 (1) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2)
tae 88.65 (1) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.0 (2)
tic 95.51 (1) 71.62 (5) 85.72 (3) 85.54 (4) 64.90 (6) 89.76 (2) 50.77 (7) 48.83 (8)
tit 86.91 (6) 94.04 (4) 98.87 (3) 98.90 (2) 98.96 (1) 87.79 (5) 78.47 (7) 75.89 (8)
veh 87.28 (1) 53.51 (6) 72.41 (2) 72.31 (3) 58.45 (5) 64.43 (4) 52.36 (7) 39.32 (8)
wdb 93.91 (6) 94.29 (5) 98.11 (3) 98.17 (2) 98.66 (1) 95.91 (4) 93.86 (7) 93.0 (8)
yea 58.49 (1) 0.0 (8) 42.0 (3) 41.47 (4) 39.27 (5) 42.85 (2) 35.69 (6) 19.21 (7)

80 Chapter III. CLAST: Learning rules for classification in data streams

CLAST CVFDT CVFDTNB CVFDTNBA HAT VFDR AWEC DWM

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ac

cu
ra

cy

(a)

CLAST CVFDT CVFDTNB CVFDTNBA HAT VFDR AWEC DWM

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
g-

m
ea

n

(b)

Figure III.5: Distribution of the results achieved by each classifier in terms of: (a)
normalized accuracy, and (b) normalized G-mean.

Table III.4: Comparison of the average performance of CLAST with the performance of
the online learners.

CLAST CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

Accuracy Avg 0.87 (1) 0.38 (5) 0.71 (3) 0.78 (2) 0.31 (6) 0.53 (4) 0.27 (7) 0.12 (8)
Rank 2.09 (1) 5.36 (5) 3.00 (3) 2.36 (2) 5.86 (6) 4.14 (4) 5.95 (7) 7.18 (8)

G-mean Avg 0.93 (1) 0.21 (7) 0.5 (3) 0.51 (2) 0.26 (6) 0.38 (4) 0.25 (5) 0.15 (8)
Rank 1.55 (1) 4.32 (6) 2.23 (2) 2.55 (3) 4.23 (5) 3.05 (4) 4.45 (7) 5.00 (8)

accuracy and G-mean in most of the problems (accuracy: 14/22, G-mean: 17/22). Whether
we look at the distribution shown in the boxplots or just at the average, the advantage of
CLAST over the next best performing classifiers (CVFDTNBA and CVFDTNB) is clear.

Figure III.5 shows how the variability of the results is significantly greater in terms
of G-mean than in terms of accuracy for several algorithms, which also see their average
performance diminished. Some of the datasets employed present a certain degree of class
imbalanced (see Table III.1). Classifiers that obtain good results in terms of accuracy, such
as CVFDTNBA, CVFDTNB or VFDR, fail to classify the instances of the minority class of
these problems correctly. This penalizes their G-mean. Nonetheless, CLAST improves its
relative results when using G-mean as evaluation metric. This points to the fact that the
classifier is capable of learning all classes, even minority ones, and therefore maintains a
good balance in the accuracy with which it classifies the examples of all of them.

We conducted a statistical test analysis on the results. First, we applied Friedman’s
test which rejected (α = 0.05) the median performance of all the algorithms being
equivalent. Having Friedman’s test rejected its null hypothesis, we applied the post-hoc
Finner test (α = 0.05) to compare the performance of CLAST with that of each other
classifier. According to Finner test, CLAST improves the performance of the other seven
data stream classifiers but such improvement is not statistically significant for CVFDTNB

or, in terms of accuracy, for CVFDTNBA. Finally, to complement our analysis, we also
carried out pairwise comparisons between CLAST and every other approach by means

III.3 Comparison of CLAST to several machine learning techniques 81

of Wilcoxon signed ranks test. While Finner test found the improvement achieved by
CLAST non-significant in some cases, Wilcoxon test finds that CLAST significantly
improves the performance of each one of the other seven learners for both accuracy and
G-mean. Tables III.5 and III.6 sum up the results of each test for the comparisons
conducted between CLAST and the rest of the data stream classifiers. The symbols ⊕
and 	 mean that CLAST significantly improved/degraded the performance of the method
in the corresponding column. Likewise, the symbols + and − denote a non-significant
improvement/degradation.

Table III.5: Comparison of the performance of CLAST with the remaining online learners
by means of a post-hoc Finner test after Friedman’s test rejected null hypothesis of equality
of all learners. The same comparison is conducted for both accuracy and G-mean.

CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

Accuracy ⊕ + + ⊕ + ⊕ ⊕
G-mean ⊕ + ⊕ ⊕ ⊕ ⊕ ⊕
1 ⊕/	: CLAST significantly improves/degrades the performance of the method in the column

+/−: CLAST improves/degrades the performance of the method in the column

Table III.6: Pairwise comparison of the performance of CLAST with the remaining online
learners by means of a Wilcoxon signed ranks test. Same comparison is conducted for
both accuracy and G-mean.

CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

Accuracy ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
G-mean ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
1 ⊕/	: CLAST significantly improves/degrades the performance of the method in the column

+/−: CLAST improves/degrades the performance of the method in the column

Previously we have compared the performance of the different approaches based
on the results obtained once all the examples have been processed. In a test-then-train
scheme, every example is first used for evaluation and, then, for learning, and the accuracy
(or G-mean) at a certain instant refers to all the examples received up to that instant.
Therefore, it is possible to monitorize the performance as the examples are processed.
Figure III.6 illustrates the evolution of the average normalized performance of each classifier.
CLAST obtains the best performance, maintaining a practically constant advantage over
the next classifier. The same effect is observed for both accuracy and G-mean. In general,
the algorithms keep identical positions all the time.

Note that the performances of all the algorithms follow a constant trend. This
behavior is not strange given that the majority of the addressed problems are not data
stream problems and, in addition, the figure shows the average performance of twenty
datasets. Hence, the objective of the figure is not to analyze the performance swings that

82 Chapter III. CLAST: Learning rules for classification in data streams

would be expected in a real-world data stream problem, but to check whether the scenario
found once all the examples have been processed is an anomaly or the dominant pattern.

20000 40000 60000 80000 100000
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ac

cu
ra

cy

CLAST
CVFDT

CVFDTNB

CVFDTNBA

HAT
VFDR

AWEC DWM

(a)

20000 40000 60000 80000 100000
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
G-

m
ea

n

CLAST
CVFDT

CVFDTNB

CVFDTNBA

HAT
VFDR

AWEC DWM

(b)

Figure III.6: Evolution of the average performance in the collection of datasets as the
amount of data processed increases. Performance is assessed by: (a) accuracy and (b)
G-mean.

III.3.2 Comparison with batch approaches

In this section we compare the performance of CLAST with six widely used learning
algorithms. These six learners are general purpose classifiers, i.e., not designed for data
streams, that do not implement an incremental learning strategy but look at the dataset
as a whole.

III.3.2.1 Experimental setup

The methodology followed is similar to the one presented in the previous section. However,
some aspects had to be adapted to the use of static classifiers. We selected 19 out of
the collection of 22 problems, whose characteristics are summed up in Table III.1. Skin,
covtypeNorm and kddcup are left out of this set of experiments due to their large size.
Both test accuracy rate and G-mean were used to measure the performance of the different
approaches.

Traditional offline classifiers are not designed to process data sample by sample
in a flow manner. They are not prepared to learn in an incremental way. Hence, the
test-then-train experimental methodology used in the previous section is discarded here.
In this case, the experiments ran on 90/10 train-test partitions. CLAST uses the same
train-test partitions than the rest of the methods but we allow the algorithm to perform
10 rounds over the training set, i.e., it can see each training example 10 times. Thirty
partitions of each dataset are generated based on thirty different seeds. Hence, each sample
is used on average three times for testing and the remaining 27 times for training. The
results shown below are averages over the thirty runs.

III.3 Comparison of CLAST to several machine learning techniques 83

The performance of CLAST is compared with the following six widely used learning
algorithms: Gaussian Naive Bayes (NB), Decision Tree (DT), k-Nearest Neighbors (kNN),
Support Vector Classification (SVC), Random Forest (RF) and Bagging. These six learners
are representative of different types of knowledge representation and learning strategies.
NB (Zhang, 2004) is a Naive Bayes classifier in which the likelihood of the features is
assumed to be Gaussian. DT is an optimized version of the CART algorithm (Breiman
et al., 1984). kNN (Cover and Hart, 1967), instance-based learner where each example is
classified based on a simple majority vote of the k-nearest neighbors, no internal model is
built by the learner. SVC (Chang and Lin, 2011) is a Support Vector Machine approach
for classification problems which implements ”one-versus-one” strategy for multi-class
scenarios. RF (Breiman, 2001) and Bagging (Breiman, 1996) are both ensemble meta-
estimators that fit a number of base classifiers on different sub-samples of the original
dataset and then aggregate their predictions to decide a final prediction. In RF the base
classifiers are always decision trees and each sub-sample implies a selection of both samples
and features. In contrast to the original publication, the scikit-learn implementation
combines classifiers by averaging their probabilistic prediction, instead of letting each
classifier vote for a single class. Different types of learners can be used as base classifiers
in Bagging, although we also use decision trees, and the random sub-samples are drawn as
random subset of samples with replacement.

All these learners were run using Scikit-learn (Pedregosa et al., 2011). We followed
the recommended parameter values given in Scikit-multiflow for each classifier. We only
changed the number of neighbors k in kNN and the number of estimators n in RF and
Bagging. We tried several values of both k and n for all the datasets, and selected k = 3
and n = 5 since they generally allowed to achieve higher performance ratios. For CLAST,
we use the same configuration as in the previous section: N = 5000 (population maximum
size), η = 20, θsub = 500, θGA = 50, δ = 0.05 and ν = 10. We did not introduce the same
learner with different parameter settings in the comparison to avoid biasing the statistical
analysis of the results.

For the statistical analysis of the results we followed the same methodolgy employed
before. Therefore, the performance of the different algorithms was compared in terms of
both accuracy and G-mean by means of Friedman’s test (Friedman, 1937, 1940), post-hoc
Finner test (Finner, 1993), and Wilcoxon signed ranks test (Wilcoxon, 1992).

III.3.2.2 Results

In the following, we compare CLAST to the mentioned set of general-purpose learners.
Table III.7 shows the accuracy of the classifiers on the collection of datasets, while Table
III.8 shows the G-mean computed on the same experimental results. Both tables also
include the rank of each algorithm according to its performance in each of the problems.

Additionally, Figure III.7 and Table III.9 sum up the behavior of the classifiers.
The former shows the performance distribution of each algorithm on the collection of

84 Chapter III. CLAST: Learning rules for classification in data streams

Table III.7: Test accuracy and rank of CLAST and the different offline approaches for
each dataset.

Data CLAST NB DT kNN SV C RF Bagging

app 77.64 (7) 86.15 (4) 80.97 (6) 85.15 (5) 87.00 (2) 87.09 (1) 86.82 (3)
aut 62.99 (4) 52.58 (5) 83.35 (3) 41.76 (6) 40.78 (7) 88.68 (1) 87.82 (2)
ban 87.29 (5) 61.29 (7) 87.11 (6) 88.35 (4) 90.30 (1) 89.33 (2) 89.16 (3)
bnd 59.67 (6) 46.01 (7) 62.28 (5) 65.69 (3) 63.03 (4) 74.08 (1) 72.88 (2)
bre 72.56 (3) 73.53 (1) 64.23 (7) 67.51 (6) 70.78 (4) 72.67 (2) 70.16 (5)
car 91.40 (5) 62.65 (7) 98.30 (1) 85.15 (6) 93.60 (4) 97.98 (3) 98.19 (2)
eco 74.00 (6) 60.54 (7) 78.01 (5) 81.71 (4) 84.92 (2) 85.83 (1) 82.84 (3)
hay 77.50 (5) 67.50 (6) 81.67 (4) 66.67 (7) 82.29 (1) 81.88 (2) 81.88 (2)
hea 80.86 (4) 84.32 (2) 75.93 (5) 67.65 (7) 69.14 (6) 84.44 (1) 82.10 (3)
mam 78.22 (1) 77.90 (2) 74.44 (7) 76.87 (6) 77.49 (3) 77.25 (4) 77.04 (5)
pag 93.87 (5) 88.63 (7) 96.24 (3) 95.77 (4) 90.47 (6) 97.37 (1) 97.13 (2)
pim 75.78 (2) 75.66 (3) 69.88 (7) 69.96 (6) 76.04 (1) 75.65 (4) 75.48 (5)
sah 67.10 (4) 71.35 (1) 61.62 (6) 58.07 (7) 66.30 (5) 67.17 (3) 68.18 (2)
tae 50.38 (5) 51.00 (4) 63.67 (3) 40.92 (6) 36.03 (7) 63.86 (2) 64.76 (1)
tic 95.75 (2) 71.19 (7) 87.51 (5) 79.48 (6) 89.53 (4) 94.92 (3) 96.14 (1)
tit 79.16 (3) 78.23 (4) 78.16 (5) 68.13 (7) 68.76 (6) 82.98 (1) 82.98 (2)
veh 63.43 (5) 45.19 (7) 71.35 (3) 65.10 (4) 49.17 (6) 74.75 (2) 75.10 (1)
wdb 93.15 (4) 94.14 (3) 93.03 (5) 92.56 (6) 91.68 (7) 95.90 (2) 95.90 (1)
yea 52.82 (5) 14.74 (7) 52.40 (6) 55.59 (4) 60.30 (3) 62.08 (1) 60.72 (2)

Table III.8: G-mean and rank of CLAST and the different offline approaches for each
dataset.

Data CLAST NB DT kNN SV C RF Bagging

app 63.53 (4) 72.22 (1) 60.07 (6) 62.36 (5) 59.84 (7) 65.16 (2) 64.39 (3)
aut 28.97 (4) 5.550 (5) 58.38 (3) 0.00 (6) 0.00 (6) 76.16 (1) 73.01 (2)
ban 87.25 (5) 51.67 (7) 86.99 (6) 88.06 (4) 89.74 (1) 89.05 (2) 88.92 (3)
bnd 58.57 (3) 36.18 (6) 57.67 (4) 56.42 (5) 0.00 (7) 65.88 (2) 66.32 (1)
bre 64.79 (1) 63.92 (2) 52.52 (5) 48.55 (6) 47.25 (7) 55.24 (3) 54.71 (4)
car 70.47 (5) 0.00 (7) 95.41 (2) 52.12 (6) 75.58 (4) 94.54 (3) 96.89 (1)
eco 25.99 (6) 0.00 (7) 32.51 (5) 65.00 (2) 72.45 (1) 59.43 (3) 52.59 (4)
hay 77.75 (5) 68.15 (6) 82.79 (2) 55.71 (7) 82.44 (4) 82.99 (1) 82.77 (3)
hea 80.30 (4) 83.59 (2) 75.02 (5) 65.59 (6) 63.50 (7) 83.75 (1) 81.38 (3)
mam 78.32 (1) 77.95 (2) 74.01 (7) 76.61 (6) 77.48 (3) 77.10 (4) 76.87 (5)
pag 58.20 (5) 53.21 (6) 78.95 (3) 68.15 (4) 0.00 (7) 82.24 (1) 80.64 (2)
pim 73.75 (1) 70.84 (2) 65.60 (6) 64.87 (7) 66.06 (5) 69.28 (4) 70.53 (3)
sah 66.32 (2) 68.55 (1) 56.31 (5) 46.95 (6) 19.47 (7) 57.06 (4) 58.53 (3)
tae 35.14 (4) 31.77 (6) 61.64 (2) 34.85 (5) 20.68 (7) 61.15 (3) 62.42 (1)
tic 94.51 (1) 44.30 (7) 85.19 (4) 71.89 (6) 84.07 (5) 92.83 (3) 94.30 (2)
tit 76.92 (4) 75.97 (5) 76.95 (3) 64.10 (6) 55.87 (7) 80.87 (2) 80.98 (1)
veh 55.88 (5) 37.78 (7) 68.60 (3) 60.18 (4) 44.01 (6) 70.86 (2) 71.84 (1)
wdb 91.57 (5) 93.01 (3) 92.84 (4) 91.38 (6) 89.07 (7) 95.27 (2) 95.45 (1)
yea 0.00 (4.5) 0.00 (4.5) 1.42 (1) 0.00 (4.5) 0.00 (4.5) 0.00 (4.5) 0.00 (4.5)

III.3 Comparison of CLAST to several machine learning techniques 85

problems by means of boxplots, while the latter presents the average performance and rank
of each classifier. As in the previous section, we first normalized the accuracy and G-mean
values for each problem and then averaged them or illustrated their distribution. This
way, we prevent the different characteristics of the problems from affecting their weight on
the global comparison. Different problems may present great differences in the minimum,
maximum and variance of classification performance.

CLAST NB DT kNN SVC RF Bagging

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ac

cu
ra

cy

(a)

CLAST NB DT kNN SVC RF Bagging

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
g-

m
ea

n

(b)

Figure III.7: Distribution of the results achieved by each classifier in terms of: (a)
normalized accuracy, and (b) normalized G-mean.

Table III.9: Comparison of the average performance of CLAST with the performance of
the offline learners.

CLAST NB DT kNN SV C RF Bagging

Accuracy Avg 0.67 (3) 0.41 (7) 0.59 (4) 0.42 (6) 0.56 (5) 0.95 (1) 0.92 (2)
Rank 4.26 (4) 4.79 (5) 4.84 (6) 5.47 (7) 4.16 (3) 1.95 (1) 2.47 (2)

G-mean Avg 0.68 (3) 0.47 (5) 0.67 (4) 0.41 (6) 0.30 (7) 0.82 (1) 0.81 (2)
Rank 3.53 (3) 4.42 (5) 4.00 (4) 5.21 (6) 5.26 (7) 2.37 (1.5) 2.37 (1.5)

Several observations can be drawn from the results. First, it is worth highlighting
the good average performance presented by CLAST. It is the third best method in
accuracy, G-mean and G-mean ranking, and the fourth in accuracy ranking. Hence, the
incremental learning process does seem not to limit the capabilities of CLAST for learning
the underlying class distribution of the problems. Its average performance is only clearly
surpassed by RF and Bagging. The two ensemble approaches exhibit a clear advantage
over the rest of the learners. In average, the behavior of CLAST is similar to DT and
SVC, and better than NB and kNN. Some of these observations can be extended, beyond
the average, to the distribution of performance across the problem collection (Figure III.7).
RF and Bagging are clearly outperforming the rest of the learners. CLAST performs
similarly to DT. This similarity is especially noticeable if the reference measure is G-mean.
NB and SVC present a particularly high variance. NB, SVC and kNN perform worse than
CLAST on most of the problems.

86 Chapter III. CLAST: Learning rules for classification in data streams

The results of the statistical tests support some of the observations outlined above.
Friedman’s test rejected the null hypothesis of equality of all learners. Post-hoc Finner test
found that the performance of CLAST can be considered statistically equivalent to that
of all the other learners. According to the results of Friedman and Finner tests, CLAST
outperforms NB, DT and kNN for both accuracy and G-mean, and SVC only for G-mean.
However, this improvement is not statistically significant. On the other hand, if CLAST
is compared in a pairwise way with each of the batch learners, Wilcoxon signed ranks
test considers that CLAST significantly improves NB, kNN and SVC (for G-mean), and
significantly degrades the performance of RF and Bagging.

Tables III.5 and III.6 sum up the results of Finner and Wilcoxon tests, respectively.
The symbols ⊕ and 	 imply that CLAST significantly improved/degraded the performance
of the method in the corresponding column. Likewise, the symbols + and − denote a
non-significant improvement/degradation.

Table III.10: Comparison of the performance of CLAST with the set of offline learners by
means of a post-hoc Finner test after Friedman’s test rejected null hypothesis of equality
of all learners. The same comparison is conducted for both accuracy and G-mean.

NB DT kNN SV C RF Bagging

Accuracy + + + − − −
G-mean + + + + − −
1 ⊕/	: CLAST significantly improves/degrades the performance

of the method in the column
+/−: CLAST improves/degrades the performance of the
method in the column

Table III.11: Pairwise comparison of the performance of CLAST with the set of offline
learners by means of a Wilcoxon signed ranks test. Same comparison is conducted for
both accuracy and G-mean.

NB DT kNN SV C RF Bagging

Accuracy ⊕ − ⊕ + 	 	
G-mean ⊕ − ⊕ ⊕ 	 	
1 ⊕/	: CLAST significantly improves/degrades the performance

of the method in the column
+/−: CLAST improves/degrades the performance of the
method in the column

III.3 Comparison of CLAST to several machine learning techniques 87

III.3.3 Real world data stream problems

In this section, we present the experiments conducted on different Real-World (RW) data
streams, where data are received in a flow manner and data distribution may vary over
time (concept drift), and compare the results achieved by CLAST with those of other data
stream classifiers.

III.3.3.1 Experimental setup

The methodology followed is equivalent to the one used in Section III.3.1. CLAST is
compared to the same set of seven online learners: CVFDT, CVFDTNB, CVFDTNBA, HAT,
VFDR, AWEC and DWM. By the same token, a test-then-train scheme is employed, and
the algorithms are compared according to both accuracy and G-mean. Nonetheless, in this
case, the algorithms are tested on four real-world data stream problems. Furthermore, we
analyze each problem independently, including the performance evolution of the algorithms
along each stream. Since we are dealing with real data stream problems, it is expected for
the performance evolution of the learners not to describe a steadily rising curve but to
suffer ups and downs.

Table III.12 summarizes the main characteristics of each dataset. Below, we
introduce each of the real-world problems and present the corresponding comparative
analysis between CLAST and the other online learners.

Table III.12: Properties of the RW datasets. The columns of the table describe: the name
of the dataset (Dataset), the number of instances (#Inst), the number of attributes (#Att),
the number of real attributes (#Re), the number of integer attributes (#In), the number
of nominal attributes (#No), the number of classes (#Cl), the proportion of instances of
the minority class (%Min), and the proportion of instances of the majority class (%Maj)

Alias Dataset #Inst #Att #Re #In #No #Cl %Min %Maj

eeg EEG Eye State 14980 14 14 0 0 2 44.90 55.10
pow Powersupply 29928 2 2 0 0 4 25.00 25.00
lon London Shared Bikes 17414 11 4 1 6 4 24.53 25.47
bik Bike Rental 17379 11 4 1 6 4 24.85 25.05

III.3.3.2 Detecting open/close eyes through EEG

We employ the EEG Eye State dataset (Roesler, 2013; Dua and Graff, 2017). The
dataset consists of fourteen input EEG values and an output variable indicating the eye
state (open/close). The dataset is quite balanced between both classes, around 55% of
the samples are labeled with eye-open state and the remaining 45% as eye-close state.
The EEG values form one continuous EEG measurement recorded with the Emotiv EEG

88 Chapter III. CLAST: Learning rules for classification in data streams

Neuroheadset. The eye state was detected through a camera during the EEG recording and
added later manually to the file after analyzing the video frames. The EEG measurement
lasted 117 seconds what lead to a dataset formed by 14980 instances. The dataset respects
the original chronological order of the samples.

Table III.13 details the test accuracy and G-mean obtained with each data stream
classifier. For both accuracy and G-mean, the corresponding rank of each algorithm is
indicated in brackets. The values in the table match the end of the stream. Moreover,
Figure III.8 illustrates the performance evolution of the classifiers along the entire stream.

Table III.13: Comparison of performance between CLAST and seven other online learners
in EEG Eye State problem. The results contained in the table are referred to the final time
stamp when all the examples in the stream have been used for both testing and training.

CLAST CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

Accuracy 78.44 (4) 60.59 (7) 72.15 (6) 75.31 (5) 91.31 (2) 81.81 (3) 57.21 (8) 91.52 (1)
G-mean 78.18 (4) 60.30 (7) 72.50 (6) 75.49 (5) 91.30 (2) 82.22 (3) 56.44 (8) 91.56 (1)

0 2000 4000 6000 8000 10000 12000 14000
Number of samples

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

CLAST
CVFDT

CVFDTNB

CVFDTNBA

HAT
VFDR

AWEC DWM

(a)

0 2000 4000 6000 8000 10000 12000 14000
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

G-
m

ea
n

CLAST
CVFDT

CVFDTNB

CVFDTNBA

HAT
VFDR

AWEC DWM

(b)

Figure III.8: Performance evolution as the amount of data processed increases for EEG
Eye State data stream. Performance is assessed by: (a) accuracy and (b) G-mean.

The experimental results show that at the end of the stream, once all the examples
have been processed, CLAST is ranked as the fourth best learner. Its performance is close
to AWEC. DWM and HAT are the two best ranked method, their performances are quite
similar and quite distanced from those of the rest of approaches. If we pay attention to
the performance evolution throughout the flow, there are some additional aspects that are
worth to mention.

The particular characteristics of this dataset cause an alternation between classes
along the stream. The stream is composed of periods of open and closed eyes of variable
duration that alternate over time. This explains why at the beginning all the classifiers
predict correctly 100% of the examples. It corresponds to the first open-eye period, during
which all the examples received belong to the open-eye class. DWM and HAT are still
the two algorithms that present the best behavior. They perform well and remain very

III.3 Comparison of CLAST to several machine learning techniques 89

stable along time. CLAST, despite being overtaken by VFDR towards the end, occupies
the third position for a significant amount of time. In addition, it demonstrates, as
DWM and HAT, a very stable performance. However, VFDR suffers a quite important
performance decrease during the first part of the stream. Just behind CLAST and VFDR
are CV FDTNB and CV FDTNBA, which follow a similar evolution to VFDR but with
a slightly lower performance. Although CLAST is not the learner that obtains the best
performance in this problem, it obtains competitive results. It achieves a performance
superior to most of the other classifiers and exhibits a stable behavior throughout time.
Its performance is not abruptly affected by the changes in data distribution.

III.3.3.3 Powersupply

Powersupply stream (Zhu, 2010) contains hourly power supply of an Italian electricity
company which records the power from two sources: power supply from main grid and
power transformed from other grids. This stream contains three year power supply records
from 1995 to 1998. The learning task is aimed at predicting which part of the day the
current power supply belongs to. The concept drifting in this stream is mainly driven by
the issues such as the season, weather, hours of a day (e.g., morning and evening), and
the differences between working days and weekend.

The test accuracy and G-mean obtained by each data stream classifier at the end
of the data stream are shown in Table III.14, along with the ranking position of each
classifier. The evolution of the performance of the classifiers across the stream is illustrated
in Figure III.9.

Table III.14: Comparison of performance between CLAST and seven other online learners
in Powersupply problem. The results contained in the table are referred to the final time
stamp when all the examples in the stream have been used for both testing and training.

CLAST CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

Accuracy 53.94 (1) 36.4 (8) 49.53 (4) 49.52 (5) 48.86 (7) 50.22 (3) 51.98 (2) 49.27 (6)
G-mean 47.59 (1) 0.00 (8) 42.76 (4) 42.00 (5) 39.71 (7) 43.64 (3) 45.07 (2) 41.55 (6)

As shown in Table III.14, at the end of the stream, CLAST obtains the highest
accuracy and G-mean, followed by AWEC and VFDR. Figure III.9 allows us to verify
that this first position of CLAST is not limited to the final timestamp of the stream. In
fact, the greatest difference between CLAST and the other approaches is observed at early
stages of the stream. CLAST, as opposed to most of the rest of classifiers, gets the highest
accuracy and G-mean values at the beginning of the stream. When around half of the
instances from the stream have been processed, most of the algorithms, including CLAST,
seem to reach a steady level of performance that continues until the end.

90 Chapter III. CLAST: Learning rules for classification in data streams

0 5000 10000 15000 20000 25000 30000
Number of samples

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

CLAST
CVFDT

CVFDTNB

CVFDTNBA

HAT
VFDR

AWEC DWM

(a)

0 5000 10000 15000 20000 25000 30000
Number of samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G-
m

ea
n

CLAST
CVFDT

CVFDTNB

CVFDTNBA

HAT
VFDR

AWEC DWM

(b)

Figure III.9: Performance evolution as the amount of data processed increases for Power-
supply data stream. Performance is assessed by: (a) accuracy and (b) G-mean.

III.3.3.4 London Bike Sharing

London Bike Sharing (Mavrodiev, 2020), powered by TfL Open Data, is composed by the
combination of information about: (1) shared bikes demand in London, (2) weather data
and (3) bank holidays in United Kingdom. The aim of the classification task addressed is
to be able to predict if the bike demand will be very low, low, high or very high based
on: weather conditions, season, and whether it is a bank holiday or weekend. It is worth
to mention that this problem could be also addressed as a regression task. The dataset
includes a continuous variable with the bike share count. We have transformed this
continuous variable into a categorical one to approach the problem from a classification
perspective.

Table III.15 compares the test accuracy and G-mean obtained by CLAST with that
of the other seven data stream classifiers at the end of the stream. This table also includes
the rank of each algorithm for each evaluation metric. Figure III.10 complements Table
III.15 by showing the performance evolution of the algorithms as the stream is processed.

Table III.15: Comparison of performance between CLAST and seven other online learners
in London Bike Sharing problem. The results contained in the table are referred to the
final time stamp when all the examples in the stream have been used for both testing and
training.

CLAST CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

Accuracy 76.00 (4) 67.81 (6) 78.52 (3) 79.67 (1) 78.88 (2) 69.08 (5) 48.12 (8) 50.41 (7)
G-mean 75.23 (4) 66.87 (6) 78.22 (3) 79.41 (1) 78.59 (2) 68.66 (5) 47.28 (8) 49.03 (7)

In this case, the performance of CLAST is improved by that of three other algorithms:
CVFDTNBA, HAT and CVFDTNB. Figure III.10 shows that there are no strong variations
in the performance of the different algorithms once the initial learning curve has been
overcome. All the algorithms exhibit fairly stable behavior once the first 2500 examples are

III.3 Comparison of CLAST to several machine learning techniques 91

0 2500 5000 7500 10000 12500 15000 17500
Number of samples

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

CLAST
CVFDT

CVFDTNB

CVFDTNBA

HAT
VFDR

AWEC DWM

(a)

0 2500 5000 7500 10000 12500 15000 17500
Number of samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G-
m

ea
n

CLAST
CVFDT

CVFDTNB

CVFDTNBA

HAT
VFDR

AWEC DWM

(b)

Figure III.10: Performance evolution as the amount of data processed increases for London
Bike Sharing data stream. Performance is assessed by: (a) accuracy and (b) G-mean.

exceeded and until the end of the stream. This figure also shows that there are two classifiers
that clearly lag behind: AWEC and DWM. While CVFDT, which had shown rather poor
performance in several of the previous real-world problems, shows a better behavior in this
scenario. Finally, we can see how the three best-ranked classifiers (CVFDTNBA, HAT and
CVFDTNB) obtain almost identical results throughout the stream. CLAST is the next
best performer and shows an ascending trend that allows it to continuously close the gap.

III.3.3.5 Bike Rental

Bike Rental (Bansal, 2020; Fanaee-T and Gama, 2014) includes hourly bike-sharing data for
a 2-year long period (from January 1 2011 to December 31 2012) from Capital Bikeshare
System (Washington D.C., USA) along with weather and seasonal information. The
prediction task addressed consists on correctly estimating if the number of riders for each
hour of each day is very low, low, high or very high. Such prediction is based on input
variables related to hour, weekday, month and season, as well as, weather conditions. As
in the case of London Bike Sharing, the dataset includes the bike sharing count as a
continuous variable and we turned this variable into a categorical variable so the problem
can be addressed as a classification task.

Table III.16 presents the results of the classifiers in terms of test accuracy, G-mean
and ranking positions. These values correspond to the end of the stream, once all the
instances have been processed. Furthermore, Figure III.11 illustrates the performance
evolution of the classifiers along the entire stream.

In Table III.16, we observe that CLAST obtains the highest accuracy and G-mean
values at the end of the stream, i.e., based on the labels predicted for all the instances in
the stream. Moreover, the improvement of CLAST over the second best ranked classifier,
HAT, is noteworthy. It is evident from Figure III.11 that this advantage of CLAST over
the other proposals is maintained for almost the entire duration of the stream.

92 Chapter III. CLAST: Learning rules for classification in data streams

Table III.16: Comparison of performance between CLAST and seven other online learners
in Bike Rental problem. The results contained in the table are referred to the final time
stamp when all the examples in the stream have been used for both testing and training.

CLAST CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

Accuracy 72.84 (1) 44.90 (8) 53.28 (4) 54.99 (3) 56.05 (2) 53.28 (4) 45.20 (7) 47.70 (6)
G-mean 71.08 (1) 38.02 (8) 49.23 (3) 48.85 (5) 52.48 (2) 49.23 (3) 44.09 (7) 46.11 (6)

0 2500 5000 7500 10000 12500 15000 17500
Number of samples

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

CLAST
CVFDT

CVFDTNB

CVFDTNBA

HAT
VFDR

AWEC DWM

(a)

0 2500 5000 7500 10000 12500 15000 17500
Number of samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G-
m

ea
n

CLAST
CVFDT

CVFDTNB

CVFDTNBA

HAT
VFDR

AWEC DWM

(b)

Figure III.11: Performance evolution as the amount of data processed increases for Bike
Rental data stream. Performance is assessed by: (a) accuracy and (b) G-mean.

Moreover, if we compare the evolution of both evaluation metrics, we can observe a
clear difference between them. Accuracy does not describe any abrupt variation throughout
the stream and all the algorithms describe relatively stable trends. However, all the
classifiers suffer an abrupt drop in G-mean that leads them to register null values shortly
after having exceeded 1000 processed instances. This is probably due to the arrival of
instances belonging to a new class, hitherto unknown to the algorithms: “very high” bike
sharing demand. Since the algorithms have not had the opportunity to learn instances
of that class, they misclassify these instances. We can observe the ability of the different
algorithms to learn this new class and recover their previous G-mean levels. It is worth
noting the behavior of CLAST, which quickly manages to reach high G-mean levels.

Chapter IV

Adaptive Fuzzy Partitions for
association stream mining

IV.1 Introduction

In real-world problems with very high arrival rates and immense volumes of data is often
difficult to find data which are completely labeled and structured. Probably, it would
be more realistic to generate descriptive models with good interpretability which enables
system monitoring.

In general, unsupervised learning is more directly applicable to real-world data
stream problems. In particular, discovering frequent patterns and association rules is
considered highly suitable to address many data stream problems where the purpose is to
supervise or monitor (not predict) using independent, significant, readable, and simple
models. Among the proposals in the literature, Fuzzy-CSar (Sancho-Asensio et al., 2016)
is a steady-state genetic algorithm designed to discover interesting association rules from
data streams in a dynamic and pure online way. Its learning process is designed to manage
huge amounts of data and to adapt its knowledge to concept drifts. Furthermore, thanks
to the use of fuzzy logic, it can deal with both categorical and continuous variables.

The aim of this chapter is to present an advanced version of the Fuzzy-CSar
algorithm. Two main improvements are included in this new version: (1) new representation
and new genetic operators to allow the use of fuzzy partitions with different granularities
(number of linguistic terms), and (2) a mechanism to update the range of each attribute
in an online way (this mechanism makes unnecessary to know a priori the domain of
each attribute), which is a demanding feature in real-world data stream environments.
Furthermore, the proposal is applied in a new challenging real-world problem. The
results of this new algorithm, henceforth referred as Fuzzy-CSar-AFP (Fuzzy-CSar with
Adaptive Fuzzy Partitions), are validated in a real-world Psychophysiology problem where
associations between different signals from electroencephalogram electrodes are analyzed
online while the subjects are subjected to undergo different activities and stimuli.

93

94 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

The remainder of this chapter is structured as follows. Section IV.2 describes our
association stream mining proposal. In Section IV.3, we describe the real-world data
streams that have been used to validate the functionality of Fuzzy-CSar-AFP, detail the
experiments conducted and present their results.

IV.2 Fuzzy-CSar-AFP: Fuzzy-CSar with Adaptive

Fuzzy Partitions

Figure IV.1 schematically illustrates the learning process of Fuzzy-CSar-AFP. The algo-
rithm learns from a stream of data samples in an incremental way, performing a learning
iteration every time a new sample e is received. At the beginning of each learning iteration,
the system builds a match set [M] with all those individuals from the population that
match e with a degree greater than 0. If the number of individuals in [M] is lower than
θmna (a user-defined parameter), the covering operator is applied until the size of [M]
reaches θmna. After that, the individuals in [M] are grouped by their antecedent into
different association set candidates [A]i. Each [A]i has a probability of being selected
proportional to the average confidence of its individuals. The selected association set
goes through a subsumption process. Next, the parameters of all the individuals in [M]
are updated in an incremental way. Finally, a steady-state (not generational) genetic
algorithm is applied to [A] if the average time since its last application on the individuals
in [A] is greater than θGA (also a user-defined parameter). These steps are repeated for
each input data sample. Hence, the system keeps constantly updating the parameters of
existing individuals and creating new promising rules online, i.e., dynamically evolving the
rule population.

Fuzzy-CSar-AFP innovations on Fuzzy-CSar revolve around two main axes: (1)
knowledge representation, and (2) dynamic attribute domain update. In Fuzzy-CSar-AFP,
the variables in the association rules represent continuous attributes by means of fuzzy
partitions which granularity can vary between rules. This allows adapting to the precision
requirements of each variable in each rule. Genetic operators are newly designed for this
new representation. In addition, Fuzzy-CSar-AFP incorporates a new mechanism that
allows the algorithm to dynamically evolve the range of each attribute according to the
progression of the input stream. In many real-world data stream problems, it is likely for
attribute domains not to be known a priori. They can oscillate along the stream or simply
not be bound to a static interval. With Fuzzy-CSar-AFP there is no need to specify the
working range of each variable, the minimum and maximum values of each attribute are
updated in real-time as data are being processed. In what follows, both the knowledge
representation and the learning process of Fuzzy-CSar-AFP are further explained.

IV.2 Fuzzy-CSar-AFP: Fuzzy-CSar with Adaptive Fuzzy Partitions 95

Data Stream

Instance: (x: 3.2, y: 1.8)

Population

rule exp supp conf num
1x:M3 ^ z:M5 y:S4 7 .25 .7 2
2y:L5 ^ x:S5 z:L5 3 .5 .4 7
3x:ML5 y:SM5 5 .7 1 12
4z:L4 ^ y:SM3 x:L4 2 .52 .5 5

….

Match Set

Parameter
Update

Association Set1

Covering

Matching

Apply
GA?

Genetic Algorithm

Domain Update

Association Set2

3x:ML5 y:SM5 5 .7 1 12

Association Set Selection

rule exp supp conf num
1x:M3 ^ z:M5 y:S4 7 .25 .7 2
3x:ML5 y:SM5 5 .7 1 12
4z:L4 ^ y:SM3 x:L4 2 .52 .5 5

1x:M3 ^ z:M5 y:S4 7 .25 .7 2
4z:L4 ^ y:SM3 x:L4 2 .52 .5 5

Subsumption

Figure IV.1: Schematic illustration of the learning interaction of Fuzzy-CSar-AFP.

IV.2.1 Knowledge representation

Fuzzy-CSar-AFP is designed for mining association rules from data streams that contain
both quantitative and categorical attributes. To that aim, it dynamically maintains a
population of fuzzy rules, which is incrementally updated as the data stream is processed.
Each individual in such population [P] is formed of: (1) an association rule, and (2) a set of
parameters that assess the quality of the rule. Concretely, the following eight parameters
accompany each rule: (1) the support sup, (2) the confidence con, (3) the lift lif , (4) the
fitness F , (5) the accuracy acc, (6) the experience exp, (7) the numerosity num, which
totals the number of copies of the individual in the population, and (8) the average size
as of the action sets in which the individual has been included. The rule takes the form:

Rk : IF Xi is Ãki and . . . and Xj is Ãkj THEN Xc is Ãkc (IV.1)

where the antecedent part contains a set of la input variables (0 < la < l and l is the
number of variables), and the consequent consists of a single variable Xc, not included
in the antecedent. Each variable in a rule is represented by a disjunction of linguistic
terms Ãki = Ai1 ∨ ... ∨ Aini , where ni is the total number of linguistic terms. Each
linguistic term is an uniformly distributed triangular-shaped membership function, given
its interpretability tradeoff (Casillas and Mart́ınez-López, 2009). The semantics of the
variables are defined by means of Ruspini’s strong fuzzy partitions which satisfy the

96 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

equality
∑ni

j=1 µAij(x) = 1, ∀xi (for more information refer to (Pedrycz, 2018)). Since
Fuzzy-CSar-AFP is able to allocate patterns with different granularities per attribute, the
total number of linguistic terms ni may vary between different patterns. This mechanism
allows the algorithm to precisely adapt the generality degree of each fuzzy association
rule for an optimum covering of the data. The advantage is twofold, as richer or poorer
vocabulary can be used depending on performance demands and, at the same time, different
support ranges and cores can be used to better locate the fuzzy set where required. This
approach allows the system to evolve not only symbolic structure of the fuzzy rules but
also the fuzzy set parameters.

S2 L2

(a) Granularity 2

S3 M3 L3

(b) Granularity 3
XS4 S4 L4 XL4

(c) Granularity 4

XS5 S5 M5 L5 XL5

(d) Granularity 5

Figure IV.2: Illustration of fuzzy partitions with four different granularities (from 2 to 5)
where V S stands for very small, S for small, M for medium, L for large, and V L for very
large.

In Figure IV.2, the fuzzy partitions for four possible granularities (from 2 to 5 fuzzy
sets) are represented independently, while in Figure IV.3 we can observe how the fuzzy
partitions of such four granularities overlap, making some cores from different partitions
match (even if the complete linguistic terms do not). The idea of maintaining different
granularities per attribute was originally proposed for classification tasks in Ishibuchi
and Yamamoto (2004) and has been widely applied by the same authors since then. In
classification, this approach may suffer from an important lack of interpretability as the
expert expects to understand the classification policy by viewing the fuzzy rule set as a
whole. However, in unsupervised tasks, the target is to provide the expert with independent
patterns that explain individual association relationships among different attributes and,
therefore, the fact of using different granularities for the same attribute in different rules

IV.2 Fuzzy-CSar-AFP: Fuzzy-CSar with Adaptive Fuzzy Partitions 97

S2 L2S3
M3

L3
XS4 S4 L4 XL4XS5 S5 M5 L5 XL5

Figure IV.3: Illustration of the overlapping areas between four different granularity options
(from 2 to 5).

is compatible with expert’s understanding.

Every time a new datum is received, the algorithm determines which rules from
the population match such datum. The matching degree between an input example
e and an individual (rule) Rk is estimated as followed. First, the matching degree
µÃki of each antecedent variable xi is computed as the T-conorm (disjunction) of the

membership degrees µAkj (ei) of all of its linguistic terms. In this case, the bounded sum

sum(min[1, µAi(x) + µAj(x)]) is employed as T-conorm (µÃki =∧µAkj). If the value of ei is

unknown (missing value), the system considers µÃki (ei) = 1. Then, the matching degree of

the antecedent part of the rule is determined by the T-norm (conjunction) of the matching
degrees of all the input variables. In this work, the product

∏
µÃki (ei) is used as T-norm.

In the same way, the consequent matching degree is computed as the T-conorm of the
membership degrees of all the linguistic terms of the consequent variable (µÃkc). Lastly,
the matching degree of the rule is computed by means of the Dienes implication of the
antecedent and consequent matching degree (max1− µÃ(x), µC̃(x)).

IV.2.2 Learning process

During the course of each learning iteration, the system employs a set of operators to
evolve the learned knowledge. Such operators need to be further explained in order to
fully understand how Fuzzy-CSar-AFP works.

98 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

IV.2.2.1 Domain update

At the beginning of each learning iteration, the range of each attribute is updated according
to the new incoming data sample. In Algorithm 2 the procedure followed is depicted.
This domain updating algorithm is based on the incremental computation of mean (µ)
and standard deviation (σ) (Welford, 1962). Given the streaming and online character
of Fuzzy-CSar-AFP, this procedure had to meet two requirements: (1) inspect each data
sample just once and then forget it, and (2) evolve the domain rapidly enough, being able
to deal with the changing nature of data stream.

Algorithm 2: Incremental algorithm to update the domain of an attribute

procedure Stream-Domain-Update(sum at time t, µ at time t, M2 at

time t, n at time t, α, β, x)

Data: n is the number of samples processed at time t
x is the value of a new sample for a certain attribute
µ and σ are the stream mean and standard deviation
sum, M2, α and β are real values
Result: min and max at time t+ 1

begin
temp ← sum · α + 1
diff ← x− µ
R← diff / temp
µ← µ+R
M2 ← M2 · α + (sum · α · diff · R)
sum ← temp
σ2 ← (M2 · n) / (sum · (n− 1))
(min, max) ← (µ− β · σ2, µ+ β · σ2)

end

Two control parameters are included in Algorithm 2: β, which allows to control
the percentage of samples covered by the range, and a decay factor α, which allows to
increase the influence of the most recent input values, penalizing the oldest ones. If α = 1,
no penalization is applied. The lower α is, the higher the relevance of the most recent data.
In case of α = 0, µ matches the last value received and σ = 0. Note that a traditional
weighted approach was not considered an appropriate choice since a priori all examples
are equally relevant; the weight of the examples decreases as they get older. Different
formulas could be used to update µ and σ when a new input value arrives. However, many
of them suffer from numerical instability (Chan et al., 1983; Ling, 1974).

Thanks to this mechanism, every attribute minimum and maximum values are
incrementally updated without needing to know the domain of each input attribute a
priori or storing any sliding window from the data stream.

IV.2 Fuzzy-CSar-AFP: Fuzzy-CSar with Adaptive Fuzzy Partitions 99

IV.2.2.2 Covering operator

This operator is aimed at generating new association rules when there are not enough
matching rules for the new data sample in the current pool. Given an input data sample
e, this operator creates a new individual that matches e with maximum degree. Each
variable ei is assigned a probability 1 − P# (where P# is a user-defined parameter) of
being in the antecedent of the rule, taking into account the following two constraints:
(1) the antecedent can not be empty, i.e., at least, one variable has to be included; and
(2) not all variables can be included in the antecedent, i.e., at most, l − 1 variables
can be selected for the antecedent. Afterward, one of the variables not included in the
antecedent is selected to be in the consequent. If the value of one (or several) of the input
variables is unknown, the algorithm ignores the corresponding input variable(s). Each of
the variables included in both the antecedent and consequent of the rule, are initialized
with a random granularity and the linguistic term that maximizes the matching degree
with ei. The selected granularity must be between two linguistic terms and η (user-defined
parameter). Then, rule generalization is included by adding any other linguistic term with
probability P#, being the maximum number of linguistic terms that a variable can contain
restricted by a configuration parameter. Lastly, individual’s parameters are initialized as:
sup = exp = 0, con = num = 1, and as is set to the actual size of [A].

As an illustrative example and following the schematic of Figure IV.1, suppose that
a new data sample e = (x : 3.2, y : 1.9) is received and there are no matching individuals
in the population. Consequently, the covering operator is triggered to generate a new
matching individual. In the first place, the operator decides which variable is going to be in
the antecedent part of the rule (e has only two attributes, so just one of them can be in the
antecedent): assume that with probability 1− P# the selected variable is x and, therefore,
y is selected to be in the consequent. Let us assume three linguistic terms for both x and
y. Figure IV.4 graphically represents the initialization and subsequent generalization of
both variables x and y according to this example. Each variable is initialized with the
linguistic label that maximizes the matching degree (we can assume: x : L and y : M).
Then, the rule generalization process is triggered and it adds other linguistic terms with
probability P#. After the generalization process the final individual may be if x is M ∨ L
then y is M (the generalization process has only added extra linguistic terms to variable
x). At the end, the individual’s parameters are set to its initial values.

IV.2.2.3 Association set candidates and selection

Association set candidates represent niches where rules expressing similar knowledge
are grouped and made to compete. The best individuals will take over their niche and,
therefore, highly fit individuals will evolve. Two rules are considered similar if they have
the exact same variables in their antecedents, regardless of the granularity and linguistic
terms of those variables. Note that this means rules with different variables in their
consequent can be grouped under the same [A]i. One of the association set candidates is

100 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

x

y

(a) Maximizing matching degree

x

y

(b) Variable initialization

x

y

(c) Variable generalization

Figure IV.4: Example of the definition process of the representation in a rule of two
variables X and Y by the covering operator, schematically illustrated in three steps: (a)
the linguistic terms that maximizes the matching degree is found, (b) such linguistic term
is added to the variable, and (3) the generalization process may add extra linguistic terms
to the variables.

selected following a roulette-wheel strategy. Each [A]i has a probability of being selected
proportional to its accumulated confidence:

pksel ←
∑

i∈[A]k wi · coni∑
j∈[M]wj · conj

(IV.2)

where wi = 1 if expi > θexp (user-defined parameter) and 1−10 otherwise.

IV.2.2.4 Association set subsumption

The selected association set [A] undergoes a subsumption process aimed at reducing the
number of rules that represent similar or redundant conditions.

Each rule in [A] is checked for subsumption with each other rule in [A]. For the rule
ri to be considered a candidate subsumer of rj, two conditions have to be met: (1) ri has
a similar confidence to rj and it has enough experience (coni ≥ 0.9 · conj and expi > θexp);
and (2) ri is more general than rj. ri being more general than rj means that all the
variables of ri are also included in rj and, for each of these variables, its representation in
ri is also more general than in rj. Since in Fuzzy-CSar-AFP the same variable can have
fuzzy partitions with different granularity for ri and for rj, ri is considered more general
than rj if: (1) all the variables of ri are also defined in rj, (2) the granularity of each of
these variables has a lower number of fuzzy sets in ri than in rj, and (3) all the cores of

IV.2 Fuzzy-CSar-AFP: Fuzzy-CSar with Adaptive Fuzzy Partitions 101

the linguistic terms of rj are included in the cores of the linguistic terms of ri. Each time
a rule ri actually subsumes a rule rj, the numerosity of ri is increased and rj is removed
from the rule population.

IV.2.2.5 Parameter update

At each learning iteration, once the association set subsumption process has been carried
out, the parameters of the individuals in [M] are updated. First of all, the experience of
each individual is increased. Afterward, their support and confidence are updated.

In association rule mining, support is a measure of how frequently something appears
in the data. Concretely, the support of a rule X → Y is computed as the frequency of
antecedent and consequent occurring together in the database:

supp(X → Y) =
|X ∪ Y |
N

(IV.3)

where X and Y are the antecedent and consequent of the rule, respectively; |X ∪ Y | is the
number of samples in which both antecedent and consequent are met, and N is the total
number of samples in the database. Furthermore, confidence indicates the frequency with
which the if-then statement of the rule is found true. It is used as a way to evaluate the
strength of the implication denoted in the association rule:

conf(X → Y) =
supp(X ∪ Y)

supp(X)
(IV.4)

A fuzzy association rule is, like before, an implication of the form X → Y in which:

X =
∧
ii∈A

µÃ(ii) and Y =
∧
ij∈C

µC̃(ij), (IV.5)

where µC̃(ij)
is the membership degree of features in the consequent and µÃ(ii) is the

membership degree of features in the antecedent. In this situation, support is extended
by using the product T-norm and confidence is extended by using the Dienes implication
(Dubois et al., 2006):

supp(X → Y) =
1

N

∑
µÃ(X) · µC̃(Y) (IV.6)

conf(X → Y) =

∑
(µÃ(X) ·max{1− µÃ(X), µC̃(Y)})∑

µÃ(X)
(IV.7)

where µÃ(X) is the membership degree of the antecedent part of the rule and µC̃(Y) is
the membership degree of the consequent part of the rule.

Given the incremental character of Fuzzy-CSar-AFP, support is not computed
directly. At each learning iteration, the support of every rule in [M] is updated as:

supt+1 ← supt +
µÃ(e) · µC̃(e) − supt

exp
(IV.8)

102 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

being µÃ(e) and µC̃(e) the matching degree of the antecedent and consequent of the rule,
respectively. And, after that, confidence is computed as:

cont+1 ←
impt+1

ant matt+1

(IV.9)

where impt+1 ← impt + µÃ(e) ·max{1− µÃ(e), µC̃(e)}, and ant matt+1 ← ant matt + µÃ(e).
Initially, both impt and ant matt are set to 0. Then, the lift is calculated as:

lift+1 ←
supt+1

ant matt+1 · con matt+1

(IV.10)

where con matt+1 ← con matt + µC̃(e) and con matt is initially set to 0. Afterward, the
accuracy is updated as:

acct+1 ← supt+1 + 1− (ant matt+1 + con matt+1 − supt+1) (IV.11)

Thereafter, the fitness is computed as:

F ←
(supt+1 · lift+1 + acct+1

2

)υ
(IV.12)

Finally, the estimated association set size of all the rules belonging to the selected [A] is
computed as the average size of all the association sets in which the rule has participated.

IV.2.2.6 Rule discovery component

The system uses a niche-based steady-state genetic algorithm to discover new rules. This
genetic algorithm is applied to the selected [A] but only when the average time from its
last application upon the individuals in [A] surpasses θGA (user-defined parameter). Two
parents p1 and p2 are selected from [A] using tournament selection, and they are copied
into offspring ch1 and ch2. The offspring undergo crossover and mutation. Regarding
the first one, a uniform crossover operator, which randomly chooses from which of the
two parents each antecedent variable is inherited, is applied with probability Pχ. The
outcoming offspring may go through one out of four different mutation types: (1) mutation
of the antecedent variables PI/R, which randomly chooses whether a new variable has to
be added to the antecedent of the rule or one of the variables in the antecedent has to be
removed from it (Fig. IV.5 (a)); (2) mutation of the consequent variable (with probability
PC), which selects one of the variables in the antecedent of the rule and exchanges it with
the variable in the consequent (Fig. IV.5 (b)); (3) mutation of the linguistic terms of the
variables (with probability Pµ), which selects one of the existing variables of the rule and
mutates its value in one of three possible ways (Fig. IV.5 (c)): expansion, contraction
or shift; and (4) granularity mutation, which selects one of the variables in the rule and
changes the number of fuzzy sets in its fuzzy partition (Fig. IV.5 (d)).

Regarding the mutation of the linguistic terms of a variable (third type of mutation):
expansion adds to the corresponding variable a new linguistic term that was not previously

IV.2 Fuzzy-CSar-AFP: Fuzzy-CSar with Adaptive Fuzzy Partitions 103

represented in it; contraction chooses a linguistic term represented in the variable and
removes it; so, it can only be applied to variables that have, at least, two linguistic terms;
and shift switches a linguistic term by the next inferior or superior one. With respect to
the granularity mutation (fourth type of mutation), the granularity of the variable can
be replaced by the immediate superior or inferior option. Furthermore, if the cores of all
the fuzzy sets in the linguistic partition match the ones from two granularity levels up or
down, mutation to such matching level is also allowed. If the mutation implies increasing
the number of fuzzy sets, the support of the new value (linguistic term) of the variable
has to be contained in the support of the value before mutation. Otherwise, the operation
is reversed, i.e., the support of the new value of the variable has to contain the support of
the value before mutation. Note that, the minimum allowed granularity is two fuzzy sets.
Therefore, a variable represented by a fuzzy partition of two fuzzy sets can only mutate
its granularity in one way, that is, increasing the number of fuzzy sets. Fuzzy-CSar-AFP
considers an adjacency matrix that gathers the possible mutations to be made. Table IV.1
illustrates such adjacency matrix for a maximum granularity of 5. Number 1 marks which
mutations are allowed and 0 which are not, considering rows as initial linguistic terms and
columns as the ones after mutation. Based on this matrix, the granularity of the variable
is mutated to a new randomly selected one and the linguistic terms of the variable are
replaced by the corresponding ones in the new fuzzy partition. It can be observed in the
matrix that only one exception is made to the specific guidelines: mutation from M3 to S2

or L2 is not allowed because the meaning of M3 is considered very different from S2 or L2,
despite they all share the same support.

Table IV.1: Adjacency matrix for granularity mutation (with a maximum granularity of 5
fuzzy sets).

S2 L2 S3 M3 L3 V S4 S4 L4 V L4 V S5 S5 M5 L5 V L5

S2 0 0 1 0 0 0 0 0 0 0 0 0 0 0
L2 0 0 0 0 1 0 0 0 0 0 0 0 0 0
S3 1 0 0 0 0 1 0 0 0 0 0 0 0 0
M3 0 0 0 0 0 0 1 1 0 0 0 1 0 0
L3 0 1 0 0 0 0 0 0 1 0 0 0 0 0

V S4 0 0 1 0 0 0 0 0 0 1 0 0 0 0
S4 0 0 0 1 0 0 0 0 0 0 1 0 0 0
L4 0 0 0 1 0 0 0 0 0 0 0 0 1 0

V L4 0 0 0 0 1 0 0 0 0 0 0 0 0 1
V S5 0 0 0 0 0 1 0 0 0 0 0 0 0 0
S5 0 0 0 0 0 0 1 0 0 0 0 0 0 0
M5 0 0 0 1 0 0 0 0 0 0 0 0 0 0
L5 0 0 0 0 0 0 0 1 0 0 0 0 0 0

V L5 0 0 0 0 0 0 0 0 1 0 0 0 0 0

The system initializes the parameters of the offspring as follows: if the crossover is
not applied, the parameters are copied from the selected parent. Otherwise, the parameters
are set to the average value between the corresponding parameters in both parents. In
both cases, fitness is decreased to 10% of the parental fitness; experience is set to 0, and

104 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

numerosity to 1.

IV.2.2.7 Replacement mechanism

Before the just born offspring are introduced into the population, each child is checked
for subsumption with their parents. If any of the parents is a candidate subsumer, its
numerosity is increased and the offspring is not inserted into the population. Otherwise,
subsumption with every rule in [A] is checked. If one or more candidate subsumers
are found, the offspring is not inserted into the population and the numerosity of the
most general candidate subsumer is increased. Finally, if no subsumer is found, the new
individual is inserted into [P].

In case the maximum population size has already been reached, the exceeding
individuals are removed from the population. The deletion probability of each individual in
[P] is directly proportional to their estimated association set size and inversely proportional
to its fitness. In addition, if the individual Rk is experienced enough but its fitness F k is
significantly lower than the average fitness of the individuals in [P], its deletion probability
is further increased:

pk ← dk∑
∀j∈[P]dj

, (IV.13)

where

dk ←


as·num·F[P]

Fk
if expk > θdel and F k < δF[P],

as · num otherwise,

(IV.14)

where θdel and δ are user-defined parameters. Thus, the algorithm pushes toward the
removal of rules belonging to large association sets and, therefore, balances the individual’s
allocation in the different [A]’s. Whilst it favors seeking highly fit individuals, given that
the deletion probability is increased for those rules whose fitness is much smaller than the
average fitness.

IV.3 Physiological signals analysis through associa-

tion stream mining

In order to test, analyze and validate the behavior of Fuzzy-CSar-AFP we employ a original
real-world data stream problem. In this section, we address a challenging psychophysio-
logical problem in which the associations between electroencephalographic signals from
different electrodes recorded in subjects who are subjected to different stimuli are to be
analyzed.

An extensive analysis of the results obtained is conducted. The performance of
Fuzzy-CSar-AFP is widely compared with the that of Fuzzy-CSar (Sancho-Asensio et al.,

IV.3 Physiological signals analysis through association stream mining 105

2016) and Fuzzy-Apriori (Hong et al., 1999). Furthermore, the results are interpreted from
a psychophysiology perspective.

IV.3.1 Some background on the problem of exploring networks
instead of single physiological signals

The physiological adaptation to an ever-changing internal and external environment is
the result of a complex interaction between physiological systems who have shown to
exhibit non-stationary, intermittent, scale-invariant and nonlinear behaviors. Moreover,
physiological dynamics are in constant flux, responding to changes in the underlying
control mechanisms caused by different physiological states or pathologic conditions. Here
we employ the novel methodology of association stream mining in order to dynamically
obtain association rules that explain in an online fashion the relationships between signals
derived from the recording of electrophysiological brain activity at distinct electrode sites.

IV.3.1.1 Method

The database consists of physiological recordings from 50 young adult participants, divided
into two groups of 25 participants per group based on fitness level. Since the consequences
of a sedentary lifestyle reach far beyond the development of chronic diseases as they also
directly influence brain plasticity and function (Voss et al., 2013). Numerous studies have
repeatedly shown that exercise improves learning and memory, counteracts the mental
decline that comes with age, and facilitates functional recovery from brain injury, disease,
and depression (Vaynman and Gomez-Pinilla, 2006). The average age of the high-fit
(trained - TRA) group was 22 years (age range: 21–24 years old) and of the low-fit
(sedentary - SED) group 23 years (age range: 22–24 years old). Here we compare two
subjects that were randomly selected as representative from their corresponding groups.

Continuous EEG data were recorded using a BioSemi Active Two system (Biosemi,
Amsterdam, Netherlands) and were digitized at a sample rate of 1024 Hz with 24-bit
A/D conversion and subsequently resampled at 256 Hz. The 64 active scalp Ag/AgCl
electrodes were arranged according to the international standard 10—20 system for
electrode placement using a nylon head cap.

The behavioural task was designed to measure vigilance by recording participants’
reaction times (RT) to visual stimuli in a computer screen. Participants were instructed
to respond as fast as they could once they had detected the presentation of the stimuli.
They had to respond with their dominant hand by pressing the space bar on the keyboard.
The task comprised a single block of 60 minutes of total duration.

The explained problem on EEG analysis has some properties that makes it an ideal
benchmark for association stream mining by Fuzzy-CSar-AFP: (1) the variables (electrode
signals) are continuous (which justifies the use of fuzzy logic) and the variation interval
unknown (so the proposed attribute domain update mechanism makes sense here); (2) the

106 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

problem does not have any dependent or output variable, so it needs to be addressed by
unsupervised learning; (3) the rate of incoming data is very high (256 per second), which
justifies the need of processing data on-the-fly instead of storing them or using sliding
window; and (4) there is interest from experts regarding the analysis of relationships
among variables as a complementary study to their conventional time series approach.

IV.3.2 Addressing the difficulty of evaluating association stream
mining

Unlike other types of problems such as supervised learning problems where there are
standard measures and mechanisms to evaluate the goodness of the results of algorithms and
to establish comparisons between them; in the association rules field there is no standard
way to fairly establish comparisons between algorithms. Association rules discovery is
an unsupervised learning problem so we do not know what the perfect association rules
might be. There are several parameters for individual association rule evaluation like
support, confidence, lift, etc., but even with them it is hard to reliably compare different
rules sets resulting from two different algorithms or experiments. These issues increase
when we talk about association streams, we have to deal with the additional difficulty
of evaluating the ability of the algorithm to adapt to concept drifts. Again unlike in
supervised and clustering stream fields, for association stream mining, there is no formal
way to quantitatively evaluate what happens with the learned model when a concept drift
occurs. To evaluate and better understand the results we have designed a set of original
graphs and visualizations which would help interpret the results in two different ways: (1)
comparison between the performance of Fuzzy-CSar-AFP, Fuzzy-CSar and Fuzzy-Apriori;
and (2) visual tools to represent the associations discovered by Fuzzy-CSar-AFP in the
data. This set of graphics and visualizations are detailed in the following.

IV.3.2.1 Attribute domain evolution

One of the novel aspects of Fuzzy-CSar-AFP is its ability to evolve the range of the input
variables in real time while processing the data stream. Therefore, as part of our analysis
we want to study how these dynamic limits of the algorithm are adapting to the real
evolution of the variables.

For each attribute we represent a graphic plot with three functions: (1) the evolution
of the bottom limit of the range (minimum value) dynamically evolved by the algorithm
for the attribute (represented in red), (2) the evolution of the actual values of this attribute
in the received data stream (represented in blue), and (3) the evolution of the top limit of
the range (maximum value) dynamically updated by the algorithm (represented in red).
With these plots we get a clearer picture of the data stream received and check how well
the domains that the algorithm maintains fit the real data. This type of plot is shown in
Section IV.3.4.1.

IV.3 Physiological signals analysis through association stream mining 107

IV.3.2.2 Number of rules: minimum confidence vs. minimum support

As mentioned, part of our analysis focuses on a comparison between the performance of
Fuzzy-CSar-AFP and that of other algorithms also based on fuzzy association rules. This
comparison comprises different types of analysis.

Given a minimum confidence value of c, we can count the number of rules whose
support is equal to or greater than s. If we plot the output of this operation for a sufficient
number of s values, the resulting curve is often used to analyze the results of association
rules algorithms as this type of graph represents the quality of the rules obtained.

IV.3.2.3 Evolution of the amount of good rules

In this case, the flow character of the problem is addressed. A minimum confidence
threshold and a minimum support threshold are set. For each algorithm, the number
of rules whose support and confidence exceed these thresholds at each moment of the
experiment is represented. This graph complements the one described in the previous
section by showing the dynamical behavior of the algorithms.

IV.3.2.4 Multidimensional Scaling to analyze dispersion of association rules

We consider the previous plots concerning the amount of rules obtained according to
different quality criteria are not enough for a real comparison between two approaches as
an algorithm can find many rules which are very similar to each other (e.g., with slight
differences on the variables used in the antecedent), which in practice is not so useful for
expert decision making. On the contrary, an algorithm that generates association rules
with more diversity is preferable. However, this has not been thoroughly analyzed in the
specialized literature yet although some visualizations have been proposed (Yamada et al.,
2015; Trevisan et al., 2015).

Here we propose a new method to assess how diverse the rules obtained by the
algorithm are. If the rules were illustrated as points in a two-dimensional coordinate
system, then we could easily distinguish by color n groups of points matching the rules
obtained by n different algorithms, and so it would be pretty simple to visually compare
which group spreads their points more evenly and which has the majority of its points
(association rules) concentrated in certain small zones of the plot.

To get to visualize the rules in such 2D plots, it is necessary to conduct a process
that can be summarized in the following four main steps: (1) obtaining the output set of
rules of each of the algorithms involved in the comparative analysis (applying some kind of
filter if needed); (2) joining the m rule sets coming from the m different algorithms in one
common rule set; (3) compute the distance matrix containing the distance between each
pair of association rules in the common set; (4) apply MultiDimensional Scaling (MDS)
(Meulman, 1992) to such distance matrix. As a result, a set of 2D points is obtained. Each

108 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

of these resulting 2D points represents an individual association rule. These points can
now be easily graphically displayed in an interpretable way using, for instance, a scatter
plot.

However, the distance between two association rules may not be trivial. We need
to define a distance function between rules and this definition may depend on the kind
of association rules that we are using. In this case, the three algorithms that we aim to
compare are based on fuzzy association rules where knowledge is represented as described
in Section IV.2.1. Thus, each fuzzy set can be considered trapezoidal-shaped and defined
by four vertices.

Figure IV.6 shows the position of these four vertices in different scenarios depending
on whether or not the variable is used in the antecedent/consequent part of the rule and,
in case the variable is actually used, on the position and amount of linguistic fuzzy labels
that compose the corresponding fuzzy set.

From these vertices, we estimate the distance between two rules for a given variable
as the average of the absolute value difference between the vertices of the two rules. Given
this distance function between variables, we define the distance between two rules as the
Euclidean distance of the different variables in antecedent and consequent. In Algorithm
3, along with Algorithm 4, this distance function between association rules and all the
steps carried out for its calculation are described.

The distance matrix used for MDS is built by applying the distance function
described in Algorithm 3 on every pair (ri, rj) of fuzzy association rules in the set.

In addition to the graphic visualization, a quantitative measure to numerically
assess the scattering of each group of rules is also proposed. We denote this rule diversity
measure as δMDS and it can be defined as the mean of the Euclidean distances between
every pair of points that represent association rules resulting from a specific algorithm.
That is, to compute δMDS for each one of the n algorithms we have to: (1) cluster the
points based on which algorithm produced the rule the point represents; (2) in each of the
created subsets, calculate the Euclidean distance between each pair of points and compute
the average of such Euclidean distances.

IV.3.2.5 Streamgraphs

A Streamgraph (or Stream graph) is a variation of the stacked area chart, where the
evolution of a numeric variable (ordinate axis) following another numeric variable (axis
of abscissas) is represented. As in a stacked area chart, this evolution is represented for
several groups, using a distinct color for each of them. Areas are usually displaced around
a central axis, what gives a nice impression of flow. This kind of plot is quite useful to
study the relative proportions of a whole.

The flow look-and-feel of the streamgraph along with the fact that they are specially
suitable for representing the evolution of numeric variables and to study the relative

IV.3 Physiological signals analysis through association stream mining 109

Algorithm 3: Description of the fuzzy association rule distance function used
for MDS
function FuzzyRulesDistance(fuzzy rule ri, fuzzy rule rj)

Result: Distance between ri and rj

begin
sum = 0;
foreach variable Xk do

[Siantk] ← GetTrapezoidalVertices(ri, Xk, antecedent);

[Sjantk] ← GetTrapezoidalVertices(rj, Xk, antecedent);

[Siconk] ← GetTrapezoidalVertices(ri, Xk, consequent);

[Sjconk] ← GetTrapezoidalVertices(rj, Xk, consequent);

dA ← FuzzyVariableDistance([Siantk], [Sjantk]);

dC ← FuzzyVariableDistance([Siconk], [Sjconk]);
Estimate the maximum possible distance dmax between two fuzzy sets for
Xk;

dA = dA
dmax

; // Normalized antecedent distance for Xk

dC = dC
dmax

; // Normalized consequent distance for Xk

sum = sum+ dA + dC
end

d =
√

sum
2·n ;

Return d;

end

proportions of the components, make it a really good fit to represent the evolution of
different subsets of association rules over time.

Given a set of rules with a certain consequent variable, a streamgraph can be
used to display the evolution of the relative frequency of each of the antecedent variables
along the data stream. Algorithm 5 describes the process follows to, given a certain
consequent variable, obtain the information needed to generate the streamgraph from the
output of an association stream mining algorithm. This process returns the weight of each
antecedent variable at each point of the data stream. Such weight represents the size of
the corresponding colored area. In Section IV.3.5 several streamgraphs are displayed as
part of the results analysis. In each of them, a color strip (colored area) is shown for each
one of the antecedent variables and its size is proportional to the relative relevance of the
antecedent variable at each specific point of the stream. The sum of all these subareas
corresponds to the amount of rules that include the selected consequent variable.

110 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

Algorithm 4: Description of the functions used in Algorithm 3 to get the trape-
zoidal representation of a variable and compute the distance between trapezoidal-
shaped fuzzy sets

function FuzzyVariableDistance(set of vertices [Sik], set of

vertices [Sjk])

Result: Distance between ri and rj for Xk

begin
Extract the vertices {aik, bik, cik, dik} from [Sik];

Extract the vertices {ajk, b
j
k, c

j
k, d

j
k} from [Sjk];

d =
|aik−a

j
k|+|b

i
k−b

j
k|+|c

i
k−c

j
k|+|d

i
k−d

j
k|

4
;

Return d;
end
function GetTrapezoidalVertices(fuzzy rule ri, variable Xk, rule

part p)

Data: part is either antecedent or consequent
Result: Set of vertices of the trapezoidal-shaped Xk in the p part of ri

begin
Check if Xk is included in the p part of ri;
if Xk is in p of ri then

Get the four vertices {aik, bik, cik, dik} from the trapezoidal representation of
the fuzzy set Ãik;

else
aik = bik = min(Xk);
cik = dik = max(Xk);

end
Save the four vertices as the set [Sik];
Return [Sik];

end

IV.3.2.6 Dependency wheels

A Chord diagram, also known as Dependency wheel, allows to visualize weighted rela-
tionships between several entities (called nodes). Nodes are arranged along a circle, i.e.,
each entity is represented by a fragment on the outer part of a circular layout. Arcs
are used to connect the nodes to each other. The size of both the arcs and the nodes is
proportional to the weight of the corresponding associations. Color is often used to group
data into different categories, which facilitates making comparisons and differentiating
between groups.

The use of dependency wheels allows us to summarize in a single image much of the
information contained in the set of association rules. By looking at the graph it is possible

IV.3 Physiological signals analysis through association stream mining 111

Algorithm 5: Process followed to transform the output of an association stream
algorithm into the input data of a streamgraph

Data:
Array of time stamps [T] and target consequent variable Xk

Result: [W] contains the weight of every antecedent variable at each t in [T]

Initialize [W] to zero;
foreach t in [T] do

Retrieve the rule set [R] from the algorithm;
foreach r in [R] do

Let Xc be the consequent variable of r;
if Xc == Xk then

Let la be the number of variables in the antecedent of r;
foreach Xi in the antecedent of r do

Add la
−1 to the weight of Xi at t;

end

end

end

end

to identify whether there are some variables that have a particularly high/low weight and,
in general, to get an idea of the strength of the association between each pair of variables.
This type of graph takes a shot of how the variables are associated at a particular point of
the stream. Since the set of rules evolves dynamically over time, two pictures taken at
different times may not show the same scenery.

In Section IV.3.5, we include examples of dependency wheels obtained from the
results of Fuzzy-CSar-AFP, which help us analyze the rules and draw conclusions. The
used wheels present a double ring. While the outer ring represents the different variables of
the problem, the inner ring distinguishes when the variable appears as antecedent (dashed
sectors) or consequent (dotted sectors). Therefore, the arcs always connect antecedent
and consequent sectors. The width of these sectors for each variable is proportional to the
number of rules in which this variable appears. Likewise, the width of the arcs represent
the importance of these connections. The color of each arc corresponds to the one assigned
to the antecedent variable of such link. Algorithm 6 describes how the adjacency matrix
required for these dependency wheels is built from a rule set.

IV.3.3 Experimental setup

Fuzzy-CSar-AFP has several configuration parameters which enable the user to adjust
the behavior of the system. For most of these configuration parameters, we took as a
reference the values used in Sancho-Asensio et al. (2016) for the algorithm Fuzzy-CSar,

112 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

Algorithm 6: Building process of the adjacency matrix for a dependency wheel
from a set of association rules

Data: The rule set [R]
Result: The lxl adjacency matrix m (where l is the number of variables)

Initialize m to zero;
foreach rule r in [R] do

Let Xc be the variable in the consequent of r;
foreach variable Xi in the antecedent of r do

Add l−1a to m[i, c];
end

end

which were obtained experimentally following the recommendations found in Orriols-Puig
et al. (2008a). Thus, here, for both Fuzzy-CSar and Fuzzy-CSar-AFP: υ = 1, P# = 0.2,
Pχ = 0.8, {PI/R, Pµ, PC} = 0.1, δ = 0.1, θGA = 12, maxLingTermsPerVariable = 3, and
θmna is automatically set to the number of variables. However, here we are dealing with
a challenging real-world data stream problem in which 256 samples are analyzed every
second during 60 minutes per subject (i.e., about a million of samples are processed in
each experiment). Due to this high rate of incoming data, it was considered convenient
for the values of those parameters related to experience thresholds, as well as, the size
of the population to be adjusted: θexp = 10000 (a rule that has been updated for about
40 seconds is experimented enough as to consider the performance estimation reliable),
θdel = θsub = 4000 (after about 15 seconds the rules can be deleted or subsumed), and the
population size was set to 5000 individuals.

As we have pointed before, Fuzzy-CSar-AFP is also analyzed in comparison with
Fuzzy-Apriori (Hong et al., 1999), which integrates the Apriori algorithm and fuzzy sets
concepts to discover interesting fuzzy association rules among quantitative values. Because
Fuzzy-Apriori is not a data stream algorithm the dataset is partitioned into 30 subsets,
each one containing 30720 samples (data registered during two minutes of experiment)
and Fuzzy-Apriori is applied on each subset. So we can obtain results from Fuzzy-Apriori
for different stretches from the original dataset, and not only at the end.

Regarding the fuzzy sets, all the variables use Ruspini’s strong fuzzy semantics
with 5 linguistic terms (XS, S, M , L, XL) for both Fuzy-CSar and Fuzzy-Apriori, and
between 2 and 5 linguistic terms in the case of Fuzzy-CSar-AFP. The same configuration
is applied to all the experiments conducted and, therefore, all the results shown in the
following Section IV.3.4 have been obtained following this procedure.

Furthermore, with respect to the domain update mechanism. In our experimentation,
we use β = 2.5 so about 98% of the samples are included in the range, and α =
10log10(0.5)/(sps·s) being sps = 256 (samples per second, i.e., Hz) and s = 40 (i.e., after 40
seconds the decay factor α will be faded out to 0.5).

IV.3 Physiological signals analysis through association stream mining 113

IV.3.4 Results

The EEG data streams described in Section IV.3.1 are used in a series of experiments
in order to corroborate our hypothesis that Fuzzy-CSar-AFP is able to better adapt to
the peculiarities of each variable, thus obtaining better and more heterogeneous rules
that could help understand the associations between the input features. We thoroughly
compare Fuzzy-CSar-AFP with Fuzzy-Apriori and Fuzzy-CSar.For this comparison we
employ two different versions of the mentioned data streams. The full data streams with
their 64 variables are used to assess the time-performing of the algorithms. However, to
analyze and compare the sets of rules obtained by the different algorithms, EEG data
from six scalp locations ((Bartsch et al., 2015)) is used in order to enable a more conscious
analysis. These six scalp locations are: frontal left (Fp1), frontal right (Fp2), occipital left
(O1), occipital right (O2), central left (C3) and central right (C4).

The experiments can be clustered in two different categories depending on whether
the algorithms employ the absolute domain of each input feature or the incremental domain
evolution mechanism (Section IV.2.2.1). Comparisons are done separately for these two
categories of experiments due to the difficulties of achieving a fair comparison (specially in
terms of dispersion) between algorithms using different attribute domains. In any case, the
main aim of the incremental domain evolution mechanism is to make the algorithm useful
in real-world problems in which it is common not to know the range of such domains or
where the domains may vary significantly along the data stream.

IV.3.4.1 Domain update

The domain update mechanism described in Section IV.2.2.1, allows the range that the
algorithm maintains for each attribute to be incrementally updated in real time as the
algorithm processes the incoming examples. Thus, each time a new example is received,
the upper and lower limits of that range are updated accordingly. In Figure IV.7 and
Figure IV.8 we can see the evolution of these upper and lower limits along the whole data
stream for each of the subjects included in our experiments.

The domain update mechanism described in Section IV.2.2.1, allows the range that
the algorithm maintains for each attribute to be incrementally updated in real time as the
algorithm processes the incoming examples. Thus, each time a new example is received,
the upper and lower limits of that range are updated accordingly. In Figure IV.7 and
Figure IV.8 we can see the evolution of these upper and lower limits along the whole data
stream for each of the subjects included in our experiments.

Delimiting the range of each variable based on the incrementally computed µ and
σ allows the range to evolve along time but to avoid overreacting to noise and outliers.
Moreover, in this case, using the actual maximum and minimum values would imply that
several linguistic labels would not ever be used. For instance, in the case of the trained
subject (Figure IV.7) for electrode C4 some linguistic labels would cover values that are
only reached once in the whole stream.

114 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

IV.3.4.2 Number of rules stratified by support

In this section, we compare the amount of rules obtained through Fuzzy-CSar-AFP and
Fuzzy-Apriori according to a minimum support threshold. Since Fuzzy-CSar-AFP does
not conduct any kind of support filtering during its learning process, we are filtering the
output rule sets from the algorithms based on the specified minimum support thresholds.

Figure IV.9 shows how the amount of rules evolve as the demanded minimum
support increases (from 0.0 to 1.0). This is shown for both Fuzzy-CSar-AFP and Fuzzy-
Apriori, for three different confidence thresholds (0.75, 0.80 and 0.85), and for two different
scenarios: (1) both algorithms use the full range of each attribute during the whole stream,
and (2) both algorithms incrementally update the range o feach input attribute using the
method described in Section IV.2.2.1.

Table IV.2: Number of rules (#R) obtained by Fuzzy-Apriori with the lowest minimum
supports. The amount of rules is shown for the three confidence thresholds (0.75, 0.80 and
0.85) included in Figure IV.9 and for both trained (TRA) and sedentary (SED) subjects
when using evolving domains.

min. supp. 0 0.01 0.02

min. conf. 0.75 0.8 0.85 0.75 0.8 0.85 0.75 0.8 0.85

TRA #R 317514 274020 212082 2608 794 30 846 42 0
SED #R 156852 135884 104812 1282 334 17 395 23 1

When using static domains and low support thresholds, the number of rules
generated by Fuzzy-Apriori is much higher but it decreases very quickly, falling below
Fuzzy-CSar-AFP before the support reaches 0.2. Fuzzy-CSar-AFP gets a lower number of
rules when no minimum support is required but maintains that level of rules for significantly
higher supports. However, when evolving domains are used, Fuzzy-CSar-AFP obtains a
larger number of rules from very close to zero support values to the end. If we focus on
support values between 0.0 and 0.1 our attention is drawn to the fact that the number of
Fuzzy-Apriori’s rules starts descending quickly, then seems to stabilize for a moment and
finally sharply descends again. Before the minimum support reaches 0.1 the number of
rules from Fuzzy-Apriori falls to zero for both subjects and for the three possible confidence
thresholds. This evolution in the amount of rules discovered by Fuzzy-Apriori is overriding
to the choice of rules quality thresholds for other comparatives and analysis shown in this
paper. Unlike Fuzzy-Apriori, Fuzzy-CSar-AFP draws a smoother curve and continues
generating rules even for quite high minimum supports, and for both attribute range
approaches.

IV.3 Physiological signals analysis through association stream mining 115

IV.3.4.3 Evolution of the amount of quality rules along the stream

Figure IV.10 represents the evolution of the number of rules beating minimum support and
confidence values as the amount of samples processed by the algorithm grows. Algorithms
are distinguished by color. Note that Fuzzy-Apriori is not a data stream approach and,
therefore, it is executed in consecutive data batches. Each batch comprises two minutes of
information recording, i.e., 30720 samples. As in the previous section, we consider two
different experimental setups: static domains and evolving domains.

Based on Figure IV.10, minimum supports are selected for which the number of
rules for Fuzzy-Apriori and Fuzzy-CSar-AFP tends to be similar and not excessively low.
Thus, the chosen minimum supports are: 0.02 for evolving domains, 0.25 for static domains
on the trained subject and 0.10 for static domains on the sedentary subject. Furthermore,
rules are also filtered according to two minimum confidences (0.75 and 0.85).

In general, it is observed that for a minimum confidence of 0.75, the number
of Fuzzy-Apriori and Fuzzy-CSar-AFP rules remains at similar levels throughout the
experiment. The main differences between them are observed when 0.85 is used as the
confidence threshold.

Since Fuzzy-Apriori is not an incremental algorithm the trend of the evolution on
the number of different rules is not the same as for Fuzzy-CSar and Fuzzy-CSar-AFP, and
there are noticeable differences among the four graphics. While the differences observed
between Fuzzy-CSar-AFP and Fuzzy-CSar maintain the same pattern regardless of the
subject, in the case of Fuzzy-Apriori there is considerable difference between them. When
the domains are kept static, Fuzzy-Apriori is able to maintain a higher number of rules
than Fuzzy-CSar-AFP for both confidence thresholds in the trained subject. However, in
the case of the sedentary subject, when the confidence threshold rises to 0.85, the number
of Fuzzy-Apriori rules collapses, exceeding Fuzzy-CSar-AFP only for a short interval.

We also appreciate differences between subjects in the case of evolving domains.
For the trained subject and 0.75 as confidence threshold, the amount of filtered rules from
Fuzzy-Apriori is always greater than the one from Fuzzy-CSar-AFP. Nonetheless, if the
confidence threshold is raised up to 0.85, Fuzzy-Apriori only beats Fuzzy-CSar-AFP during
a few short intervals. Meanwhile, the amount of filtered rules from Fuzzy-Apriori and
Fuzzy-CSar-AFP are quite similar in the sedentary subject when the minimum confidence
is 0.75. When increasing the minimum confidence, the number of rules falls significantly for
Fuzzy-Apriori, remaining below both Fuzzy-CSar-AFP and Fuzzy-CSar throughout almost
the entire experiment. In summary, it can be said that the number of rules from Fuzzy-
CSar-AFP surpasses the number of rules from Fuzzy-CSar. However, the relationship
between the number of different rules obtained by Fuzzy-CSar-AFP and Fuzzy-Apriori
is not so clear even though in most cases the difference between confidence thresholds
(0.75 and 0.85) is more significant in Fuzzy-Apriori. Anyway, the comparative analysis is
expanded throughout the following section.

116 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

IV.3.4.4 MultiDimensional Scaling to analyze dispersion of association rules

In this section we use the proposal described in Section IV.3.2.4 to carry out a comparison
in terms of dispersion between the sets of rules generated by Fuzzy-CSar-AFP, Fuzzy-CSar
and Fuzzy-Apriori.

The rules included in the comparison are filtered according to support and confidence
thresholds. In Section IV.3.2.4 we could ascertain how much impact the minimum support
has on the number of rules generated by Fuzzy-Apriori.Therefore, to allow a more fair
comparison in terms of dispersion between Fuzzy-CSar-AFP and Fuzzy-Apriori we decided
to choose minimum support and confidence thresholds for which both algorithms obtain a
very close number of rules. Thus, the results included in this section refer to rules filtered
according to: (a) minimum support of 0.02 in experiments where evolving domains are
used; (b) minimum support of 0.10 in experiments with static domains for the sedentary
subject, or (c) 0.25 as minimum support in experiments with static domains for the trained
subject. Minimum confidence was set to 0.75.

Through the process described in Section IV.3.2.4 we are able to represent each
rule as a bidimensional point. Hence, we can visually display the set of rules generated by
different algorithms in scatter plots as the ones shown in Figures IV.11 and IV.12. In each
of these two figures, the rules generated by the algorithms are divided in different plots
based on their consequent variable. The sets of rules used correspond to the ones at the
end of the stream, i.e.,when 60 minutes of data have been processed (921600 samples).
Tables IV.3 and IV.4 include the corresponding number of rules and δMDS.

Based on these figures and tables, we can both visually and quantitatively compare
how dispersed the rules of each algorithm are distributed. Visually, we can observe that
for both trained (Figure IV.11) and sedentary (Figure IV.12) subjects the rules obtained
by Fuzzy-CSar-AFP (blue points) tend to be more distanced from each other and are
quite spread, covering a wide area and presenting rules for every consequent variable. If
we check Tables IV.3 and IV.4, δMDS values confirm that in most of the analyzed cases
Fuzzy-CSar-AFP is the algorithm whose rules are distributed more widely, with a higher
average distance between each other. It is worth highlighting those cases in which Fuzzy-
Apriori obtains more rules but Fuzzy-CSar-AFP gets a higher δMDS, for instance, when
O2 is the consequent variable. In these examples, Fuzzy-Apriori obtains more rules than
Fuzzy-CSar-AFP but δMDS is clearly greater for Fuzzy-CSar-AFP, i.e., Fuzzy-CSar-AFP
manages to discover with less association rules a more diverse and widespread knowledge.
An extremely low number of rules is neither desirable, not even if δMDS is higher. The
aim is to find a balance between the number of quality rules and how sparse they are.

De momento/ Por el momento, hemos puesto el foco únicamente en el instante final
del flujo de datos, when all the samples have been processed. No obstante, al disponer de
una medida que nos permite evaluar cuantitativamente la dispersión de las reglas, we can
get a more global vision of the evolution of δmds throughout the full stream. In Figure
IV.13 we represent δmds at 30 different points of the experiment. δmds value for each
algorithm’s rules is computed everytime two new minutes of data (30720 new samples)

IV.3 Physiological signals analysis through association stream mining 117

Table IV.3: Number of rules (#R) and dispersion (δmds) comparison for the TRA subject.
The rules included in this table have overcome support and confidence thresholds (conf ≥
0.75 and different minimum supports). The results are shown for both static and evolving
domains.

Fp2 C4 O2 O1 C3 Fp1

δmds #R δmds #R δmds #R δmds #R δmds #R δmds #R

Static F-A priori 0.144 35 0.00 0 0.152 36 0.00 0 0.148 37 0.00 0
FCSar 0.161 7 0.00 0 0.156 8 0.00 0 0.162 9 0.00 0
FCSar-AFP 0.095 4 0.132 19 0.107 8 0.124 16 0.106 12 0.134 27

Evolving F-A priori 0.180 64 0.184 75 0.182 71 0.186 62 0.183 58 0.175 62
FCSar 0.163 12 0.150 10 0.150 9 0.079 2 0.170 12 0.153 6
FCSar-AFP 0.183 62 0.190 60 0.190 53 0.174 54 0.190 56 0.207 38

Table IV.4: Number of rules (#R) and dispersion (δmds) comparison for the SED subject.
The rules included in this table have overcome support and confidence thresholds (conf ≥
0.75 and different minimum supports). The results are shown for both static and evolving
domains.

Fp2 C4 O2 O1 C3 Fp1

δmds #R δmds #R δmds #R δmds #R δmds #R δmds #R

Static F-Apriori 0.147 28 0.150 74 0.137 40 0.144 7 0.00 0 0.153 22
FCSar 0.122 7 0.00 0 0.137 4 0.160 11 0.179 15 0.156 12
FCSar-AFP 0.159 19 0.151 23 0.159 15 0.187 8 0.126 16 0.162 20

Evolving F-Apriori 0.171 45 0.187 68 0.171 76 0.168 67 0.194 54 0.193 59
FCSar 0.089 10 0.240 6 0.126 6 0.135 11 0.137 19 0.140 13
FCSar-AFP 0.179 80 0.165 54 0.203 53 0.203 64 0.181 52 0.178 52

118 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

have been processed by the algorithms. The association rules are filtered by the same
quality parameters as in the previous figures and tables (conf ≥ 0.75 and supp ≥ 0.02).

In the plots contained in Figure IV.13 we can appreciate how Fuzzy-CSar-AFP
obtains the highest values of δmds for the main part of the stream in all cases. If we focus
on the comparative between Fuzzy-CSar-AFP and Fuzzy-Apriori, Fuzzy-CSar-AFP equals
or improves Fuzzy-Apriori in all the experiments (both subjects and both domains). The
improvement of Fuzzy-CSar-AFP over Fuzzy-Apriori is more noticeable in the case of
absolute domains. But even with evolving domains Fuzzy-CSar-AFP beats Fuzzy-Apriori
in most of the occasions. Furthermore, it is important to recall that Fuzzy-Apriori is
not really an incremental online algorithm but we apply it on different batches of data.
If we would need to get a real time update of the state of the population of rules each
time a new data is received, this would be possible with Fuzzy-CSar or Fuzzy-CSar-AFP
but not with Fuzzy-Apriori. When comparing Fuzzy-CSar with Fuzzy-CSar-AFP, it is
clear that Fuzzy-CSar-AFP achieves better results for three out of four experiments, and
with a smaller difference also gets better results in the remaining one. Furthermore, if
we also check Figure IV.10, we observe that the number of rules from Fuzzy-CSar is
lower for 0.75 is the minimum confidence. So we can conclude that Fuzzy-CSar-AFP
tends to extract a sufficiently high number of quality rules with a greater diversity degree
than the ones obtained by other algorithms in most of the conducted experiments, i.e.,
Fuzzy-CSar-AFP generates rules that represent different knowledge rather than a lot of
overlapping or redundant rules expressing the same information. As explained before, an
algorithm capable of generating rules with a higher diversity level is preferable.

IV.3.4.5 Efficiency analysis

In order to check and compare the efficiency of the algorithms, two different types of
experiments have been performed. Firstly, the computation time spent by each algorithm
in processing every two new minutes of data (30 720 sampling) is registered. Since the
minimum support value specified as input argument of Fuzzy-Apriori determines its number
of frequent itemsets and, therefore, influences its execution time, we carry out several tests
varying the support threshold. Fuzzy-CSar and Fuzzy-CSar-AFP do not need minimum
support as input parameter. The results of these tests are shown in Figure IV.14. The
experiments are performed in a Intel® Core� i7-4790 3.60 GHz, RAM 16 GB DDR3 (1600
Mhz) computer.

In both figures, we can observe how the support threshold is a key factor in the
execution time of Fuzzy-Apriori. Relating these results with Figure IV.9, as the number of
rules obtained by Fuzzy-Apriori quickly decreases if the minimum support value increases
a little, its execution time follows the same trend. Comparing the performances of Fuzzy-
CSar-AFP and Fuzzy-CSar, the latter gets better efficiency since it maintains a significantly
lower number of rules (see Figure IV.10). In other words, in exchange for getting many
more quality rules, Fuzzy-CSar-AFP needs to evolve a wider pool of rules that increases
processing time. In addition, we can observe how in the first subsets both Fuzzy-CSar and

IV.3 Physiological signals analysis through association stream mining 119

Fuzzy-CSar-AFP register lower time values. This is due to the incremental and online
character of these algorithms. Initially, the population of association rules maintained by
these algorithms is empty, then the population starts to grow up and, finally, it stabilizes,
as well as the execution time of the algorithm.

Another key factor in the time efficiency of these algorithms is the number of
attributes forming the input data. In order to test the influence of this factor on the
three algorithms, we test them on the full original EEG dataset (before feature selection)
including its 64 attributes. The average execution times per sample registered along with
those recorded using the 6-attribute dataset are shown in Table IV.5. This table shows
the average of three runs. In the table we can appreciate how Fuzzy-CSar-AFP scales
much better than Fuzzy-Apriori. With the 6-attribute dataset, both Fuzzy-CSar-AFP
and Fuzzy-Apriori can manage a sampling frequency of 1000 Hz. However, with the
64-attribute dataset, Fuzzy-CSar-AFP can manage 200 Hz while Fuzzy-Apriori needs
about a second and a half to process each sample. That is, for a sampling frequency of 200
Hz, Fuzzy-Apriori may spend more than 44 hours to process the data recorded during 10
minutes of experiment, which is completely unfeasible in a real-world data stream problem.
Fuzzy-CSar-AFP, on the contrary, is able to process the data on-the-fly.

In Table IV.5 we can also discover another interesting fact: the time registered
by Fuzzy-CSar is lower than the time registered by Fuzzy-CSar-AFP for the 6-attribute
dataset but higher in the case of the 64-attribute dataset. This is due to he number of rules
generated. Fuzzy-CSar obtains a lower amount of different rules than Fuzzy-CSar-AFP for
the 6-attribute dataset (as shown above) but gets more different rules than Fuzzy-CSar-
AFP for the 64-attribute dataset (1919 vs. 1547). Nevertheless, these higher number of
rules does not imply more quality. Indeed, Fuzzy-CSar-AFP obtains more high-quality
rules (with minimum confidence of 0.85) than Fuzzy-CSar. The 64-attribute dataset is a
very sparse problem so Fuzzy-CSar does not enhance quality properly, thus generating a
high number of different rules but with poorer quality.

Table IV.5: Average execution time (in seconds) per sample of Fuzzy-Apriori, Fuzzy-CSar
and Fuzzy-CSar-AFP applied on 6-electrodes and 64-electrodes dataset.

6-attribute dataset 64-attribute dataset

TRA SED TRA SED

Fuzzy-Apriori 0.000022 0.000018 1.337197 1.265868
Fuzzy-CSar 0.000203 0.000166 0.007194 0.007203
Fuzzy-CSar-AFP 0.001092 0.001057 0.004616 0.005056

IV.3.5 Interpretation of obtained results in psychophysiology

Figures IV.15 and IV.16 show the association streams for each subject: trained and
sedentary. In both cases, the figures revealed a stable increase in the number of association

120 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

rules throughout the experimental session. This is an expected behavior for biological
signals that fluctuate in response to variations in common underlying physiological sources.
The result confirms the sensitivity of the method when detecting natural associations
between signals from electrodes at distinct scalp locations. In addition, the method shows
robust to mild physiological changes induced by mental fatigue during a behavioral task
with low cognitive demands. This robustness of the algorithm to the factor of time and to
modest cognitive effort is important for further experimentation with more demanding
conditions marked by pronounced physiological changes (e.g., sleep vs. awake and distinct
sleep stages, tasks with significant cognitive load, etc.)

Although the algorithm proved robust to changes induced by the length and the
particular behavioral demands of the task, it also proved capable of tracking the evolution of
specific association rules throughout the experimental session. Differences in the dynamical
pattern of concrete association rules between subjects seem like a promising methodological
tool for detecting minute which would be impossible to assess with current averaging or
pair-wise correlation techniques.

Figure IV.17 shows the dependency wheels of high-quality fuzzy association rules
(supp ≥ 0.05 and conf ≥ 0.85) obtained for both TRA and SED subjects at the end
of the experiment (921 600 samples processed, i.e., after 60 minutes). At this level of
performance, we can observe differences between the fuzzy association rules in these two
cases. We can perform a zone analysis of these two graphics and highlight certain contrasts
between them. Looking at the frontal electrodes (Fp1 and Fp2), in the case of TRA, Fp1
is the frontal electrode with greater presence as consequent (dotted sectors) while Fp2
appears mainly as antecedent (dashed sectors). This behavior is completely reversed in
SED. On the one hand, Fp2 has a much larger total occurrence in SED and most of it
as consequent. On the other hand, Fp1 loses relevance, particularly, its consequent sector.
In the central electrodes (C3 and C4), there are not so significant differences between
subjects, even though the relevance of C3 as consequent (dotted sectors) is clearly bigger
in TRA. Finally, looking at the last electrodes (O1 and O2) we appreciate again significant
variances between subjects, specially in O1 that has a pretty important consequent sector
in TRA while in SED its consequent sector hardly exists. Instead of focusing on each
individual electrode, we also can pay attention to the relationships and dependencies
established between them. Many of these associations vary depending on the subject while
others seem steady and more independent to subject change such as those built between
Fp1 and Fp2, or Fp2 and C4.

IV.3 Physiological signals analysis through association stream mining 121

Mutation

Addition Removal

IF 𝑿𝟏 is THEN 𝑪𝟏

IF 𝑿𝟏 is and 𝑿𝟐 is THEN 𝑪𝟏

IF 𝑿𝟏 is and 𝑿𝟐 is and 𝑿𝟑 is THEN 𝑪𝟏

(a) Mutation of the antecedent variables

Mutation

IF 𝑿𝟏 is and 𝑿𝟐 is THEN 𝑿𝟒 is

IF 𝑿𝟏 is and 𝑿𝟒 is THEN 𝑿𝟐 is

(b) Mutation of the consequent variable

Mutation

Expansion Contraction Shift

IF 𝑿𝟏 is THEN 𝑪𝟏 IF 𝑿𝟏 is THEN 𝑪𝟏 IF 𝑿𝟏 is THEN 𝑪𝟏

IF 𝑿𝟏 is THEN 𝑪𝟏

(c) Mutation of linguistic terms

Mutation

-1 granularity level +1 granularity levels

IF 𝑿𝟏 is THEN 𝑪𝟏

IF 𝑿𝟏 is THEN 𝑪𝟏

IF 𝑿𝟏 is THEN 𝑪𝟏

(d) Mutation of granularity

Figure IV.5: Graphical examples of the four different types of mutations that rules can
undergo.

122 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

1

0

C

D

B

A
1

0

(a)

1

0

C

D

B

A
1

0

(b)

1

0

C

D

B

A
1

0

(c)

1

0

C

D

B

A
1

0

(d)

Figure IV.6: Location of the four vertices (noted as A,B,C,D) that define the trapezoidal
representation of a fuzzy set in different scenarios: (a) the variable is not used, (b) the
fuzzy set is composed by the label S3, (c) the fuzzy is composed by the label M3, and (d)
the fuzzy set is composed by the disjunction of labels M3 and L3.

IV.3 Physiological signals analysis through association stream mining 123

0 2 4 6 8 10 12

x 10
4

-80

-60

-40

-20

0

20

40

60

80
 Fp1 - TRA

 Sample

real Fp1 TRA
max Fp1 TRA
min Fp1 TRA

0 2 4 6 8 10 12

x 10
4

-80

-60

-40

-20

0

20

40

60

80
 Fp2 - TRA

 Sample

real Fp2 TRA
max Fp2 TRA
min Fp2 TRA

0 2 4 6 8 10 12

x 10
4

-80

-60

-40

-20

0

20

40

60

80
 O1 - TRA

 Sample

real O1 TRA
max O1 TRA
min O1 TRA

0 2 4 6 8 10 12

x 10
4

-80

-60

-40

-20

0

20

40

60

80
 O2 - TRA

 Sample

real O2 TRA
max O2 TRA
min O2 TRA

0 2 4 6 8 10 12

x 10
4

-80

-60

-40

-20

0

20

40

60

80
 C3 - TRA

 Sample

real C3 TRA
max C3 TRA
min C3 TRA

0 2 4 6 8 10 12

x 10
4

-80

-60

-40

-20

0

20

40

60

80
 C4 - TRA

 Sample

real C4 TRA
max C4 TRA
min C4 TRA

Figure IV.7: Evolution of the real value (blue), algorithm maximum value (red) and
algorithm minimum value (red) for each input attribute (Fp1, Fp2, O1, O2, C3 and C4)
as data are processed. The values shown in this figure correspond to the subject used as
representative of the group of trained (TRA) subjects. Because of the high sampling rate
and to reduce the weight of the images, only 1 in 20 data is represented in these plots.

124 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

0 2 4 6 8 10 12

x 10
4

-50

-40

-30

-20

-10

0

10

20

30

40

50
 C4 - SED

 Sample

real C4 SED
max C4 SED
min C4 SED

0 2 4 6 8 10 12

x 10
4

-50

-40

-30

-20

-10

0

10

20

30

40

50
 Fp1 - SED

 Sample

real Fp1 SED
max Fp1 SED
min Fp1 SED

0 2 4 6 8 10 12

x 10
4

-50

-40

-30

-20

-10

0

10

20

30

40

50
 Fp2 - SED

 Sample

real Fp2 SED
max Fp2 SED
min Fp2 SED

0 2 4 6 8 10 12

x 10
4

-50

-40

-30

-20

-10

0

10

20

30

40

50
 O1 - SED

 Sample

real O1 SED
max O1 SED
min O1 SED

0 2 4 6 8 10 12

x 10
4

-50

-40

-30

-20

-10

0

10

20

30

40

50
 C3 - SED

 Sample

real C3 SED
max C3 SED
min C3 SED

0 2 4 6 8 10 12

x 10
4

-50

-40

-30

-20

-10

0

10

20

30

40

50
 O2 - SED

 Sample

real O2 SED
max O2 SED
min O2 SED

Figure IV.8: Evolution of the real value (blue), algorithm maximum value (red) and
algorithm minimum value (red) for each input attribute (Fp1, Fp2, O1, O2, C3 and C4)
as data are processed. The values shown in this figure correspond to the subject used as
representative of the group of sedentary (SED) subjects. Because of the high sampling
rate and to reduce the weight of the images, only 1 in 20 data is represented in these plots.

IV.3 Physiological signals analysis through association stream mining 125

0.0 0.2 0.4 0.6 0.8 1.0
Minimum Rule Support

0

200

400

600

800

Nu
m

be
r o

f R
ul

es

TRAined Subject
Fuzzy-Apriori (conf.>=0.75)
Fuzzy-CSar-AFP (conf.>=0.75)
Fuzzy-Apriori (conf.>=0.8)
Fuzzy-CSar-AFP (conf.>=0.8)
Fuzzy-Apriori (conf.>=0.85)
Fuzzy-CSar-AFP (conf.>=0.85)

(a) TRA subject, static domains

0.0 0.2 0.4 0.6 0.8 1.0
Minimum Rule Support

0

100

200

300

400

Nu
m

be
r o

f R
ul

es

TRAined Subject
Fuzzy-Apriori (conf.>=0.75)
Fuzzy-CSar-AFP (conf.>=0.75)
Fuzzy-Apriori (conf.>=0.8)
Fuzzy-CSar-AFP (conf.>=0.8)
Fuzzy-Apriori (conf.>=0.85)
Fuzzy-CSar-AFP (conf.>=0.85)

(b) TRA subject, evolving domains

0.0 0.2 0.4 0.6 0.8 1.0
Minimum Rule Support

0

200

400

600

800

Nu
m

be
r o

f R
ul

es

SEDentary Subject
Fuzzy-Apriori (conf.>=0.75)
Fuzzy-CSar-AFP (conf.>=0.75)
Fuzzy-Apriori (conf.>=0.8)
Fuzzy-CSar-AFP (conf.>=0.8)
Fuzzy-Apriori (conf.>=0.85)
Fuzzy-CSar-AFP (conf.>=0.85)

(c) SED subject, static domains

0.0 0.2 0.4 0.6 0.8 1.0
Minimum Rule Support

0

100

200

300

400

Nu
m

be
r o

f R
ul

es

SEDentary Subject
Fuzzy-Apriori (conf.>=0.75)
Fuzzy-CSar-AFP (conf.>=0.75)
Fuzzy-Apriori (conf.>=0.8)
Fuzzy-CSar-AFP (conf.>=0.8)
Fuzzy-Apriori (conf.>=0.85)
Fuzzy-CSar-AFP (conf.>=0.85)

(d) SED subject, evolving domains

Figure IV.9: Amount of rules from Fuzzy-CSar-AFP (blue) and Fuzzy-Apriori (green) which
get over three different confidence thresholds (conf ≥ 0.75, conf ≥ 0.8 and conf ≥ 0.85)
and minimum support thresholds from 0.0 to 1.0. The results are shown for both the
experiments with absolute domains (left) and evolving attribute’s domains (right).

126 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

0 200000 400000 600000 800000
Sample

0

100

200

300

400

500

600

700

800

Nu
m

be
r o

f R
ul

es

Fuzzy-CSar-AFP (conf 0.75)
Fuzzy-CSar (conf 0.75)

Fuzzy-Apriori (conf 0.75)
Fuzzy-CSar-AFP (conf 0.85)

Fuzzy-CSar (conf 0.85)
Fuzzy-Apriori (conf 0.85)

0 200000 400000 600000 800000
Sample

20

40

60

80

100

120

Nu
m

be
r o

f R
ul

es

(a) TRA, static domains, supp ≥ 0.25

0 200000 400000 600000 800000
Sample

0

100

200

300

400

500

600

700

800
Nu

m
be

r o
f R

ul
es

(b) TRA, evolving domains, supp ≥ 0.02

0 200000 400000 600000 800000
Sample

0

50

100

150

200

250

300

Nu
m

be
r o

f R
ul

es

(c) SED, static domains, supp ≥ 0.10

0 200000 400000 600000 800000
Sample

0

100

200

300

400

500

600

700

Nu
m

be
r o

f R
ul

es

(d) SED, evolving domains, supp ≥ 0.02

Figure IV.10: Evolution on the amount of different rules along the stream for both trained
(TRA) and sedentary (SED) subject. The results are shown for experiments with static
domains (left) and evolving domains (right).

IV.3 Physiological signals analysis through association stream mining 127

Fp2 C4 O2

O1 C3 Fp1

(a) TRA subject, static domains (supp ≥ 0.25)

Fp2 C4 O2

O1 C3 Fp1

(b) TRA subject, evolving domains (supp ≥ 0.02)

Figure IV.11: Two-dimensional representations of how the rules are distributed in Fuzzy-
CSar-AFP (blue points), Fuzzy-CSar (red) and Fuzzy-Apriori (green) for trained subject
(TRA) data. The results are shown for both the experiments with absolute domains (up)
and evolving domains (down).

128 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

Fp2 C4 O2

O1 C3 Fp1

(a) SED subject, static domains (supp ≥ 0.10)

Fp2 C4 O2

O1 C3 Fp1

(b) SED subject, evolving domains (supp ≥ 0.02)

Figure IV.12: Two-dimensional representations of how the rules are distributed in Fuzzy-
CSar-AFP (blue points), Fuzzy-CSar (red) and Fuzzy-Apriori (green) for sedentary subject
(SED) data. The results are shown for both the experiments with absolute domains (up)
and evolving domains (down).

IV.3 Physiological signals analysis through association stream mining 129

0 200000 400000 600000 800000
Timestamp

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

m
ds

SEDentary Subject - Absolute domain
Fuzzy-CSar-AFP Fuzz-CSar Fuzzy-Apriori

0 200000 400000 600000 800000
Timestamp

0.08

0.09

0.10

0.11

0.12

0.13

m
ds

(a) TRA subject, absolute domains (supp ≥
0.25)

0 200000 400000 600000 800000
Timestamp

0.08

0.10

0.12

0.14

0.16

0.18

0.20

m
ds

(b) TRA subject, evolving domains (supp ≥
0.02)

0 200000 400000 600000 800000
Timestamp

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

m
ds

(c) SED subject, absolute domains (supp ≥
0.10)

0 200000 400000 600000 800000
Timestamp

0.10

0.12

0.14

0.16

0.18

0.20

m
ds

(d) SED subject, evolving domains (supp ≥
0.02)

Figure IV.13: Evolution of δmds for the rules (filtered according to conf ≥ 0.75 and
different support thresholds) obtained by Fuzzy-CSar-AFP (blue), Fuzzy-CSar (red) and
Fuzzy-Apriori (green) for trained TRA (up) and sedentary SED (down) subjects. The
results are shown for both absolute domains (left) and evolving domains (right).

130 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

92160 184320 276480 368640 460800 552960 645120 737280 829440 921600
0

5

10

15

20

25

30

35

 Sample

 E
xe

cu
tio

n
T

im
e

(s
)

 TRAined Subject

Fuzzy-CSar-AFP
Fuzzy-Apriori (sup.>=0.02 & conf.>=0.75)
Fuzzy-CSar

(a) supp ≥ 0.020 (TRA subject)

92160 184320 276480 368640 460800 552960 645120 737280 829440 921600
0

5

10

15

20

25

30

35

40

 Sample

 E
xe

cu
tio

n
T

im
e

(s
)

 TRAined Subject

Fuzzy-CSar-AFP
Fuzzy-Apriori (sup.>=0.005 & conf.>=0.75)
Fuzzy-CSar

(b) supp ≥ 0.005 (TRA subject)

92160 184320 276480 368640 460800 552960 645120 737280 829440 921600
0

5

10

15

20

25

30

35

40

45

 Sample

 E
xe

cu
tio

n
T

im
e

(s
)

 TRAined Subject

Fuzzy-CSar-AFP
Fuzzy-Apriori (sup.>=0.002 & conf.>=0.75)
Fuzzy-CSar

(c) supp ≥ 0.002 (TRA subject)

92160 184320 276480 368640 460800 552960 645120 737280 829440 921600
0

50

100

150

200

250

300

350

400

 Sample

 E
xe

cu
tio

n
T

im
e

(s
)

 TRAined Subject

Fuzzy-CSar-AFP
Fuzzy-Apriori (sup.>=0.00 & conf.>=0.75)
Fuzzy-CSar

(d) supp ≥ 0.000 (TRA subject)

92160 184320 276480 368640 460800 552960 645120 737280 829440 921600
0

5

10

15

20

25

 Sample

 E
xe

cu
tio

n
T

im
e

(s
)

 SEDentary Subject

Fuzzy-CSar-AFP
Fuzzy-Apriori (sup.>=0.02 & conf.>=0.75)
Fuzzy-CSar

(e) supp ≥ 0.020 (SED subject)

92160 184320 276480 368640 460800 552960 645120 737280 829440 921600
0

5

10

15

20

25

30

 Sample

 E
xe

cu
tio

n
T

im
e

(s
)

 SEDentary Subject

Fuzzy-CSar-AFP
Fuzzy-Apriori (sup.>=0.005 & conf.>=0.75)
Fuzzy-CSar

(f) supp ≥ 0.005 (SED subject)

92160 184320 276480 368640 460800 552960 645120 737280 829440 921600
0

5

10

15

20

25

30

35

40

 Sample

 E
xe

cu
tio

n
T

im
e

(s
)

 SEDentary Subject

Fuzzy-CSar-AFP
Fuzzy-Apriori (sup.>=0.002 & conf.>=0.75)
Fuzzy-CSar

(g) supp ≥ 0.002 (SED subject)

92160 184320 276480 368640 460800 552960 645120 737280 829440 921600
0

50

100

150

200

250

300

350

400

 Sample

 E
xe

cu
tio

n
T

im
e

(s
)

 SEDentary Subject

Fuzzy-CSar-AFP
Fuzzy-Apriori (sup.>=0.00 & conf.>=0.75)
Fuzzy-CSar

(h) supp ≥ 0.000 (SED subject)

Figure IV.14: Execution times spent by Fuzzy-CSar-AFP (blue), Fuzzy-CSar (red) and
Fuzzy-Apriori (green) to process each new subset (30720 sampling, 2 minutes of data
recording) varying the minimum support value used by Fuzzy-Apriori. A minimum
confidence value of 0.75 is used by Fuzzy-Apriori.

IV.3 Physiological signals analysis through association stream mining 131

Consequent Attribute: C4 - TRA Subject

Sample

N
um

be
r o

f R
ul

es

Consequent Attribute: Fp1 - TRA Subject

Sample

N
um

be
r o

f R
ul

es

Consequent Attribute: Fp2 - TRA Subject

Sample

N
um

be
r o

f R
ul

es

Consequent Attribute: O1 - TRA Subject

Sample

N
um

be
r o

f R
ul

es

Consequent Attribute: C3 - TRA Subject

Sample

N
um

be
r o

f R
ul

es

Consequent Attribute: O2 - TRA Subject

Sample

N
um

be
r o

f R
ul

es

Figure IV.15: Streamgraphs for TRA (trained subject) supp ≥ 0.02 and conf ≥ 0.8

Consequent Attribute: C4 - SED Subject

Sample

N
um

be
r o

f R
ul

es

Consequent Attribute: Fp1 - SED Subject

Sample

N
um

be
r o

f R
ul

es

Consequent Attribute: Fp2 - SED Subject

Sample

N
um

be
r o

f R
ul

es

Consequent Attribute: O1 - SED Subject

Sample

N
um

be
r o

f R
ul

es

Consequent Attribute: C3 - SED Subject

Sample

N
um

be
r o

f R
ul

es

Consequent Attribute: O2 - SED Subject

Sample

N
um

be
r o

f R
ul

es

Figure IV.16: Streamgraphs for SED (sedentary subject) supp ≥ 0.02 and conf ≥ 0.8.

132 Chapter IV. Adaptive Fuzzy Partitions for association stream mining

(a) TRA Subject (b) SED Subject

Figure IV.17: Dependency wheels for (a) TRA and (b) SED subjects at the end of the
sampling with supp ≥ 0.05 and conf ≥ 0.85.

Chapter V

PAST: Learning rules in data stream
semi-supervised learning

V.1 Introduction

A supervised approach is able to exploit the labels associated with the data but is not
able to capitalize on data with no associated class label. An unsupervised learning
approach is prepared to obtain knowledge from data without any associated labels, but
does not contemplate the possibility of exploiting labeling information in case it exists. A
semi-supervised learning approach allows to obtain knowledge both from labels received
associated to some examples and from those examples that do not have any associated
label.

Despite the high utility of unsupervised learning techniques when the main interest
does not lie in performing a predictive task, in data streams, as in offline environments,
there are problems where a model able to predict the values of a target variable is needed.
A very important part of the research effort in data stream classification have been focused
on supervised methods, which require a massive amount of labeled data and, consequently,
are dependent on timely available labels. Most of these studies assume that data streams
arrive completely labeled and that such labels can be utilized at hand. Nonetheless, in
many applications, obtaining labeled data is extremely complicated or costly, whereas
unlabeled data are easily available (Matuszyk and Spiliopoulou, 2015; Noorbehbahani et al.,
2017; Tang et al., 2017; Dal et al., 2018; Iosifidis and Ntoutsi, 2019). The very essence of
data streams favors the existence of environments where it is difficult (or impossible) to
have great amounts of labels. The potentially infinite nature of the stream, coupled with
the high generation speed, makes it virtually impossible in many real-world applications
to label data completely and on time.

Hence, it is likely that only a small fraction of data can be labeled in many
real streaming environments. Since supervised models can only be trained with labeled
examples, just a limited fraction of the data stream could be used for training and updating

133

134 Chapter V. PAST: Learning rules in data stream semi-supervised learning

the classification models, leading to poorly trained classifiers. Probably, a more realistic
approach would be to proceed on the basis that labels are only going to be available
for a certain percentage of the data. The data stream classification problem is further
complicated by this label scarcity and the fact that the solution must rely partially on
unlabeled data.

Semi-supervised learning techniques rely on the fact that the massive amount of
unlabeled examples that form the data stream can also be seen as a source of information
about the underlying data distribution and, hence, they can be used, in combination with
labeled data, to improve the accuracy of the model. Semi-supervised learning capitalizes a
small amount of labeled instances and uses a great amount of unlabeled ones to train the
model.

In this chapter, a fully online semi-supervised approach for classification in data
streams is presented. The proposal, hereafter PAST (PArtially labeled data STream
mining), is based on the use of a population of fuzzy rules to extract knowledge from
both labeled and unlabeled data. The algorithm does not require any initial set of labeled
samples to initialize the system nor assumes the labeled samples will arrive at a specific
frequency. The novelty of the work is twofold: (1) a new purely online semi-supervised
algorithm for data stream classification is presented, and (2) the potential of a rule-
based approach for semi-supervised classification in data streams is explored. Rule-based
approaches for semi-supervised classification in data streams have been hardly studied.

This chapter is organized as follows. In Section V.2, we describe our semi-supervised
proposal to tackle the issue of the lack of labeled data in data stream classification problems.
Section V.3 present the experiments and their results.

V.2 PAST: PArtially labeled data STream mining

PAST is a semi-supervised learning system designed for dealing with label scarcity in data
stream classification problems. PAST is an adaptation of the supervised approach CLAST
and, therefore, it works in two different modes: exploration or training, and exploitation or
testing. In the exploration or training mode, the main objective of the algorithm remains
to build a population of rules, as general as possible, which accurately represent the class
division that underlies the data stream. Each sample processed in exploration mode,
labeled or not, is used to update this rule population. Figure V.1 schematically illustrates
the learning process of PAST during an exploratory iteration. In the exploitation mode,
the algorithm gathers the rules of the population to work together to try to successfully
predict to which class the example belongs. Hence, PAST maintains the cooperative design
employed by CLAST, a design that allows to incrementally evolve the model (population)
over time in a very natural and efficient way.

PAST meets all the main requirements put forward by Bifet et al. (2009b) for
data stream classification algorithms. Thus, PAST accepts examples in the order they

V.2 PAST: PArtially labeled data STream mining 135

Data Stream

Instance: (3.2, 1.8) Class: c

Population

cond. class F num
([3.0,3.5,4.0], [1.2,1.6,2.0]) 1 1 12
([2.0,2.7,3.0], [1.0,1.5,3.0]) 0 .8 15
([3.0,3.3,3.4], [1.7,2.0,2.1]) 0 .6 11
([1.5,1.8,1.9], [2.5,2.8,2.9]) 1 1 16
(*,[1.6,1.8,2.0]) 1 .9 21

….

Match Set

cond. class F num
([3.0,3.5,4.0], [1.2,1.6,2.0]) 1 1 12
([3.0,3.3,3.4], [1.7,2.0,2.1]) 0 .6 11
(*,[1.6,1.8,2.0]) 1 .9 21

Parameter
Update

labeled?

Correct Set

cond. class F num
([3.0,3.5,4.0], [1.2,1.6,2.0]) 1 1 12
(*,[1.6,1.8,2.0]) 1 .9 21

Inference

Covering

Genetic Algorithm

No

Yes

c = inferred class

c = true class

c
Class Matching

Matching

Apply
GA?

Histogram Update

Check
subsumption?

Subsumption

labeled?

Figure V.1: Schematic illustration of the learning interaction of PAST. The main areas
where the differences between PAST and CLAST are concentrated are highlighted with a
gray background.

are received; each example is visited only once; memory usage is controlled; learning
complexity is linear to the number of examples, and the induction model can be applied
at any time between training examples. In fact, unlike CLAST where the two modes of
the algorithm (exploration and exploitation) work completely independently; in the case
of PAST, the inference process is part of the learning iteration if the input example is
received unlabeled.

To the qualities claimed by Bifet et al., we could add the capacity of the system to
extract knowledge from unlabeled examples, allowing it to adapt to environments where
labeled examples are scarce. A very common scenario in real-world data streams given the
high volume, speed and infinite character of such data sources.

V.2.1 Knowledge Representation

The differences between PAST and CLAST are focused on the exploration process, since
the PAST learning scheme must consider the possibility of not knowing the class of the
example received. However, the way of representing knowledge is identical in PAST and
CLAST, and the inference process carried out to predict the class of an example is also
shared between both approaches (regardless of whether PAST uses that mechanism in
scenarios that are not contemplated in CLAST).

Thus, each classifier included in the population maintained by PAST contains a

136 Chapter V. PAST: Learning rules in data stream semi-supervised learning

fuzzy rule of type II (Cordón et al., 2001) with the form:

Rk : IF X1 is Âk1 and . . . and Xn is Âkn THEN ck WITH wk (V.1)

where the condition is composed by the conjunction of a series of fuzzy sets Âki , each of
them associated to an input variable i; ck is the advocated class, and wk ∈ [0, 1] is the
strength with which the rule advocates class ck. Along with the fuzzy rule, each classifier
also contains a set of parameters.

V.2.2 Exploration Mode

As can be seen in Figure V.1, much of the learning iteration of PAST matches that of
CLAST. However, in the case of PAST, depending on whether the example received is
labeled or not the course of the learning iteration varies.

When an input example e is received, the first step is to build the matchset [M]
with all those rules that match e with a degree greater than zero. This first step is identical
regardless of whether e is labeled or not since the class of e is irrelevant to the construction
of [M]. However, the second step consists on defining the correctset [C], which includes all
those rules of [M] that advocate the class of e. If e is an unlabeled example, the system
does not know the real class to which it belongs. In this case, a class is inferred for e based
on the rules in [P], and this predicted class will be used as the class of the example during
the rest of the learning iteration. This is where the PAST inference process becomes part
of the learning process. Therefore, in the case of a labeled example, [C] groups all the
rules in [M] that advocate the class of the label while, in the case of an unlabeled example,
[C] is formed by those rules in [M] that advocate the class inferred for the example. If
none of the rules in [C] matches e with a sufficient degree for all the input variables, the
covering operator is launched. The covering operator creates a new classifier that matches
e with maximum degree. This new classifier is then added to [C], [M] and [P]. In Section
III.2.2.2 we detailed how the covering operator of CLAST generalizes the condition of the
new classifier from e, and how the class of e affects such generalization process. PAST
covering operator follows a generalization process analogous to that of CLAST, with the
difference that if e is unlabeled, the class used as reference in the generalization process
will be the one inferred by the system itself. Afterwards, if e is labeled, the fitness of those
classifiers in [M] is updated taking into account the new example received e. Next, the
rule discovery component, which enables the system to discover new promising rules via a
genetic mechanism, may be applied to the classifiers included in [C]. In order to control
runtime and reduce overfitting risk, this component is only launched when the average
time since its last application upon the classifiers in [C] surpasses a certain threshold.
Finally, the last two steps of the learning iteration are: histogram update and subsumption
check.

The method for updating the histograms varies depending on whether e was received
labeled or not. In the first case, only the histograms of the class ce to which e belongs are

V.2 PAST: PArtially labeled data STream mining 137

updated. The histogram of ce for each variable is updated in the following way:

H t+1
iceφi

= H t
iceφi

+ 1, ∀i ∈ {1, ..., n} (V.2)

where φi is the bin where ei lies.

However, if e was received as an unlabeled example, the histograms of all classes
are updated. The histogram of each class for each variable is updated as

H t+1
icjφi

= H t
icjφi

+
1

m
, ∀i ∈ {1, ..., n} ∀j ∈ {1, ...,m} (V.3)

Histograms only count an example as belonging to a class when a label indicating so has
been received. Therefore, the unlabeled examples influence the weight that the different
bins have on operators such as covering or mutation while, at the same time, we avoid
introducing inaccurate information in the histograms. This same principle of avoiding
entering inaccurate information governs the decision of only updating the parameters of
the classifiers in [M] when the input example is labeled. Subsumption check in [P], as rule
discovery component, is only conducted when the time since its last application exceeds a
user-defined threshold (θsub).

V.2.3 Exploitation mode

The system is prepared to conduct the class inference process at any time, that is, any
example of the data stream can be processed by the system either in exploration mode
or in exploitation mode. As shown in Figure V.1 and detailed in Section V.2.2, if we are
facing an unlabeled example, it is necessary to predict a class for such example before
creating the correct set. Of course, this same inference process can also be conducted
in an isolated way (not as part of a training iteration) when the example in question is
considered a test example.

As for the internal functioning of the inference mechanism, the one used by CLAST
(Section III.2.3) is maintained. No changes need to be made to adapt it to a semi-supervised
scenario. Hence, those rules in [P] that meet the following two conditions cooperate to
infer the class of the input example: (1) the membership degree for each of the variables
in the condition of the rule is greater than θµ, and (2) the fitness of the rule can be said
to be greater than zero with a high level of confidence (F k − εk > 0). Each of these rules
emits a weighted vote vkc for the class c it advocates, and the most voted class is the one
predicted for the example. The weighted vote vkc can be formulated as:

vkc = (F k − εk) · µAk(e) (V.4)

Figure V.2 illustrates how the rule population covers the feature space of the banana
dataset (KEEL Repository (Alcalá-Fdez et al., 2011)). In the pseudo-heatmaps included
in this figure, the area covered by each rule is colored based on which class the rules

138 Chapter V. PAST: Learning rules in data stream semi-supervised learning

advocated once the whole banana dataset had been processed. Therefore, each example
is covered by the colored areas of those rules that match it with a degree greater than
zero. This representation gives us an idea of how well the rule population built by the
algorithm is reflecting the underlying class distribution of the dataset. In Figure V.2, the
rule populations generated by PAST and CLAST in three scenarios with low percentages of
labeled data (5, 10 and 25%) are visually represented. On the basis of this representation,
it seems that PAST is managing to develop populations that are better suited to the
actual class distribution when there is a low number of labels available.

V.3 Comparison of PAST to several machine learn-

ing techniques

In this section, we analyze the behavior of PAST as compared to several other approaches
based on different types of machine learning techniques. We compare PAST with two
main sets of classifiers: data stream classifiers and static classifiers. In the first case, we
study the performance of PAST and other data stream approaches that also follow an
incremental online learning process. CLAST is included in such set of learners, so we can
test if PAST is able to improve its predictions thanks to the knowledge extracted from
unlabeled examples. In the second case, we assess if PAST is competitive with several
offline machine learning techniques, despite the constraints derived from an incremental
learning strategy. Finally, we use four different real-world data streams to analyze the
performance of PAST under actual data stream conditions.

Next, we first detail the experimental methodology followed in each case, and then
present and analyze the obtained results.

V.3.1 Comparison with other data stream approaches

In this section, PAST is compared with other approaches for data stream classification in
different labeling scenarios.

V.3.1.1 Experimental setup

We add PAST to the list of classifiers discussed in Section III.3.1 of Chapter III. Thus, we
compare the performance of PAST with our supervised proposal CLAST and with the
following data stream classifiers: CVFDT, CVFDTNB, CVFDTNBA, HAT, VFDR, AWEC
and DWM. In general, the methodology followed is analogous to that used in the analysis
of Section III.3.1.1. Hence, we use the same collection of 22 datasets, the classifiers are
applied on a random sample of 100,000 examples of each dataset, a test-then-train scheme
is followed and the performance of the classifiers is measured in terms of accuracy and
G-mean. Likewise, the results shown in this section are averages over thirty runs with

V.3 Comparison of PAST to several machine learning techniques 139

(a) PAST (5% labeled) (b) CLAST (5% labeled)

(c) PAST (10% labeled) (d) CLAST (10% labeled)

(e) PAST (25% labeled) (f) CLAST (25% labeled)

Figure V.2: Rule covering area for banana dataset (KEEL Repository (Alcalá-Fdez et al.,
2011)) for (a) PAST and (b) CLAST with three different labeling percentages: 5%, 10%
and 25%.

140 Chapter V. PAST: Learning rules in data stream semi-supervised learning

different seeds. All the classifiers maintained the same parameter configuration used in
Chapter III. PAST is set with the same parameter configuration as CLAST. For further
information about the datasets or the parameter setting of the learners, the reader is
referred to Chapter III (Section III.3.1).

However, in this case, the comparison is not limited to environments where 100%
of the data received is assumed to be labeled. We compared the performance of the
algorithms in six different label scarcity scenarios: 5, 10, 25, 50, 75 and 100% of labeled
examples. Thus, the 100,000-instance sample is divided into two subsets: L and U . The
instances in L are received accompanied by their true class label. The rest of the instances,
included in U , are received unlabeled, i.e., the classifiers do not know to which class they
truly belong. Which instances belong to L and which to U is decided in a random but
stratified way, where as far as possible the original balance between classes will be kept
both in L and in U . A labeling percentage of 5% means that 5,000 out of the 100,000
instances in the sample are labeled (L) while the remaining 95,000 instances are not (U).
When the labeling percentage reaches 100%, the total of the 100,000 instances will be
included in L and U will be an empty set.

Using test-then-train evaluation implies that each example has a double function:
first it is used for testing and then for training the classifier. Algorithms that follow an
exclusively supervised learning approach will only perform a learning interaction when
the example received belongs to L; the algorithm in question will first predict a label
for the received example and then use it to learn. If the received example belongs to U ,
supervised algorithms will predict a label for that example but will not use it to learn,
since they are not prepared to do so as long as the class of the datum is unknown. The
algorithms that follow an SSL-based approach will complete both steps (predict first, then
learn) whether the example is received labeled or not.

We do know the real labels of all the examples from every dataset but the percentage
of them that we make accessible to the algorithms varies to simulate conditions of label
scarcity. Therefore, although not all labels are used for training, all of them are always
used for testing. The performance of an algorithm at instant t can be defined as the
proportion of the first t examples that have been correctly classified.

We analyzed the results in each of the labeling scenarios through non-parametric
statistical tests. Firstly, we studied whether the average performance of all the classifiers
can be considered equivalent according to the Friedman test (Friedman, 1937, 1940). If
this hypothesis is rejected, we compare PAST (control-method) with each of the other
approaches by means of the post-hoc Finner test (Finner, 1993). Finally, we complement
the study with the use of the Wilcoxon signed ranks test (Wilcoxon, 1992) to conduct
pairwise comparisons between PAST and the rest of online learners. All tests are applied
for α = 0.05.

V.3 Comparison of PAST to several machine learning techniques 141

V.3.1.2 Results

Tables V.1-V.4 gather the results of the nine data stream classifiers for the six labeling
scenarios in each one of the twenty datasets. The results are assessed as accuracy (Tables
V.1-V.2) and G-mean (Tables V.3-V.4). Moreover, the rank of the learners in each problem
is also specified. The results in these four tables correspond to the end of the sample, once
all the examples have been used for testing.

The large amount of information included in Tables V.1-V.4 is summarized in Table
V.5 along with Figures V.3-V.4. Table V.5 shows the average performance of each of the
online learners depending on the percentage of labeled data. Likewise, Figures V.3-V.4
illustrate, also for each labeling ratio, the performance distribution of each algorithm in
the problem collection. In both cases, we normalized performance, either accuracy or
G-mean, before computing average or building the boxplots, so all the problems have the
same weight.

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ac

cu
ra

cy

5% labeled 10% labeled

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ac

cu
ra

cy

25% labeled 50% labeled

PAST CLAST CVFDT CVFDTNB CVFDTNBA HAT VFDR AWEC DWM

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ac

cu
ra

cy

75% labeled

PAST CLAST CVFDT CVFDTNB CVFDTNBA HAT VFDR AWEC DWM

100% labeled

Figure V.3: Distribution of the normalized test accuracy achieved by each classifier in the
different labeling scenarios.

Based on these results, we can comment on some observations. PAST is the best
positioned classifier in the majority of cases; it achieves the highest accuracy in 98 of 132

142 Chapter V. PAST: Learning rules in data stream semi-supervised learning

Table V.1: Test accuracy and ranking positions for each dataset (Data) and percentage
of labeled samples (%Lab). This table contains half of the datasets included in the
experimentation, the information regarding the remaining datasets is in Table V.2.

Data %Lab PAST CLAST CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

app 5 90.77 (1) 88.30 (2) 81.49 (9) 86.61 (7) 86.67 (5) 87.26 (3) 86.61 (6) 86.86 (4) 86.30 (8)
10 92.52 (1) 90.38 (2) 83.70 (9) 87.54 (5) 87.71 (3) 87.59 (4) 87.22 (7) 87.33 (6) 86.28 (8)
25 94.98 (1) 92.50 (2) 86.69 (8) 90.48 (4) 90.65 (3) 87.99 (6) 89.08 (5) 87.90 (7) 86.30 (9)
50 96.28 (1) 93.76 (2) 89.21 (6) 93.14 (4) 93.22 (3) 88.10 (8) 91.26 (5) 88.26 (7) 86.31 (9)
75 96.49 (1) 93.99 (4) 90.63 (6) 94.46 (3) 94.53 (2) 88.07 (8) 92.26 (5) 88.35 (7) 86.31 (9)
100 93.71 (3) 93.71 (3) 91.97 (6) 95.73 (2) 95.78 (1) 88.13 (8) 93.51 (5) 88.55 (7) 86.32 (9)

aut 5 92.64 (1) 85.32 (2) 44.65 (9) 75.30 (4) 75.27 (5) 79.65 (3) 64.74 (7) 66.03 (6) 53.42 (8)
10 95.71 (1) 91.35 (2) 47.29 (9) 76.71 (4) 76.67 (5) 78.19 (3) 66.80 (7) 68.12 (6) 53.43 (8)
25 97.53 (1) 95.53 (2) 50.68 (9) 79.04 (3) 79.02 (4) 75.51 (5) 69.30 (7) 69.57 (6) 53.52 (8)
50 98.19 (1) 97.16 (2) 53.58 (8) 80.99 (3) 80.97 (4) 74.30 (5) 71.00 (6) 70.70 (7) 53.58 (9)
75 98.36 (1) 97.85 (2) 57.03 (8) 82.67 (3) 82.65 (4) 73.76 (5) 71.27 (6) 71.18 (7) 53.62 (9)
100 98.11 (1) 98.11 (1) 60.33 (8) 83.84 (3) 83.83 (4) 73.64 (5) 72.01 (6) 71.49 (7) 53.70 (9)

ban 5 82.52 (1) 77.63 (2) 44.82 (3) 44.65 (8) 44.65 (7) 44.67 (6) 44.68 (5) 43.03 (9) 44.80 (4)
10 83.70 (1) 80.81 (2) 44.83 (3) 44.65 (7) 44.65 (6) 44.63 (8) 44.69 (5) 43.94 (9) 44.81 (4)
25 85.03 (1) 83.38 (2) 44.83 (3) 44.64 (7) 44.65 (6) 44.64 (8) 44.69 (5) 44.47 (9) 44.82 (4)
50 85.77 (1) 84.82 (2) 44.83 (3) 44.66 (7) 44.67 (6) 44.64 (9) 44.70 (5) 44.65 (8) 44.83 (4)
75 85.64 (1) 84.89 (2) 44.83 (3) 44.67 (8) 44.68 (7) 44.64 (9) 44.71 (5) 44.71 (6) 44.83 (4)
100 85.01 (1) 85.01 (1) 44.83 (3) 44.68 (8) 44.69 (7) 44.64 (9) 44.72 (6) 44.74 (5) 44.83 (4)

bnd 5 79.52 (1) 77.73 (2) 63.14 (9) 68.51 (3) 68.30 (4) 67.91 (6) 68.07 (5) 67.28 (8) 67.81 (7)
10 85.90 (1) 84.30 (2) 63.48 (9) 69.45 (3) 69.29 (4) 67.61 (8) 68.79 (5) 68.26 (6) 67.92 (7)
25 90.84 (1) 89.27 (2) 64.91 (9) 73.02 (3) 72.92 (4) 67.83 (8) 70.48 (5) 69.50 (6) 68.08 (7)
50 92.29 (1) 91.41 (2) 67.97 (8) 77.02 (3) 76.94 (4) 67.87 (9) 71.70 (5) 70.08 (6) 68.10 (7)
75 92.95 (1) 92.62 (2) 70.34 (6) 80.31 (3) 80.20 (4) 67.87 (9) 72.85 (5) 70.08 (7) 68.11 (8)
100 93.33 (1) 93.33 (1) 72.35 (6) 82.47 (3) 82.39 (4) 67.93 (9) 73.87 (5) 70.17 (7) 68.12 (8)

bre 5 85.06 (1) 83.11 (2) 70.83 (9) 75.44 (6) 75.89 (3) 75.89 (4) 75.84 (5) 74.59 (7) 74.57 (8)
10 88.55 (2) 88.70 (1) 72.41 (9) 78.24 (4) 78.75 (3) 77.52 (5) 76.34 (6) 74.78 (7) 74.59 (8)
25 92.46 (2) 92.58 (1) 75.52 (7) 83.25 (4) 83.52 (3) 78.50 (6) 78.60 (5) 75.04 (8) 74.65 (9)
50 94.39 (1) 94.06 (2) 78.93 (6) 87.17 (4) 87.32 (3) 78.53 (7) 80.85 (5) 75.39 (8) 74.66 (9)
75 95.05 (1) 94.61 (2) 80.78 (6) 89.05 (4) 89.19 (3) 78.76 (7) 82.13 (5) 75.41 (8) 74.65 (9)
100 95.04 (1) 95.04 (1) 82.30 (6) 90.30 (4) 90.39 (3) 78.77 (7) 82.95 (5) 75.57 (8) 74.66 (9)

car 5 81.18 (6) 84.33 (3) 70.77 (9) 83.34 (4) 83.23 (5) 84.95 (2) 85.09 (1) 73.31 (7) 71.05 (8)
10 85.85 (3) 88.81 (1) 71.82 (8) 85.17 (4) 85.13 (5) 84.89 (6) 86.04 (2) 74.73 (7) 71.21 (9)
25 92.07 (2) 92.89 (1) 74.85 (8) 87.63 (4) 87.60 (5) 81.40 (6) 87.73 (3) 75.70 (7) 71.33 (9)
50 95.10 (1) 94.98 (2) 77.30 (7) 89.94 (3) 89.89 (4) 80.14 (6) 88.90 (5) 76.14 (8) 71.31 (9)
75 96.17 (1) 96.01 (2) 79.53 (7) 91.31 (3) 91.28 (4) 79.68 (6) 89.82 (5) 76.39 (8) 71.43 (9)
100 96.59 (1) 96.59 (1) 81.43 (6) 92.37 (3) 92.33 (4) 79.44 (7) 90.67 (5) 76.40 (8) 71.47 (9)

cov 5 64.36 (2) 65.47 (1) 48.68 (9) 61.57 (5) 61.53 (6) 63.18 (4) 63.56 (3) 55.35 (7) 53.89 (8)
10 66.33 (2) 66.80 (1) 51.02 (9) 62.08 (5) 62.07 (6) 63.06 (4) 63.67 (3) 56.51 (7) 53.92 (8)
25 67.66 (2) 67.71 (1) 54.11 (8) 62.97 (6) 63.38 (4) 63.33 (5) 64.91 (3) 57.15 (7) 54.08 (9)
50 68.14 (1) 68.09 (2) 57.45 (7) 63.67 (5) 64.50 (4) 63.28 (6) 65.30 (3) 57.33 (8) 54.14 (9)
75 68.39 (1) 68.03 (2) 58.82 (7) 64.28 (5) 65.49 (4) 63.36 (6) 65.62 (3) 57.23 (8) 54.14 (9)
100 68.09 (1) 68.09 (1) 59.57 (7) 64.17 (5) 65.54 (4) 63.37 (6) 65.92 (3) 57.50 (8) 54.17 (9)

eco 5 88.35 (1) 79.06 (7) 43.94 (9) 79.17 (5) 79.15 (6) 79.40 (4) 79.77 (3) 81.21 (2) 75.53 (8)
10 91.34 (1) 85.46 (2) 51.73 (9) 80.73 (5) 80.68 (6) 80.30 (7) 81.71 (4) 82.66 (3) 75.83 (8)
25 94.21 (1) 90.51 (2) 62.68 (9) 83.62 (5) 83.91 (4) 81.03 (7) 84.56 (3) 83.40 (6) 75.84 (8)
50 95.32 (1) 93.23 (2) 66.58 (9) 85.06 (5) 85.62 (4) 81.23 (7) 85.79 (3) 83.85 (6) 75.72 (8)
75 95.54 (1) 94.12 (2) 69.68 (9) 86.21 (4) 86.62 (3) 81.09 (7) 85.80 (5) 84.02 (6) 75.80 (8)
100 94.81 (1) 94.81 (1) 71.09 (9) 86.90 (4) 87.35 (3) 81.21 (7) 86.33 (5) 84.19 (6) 75.87 (8)

hay 5 87.97 (2) 88.41 (1) 40.44 (9) 78.46 (3) 78.45 (5) 77.95 (6) 78.46 (4) 72.07 (8) 76.14 (7)
10 88.36 (2) 88.92 (1) 43.29 (9) 78.52 (3) 78.49 (4) 77.72 (6) 78.46 (5) 70.53 (8) 77.01 (7)
25 88.64 (1) 87.96 (2) 63.22 (9) 81.27 (3) 81.22 (4) 77.79 (6) 80.52 (5) 72.73 (8) 76.98 (7)
50 89.08 (1) 87.24 (2) 76.31 (8) 85.47 (3) 85.45 (4) 77.60 (6) 84.38 (5) 73.36 (9) 77.17 (7)
75 89.20 (1) 86.76 (4) 81.01 (6) 87.25 (2) 87.23 (3) 77.65 (7) 86.17 (5) 73.13 (9) 77.15 (8)
100 86.71 (4) 86.71 (4) 83.48 (6) 88.22 (1) 88.21 (2) 77.66 (7) 87.18 (3) 74.11 (9) 77.34 (8)

hea 5 87.51 (1) 84.24 (3) 62.28 (9) 84.11 (4) 84.06 (5) 83.52 (7) 84.05 (6) 80.93 (8) 85.09 (2)
10 89.30 (1) 85.85 (2) 70.05 (9) 84.19 (4) 84.10 (5) 83.50 (7) 83.94 (6) 82.57 (8) 85.33 (3)
25 91.69 (1) 87.95 (2) 75.77 (9) 86.64 (4) 86.68 (3) 83.54 (8) 84.96 (6) 84.17 (7) 85.51 (5)
50 92.41 (1) 89.60 (4) 79.24 (9) 89.61 (3) 89.65 (2) 83.39 (8) 86.08 (5) 83.99 (7) 85.57 (6)
75 92.20 (1) 90.74 (4) 81.64 (9) 91.38 (3) 91.40 (2) 83.42 (8) 87.18 (5) 84.07 (7) 85.56 (6)
100 91.53 (3) 91.53 (3) 84.00 (8) 92.80 (1) 92.80 (1) 83.40 (9) 87.89 (5) 84.27 (7) 85.60 (6)

kdd 5 96.99 (3) 97.19 (2) 78.46 (8) 96.72 (6) 96.75 (5) 61.44 (9) 97.73 (1) 93.09 (7) 96.91 (4)
10 97.55 (2) 97.45 (3) 80.27 (8) 97.07 (5) 97.26 (4) 57.14 (9) 97.66 (1) 95.27 (7) 97.00 (6)
25 97.92 (1) 97.68 (2) 82.30 (8) 96.92 (5) 97.36 (4) 54.39 (9) 97.41 (3) 96.26 (7) 96.80 (6)
50 98.15 (1) 97.84 (2) 82.63 (8) 96.78 (4) 97.65 (3) 50.00 (9) 96.74 (5) 96.55 (7) 96.62 (6)
75 98.16 (1) 98.01 (2) 83.89 (8) 96.72 (4) 97.77 (3) 47.78 (9) 96.49 (7) 96.59 (6) 96.59 (5)
100 98.16 (1) 98.16 (1) 86.51 (8) 96.70 (5) 97.87 (3) 54.24 (9) 96.70 (4) 96.66 (6) 96.56 (7)

V.3 Comparison of PAST to several machine learning techniques 143

Table V.2: Test accuracy and ranking positions for each dataset (Data) and percentage of
labeled samples (%Lab). This table contains the second half of the datasets included in
the experimentation, the information regarding the first half of the datasets is in Table
V.1.

Data %Lab PAST CLAST CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

mam 5 79.64 (1) 79.26 (2) 60.21 (9) 78.10 (6) 78.86 (3) 75.54 (8) 78.78 (4) 77.83 (7) 78.54 (5)
10 80.02 (1) 79.45 (2) 68.33 (9) 78.35 (6) 79.30 (3) 76.12 (8) 78.16 (7) 78.36 (5) 78.64 (4)
25 80.34 (1) 79.80 (3) 73.12 (9) 78.29 (6) 79.91 (2) 76.16 (8) 78.04 (7) 78.84 (4) 78.66 (5)
50 80.47 (1) 79.96 (3) 76.00 (8) 77.49 (7) 80.42 (2) 75.89 (9) 78.43 (6) 78.96 (4) 78.67 (5)
75 80.45 (2) 80.12 (3) 78.03 (8) 78.17 (7) 81.06 (1) 75.56 (9) 78.64 (6) 79.07 (4) 78.67 (5)
100 80.25 (2) 80.25 (2) 79.26 (5) 79.29 (4) 81.62 (1) 75.91 (9) 78.92 (7) 79.13 (6) 78.67 (8)

pag 5 92.26 (1) 91.37 (2) 89.76 (5) 88.82 (7) 90.97 (3) 90.94 (4) 88.82 (6) 87.00 (9) 88.65 (8)
10 92.68 (1) 92.20 (2) 89.78 (8) 90.13 (7) 91.03 (4) 91.08 (3) 90.13 (6) 90.31 (5) 88.69 (9)
25 92.99 (2) 93.07 (1) 90.06 (6) 88.68 (9) 91.49 (3) 91.33 (4) 88.81 (7) 90.44 (5) 88.72 (8)
50 93.50 (1) 93.38 (2) 90.73 (5) 84.02 (9) 92.64 (3) 91.77 (4) 85.31 (8) 89.91 (6) 88.73 (7)
75 93.75 (1) 93.71 (2) 91.38 (6) 82.54 (9) 93.50 (3) 91.80 (4) 84.19 (8) 91.67 (5) 88.60 (7)
100 93.79 (2) 93.79 (2) 91.88 (6) 86.76 (8) 94.02 (1) 91.95 (5) 84.30 (9) 92.27 (4) 88.59 (7)

pim 5 78.14 (1) 77.68 (2) 72.00 (9) 75.07 (7) 75.16 (5) 74.77 (8) 75.08 (6) 75.65 (3) 75.50 (4)
10 80.32 (1) 79.31 (2) 73.14 (9) 75.85 (5) 76.39 (3) 75.13 (8) 75.38 (7) 76.25 (4) 75.72 (6)
25 83.38 (1) 81.62 (2) 74.42 (9) 77.26 (4) 77.83 (3) 75.02 (8) 76.21 (6) 76.58 (5) 75.71 (7)
50 85.24 (1) 83.86 (2) 75.07 (8) 78.95 (4) 79.44 (3) 75.05 (9) 77.13 (5) 76.83 (6) 75.74 (7)
75 85.92 (1) 85.24 (2) 76.11 (7) 80.34 (4) 80.74 (3) 74.92 (9) 77.67 (5) 76.97 (6) 75.76 (8)
100 86.09 (1) 86.09 (1) 76.98 (7) 81.60 (4) 81.96 (3) 75.02 (9) 77.88 (5) 77.04 (6) 75.76 (8)

sah 5 75.79 (1) 74.00 (2) 65.51 (9) 71.34 (5) 71.55 (4) 71.05 (8) 71.63 (3) 71.34 (6) 71.19 (7)
10 80.20 (1) 79.46 (2) 67.23 (9) 72.00 (5) 72.59 (3) 71.34 (7) 72.09 (4) 71.73 (6) 71.32 (8)
25 86.46 (1) 85.41 (2) 69.71 (9) 74.30 (4) 75.06 (3) 71.75 (7) 73.25 (5) 72.17 (6) 71.35 (8)
50 89.91 (1) 88.50 (2) 72.03 (7) 77.26 (4) 77.80 (3) 71.90 (8) 74.62 (5) 72.34 (6) 71.37 (9)
75 90.93 (1) 89.92 (2) 73.81 (6) 79.35 (4) 79.76 (3) 71.90 (8) 75.22 (5) 72.43 (7) 71.37 (9)
100 90.72 (1) 90.72 (1) 75.08 (6) 81.18 (4) 81.47 (3) 71.91 (8) 76.07 (5) 72.42 (7) 71.39 (9)

skin 5 95.20 (1) 91.59 (7) 83.72 (9) 94.79 (2) 94.75 (3) 93.87 (5) 94.69 (4) 88.44 (8) 92.18 (6)
10 95.87 (1) 92.75 (6) 85.35 (9) 95.21 (2) 95.18 (3) 93.63 (5) 94.43 (4) 90.45 (8) 92.33 (7)
25 96.26 (3) 93.14 (6) 90.73 (9) 96.30 (1) 96.27 (2) 93.68 (5) 96.12 (4) 91.50 (8) 92.39 (7)
50 96.17 (4) 93.00 (7) 93.83 (5) 97.01 (2) 97.04 (1) 93.81 (6) 96.71 (3) 91.61 (9) 92.40 (8)
75 95.17 (4) 93.44 (7) 95.05 (5) 97.55 (2) 97.58 (1) 93.82 (6) 97.02 (3) 91.88 (9) 92.41 (8)
100 93.23 (6) 93.23 (6) 95.87 (4) 97.82 (2) 97.86 (1) 93.80 (5) 97.29 (3) 91.97 (9) 92.41 (8)

tae 5 81.97 (1) 74.63 (2) 34.18 (9) 52.77 (3) 52.74 (5) 52.68 (6) 52.77 (4) 51.01 (8) 51.96 (7)
10 86.19 (1) 80.80 (2) 36.07 (9) 53.50 (4) 53.42 (5) 53.62 (3) 53.37 (6) 51.83 (8) 52.06 (7)
25 89.01 (1) 85.71 (2) 45.53 (9) 60.25 (3) 60.20 (4) 54.25 (6) 58.84 (5) 52.48 (7) 52.08 (8)
50 90.06 (1) 87.68 (2) 51.92 (9) 64.96 (3) 64.91 (4) 54.71 (6) 62.98 (5) 52.69 (7) 52.15 (8)
75 90.08 (1) 88.24 (2) 57.54 (6) 69.26 (4) 69.32 (3) 54.61 (7) 64.62 (5) 52.30 (8) 52.19 (9)
100 88.82 (1) 88.82 (1) 62.41 (6) 72.98 (4) 73.05 (3) 54.70 (7) 65.64 (5) 52.47 (8) 52.19 (9)

tic 5 86.79 (1) 85.73 (2) 67.22 (9) 72.39 (5) 72.49 (4) 73.19 (3) 71.41 (6) 69.43 (8) 70.11 (7)
10 92.92 (1) 91.92 (2) 68.57 (9) 73.59 (5) 73.69 (3) 73.64 (4) 72.93 (6) 70.41 (7) 70.24 (8)
25 96.88 (1) 95.57 (2) 71.33 (8) 79.21 (3) 79.17 (4) 73.63 (6) 77.74 (5) 71.38 (7) 70.20 (9)
50 97.73 (1) 96.06 (2) 75.77 (6) 83.79 (4) 83.77 (5) 73.82 (7) 84.98 (3) 71.79 (8) 70.26 (9)
75 97.67 (1) 96.13 (2) 77.62 (6) 85.76 (4) 85.74 (5) 73.83 (7) 88.88 (3) 72.08 (8) 70.27 (9)
100 96.31 (1) 96.31 (1) 79.93 (6) 88.23 (4) 88.21 (5) 73.87 (7) 90.90 (3) 72.10 (8) 70.27 (9)

tit 5 80.02 (6) 78.69 (7) 89.28 (4) 92.70 (1) 92.63 (3) 92.64 (2) 81.40 (5) 77.84 (8) 77.58 (9)
10 81.55 (5) 79.60 (7) 91.66 (4) 95.87 (1) 95.82 (2) 95.82 (3) 81.00 (6) 78.41 (8) 77.73 (9)
25 84.72 (5) 83.35 (7) 93.20 (4) 97.86 (2) 97.84 (3) 97.87 (1) 83.62 (6) 78.97 (8) 77.93 (9)
50 87.05 (5) 85.96 (6) 93.73 (4) 98.54 (3) 98.55 (2) 98.57 (1) 85.91 (7) 79.27 (8) 77.92 (9)
75 88.04 (5) 87.16 (7) 93.95 (4) 98.78 (3) 98.79 (2) 98.82 (1) 87.26 (6) 79.46 (8) 77.95 (9)
100 88.01 (6) 88.01 (6) 94.14 (4) 98.92 (3) 98.92 (2) 98.99 (1) 88.21 (5) 79.48 (8) 77.96 (9)

veh 5 72.44 (1) 68.29 (2) 25.53 (9) 46.62 (4) 46.61 (7) 46.62 (6) 46.62 (5) 48.86 (3) 43.24 (8)
10 77.35 (1) 74.07 (2) 25.62 (9) 47.24 (5) 47.23 (7) 47.73 (4) 47.24 (5) 51.39 (3) 43.53 (8)
25 83.77 (1) 80.85 (2) 38.83 (9) 57.96 (3) 57.90 (4) 56.11 (5) 55.32 (6) 52.92 (7) 43.45 (8)
50 87.08 (1) 84.76 (2) 51.21 (8) 66.53 (3) 66.48 (4) 58.85 (6) 59.12 (5) 54.35 (7) 43.51 (9)
75 87.84 (1) 86.45 (2) 56.23 (7) 70.22 (3) 70.17 (4) 59.53 (6) 62.48 (5) 54.94 (8) 43.53 (9)
100 87.60 (1) 87.60 (1) 59.49 (7) 72.98 (3) 72.93 (4) 60.27 (6) 65.31 (5) 55.04 (8) 43.49 (9)

wdbc 5 94.47 (1) 93.49 (7) 71.82 (9) 93.76 (5) 93.82 (3) 94.10 (2) 93.76 (4) 92.78 (8) 93.63 (6)
10 94.91 (2) 93.69 (6) 82.98 (9) 93.34 (7) 94.89 (3) 95.37 (1) 92.73 (8) 93.73 (5) 93.78 (4)
25 95.28 (4) 94.39 (6) 89.89 (9) 95.67 (3) 96.55 (2) 97.13 (1) 94.47 (5) 94.33 (7) 93.83 (8)
50 95.34 (4) 94.42 (7) 93.20 (9) 97.02 (3) 97.55 (2) 97.96 (1) 95.25 (5) 94.58 (6) 93.84 (8)
75 95.12 (5) 94.77 (6) 94.48 (8) 97.62 (3) 98.02 (2) 98.47 (1) 95.71 (4) 94.72 (7) 93.86 (9)
100 94.98 (6) 94.98 (6) 95.15 (5) 98.08 (3) 98.35 (2) 98.77 (1) 96.17 (4) 94.80 (8) 93.86 (9)

yea 5 56.48 (1) 56.04 (2) 31.00 (9) 49.28 (6) 49.25 (7) 49.70 (5) 49.93 (4) 54.66 (3) 31.97 (8)
10 59.56 (1) 58.06 (2) 32.11 (8) 50.02 (6) 49.97 (7) 50.93 (4) 50.61 (5) 56.19 (3) 31.97 (9)
25 63.49 (1) 60.65 (2) 38.11 (8) 51.14 (6) 51.09 (7) 51.39 (4) 51.15 (5) 57.39 (3) 31.95 (9)
50 65.69 (1) 62.52 (2) 41.00 (8) 52.24 (4) 52.21 (6) 51.97 (7) 52.23 (5) 57.91 (3) 32.02 (9)
75 65.72 (1) 63.46 (2) 44.22 (8) 54.08 (4) 54.05 (5) 51.99 (7) 53.66 (6) 58.04 (3) 31.82 (9)
100 63.91 (1) 63.91 (1) 46.18 (8) 55.37 (4) 55.35 (5) 52.07 (7) 54.40 (6) 58.32 (3) 31.98 (9)

144 Chapter V. PAST: Learning rules in data stream semi-supervised learning

Table V.3: G-mean and ranking positions for each dataset (Data) and percentage of
labeled samples (%Lab). This table contains the second half of the datasets included in
the experimentation, the information regarding the first half of the datasets is in Table
V.3.

Data %Lab PAST CLAST CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

app 5 87.36 (1) 83.81 (2) 34.66 (9) 79.47 (4) 77.76 (8) 79.04 (6) 79.46 (5) 78.48 (7) 79.65 (3)
10 89.59 (1) 87.36 (2) 56.76 (9) 79.96 (4) 77.38 (8) 79.08 (7) 80.05 (3) 79.75 (5) 79.47 (6)
25 93.15 (1) 90.88 (2) 70.42 (9) 84.24 (3) 82.39 (4) 78.36 (8) 81.58 (5) 80.80 (6) 79.55 (7)
50 95.55 (1) 92.83 (2) 77.42 (9) 88.85 (3) 87.79 (4) 78.77 (8) 85.54 (5) 81.41 (6) 79.51 (7)
75 95.68 (1) 93.32 (2) 81.98 (6) 91.16 (3) 90.32 (4) 78.41 (9) 87.20 (5) 81.43 (7) 79.54 (8)
100 93.27 (2) 93.27 (2) 84.59 (6) 93.37 (1) 92.83 (4) 78.54 (9) 89.09 (5) 81.61 (7) 79.56 (8)

aut 5 91.77 (1) 83.63 (2) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 63.68 (3) 0.00 (4)
10 95.32 (1) 90.85 (2) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 65.89 (3) 0.00 (4)
25 97.46 (1) 95.45 (2) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 67.37 (3) 0.00 (4)
50 98.19 (1) 97.23 (2) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 68.84 (3) 0.00 (4)
75 98.40 (1) 97.92 (2) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 69.41 (3) 0.00 (4)
100 98.24 (1) 98.24 (1) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 69.72 (3) 0.00 (4)

ban 5 81.99 (1) 76.74 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
10 83.05 (1) 80.33 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
25 84.50 (1) 83.08 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
50 85.40 (1) 84.67 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
75 85.38 (1) 84.74 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
100 84.84 (1) 84.84 (1) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)

bnd 5 77.19 (1) 73.55 (2) 9.69 (9) 51.68 (4) 49.01 (5) 44.74 (8) 47.39 (7) 57.43 (3) 47.80 (6)
10 84.31 (1) 81.64 (2) 18.32 (9) 54.91 (4) 52.72 (5) 45.25 (8) 49.26 (6) 58.06 (3) 47.37 (7)
25 90.19 (1) 87.85 (2) 33.62 (9) 64.70 (3) 62.98 (4) 45.82 (8) 54.53 (6) 59.75 (5) 47.10 (7)
50 91.79 (1) 90.64 (2) 47.11 (7) 72.24 (3) 71.05 (4) 46.03 (9) 59.26 (6) 59.95 (5) 47.09 (8)
75 92.13 (1) 92.02 (2) 54.90 (7) 76.76 (3) 75.98 (4) 46.08 (9) 62.58 (5) 60.03 (6) 46.92 (8)
100 92.80 (1) 92.80 (1) 59.71 (7) 79.51 (3) 78.87 (4) 46.38 (9) 64.80 (5) 60.27 (6) 47.10 (8)

bre 5 76.72 (1) 76.26 (2) 37.84 (9) 68.33 (3) 66.68 (5) 63.76 (8) 67.75 (4) 65.06 (7) 66.66 (6)
10 82.75 (2) 84.23 (1) 52.85 (9) 71.66 (3) 68.41 (4) 67.05 (6) 67.47 (5) 65.68 (8) 66.67 (7)
25 89.12 (2) 89.56 (1) 59.06 (9) 77.41 (3) 75.60 (4) 68.41 (6) 69.88 (5) 66.19 (8) 66.76 (7)
50 92.23 (1) 91.62 (2) 65.74 (9) 82.46 (3) 81.38 (4) 67.98 (6) 72.98 (5) 66.58 (8) 66.77 (7)
75 93.13 (1) 92.35 (2) 69.85 (6) 84.96 (3) 84.25 (4) 68.81 (7) 74.72 (5) 66.56 (9) 66.72 (8)
100 93.00 (1) 93.00 (1) 72.21 (6) 86.74 (3) 86.23 (4) 69.28 (7) 76.19 (5) 66.64 (9) 66.73 (8)

car 5 34.66 (6) 42.70 (5) 0.00 (9) 53.20 (3) 51.10 (4) 55.90 (2) 57.94 (1) 27.62 (8) 34.08 (7)
10 51.28 (6) 63.41 (1) 0.00 (9) 57.11 (3) 56.09 (4) 56.00 (5) 58.97 (2) 27.19 (8) 34.12 (7)
25 74.59 (2) 78.98 (1) 0.00 (9) 63.89 (3) 63.06 (4) 54.97 (6) 61.36 (5) 29.98 (8) 34.34 (7)
50 85.20 (2) 85.59 (1) 7.29 (9) 68.38 (3) 67.81 (4) 54.61 (6) 64.43 (5) 30.68 (8) 34.15 (7)
75 88.82 (1) 88.75 (2) 19.87 (9) 72.06 (3) 71.61 (4) 54.57 (6) 68.36 (5) 30.86 (8) 34.21 (7)
100 90.93 (1) 90.93 (1) 27.14 (9) 75.48 (3) 75.13 (4) 54.35 (6) 73.07 (5) 31.19 (8) 34.23 (7)

cov 5 11.04 (1) 4.59 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
10 12.88 (1) 4.11 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
25 17.52 (1) 11.11 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
50 21.86 (1) 20.78 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
75 24.65 (1) 24.38 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
100 26.63 (1) 26.63 (1) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)

eco 5 83.94 (1) 67.08 (8) 0.00 (9) 74.13 (5) 74.04 (6) 76.59 (4) 78.09 (3) 78.49 (2) 68.74 (7)
10 88.96 (1) 78.83 (4) 0.43 (9) 76.10 (6) 75.89 (7) 76.47 (5) 79.59 (3) 81.01 (2) 69.64 (8)
25 92.71 (1) 87.44 (2) 0.33 (9) 80.03 (5) 79.82 (6) 76.53 (7) 82.78 (3) 82.51 (4) 69.81 (8)
50 94.17 (1) 91.71 (2) 1.67 (9) 82.15 (6) 82.20 (5) 76.53 (7) 84.30 (3) 83.12 (4) 69.62 (8)
75 94.68 (1) 93.12 (2) 0.00 (9) 83.27 (5) 83.16 (6) 76.10 (7) 84.64 (3) 83.41 (4) 69.74 (8)
100 93.98 (1) 93.98 (1) 1.33 (9) 84.23 (4) 84.18 (5) 76.50 (7) 85.26 (3) 83.66 (6) 69.85 (8)

hay 5 89.43 (2) 89.91 (1) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
10 89.90 (2) 90.47 (1) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
25 90.27 (1) 88.68 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
50 90.71 (1) 87.33 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
75 90.78 (1) 86.53 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
100 86.46 (1) 86.46 (1) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)

hea 5 87.39 (1) 83.92 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
10 89.24 (1) 85.60 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
25 91.69 (1) 87.75 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
50 92.33 (1) 89.44 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
75 92.14 (1) 90.60 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
100 91.40 (1) 91.40 (1) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)

kdd 5 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1)
10 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1)
25 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1)
50 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1)
75 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1)
100 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1)

V.3 Comparison of PAST to several machine learning techniques 145

Table V.4: G-mean and ranking positions for each dataset (Data) and percentage of
labeled samples (%Lab). This table contains the second half of the datasets included in
the experimentation, the information regarding the first half of the datasets is in Table
V.4.

Data %Lab PAST CLAST CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

mam 5 79.67 (1) 79.42 (2) 53.51 (9) 78.27 (6) 79.06 (3) 75.43 (8) 78.94 (4) 77.95 (7) 78.74 (5)
10 80.06 (1) 79.59 (2) 67.15 (9) 78.52 (6) 79.49 (3) 76.08 (8) 78.31 (7) 78.53 (5) 78.83 (4)
25 80.42 (1) 79.91 (3) 72.98 (9) 78.46 (6) 80.09 (2) 76.08 (8) 78.20 (7) 79.02 (4) 78.85 (5)
50 80.58 (2) 80.08 (3) 75.99 (8) 77.59 (7) 80.60 (1) 75.81 (9) 78.58 (6) 79.15 (4) 78.86 (5)
75 80.55 (2) 80.24 (3) 78.12 (8) 78.25 (7) 81.23 (1) 75.47 (9) 78.77 (6) 79.26 (4) 78.86 (5)
100 80.38 (2) 80.38 (2) 79.35 (5) 79.36 (4) 81.77 (1) 75.87 (9) 79.04 (7) 79.32 (6) 78.87 (8)

pag 5 20.11 (1) 1.12 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
10 35.11 (1) 6.96 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
25 48.90 (1) 35.07 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
50 58.86 (1) 50.51 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
75 62.57 (1) 56.68 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
100 60.26 (1) 60.26 (1) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)

pim 5 74.44 (1) 72.74 (2) 55.61 (9) 70.80 (4) 69.17 (7) 66.75 (8) 70.74 (5) 70.26 (6) 71.11 (3)
10 77.26 (1) 75.85 (2) 61.62 (9) 71.43 (3) 69.73 (7) 67.34 (8) 71.06 (6) 71.13 (5) 71.17 (4)
25 81.48 (1) 79.16 (2) 63.93 (9) 73.07 (3) 71.97 (5) 67.40 (8) 72.02 (4) 71.56 (6) 71.21 (7)
50 83.62 (1) 81.86 (2) 67.61 (8) 75.10 (3) 74.44 (4) 66.97 (9) 72.88 (5) 71.76 (6) 71.21 (7)
75 83.88 (1) 83.52 (2) 70.18 (8) 76.93 (3) 76.46 (4) 66.78 (9) 73.36 (5) 71.94 (6) 71.24 (7)
100 84.43 (1) 84.43 (1) 71.80 (7) 78.55 (3) 78.19 (4) 66.83 (9) 73.57 (5) 71.94 (6) 71.25 (8)

sah 5 72.91 (1) 70.81 (2) 9.66 (9) 67.92 (5) 67.10 (7) 65.16 (8) 68.30 (4) 67.45 (6) 68.64 (3)
10 77.90 (1) 77.56 (2) 40.44 (9) 67.46 (6) 65.80 (7) 64.26 (8) 67.74 (5) 67.93 (4) 68.83 (3)
25 85.14 (1) 84.10 (2) 55.37 (9) 69.03 (3) 67.35 (7) 63.59 (8) 68.20 (6) 68.49 (5) 68.85 (4)
50 88.86 (1) 87.36 (2) 59.81 (9) 72.22 (3) 70.85 (4) 63.60 (8) 69.44 (5) 68.59 (7) 68.85 (6)
75 89.87 (1) 88.96 (2) 62.68 (9) 74.74 (3) 73.45 (4) 63.53 (8) 70.01 (5) 68.65 (7) 68.87 (6)
100 89.81 (1) 89.81 (1) 64.96 (8) 77.08 (3) 76.13 (4) 63.48 (9) 70.92 (5) 68.72 (7) 68.87 (6)

skn 5 96.34 (1) 91.03 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
10 97.02 (1) 92.87 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
25 97.40 (1) 94.29 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
50 97.34 (1) 94.77 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
75 96.76 (1) 95.15 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
100 95.10 (1) 95.10 (1) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)

tae 5 81.70 (1) 74.24 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
10 85.98 (1) 80.52 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
25 88.86 (1) 85.51 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
50 89.93 (1) 87.49 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
75 89.92 (1) 88.06 (2) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
100 88.65 (1) 88.65 (1) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)

tic 5 81.49 (2) 83.73 (1) 39.20 (9) 60.45 (5) 59.51 (6) 63.76 (3) 62.52 (4) 50.68 (7) 48.85 (8)
10 90.72 (2) 90.82 (1) 57.31 (7) 65.20 (4) 64.62 (5) 64.58 (6) 67.13 (3) 50.26 (8) 48.78 (9)
25 96.21 (1) 94.83 (2) 57.51 (7) 73.36 (4) 72.79 (5) 64.55 (6) 74.20 (3) 50.60 (8) 48.97 (9)
50 97.35 (1) 95.30 (2) 64.17 (7) 79.85 (4) 79.58 (5) 64.84 (6) 82.86 (3) 50.60 (8) 48.85 (9)
75 97.30 (1) 95.31 (2) 67.03 (6) 82.53 (4) 82.31 (5) 64.80 (7) 87.41 (3) 51.22 (8) 48.92 (9)
100 95.51 (1) 95.51 (1) 71.62 (6) 85.72 (4) 85.54 (5) 64.90 (7) 89.76 (3) 50.77 (8) 48.83 (9)

tit 5 78.09 (6) 76.27 (7) 87.13 (4) 90.89 (1) 90.77 (2) 90.71 (3) 79.25 (5) 75.75 (8) 75.46 (9)
10 79.80 (5) 77.99 (7) 90.66 (4) 95.09 (1) 95.03 (2) 94.98 (3) 79.54 (6) 77.05 (8) 75.75 (9)
25 83.21 (6) 82.22 (7) 92.77 (4) 97.61 (1) 97.57 (3) 97.58 (2) 83.38 (5) 77.82 (8) 75.86 (9)
50 85.87 (5) 84.80 (7) 93.52 (4) 98.42 (3) 98.44 (2) 98.45 (1) 85.55 (6) 78.20 (8) 75.84 (9)
75 86.95 (5) 85.98 (7) 93.83 (4) 98.72 (3) 98.75 (2) 98.76 (1) 86.89 (6) 78.40 (8) 75.86 (9)
100 86.91 (6) 86.91 (6) 94.04 (4) 98.87 (3) 98.90 (2) 98.96 (1) 87.79 (5) 78.47 (8) 75.89 (9)

veh 5 69.68 (1) 64.43 (2) 6.24 (9) 40.54 (4) 40.52 (7) 40.53 (6) 40.54 (5) 45.19 (3) 38.85 (8)
10 75.68 (1) 71.55 (2) 4.55 (9) 41.31 (5) 41.30 (7) 42.72 (4) 41.31 (5) 48.06 (3) 39.36 (8)
25 83.12 (1) 79.70 (2) 31.06 (9) 57.06 (3) 56.98 (4) 53.93 (5) 53.84 (6) 49.92 (7) 39.27 (8)
50 86.74 (1) 84.16 (2) 43.57 (8) 66.04 (3) 65.94 (4) 56.98 (6) 58.08 (5) 51.49 (7) 39.29 (9)
75 87.54 (1) 86.04 (2) 48.94 (8) 69.72 (3) 69.61 (4) 57.65 (6) 61.57 (5) 52.25 (7) 39.35 (9)
100 87.28 (1) 87.28 (1) 53.51 (7) 72.41 (3) 72.31 (4) 58.45 (6) 64.43 (5) 52.36 (8) 39.32 (9)

wdb 5 93.42 (2) 92.42 (7) 50.87 (9) 93.19 (4) 93.19 (5) 93.44 (1) 93.20 (3) 91.36 (8) 92.81 (6)
10 93.91 (3) 92.79 (6) 75.91 (9) 93.23 (4) 94.02 (2) 94.76 (1) 92.36 (8) 92.51 (7) 92.94 (5)
25 94.60 (4) 93.53 (6) 87.41 (9) 95.73 (3) 96.04 (2) 96.79 (1) 94.03 (5) 93.30 (7) 92.99 (8)
50 94.48 (5) 93.30 (7) 91.91 (9) 97.10 (3) 97.24 (2) 97.78 (1) 94.87 (4) 93.59 (6) 92.99 (8)
75 93.92 (5) 93.68 (7) 93.49 (8) 97.70 (3) 97.77 (2) 98.31 (1) 95.37 (4) 93.74 (6) 93.00 (9)
100 93.91 (6) 93.91 (6) 94.29 (5) 98.11 (3) 98.17 (2) 98.66 (1) 95.91 (4) 93.86 (8) 93.00 (9)

yea 5 38.00 (1) 28.27 (4) 0.00 (9) 26.27 (6) 26.23 (7) 28.62 (3) 26.97 (5) 32.69 (2) 18.70 (8)
10 43.43 (1) 35.47 (2) 0.00 (9) 28.34 (6) 27.87 (7) 34.70 (3) 29.89 (5) 34.35 (4) 18.29 (8)
25 50.63 (1) 46.10 (2) 0.00 (9) 34.65 (5) 33.70 (6) 38.36 (3) 33.11 (7) 35.52 (4) 19.23 (8)
50 54.55 (1) 52.80 (2) 0.00 (9) 36.01 (5) 35.43 (6) 39.20 (3) 38.05 (4) 35.38 (7) 18.98 (8)
75 54.09 (2) 56.15 (1) 0.00 (9) 38.80 (5) 37.51 (6) 38.94 (4) 41.68 (3) 34.72 (7) 18.90 (8)
100 58.49 (1) 58.49 (1) 0.00 (9) 42.00 (4) 41.47 (5) 39.27 (6) 42.85 (3) 35.69 (7) 19.21 (8)

146 Chapter V. PAST: Learning rules in data stream semi-supervised learning

Table V.5: Comparison of the average performance of PAST with CLAST and the rest of
data stream learners for each percentage of labeled samples (%Lab).

%Lab PAST CLAST CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

Accuracy 5 0.95 (1.64) 0.85 (2.91) 0.08 (8.27) 0.64 (4.82) 0.66 (4.68) 0.62 (5.05) 0.61 (4.41) 0.48 (6.55) 0.45 (6.68)
10 0.95 (1.50) 0.87 (2.45) 0.08 (8.32) 0.58 (4.64) 0.61 (4.27) 0.53 (5.32) 0.52 (5.23) 0.45 (6.18) 0.36 (7.05)
25 0.95 (1.59) 0.86 (2.45) 0.10 (8.00) 0.55 (4.18) 0.60 (3.68) 0.41 (5.86) 0.46 (5.05) 0.34 (6.59) 0.22 (7.59)
50 0.94 (1.45) 0.84 (2.77) 0.20 (7.09) 0.58 (4.09) 0.66 (3.45) 0.33 (6.55) 0.47 (4.95) 0.27 (6.86) 0.16 (7.77)
75 0.92 (1.55) 0.85 (2.95) 0.31 (6.64) 0.64 (4.05) 0.72 (3.23) 0.32 (6.64) 0.50 (5.09) 0.27 (6.91) 0.14 (7.95)
100 0.87 (2.09) 0.87 (2.09) 0.38 (6.23) 0.71 (3.73) 0.78 (3.00) 0.31 (6.73) 0.53 (4.95) 0.27 (6.95) 0.12 (8.18)

G-mean 5 0.94 (1.59) 0.82 (2.82) 0.08 (6.27) 0.52 (3.64) 0.51 (4.45) 0.50 (4.27) 0.49 (3.68) 0.49 (4.50) 0.43 (4.77)
10 0.95 (1.64) 0.85 (2.27) 0.09 (6.18) 0.47 (3.68) 0.46 (4.27) 0.44 (4.45) 0.43 (4.09) 0.43 (4.32) 0.36 (5.05)
25 0.96 (1.45) 0.89 (2.32) 0.09 (6.18) 0.44 (3.23) 0.44 (3.73) 0.35 (4.64) 0.37 (4.23) 0.35 (4.77) 0.27 (5.45)
50 0.95 (1.45) 0.89 (2.41) 0.10 (5.95) 0.43 (3.41) 0.45 (3.41) 0.28 (4.77) 0.35 (4.00) 0.28 (4.95) 0.18 (5.64)
75 0.93 (1.45) 0.90 (2.41) 0.16 (5.59) 0.46 (3.36) 0.48 (3.45) 0.26 (4.95) 0.36 (3.91) 0.25 (5.09) 0.16 (5.77)
100 0.93 (1.55) 0.93 (1.55) 0.21 (5.18) 0.50 (3.05) 0.51 (3.36) 0.26 (5.09) 0.38 (3.91) 0.25 (5.41) 0.15 (5.95)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
g-

m
ea

n

5% labeled 10% labeled

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
g-

m
ea

n

25% labeled 50% labeled

PAST CLAST CVFDT CVFDTNB CVFDTNBA HAT VFDR AWEC DWM

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
g-

m
ea

n

75% labeled

PAST CLAST CVFDT CVFDTNB CVFDTNBA HAT VFDR AWEC DWM

100% labeled

Figure V.4: Distribution of the normalized test G-mean achieved by each classifier in the
different labeling scenarios.

V.3 Comparison of PAST to several machine learning techniques 147

scenarios (74%) and the highest G-mean in 99 of 126 scenarios (79 %, excluding kddcup
dataset). Furthermore, in the remaining scenarios, second place is the most common
position. The next best performer is CLAST. Half of the times CLAST reaches the first
position correspond to 100% labeled scenarios and, therefore, both PAST and CLAST are
tied in first place. The cases in which CLAST obtains a better result than PAST for low
labeling percentages are circumscribed to a small set of 3-4 datasets.

PAST is the classifier that obtains the best average performance for the six labeling
percentages (tied with CLAST in the case of 100% labeled). This is true regardless of
whether the measurement used is accuracy or G-mean. In fact, the good performance of
PAST is even more remarkable for G-mean. While other classifiers worsen their results
considerably with respect to accuracy, PAST maintains its good performance in terms of
G-mean in the vast majority of problems, even when there is class imbalance. This shows
that, as CLAST, PAST’s learning strategy allows it to learn every class. Moreover, in this
case we see that this ability is preserved even in very challenging environments, where
label scarcity is coupled with class imbalance.

This good average performance of PAST is also sustained if we look at the distribu-
tion of results (Figures V.3-V.4). PAST gets the highest value for all quartiles, followed by
CLAST. In general, the variability of the results is greater in the scenarios with fewer labels.
However, the difference between high and low labeling percentages is lower for PAST than
for proposals such as CVFDTNBA, HAT or AWEC. Its variability hardly increases when
the percentage of labeled data decreases. Furthermore, it is worth to mention the better
adaptation of CLAST to low levels of labeled data as compared to the other supervised
methods.

We applied Friedman’s test to the results of each percentage of labeled data and,
in the six cases, it rejected the null hypothesis that the medians of performance of all
the algorithms were equivalent. Then, we applied the post-hoc Finner test to compare
the performance of PAST with every other classifier. Moreover, we complete our analysis
using the Wilcoxon signed ranks test to perform the pairwise comparisons between PAST
and each of the other data stream classifiers. Both Finner and Wilcoxon tests found
PAST to perform significantly better than CVFDT, CVFDTNB, CVFDTNBA, HAT, VFDR,
AWEC and DWM for all the labeling scenarios, with only a few exceptions in the case of
Finner test. As part of the multiple comparison, PAST is found to outperform CLAST
but the improvement is not considered significant. Nonetheless, the pairwise comparison
conducted through Wilcoxon signed ranks test found that PAST significantly improves
the performance of CLAST for the five scenarios that included unlabeled data. Tables V.6
and V.7 sum up the results of the comparisons conducted by means of post-hoc Finner
test (after Friedman’s test rejected the null hypothesis) and pairwise Wilcoxon signed
ranks test, at a significance level of 0.05. The symbols ⊕ and 	 indicate that PAST
significantly improves/degrades the performance obtained with the method in the column.
Likewise, the symbols + and − denote a non-significant improvement/degradation, while
symbol = indicates that both algorithms obtained the exact same results.

148 Chapter V. PAST: Learning rules in data stream semi-supervised learning

Table V.6: Multiple comparison of the performance of PAST with the remaining data
stream learners by means of a post-hoc Finner test after Friedman’s test rejected null
hypothesis of equality of all learners. The same comparison is conducted for both accuracy
and G-mean.

%Lab CLAST CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

Accuracy 5 + ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
10 + ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
25 + ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
50 + ⊕ ⊕ + ⊕ ⊕ ⊕ ⊕
75 + ⊕ ⊕ + ⊕ ⊕ ⊕ ⊕
100 = ⊕ + + ⊕ ⊕ ⊕ ⊕

G-mean 5 + ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
10 + ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
25 + ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
50 + ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
75 + ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
100 = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

1 ⊕/	: PAST significantly improves/degrades the performance of the method in the column
+/−: PAST improves/degrades the performance of the method in the column
=: PAST obtains the same results that the method in the column

Table V.7: Pairwise comparison of the performance of PAST with the remaining data
stream learners by means of a Wilcoxon signed ranks test. Same comparison is conducted
for both accuracy and G-mean.

%Lab CLAST CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

Accuracy 5 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
10 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
25 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
50 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
75 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
100 = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

G-mean 5 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
10 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
25 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
50 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
75 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
100 = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

1 ⊕/	: PAST significantly improves/degrades the performance of the method in the column
+/−: PAST improves/degrades the performance of the method in the column
=: PAST obtains the same results that the method in the column

V.3 Comparison of PAST to several machine learning techniques 149

So far we have compared the different data stream learners based on their final
performance once all the examples have been processed. The number of training examples
for most the learners depends on the number of labels. However, every received example
is always first used for testing and, therefore, all the classifiers are tested on the 100,000
examples regardless of the labeling percentage. Figures V.5-V.6 graphically represent the
evolution of performance as the amount of tested examples increases over time. PAST
maintains the best performance during the entire duration of the experiment for the six
labeling scenarios. The difference of PAST over CLAST is observed for all the labeling
percentages below 100%, although it is more noticeable for the lowest labeling percentages
(5-10%) and decreases as this percentage grows. The steady trend followed by all the
learners may be explained as the result of the combination of two factors: (1) the addressed
problems are not real data streams, and (2) we are representing the average for a collection
of 22 datasets and, therefore, the particularities of each problem are dispelled.

V.3.2 Comparison with batch approaches

Throughout this section we compare the performance of PAST with CLAST and eight
offline batch classifiers, both supervised and semi-supervised, which are based on different
machine learning techniques. These offline classifiers do not see the dataset as a stream
but they address it as a complete and static entity.

V.3.2.1 Experimental setup

Again, we add PAST to the experimentation carried out in Chapter III (Section III.3.2)
and extend it by covering scenarios where not all the data received are labeled. Thus,
for the most part, the methodology followed is analogous to the one used in Section
III.3.2. Nevertheless, we expanded the set of learners by including two proposals for
offline Semi-Supervised Learning (SSL). Hence, we compare the performance of PAST with
CLAST and eight batch learning algorithms: Gaussian Naive Bayes (NB), Decision Tree
(DT), k-Nearest Neighbors (kNN), Support Vector Classification (SVC), Random Forest
(RF), Bagging, Label Propagation (LP) and Label Spreading (LS). Both LP (Delalleau
et al., 2005) and LS (Delalleau et al., 2005) are semi-supervised approaches based on
label propagation. LP uses the raw similarity matrix constructed from the data with
no modifications while LS minimizes a loss function that has regularization properties,
therefore, it is often more robust to noise. The algorithm iterates on a modified version of
the original graph and normalizes the edge weights by computing the normalized graph
Laplacian matrix.

We used the same collection of datasets as in Section III.3.2 and the classifiers
are compared based on the accuracy and G-mean obtained. The classifiers are also set
with the same parameter configuration used in Chapter III. PAST is configured with the
same parameter set as CLAST. For further information about the characteristics of the
employed datasets or the parameter setting of the learners, we refer the reader to Chapter

150 Chapter V. PAST: Learning rules in data stream semi-supervised learning

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ac

cu
ra

cy

5% labeled 10% labeled

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ac

cu
ra

cy

25% labeled 50% labeled

20000 40000 60000 80000 100000
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ac

cu
ra

cy

75% labeled

20000 40000 60000 80000 100000
Number of samples

100% labeled

PAST
CLAST

CVFDT
CVFDTNB

CVFDTNBA

HAT
VFDR
AWEC

DWM

Figure V.5: Average normalized accuracy evolution of the different data stream approaches
as the amount of data received increases for the 22 datasets studied.

V.3 Comparison of PAST to several machine learning techniques 151

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
G-

m
ea

n

5% labeled 10% labeled

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
G-

m
ea

n

25% labeled 50% labeled

20000 40000 60000 80000 100000
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
G-

m
ea

n

75% labeled

20000 40000 60000 80000 100000
Number of samples

100% labeled

PAST
CLAST

CVFDT
CVFDTNB

CVFDTNBA

HAT
VFDR
AWEC

DWM

Figure V.6: Average normalized G-mean evolution of the different data stream approaches
as the amount of data received increases for the 22 datasets studied.

152 Chapter V. PAST: Learning rules in data stream semi-supervised learning

III.

Likewise, since offline proposals are not designed for incremental learning, we
discarded test-then-train scheme. The datasets are divided into train-test partitions, where
90% of the dataset is used for training and the remaining 10% for testing. PAST and
CLAST are allowed to iterate 10 times over the training set. The experiments are executed
with 30 different seeds and the average results are shown.

As mentioned, we extended the experimentation to cover label scarcity scenarios.
We conducted experiments with the same six labeling percentages used in the previous
section: 5, 10, 25, 50, 75 and 100%. Therefore, each training partition is divided in two
subsets: L (labeled instances) and U (unlabeled instances). L and U are built in a random
but stratified way, preserving the original class balance. All the algorithms received the
same labeled data. Nonetheless, algorithms that follow a supervised learning approach
will only learn from such labeled data (L), while semi-supervised approaches will take
advantage of the full training set (L+U).

We conduct a statistical analysis of the results based on three non-parametric tests:
Friedman’s test (Friedman, 1937, 1940), post-hoc Finner test (Finner, 1993) and Wilcoxon
signed ranks test (Wilcoxon, 1992).

V.3.2.2 Results

Hereafter, we compare PAST to the enumerated offline learners. Tables V.8-V.11 show
the accuracy and G-mean of the classifiers on the different datasets and for each ratio of
labeled data. In addition to PAST and the set of offline learners, CLAST is also included
in the tables. As in previous section, along with accuracy and G-mean, the rank of each
algorithm is also specified.

Table V.12 and Figures V.7-V.8 aggregate the results shown in the previous tables
by the amount of labeled data. This table gathers the average normalized performance of
each classifier on each labeling case, while in the figures, the distribution of the normalized
performance is represented in boxplots.

From the experimental results, we can note the good performance of PAST. It
achieves the best accuracy in nine cases and the best G-mean in nineteen. It improves the
average performance of CLAST for all the labeling percentages below 100%, achieving the
third highest average for both accuracy and G-mean for the six labeling scenarios. RF
and Bagging are the only two methods that outperform PAST. The performance of PAST
surpasses that of the two offline semi-supervised approaches. In fact, LP and LS perform
quite poorly, with very high variance in their results. They are able to reach competitive
results in some of the problems but they are left behind in many other cases.

As we already observed in previous sections, both PAST and CLAST have demon-
strated great capacity to make accurate predictions for minority classes in imbalanced
problems, clearly improving the behavior of other approaches. This is also observed here.

V.3 Comparison of PAST to several machine learning techniques 153

Table V.8: Test accuracy and ranking positions for each dataset (Data) and percentage
of labeled samples (%Lab). The classifiers are grouped according to whether they are
online or offline, and supervised (SL) or semi-supervised (SSL). This table contains half of
the datasets included in the experimentation, the information regarding the remaining
datasets is in Table V.9.

Online SSL Online SL Offline SSL Offline SL

Data %Lab PAST CLAST LP LS NB DT kNN SV C RF Bagging

app 5 69.52 (9) 64.52 (10) 82.39 (2) 82.79 (1) 80.18 (6) 74.61 (8) 80.18 (6) 82.33 (3) 81.15 (5) 81.76 (4)
10 74.06 (10) 78.09 (8) 84.27 (3) 85.21 (1) 80.39 (7) 77.42 (9) 84.00 (4) 84.27 (2) 82.67 (5) 81.97 (6)
25 74.45 (10) 80.97 (9) 83.24 (7) 83.85 (6) 86.00 (1) 81.33 (8) 85.39 (2) 84.85 (3) 84.45 (4) 84.45 (4)
50 79.97 (9) 80.09 (8) 86.73 (3) 87.09 (2) 85.85 (5) 79.58 (10) 84.00 (7) 88.64 (1) 86.73 (3) 84.24 (6)
75 79.97 (9) 80.15 (8) 85.45 (6) 86.09 (3) 85.82 (5) 76.64 (10) 85.09 (7) 87.00 (2) 88.67 (1) 85.85 (4)
100 77.64 (9) 77.64 (9) 86.42 (4) 86.42 (4) 86.15 (6) 80.97 (8) 85.15 (7) 87.00 (2) 87.09 (1) 86.82 (3)

aut 5 38.24 (4) 35.61 (6) 12.83 (9) 12.83 (9) 35.86 (5) 38.93 (3) 31.42 (8) 35.42 (7) 46.88 (2) 48.79 (1)
10 42.56 (5) 34.82 (7) 12.83 (9) 12.83 (9) 43.67 (4) 47.25 (3) 34.53 (8) 38.06 (6) 52.19 (1) 51.72 (2)
25 55.79 (4) 47.13 (6) 12.83 (9) 12.83 (9) 48.35 (5) 60.06 (3) 37.99 (8) 39.31 (7) 63.51 (1) 61.96 (2)
50 60.40 (4) 57.96 (5) 12.83 (9) 12.83 (9) 54.21 (6) 72.06 (3) 37.38 (8) 42.07 (7) 77.06 (2) 78.86 (1)
75 61.36 (4) 58.17 (5) 12.83 (9) 12.83 (9) 55.29 (6) 79.58 (3) 39.43 (8) 40.58 (7) 81.67 (2) 84.04 (1)
100 62.99 (4) 62.99 (4) 12.83 (9) 12.83 (9) 52.58 (6) 83.35 (3) 41.76 (7) 40.78 (8) 88.68 (1) 87.82 (2)

ban 5 83.31 (8) 71.92 (9) 85.42 (6) 89.00 (1) 59.26 (10) 83.50 (7) 86.77 (3) 88.22 (2) 86.44 (4) 85.77 (5)
10 85.19 (8) 74.43 (9) 88.29 (3) 89.48 (1) 60.16 (10) 85.25 (7) 88.15 (4) 88.96 (2) 87.69 (5) 87.19 (6)
25 86.77 (7) 76.36 (9) 89.91 (2) 90.26 (1) 60.79 (10) 86.34 (8) 88.57 (5) 89.85 (3) 88.72 (4) 88.32 (6)
50 87.32 (7) 81.72 (9) 90.20 (2) 90.21 (1) 61.59 (10) 86.64 (8) 88.41 (5) 90.08 (3) 88.96 (4) 88.40 (6)
75 87.45 (7) 86.51 (9) 90.25 (2) 90.26 (1) 61.19 (10) 86.96 (8) 88.38 (6) 90.19 (3) 89.10 (4) 88.57 (5)
100 87.29 (7) 87.29 (7) 90.33 (1) 90.26 (3) 61.29 (10) 87.11 (9) 88.35 (6) 90.30 (2) 89.33 (4) 89.16 (5)

bnd 5 53.61 (8) 53.77 (7) 36.97 (9) 36.97 (9) 56.43 (6) 57.87 (5) 58.32 (4) 63.03 (1) 59.16 (2) 58.42 (3)
10 56.70 (4) 55.34 (7) 36.97 (9) 36.97 (9) 54.26 (8) 56.47 (5) 56.28 (6) 63.03 (3) 63.93 (1) 63.38 (2)
25 56.79 (8) 57.33 (7) 36.97 (9) 36.97 (9) 59.34 (5) 60.08 (4) 59.01 (6) 63.03 (3) 66.38 (1) 66.03 (2)
50 56.61 (6) 55.80 (7) 36.97 (9) 36.97 (9) 52.19 (8) 60.91 (5) 62.01 (4) 63.03 (3) 71.34 (1) 69.17 (2)
75 58.28 (6) 58.18 (7) 36.97 (9) 36.97 (9) 52.63 (8) 64.78 (3) 62.76 (5) 63.03 (4) 74.19 (1) 72.16 (2)
100 59.67 (6) 59.67 (6) 45.83 (9) 45.83 (9) 46.01 (8) 62.28 (5) 65.69 (3) 63.03 (4) 74.08 (1) 72.88 (2)

bre 5 68.72 (2) 64.26 (9) 64.48 (8) 66.04 (7) 66.87 (5) 62.76 (10) 66.41 (6) 71.10 (1) 68.46 (3) 67.13 (4)
10 68.73 (2) 63.06 (10) 67.28 (6) 65.25 (7) 63.96 (9) 65.22 (8) 68.34 (5) 70.75 (1) 68.61 (3) 68.47 (4)
25 69.32 (5) 68.84 (7) 65.10 (10) 65.33 (9) 72.82 (1) 66.30 (8) 68.94 (6) 70.63 (4) 71.36 (2) 71.12 (3)
50 73.08 (2) 72.56 (3) 68.12 (8) 68.11 (9) 74.25 (1) 66.07 (10) 68.95 (7) 71.38 (5) 71.96 (4) 70.29 (6)
75 72.21 (3) 72.80 (2) 67.50 (8) 66.18 (9) 73.28 (1) 63.32 (10) 69.31 (7) 71.48 (5) 71.94 (4) 69.78 (6)
100 72.56 (3) 72.56 (3) 68.95 (7) 66.90 (9) 73.53 (1) 64.23 (10) 67.51 (8) 70.78 (5) 72.67 (2) 70.16 (6)

car 5 77.84 (3) 76.66 (5) 73.32 (7) 74.21 (6) 62.94 (10) 77.60 (4) 71.22 (8) 70.31 (9) 79.57 (2) 79.92 (1)
10 80.19 (4) 79.01 (5) 75.69 (6) 75.02 (7) 62.83 (10) 83.31 (2) 73.92 (8) 70.91 (9) 82.97 (3) 84.22 (1)
25 85.21 (4) 84.43 (5) 81.64 (6) 80.29 (8) 63.48 (10) 91.53 (2) 80.50 (7) 76.31 (9) 90.22 (3) 92.57 (1)
50 89.74 (4) 88.31 (5) 87.11 (6) 85.96 (7) 61.96 (10) 95.91 (2) 85.49 (8) 84.94 (9) 94.48 (3) 96.08 (1)
75 91.15 (5) 90.66 (6) 91.71 (4) 89.91 (8) 62.83 (10) 97.49 (2) 85.73 (9) 90.08 (7) 96.66 (3) 97.76 (1)
100 91.40 (7) 91.40 (7) 93.77 (4) 93.73 (5) 62.65 (10) 98.30 (1) 85.15 (9) 93.60 (6) 97.98 (3) 98.19 (2)

eco 5 59.54 (5) 51.41 (8) 43.07 (9) 43.07 (9) 58.64 (6) 61.52 (4) 57.23 (7) 62.55 (3) 69.38 (1) 68.07 (2)
10 65.05 (6) 59.52 (8) 43.07 (9) 43.07 (9) 66.85 (5) 65.04 (7) 67.36 (4) 70.78 (3) 75.41 (1) 73.53 (2)
25 71.96 (6) 67.85 (8) 43.07 (9) 43.07 (9) 70.87 (7) 73.09 (5) 73.29 (4) 77.91 (2) 79.54 (1) 77.61 (3)
50 74.77 (6) 71.19 (7) 43.07 (9) 43.07 (9) 69.47 (8) 76.01 (5) 79.00 (4) 82.01 (2) 83.02 (1) 81.51 (3)
75 75.97 (7) 76.08 (6) 43.07 (9) 43.07 (9) 64.47 (8) 78.22 (5) 81.61 (4) 84.42 (2) 85.34 (1) 81.93 (3)
100 74.00 (6) 74.00 (6) 44.68 (9) 44.68 (9) 60.54 (8) 78.01 (5) 81.71 (4) 84.92 (2) 85.83 (1) 82.84 (3)

hay 5 44.38 (8) 47.29 (3) 41.67 (10) 45.42 (7) 47.29 (3) 50.21 (1) 46.04 (6) 42.71 (9) 47.08 (5) 49.58 (2)
10 54.58 (4) 52.50 (6) 46.67 (9) 51.46 (7) 53.33 (5) 60.21 (1) 44.38 (10) 48.12 (8) 56.46 (3) 59.17 (2)
25 64.79 (4) 60.21 (5) 54.37 (9) 56.46 (8) 57.71 (6) 66.67 (3) 50.21 (10) 57.29 (7) 67.29 (1) 66.88 (2)
50 68.33 (5) 67.92 (6) 62.71 (9) 63.75 (8) 65.62 (7) 79.38 (1) 56.25 (10) 70.42 (4) 78.33 (2) 78.33 (2)
75 73.54 (5) 71.46 (6) 68.96 (8) 69.17 (7) 67.71 (9) 81.46 (1) 63.33 (10) 78.33 (4) 81.04 (3) 81.46 (1)
100 77.50 (5) 77.50 (5) 69.17 (8) 69.58 (7) 67.50 (9) 81.67 (4) 66.67 (10) 82.29 (1) 81.88 (2) 81.88 (2)

hea 5 73.95 (4) 71.60 (5) 55.56 (8) 55.56 (8) 75.43 (2) 68.15 (6) 59.26 (7) 55.31 (10) 77.78 (1) 75.43 (2)
10 71.98 (5) 73.95 (4) 55.56 (9) 55.56 (9) 79.01 (1) 68.64 (6) 63.95 (7) 55.93 (8) 78.64 (2) 74.69 (3)
25 78.89 (4) 75.93 (5) 55.56 (9) 55.56 (9) 82.59 (1) 71.73 (6) 65.19 (7) 59.51 (8) 81.73 (2) 79.26 (3)
50 78.02 (5) 78.40 (4) 55.56 (9) 55.56 (9) 83.58 (1) 72.72 (6) 67.53 (7) 65.68 (8) 81.85 (2) 80.62 (3)
75 80.99 (3) 80.25 (4) 55.56 (9) 55.56 (9) 83.70 (1) 72.22 (6) 66.67 (8) 68.02 (7) 81.48 (2) 79.51 (5)
100 80.86 (4) 80.86 (4) 57.04 (9) 57.04 (9) 84.32 (2) 75.93 (6) 67.65 (8) 69.14 (7) 84.44 (1) 82.10 (3)

154 Chapter V. PAST: Learning rules in data stream semi-supervised learning

Table V.9: Test accuracy and ranking positions for each dataset (Data) and percentage
of labeled samples (%Lab). The classifiers are grouped according to whether they are
online or offline, and supervised (SL) or semi-supervised (SSL). This table contains half of
the datasets included in the experimentation, the information regarding the first half of
datasets is in Table V.8.

Online SSL Online SL Offline SSL Offline SL

Data %Lab PAST CLAST LP LS NB DT kNN SV C RF Bagging

mam 5 77.73 (1) 77.31 (2) 53.69 (10) 54.49 (9) 72.84 (5) 69.10 (7) 70.83 (6) 67.98 (8) 73.67 (3) 72.88 (4)
10 78.70 (1) 78.21 (2) 54.42 (10) 58.44 (9) 76.24 (3) 70.41 (7) 72.63 (6) 68.85 (8) 73.43 (4) 72.91 (5)
25 79.64 (1) 78.63 (2) 57.72 (10) 65.55 (9) 78.56 (3) 70.03 (8) 75.10 (4) 71.38 (7) 74.99 (5) 72.88 (6)
50 79.22 (1) 78.77 (2) 68.57 (10) 70.02 (9) 77.80 (3) 71.90 (8) 76.10 (4) 75.44 (6) 75.79 (5) 75.06 (7)
75 79.02 (1) 78.42 (2) 73.84 (8) 73.32 (9) 77.87 (3) 71.80 (10) 76.00 (5) 76.90 (4) 75.51 (6) 75.37 (7)
100 78.22 (1) 78.22 (1) 77.35 (5) 76.38 (9) 77.90 (3) 74.44 (10) 76.87 (8) 77.49 (4) 77.25 (6) 77.04 (7)

pag 5 92.12 (5) 90.55 (6) 89.78 (7) 89.78 (7) 87.08 (10) 93.98 (3) 92.42 (4) 89.77 (9) 95.13 (1) 95.06 (2)
10 92.56 (5) 91.87 (6) 89.78 (8) 89.78 (8) 90.02 (7) 94.77 (3) 93.45 (4) 89.78 (10) 95.75 (1) 95.69 (2)
25 93.05 (5) 92.78 (6) 89.78 (8) 89.78 (8) 86.21 (10) 95.62 (3) 94.51 (4) 89.90 (7) 96.63 (1) 96.49 (2)
50 93.28 (5) 92.86 (6) 89.78 (8) 89.78 (8) 89.61 (10) 96.24 (3) 95.14 (4) 90.09 (7) 96.92 (2) 96.93 (1)
75 93.76 (5) 93.54 (6) 89.78 (8) 89.78 (8) 86.96 (10) 96.27 (3) 95.69 (4) 90.24 (7) 97.34 (1) 97.00 (2)
100 93.87 (5) 93.87 (5) 92.08 (7) 92.07 (8) 88.63 (10) 96.24 (3) 95.77 (4) 90.47 (9) 97.37 (1) 97.13 (2)

pim 5 68.36 (5) 66.41 (8) 65.11 (9) 65.11 (9) 71.62 (3) 67.37 (6) 69.06 (4) 67.37 (7) 71.97 (1) 71.71 (2)
10 71.31 (4) 69.14 (6) 65.11 (9) 65.11 (9) 72.88 (3) 67.62 (7) 67.44 (8) 69.27 (5) 73.83 (1) 73.13 (2)
25 72.22 (6) 72.39 (5) 65.11 (9) 65.11 (9) 74.66 (1) 67.71 (8) 70.74 (7) 73.39 (4) 74.35 (2) 74.30 (3)
50 73.43 (6) 74.09 (5) 65.11 (9) 65.11 (9) 75.18 (2) 67.57 (8) 70.31 (7) 75.00 (3) 75.39 (1) 74.87 (4)
75 76.95 (1) 76.31 (2) 65.11 (9) 65.11 (9) 75.40 (5) 69.18 (8) 69.19 (7) 75.82 (3) 75.52 (4) 75.35 (6)
100 75.78 (2) 75.78 (2) 65.76 (9) 65.76 (9) 75.66 (4) 69.88 (8) 69.96 (7) 76.04 (1) 75.65 (5) 75.48 (6)

sah 5 63.58 (7) 57.07 (10) 65.37 (2) 65.37 (2) 64.08 (5) 58.79 (9) 61.32 (8) 65.44 (1) 64.85 (4) 63.85 (6)
10 65.61 (5) 61.55 (10) 65.37 (6) 65.37 (6) 68.40 (1) 63.29 (9) 63.74 (8) 65.87 (4) 66.30 (2) 66.04 (3)
25 65.51 (4) 64.52 (8) 65.37 (6) 65.37 (6) 69.98 (1) 63.71 (10) 64.07 (9) 65.51 (5) 68.83 (2) 68.53 (3)
50 67.25 (2) 65.88 (6) 65.37 (7) 65.37 (7) 70.99 (1) 61.47 (10) 62.50 (9) 66.30 (5) 66.37 (4) 67.18 (3)
75 68.26 (2) 67.54 (3) 65.37 (7) 65.37 (7) 71.43 (1) 61.64 (9) 59.60 (10) 65.51 (6) 67.39 (4) 66.17 (5)
100 67.10 (4) 67.10 (4) 64.36 (7) 64.36 (7) 71.35 (1) 61.62 (9) 58.07 (10) 66.30 (6) 67.17 (3) 68.18 (2)

skn 5 97.27 (6) 95.90 (7) N/A N/A 92.41 (8) 99.64 (4) 99.85 (1) 99.38 (5) 99.81 (2) 99.72 (3)
10 97.41 (6) 95.44 (7) N/A N/A 92.40 (8) 99.75 (4) 99.89 (1) 99.45 (5) 99.87 (2) 99.82 (3)
25 97.13 (6) 95.21 (7) N/A N/A 92.39 (8) 99.86 (4) 99.93 (1) 99.50 (5) 99.92 (2) 99.88 (3)
50 96.43 (6) 95.28 (7) N/A N/A 92.39 (8) 99.90 (4) 99.95 (1) 99.73 (5) 99.94 (2) 99.92 (3)
75 95.39 (6) 95.06 (7) N/A N/A 92.39 (8) 99.92 (4) 99.95 (2) 99.83 (5) 99.95 (1) 99.94 (3)
100 94.97 (6) 94.97 (6) N/A N/A 92.39 (8) 99.93 (4) 99.96 (1) 99.83 (5) 99.96 (2) 99.94 (3)

tae 5 38.89 (2) 36.65 (4) 32.46 (9) 32.46 (9) 39.76 (1) 35.79 (5) 34.04 (8) 35.15 (6) 37.81 (3) 34.47 (7)
10 39.19 (5) 38.22 (6) 32.46 (9) 32.46 (9) 44.01 (1) 40.25 (3) 35.63 (8) 36.89 (7) 39.63 (4) 41.15 (2)
25 49.56 (2) 45.89 (5) 32.46 (9) 32.46 (9) 44.15 (6) 47.44 (4) 40.18 (7) 36.18 (8) 50.78 (1) 47.92 (3)
50 53.29 (3) 46.04 (6) 32.46 (9) 32.46 (9) 50.14 (5) 51.86 (4) 41.83 (7) 38.18 (8) 54.40 (1) 54.10 (2)
75 45.51 (6) 47.11 (5) 34.68 (9) 34.46 (10) 49.04 (4) 56.82 (2) 40.67 (7) 37.36 (8) 56.21 (3) 59.04 (1)
100 50.38 (7) 50.38 (7) 58.17 (4) 57.28 (5) 51.00 (6) 63.67 (3) 40.92 (9) 36.03 (10) 63.86 (2) 64.76 (1)

tic 5 69.76 (2) 60.57 (10) 67.50 (4) 75.40 (1) 61.96 (9) 62.81 (8) 63.61 (7) 65.80 (6) 67.71 (3) 66.80 (5)
10 76.51 (2) 69.48 (8) 71.78 (5) 78.67 (1) 64.24 (10) 71.39 (6) 68.85 (9) 70.11 (7) 75.51 (4) 76.03 (3)
25 83.15 (3) 75.50 (8) 79.68 (5) 81.14 (4) 67.99 (10) 78.57 (6) 72.41 (9) 75.51 (7) 83.75 (2) 85.56 (1)
50 89.18 (2) 81.14 (8) 82.53 (6) 81.98 (7) 70.57 (10) 84.45 (4) 80.86 (9) 82.91 (5) 89.11 (3) 91.82 (1)
75 92.48 (3) 87.79 (5) 83.26 (7) 82.74 (8) 70.77 (10) 88.62 (4) 80.55 (9) 87.09 (6) 93.18 (2) 94.43 (1)
100 95.75 (2) 95.75 (2) 84.03 (7) 83.33 (8) 71.19 (10) 87.51 (6) 79.48 (9) 89.53 (5) 94.92 (4) 96.14 (1)

tit 5 77.26 (1) 74.19 (4) 61.62 (10) 61.65 (9) 73.85 (5) 70.60 (6) 64.30 (7) 63.86 (8) 74.60 (2) 74.30 (3)
10 77.78 (1) 76.76 (2) 61.62 (9) 60.91 (10) 74.45 (5) 73.51 (6) 62.70 (8) 65.81 (7) 76.76 (3) 76.20 (4)
25 78.49 (3) 77.25 (4) 61.62 (9) 61.24 (10) 76.69 (5) 74.14 (6) 65.62 (8) 67.26 (7) 79.31 (1) 78.60 (2)
50 78.90 (3) 78.37 (4) 61.62 (9) 61.36 (10) 77.78 (5) 77.22 (6) 68.24 (8) 68.35 (7) 81.07 (1) 80.96 (2)
75 78.07 (4) 78.34 (3) 61.62 (9) 61.28 (10) 77.52 (5) 77.07 (6) 68.35 (8) 68.35 (7) 82.64 (1) 81.82 (2)
100 79.16 (3) 79.16 (3) 62.40 (9) 62.40 (9) 78.23 (5) 78.16 (6) 68.13 (8) 68.76 (7) 82.98 (1) 82.98 (2)

veh 5 49.80 (4) 40.70 (7) 25.77 (9) 25.77 (9) 46.89 (6) 52.49 (3) 47.00 (5) 38.60 (8) 59.47 (1) 58.79 (2)
10 56.88 (4) 50.00 (6) 25.77 (9) 25.77 (9) 47.00 (7) 57.80 (3) 53.27 (5) 39.87 (8) 66.71 (2) 67.18 (1)
25 62.14 (4) 55.79 (6) 25.77 (9) 25.77 (9) 45.15 (7) 65.84 (3) 56.70 (5) 40.86 (8) 72.70 (1) 71.76 (2)
50 62.70 (4) 61.43 (6) 25.77 (9) 25.77 (9) 45.11 (7) 68.48 (3) 61.47 (5) 44.79 (8) 73.25 (2) 73.56 (1)
75 62.96 (5) 62.33 (6) 25.77 (9) 25.77 (9) 45.31 (8) 69.39 (3) 64.15 (4) 47.91 (7) 74.86 (1) 73.95 (2)
100 63.43 (5) 63.43 (5) 25.93 (9) 25.93 (9) 45.19 (8) 71.35 (3) 65.10 (4) 49.17 (7) 74.75 (2) 75.10 (1)

wdb 5 91.27 (4) 84.60 (8) 62.74 (9) 62.74 (9) 93.27 (1) 87.70 (7) 88.34 (5) 87.94 (6) 91.39 (3) 91.51 (2)
10 92.44 (3) 88.04 (8) 62.74 (9) 62.74 (9) 93.44 (1) 90.10 (6) 91.63 (5) 88.99 (7) 93.27 (2) 92.09 (4)
25 91.86 (5) 91.16 (7) 62.74 (9) 62.74 (9) 93.73 (3) 91.51 (6) 92.33 (4) 90.28 (8) 94.15 (1) 93.85 (2)
50 93.62 (4) 91.74 (7) 62.74 (9) 62.74 (9) 93.85 (3) 92.44 (6) 92.45 (5) 90.51 (8) 95.32 (1) 95.03 (2)
75 92.86 (4) 91.92 (7) 62.74 (9) 62.74 (9) 94.03 (3) 92.56 (6) 92.57 (5) 90.86 (8) 95.90 (1) 95.20 (2)
100 93.15 (4) 93.15 (4) 62.74 (9) 62.74 (9) 94.14 (3) 93.03 (6) 92.56 (7) 91.68 (8) 95.90 (2) 95.90 (1)

yea 5 45.06 (4) 37.87 (9) 31.92 (10) 38.92 (8) 44.30 (6) 44.70 (5) 48.09 (3) 43.41 (7) 51.14 (2) 51.84 (1)
10 46.58 (5) 41.35 (7) 32.14 (10) 40.12 (8) 38.81 (9) 44.81 (6) 49.17 (4) 52.13 (3) 53.84 (1) 52.90 (2)
25 50.33 (5) 48.26 (6) 36.81 (9) 41.51 (8) 34.64 (10) 47.86 (7) 51.89 (4) 57.37 (1) 57.17 (2) 56.38 (3)
50 52.19 (5) 50.98 (6) 41.49 (9) 43.15 (8) 23.72 (10) 49.19 (7) 53.64 (4) 59.72 (2) 59.88 (1) 57.55 (3)
75 51.61 (6) 53.47 (5) 44.43 (9) 44.50 (8) 18.24 (10) 51.01 (7) 54.31 (4) 60.01 (2) 60.94 (1) 59.25 (3)
100 52.82 (5) 52.82 (5) 47.80 (8) 46.31 (9) 14.74 (10) 52.40 (7) 55.59 (4) 60.30 (3) 62.08 (1) 60.72 (2)

V.3 Comparison of PAST to several machine learning techniques 155

Table V.10: G-mean and ranking positions for each dataset (Data) and percentage of
labeled samples (%Lab). The classifiers are grouped according to whether they are online
or offline, and supervised (SL) or semi-supervised (SSL). This table contains half of the
datasets included in the experimentation, the information regarding the remaining datasets
is in Table V.11.

Online SSL Online SL Offline SSL Offline SL

Data %Lab PAST CLAST LP LS NB DT kNN SV C RF Bagging

app 5 47.31 (2) 41.83 (3) 23.31 (7) 41.36 (4) 0.00 (9) 47.63 (1) 0.00 (9) 19.80 (8) 35.99 (6) 39.41 (5)
10 59.34 (4) 61.32 (2) 37.72 (8) 55.69 (5) 22.39 (10) 59.95 (3) 52.67 (7) 35.18 (9) 55.47 (6) 63.60 (1)
25 70.91 (1) 68.48 (3) 45.12 (9) 50.25 (8) 69.83 (2) 63.89 (6) 55.65 (7) 43.92 (10) 67.34 (4) 66.34 (5)
50 68.65 (1) 65.84 (5) 61.44 (9) 66.01 (4) 68.08 (2) 62.58 (7) 59.62 (10) 66.82 (3) 64.47 (6) 61.82 (8)
75 67.05 (4) 68.72 (2) 60.20 (8) 62.59 (6) 72.33 (1) 56.90 (10) 59.58 (9) 61.17 (7) 68.29 (3) 63.92 (5)
100 63.53 (6) 63.53 (6) 63.56 (4) 63.56 (4) 72.22 (1) 60.07 (9) 62.36 (8) 59.84 (10) 65.16 (2) 64.39 (3)

aut 5 1.41 (4) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 1.83 (3) 0.00 (5) 0.00 (5) 5.10 (1) 2.13 (2)
10 2.13 (3) 1.22 (5) 0.00 (6) 0.00 (6) 0.00 (6) 8.49 (2) 0.00 (6) 0.00 (6) 2.03 (4) 8.77 (1)
25 7.00 (4) 6.88 (5) 0.00 (7) 0.00 (7) 3.92 (6) 19.14 (1) 0.00 (7) 0.00 (7) 14.48 (2) 11.49 (3)
50 17.13 (6) 21.49 (4) 0.00 (7) 0.00 (7) 17.79 (5) 30.84 (3) 0.00 (7) 0.00 (7) 50.82 (1) 49.91 (2)
75 33.80 (4) 19.39 (5) 0.00 (8) 0.00 (8) 12.51 (6) 50.43 (3) 1.94 (7) 0.00 (8) 54.32 (2) 57.86 (1)
100 28.97 (4) 28.97 (4) 0.00 (7) 0.00 (7) 5.55 (6) 58.38 (3) 0.00 (7) 0.00 (7) 76.16 (1) 73.01 (2)

ban 5 82.58 (8) 70.76 (9) 82.90 (7) 88.43 (1) 51.40 (10) 83.36 (6) 86.47 (3) 87.72 (2) 86.16 (4) 85.50 (5)
10 84.83 (8) 73.41 (9) 86.71 (6) 88.73 (1) 51.77 (10) 85.03 (7) 87.84 (3) 88.43 (2) 87.33 (4) 86.84 (5)
25 86.45 (7) 75.48 (9) 88.92 (3) 89.59 (1) 51.73 (10) 86.20 (8) 88.32 (5) 89.32 (2) 88.46 (4) 88.06 (6)
50 87.04 (7) 81.56 (9) 89.43 (3) 89.50 (2) 52.24 (10) 86.48 (8) 88.16 (5) 89.53 (1) 88.67 (4) 88.10 (6)
75 87.29 (7) 86.52 (9) 89.56 (3) 89.57 (2) 51.64 (10) 86.78 (8) 88.14 (6) 89.62 (1) 88.80 (4) 88.30 (5)
100 87.25 (7) 87.25 (7) 89.71 (2) 89.61 (3) 51.67 (10) 86.99 (9) 88.06 (6) 89.74 (1) 89.05 (4) 88.92 (5)

bnd 5 46.53 (6) 50.36 (2) 0.00 (8) 0.00 (8) 44.82 (7) 52.63 (1) 48.81 (4) 0.00 (8) 47.54 (5) 50.05 (3)
10 51.10 (5) 51.15 (4) 0.00 (8) 0.00 (8) 42.14 (7) 51.83 (2) 46.61 (6) 0.00 (8) 51.48 (3) 53.63 (1)
25 54.34 (4) 52.73 (5) 0.00 (8) 0.00 (8) 45.18 (7) 54.73 (3) 46.60 (6) 0.00 (8) 55.34 (2) 56.31 (1)
50 56.15 (4) 53.99 (5) 0.00 (8) 0.00 (8) 46.71 (7) 57.59 (3) 53.99 (6) 0.00 (8) 62.15 (2) 62.33 (1)
75 56.16 (5) 56.31 (4) 0.00 (8) 0.00 (8) 46.28 (7) 61.15 (3) 54.04 (6) 0.00 (8) 66.54 (1) 64.79 (2)
100 58.57 (3) 58.57 (3) 36.59 (7) 36.59 (7) 36.18 (9) 57.67 (5) 56.42 (6) 0.00 (10) 65.88 (2) 66.32 (1)

bre 5 54.39 (3) 54.54 (2) 37.35 (9) 47.83 (6) 54.85 (1) 50.57 (4) 43.32 (8) 24.41 (10) 45.49 (7) 50.28 (5)
10 49.11 (4) 52.79 (1) 44.12 (7) 44.73 (6) 52.51 (2) 51.53 (3) 39.70 (9) 23.30 (10) 42.13 (8) 47.33 (5)
25 56.70 (3) 59.29 (2) 43.93 (9) 50.63 (6) 63.36 (1) 53.35 (5) 45.43 (8) 30.67 (10) 47.61 (7) 53.93 (4)
50 64.82 (1) 63.85 (3) 48.95 (8) 51.70 (7) 64.80 (2) 54.21 (5) 47.86 (9) 41.91 (10) 54.62 (4) 53.65 (6)
75 63.25 (3) 63.70 (1) 52.78 (6) 53.66 (5) 63.28 (2) 51.33 (8) 48.39 (9) 45.15 (10) 55.36 (4) 52.48 (7)
100 64.79 (1) 64.79 (1) 53.84 (6) 53.26 (7) 63.92 (3) 52.52 (8) 48.55 (9) 47.25 (10) 55.24 (4) 54.71 (5)

car 5 22.25 (4) 17.47 (8) 23.24 (3) 17.64 (7) 18.18 (6) 44.18 (1) 12.91 (9) 0.00 (10) 21.71 (5) 38.02 (2)
10 24.99 (6) 28.95 (5) 22.83 (7) 15.24 (9) 17.30 (8) 59.92 (1) 30.58 (4) 0.00 (10) 43.00 (3) 54.62 (2)
25 43.46 (5) 35.97 (7) 38.84 (6) 29.96 (8) 4.54 (9) 80.28 (1) 44.97 (4) 1.61 (10) 67.13 (3) 78.16 (2)
50 61.60 (4) 45.93 (8) 58.32 (5) 52.34 (7) 3.02 (10) 90.12 (1) 54.65 (6) 10.18 (9) 84.91 (3) 89.89 (2)
75 69.86 (5) 69.44 (6) 74.07 (4) 65.84 (7) 0.00 (10) 94.14 (2) 53.71 (8) 49.00 (9) 91.41 (3) 95.78 (1)
100 70.47 (7) 70.47 (7) 80.75 (4) 80.73 (5) 0.00 (10) 95.41 (2) 52.12 (9) 75.58 (6) 94.54 (3) 96.89 (1)

eco 5 3.22 (5) 3.76 (4) 0.00 (6) 0.00 (6) 0.00 (6) 5.14 (2) 0.00 (6) 0.00 (6) 9.69 (1) 5.03 (3)
10 7.16 (4) 5.60 (6) 0.00 (9) 0.00 (9) 4.59 (7) 16.68 (3) 6.62 (5) 3.58 (8) 17.53 (2) 20.68 (1)
25 30.09 (4) 16.30 (6) 0.00 (9) 0.00 (9) 24.56 (5) 30.82 (3) 13.08 (7) 12.82 (8) 31.31 (2) 31.66 (1)
50 23.56 (6) 16.35 (7) 0.00 (9) 0.00 (9) 10.06 (8) 33.29 (5) 62.12 (1) 57.94 (2) 51.20 (3) 50.62 (4)
75 31.22 (7) 33.29 (6) 0.00 (9) 0.00 (9) 3.94 (8) 41.65 (5) 65.74 (2) 71.68 (1) 51.96 (3) 44.66 (4)
100 25.99 (6) 25.99 (6) 0.00 (8) 0.00 (8) 0.00 (8) 32.51 (5) 65.00 (2) 72.45 (1) 59.43 (3) 52.59 (4)

hay 5 14.80 (5) 17.34 (3) 13.18 (7) 27.81 (2) 1.52 (8) 31.12 (1) 0.00 (10) 1.52 (8) 13.35 (6) 15.65 (4)
10 40.29 (4) 38.19 (6) 20.07 (9) 38.99 (5) 41.91 (3) 48.69 (1) 16.41 (10) 21.48 (8) 38.00 (7) 45.97 (2)
25 58.03 (4) 54.36 (6) 34.28 (9) 45.80 (8) 54.67 (5) 61.91 (1) 29.36 (10) 49.45 (7) 61.88 (2) 59.02 (3)
50 66.41 (6) 67.59 (5) 49.24 (9) 52.36 (8) 65.37 (7) 78.90 (1) 44.01 (10) 68.97 (4) 78.46 (2) 77.86 (3)
75 72.81 (5) 70.59 (6) 57.37 (9) 62.46 (8) 68.27 (7) 82.42 (2) 52.39 (10) 78.54 (4) 81.98 (3) 82.67 (1)
100 77.75 (5) 77.75 (5) 59.35 (9) 60.41 (8) 68.15 (7) 82.79 (2) 55.71 (10) 82.44 (4) 82.99 (1) 82.77 (3)

hea 5 71.09 (4) 68.96 (5) 0.00 (8) 0.00 (8) 73.06 (2) 66.14 (6) 51.42 (7) 0.00 (8) 73.87 (1) 72.61 (3)
10 70.99 (5) 71.89 (4) 0.00 (9) 0.00 (9) 77.90 (1) 67.64 (6) 61.46 (7) 4.49 (8) 76.39 (2) 73.00 (3)
25 78.18 (3) 75.15 (5) 0.00 (9) 0.00 (9) 81.69 (1) 70.36 (6) 62.53 (7) 30.25 (8) 80.71 (2) 78.05 (4)
50 77.63 (4) 76.55 (5) 0.00 (9) 0.00 (9) 82.68 (1) 71.59 (6) 64.91 (7) 56.48 (8) 80.56 (2) 79.20 (3)
75 80.16 (3) 78.90 (4) 0.00 (9) 0.00 (9) 83.10 (1) 71.39 (6) 64.57 (7) 62.01 (8) 80.28 (2) 78.36 (5)
100 80.30 (4) 80.30 (4) 10.42 (9) 10.42 (9) 83.59 (2) 75.02 (6) 65.59 (7) 63.50 (8) 83.75 (1) 81.38 (3)

156 Chapter V. PAST: Learning rules in data stream semi-supervised learning

Table V.11: G-mean and ranking positions for each dataset (Data) and percentage of
labeled samples (%Lab). The classifiers are grouped according to whether they are online
or offline, and supervised (SL) or semi-supervised (SSL). This table contains half of
the datasets included in the experimentation, the information regarding the first half of
datasets is in Table V.10.

Online SSL Online SL Offline SSL Offline SL

Data %Lab PAST CLAST LP LS NB DT kNN SV C RF Bagging

mam 5 77.71 (1) 77.21 (2) 0.00 (10) 4.32 (9) 71.28 (5) 68.49 (7) 70.03 (6) 63.76 (8) 73.05 (3) 72.19 (4)
10 78.75 (1) 78.22 (2) 2.50 (10) 19.07 (9) 76.07 (3) 69.83 (7) 72.12 (6) 67.49 (8) 72.87 (4) 72.39 (5)
25 79.71 (1) 78.72 (2) 16.43 (10) 45.58 (9) 78.60 (3) 69.30 (8) 74.57 (5) 70.69 (7) 74.66 (4) 72.38 (6)
50 79.32 (1) 78.84 (2) 52.32 (10) 59.09 (9) 77.83 (3) 71.12 (8) 75.71 (4) 75.01 (6) 75.53 (5) 74.78 (7)
75 79.12 (1) 78.50 (2) 68.42 (10) 69.64 (9) 77.91 (3) 71.00 (8) 75.80 (5) 76.68 (4) 75.17 (6) 75.08 (7)
100 78.32 (1) 78.32 (1) 77.32 (5) 76.35 (9) 77.95 (3) 74.01 (10) 76.61 (8) 77.48 (4) 77.10 (6) 76.87 (7)

pag 5 0.00 (5) 1.74 (4) 0.00 (5) 0.00 (5) 0.00 (5) 28.44 (1) 0.00 (5) 0.00 (5) 12.19 (3) 27.02 (2)
10 4.50 (6) 1.98 (7) 0.00 (8) 0.00 (8) 46.10 (1) 41.83 (2) 6.09 (5) 0.00 (8) 36.94 (4) 41.67 (3)
25 31.83 (5) 9.07 (7) 0.00 (8) 0.00 (8) 56.04 (4) 72.37 (2) 27.29 (6) 0.00 (8) 62.34 (3) 74.19 (1)
50 47.95 (6) 18.63 (7) 0.00 (8) 0.00 (8) 58.00 (4) 76.50 (2) 48.84 (5) 0.00 (8) 75.79 (3) 79.86 (1)
75 61.72 (5) 41.16 (7) 0.00 (8) 0.00 (8) 52.42 (6) 75.01 (3) 66.60 (4) 0.00 (8) 79.31 (1) 76.59 (2)
100 58.20 (5) 58.20 (5) 0.00 (8) 0.00 (8) 53.21 (7) 78.95 (3) 68.15 (4) 0.00 (8) 82.24 (1) 80.64 (2)

pim 5 60.61 (6) 60.62 (5) 0.00 (9) 0.00 (9) 65.24 (1) 62.70 (3) 59.44 (7) 29.80 (8) 62.28 (4) 64.36 (2)
10 67.47 (1) 63.16 (6) 0.00 (9) 0.00 (9) 67.20 (2) 63.76 (5) 60.00 (7) 50.23 (8) 64.81 (4) 66.09 (3)
25 69.82 (1) 69.24 (3) 0.00 (9) 0.00 (9) 69.78 (2) 63.74 (7) 64.94 (6) 61.13 (8) 67.48 (5) 68.70 (4)
50 72.24 (1) 71.43 (2) 0.00 (9) 0.00 (9) 70.17 (3) 64.11 (7) 64.15 (6) 63.63 (8) 68.59 (5) 68.71 (4)
75 74.92 (1) 73.21 (2) 0.00 (9) 0.00 (9) 70.55 (3) 65.21 (7) 63.28 (8) 65.70 (6) 69.04 (5) 69.48 (4)
100 73.75 (1) 73.75 (1) 16.77 (9) 16.77 (9) 70.84 (3) 65.60 (7) 64.87 (8) 66.06 (6) 69.28 (5) 70.53 (4)

sah 5 53.97 (2) 51.43 (3) 0.00 (9) 0.00 (9) 55.57 (1) 50.39 (5) 50.57 (4) 0.83 (8) 48.48 (6) 48.27 (7)
10 61.67 (2) 56.95 (3) 0.00 (9) 0.00 (9) 64.06 (1) 56.16 (4) 51.53 (6) 5.60 (8) 50.37 (7) 54.61 (5)
25 63.65 (2) 62.45 (3) 0.00 (9) 0.00 (9) 66.89 (1) 58.00 (6) 53.08 (7) 7.23 (8) 58.49 (5) 59.81 (4)
50 65.75 (2) 63.79 (3) 0.00 (9) 0.00 (9) 67.94 (1) 55.86 (5) 51.93 (7) 14.02 (8) 55.64 (6) 57.16 (4)
75 67.21 (2) 66.54 (3) 0.00 (9) 0.00 (9) 68.51 (1) 55.31 (6) 48.73 (7) 14.05 (8) 55.79 (4) 55.50 (5)
100 66.32 (2) 66.32 (2) 3.28 (9) 3.28 (9) 68.55 (1) 56.31 (6) 46.95 (7) 19.47 (8) 57.06 (5) 58.53 (4)

skn 5 98.20 (6) 97.08 (7) N/A N/A 84.67 (8) 99.49 (5) 99.89 (1) 99.61 (4) 99.82 (2) 99.65 (3)
10 98.34 (6) 96.80 (7) N/A N/A 84.63 (8) 99.66 (4) 99.92 (1) 99.65 (5) 99.87 (2) 99.77 (3)
25 98.16 (6) 96.66 (7) N/A N/A 84.62 (8) 99.80 (4) 99.95 (1) 99.68 (5) 99.92 (2) 99.85 (3)
50 97.70 (6) 96.86 (7) N/A N/A 84.62 (8) 99.86 (4) 99.96 (1) 99.83 (5) 99.95 (2) 99.91 (3)
75 97.01 (6) 96.65 (7) N/A N/A 84.61 (8) 99.90 (4) 99.96 (1) 99.89 (5) 99.96 (2) 99.92 (3)
100 96.61 (6) 96.61 (6) N/A N/A 84.62 (8) 99.91 (4) 99.97 (1) 99.89 (5) 99.96 (2) 99.94 (3)

tae 5 24.56 (1) 20.19 (4) 0.00 (9) 0.00 (9) 15.64 (7) 19.17 (6) 10.48 (8) 20.05 (5) 22.34 (2) 21.82 (3)
10 23.96 (4) 16.61 (6) 0.00 (9) 0.00 (9) 22.78 (5) 27.93 (2) 16.54 (7) 7.61 (8) 27.83 (3) 28.88 (1)
25 36.30 (4) 31.79 (5) 0.00 (9) 0.00 (9) 16.24 (8) 38.81 (3) 28.60 (6) 18.54 (7) 44.87 (1) 41.83 (2)
50 47.81 (3) 32.85 (6) 0.00 (9) 0.00 (9) 32.27 (7) 47.44 (4) 33.83 (5) 21.99 (8) 48.74 (2) 49.79 (1)
75 31.35 (7) 36.74 (4) 4.40 (9) 4.20 (10) 32.79 (5) 53.23 (1) 32.33 (6) 24.12 (8) 51.00 (3) 53.07 (2)
100 35.14 (6) 35.14 (6) 54.93 (4) 52.72 (5) 31.77 (9) 61.64 (2) 34.85 (8) 20.68 (10) 61.15 (3) 62.42 (1)

tic 5 61.85 (2) 58.57 (3) 53.45 (8) 65.23 (1) 49.24 (9) 58.23 (5) 54.23 (7) 33.20 (10) 57.75 (6) 58.42 (4)
10 68.67 (2) 66.21 (5) 55.28 (8) 69.27 (1) 48.90 (9) 67.56 (4) 58.69 (7) 48.07 (10) 65.47 (6) 68.19 (3)
25 77.09 (2) 73.11 (5) 68.40 (7) 72.77 (6) 47.70 (10) 75.05 (4) 61.24 (8) 59.68 (9) 76.99 (3) 79.93 (1)
50 85.20 (2) 79.00 (5) 74.10 (6) 73.95 (7) 47.91 (10) 82.19 (4) 72.58 (9) 73.75 (8) 84.87 (3) 88.50 (1)
75 89.79 (3) 85.48 (5) 74.73 (8) 74.73 (7) 44.58 (10) 86.40 (4) 72.98 (9) 80.34 (6) 90.42 (2) 92.01 (1)
100 94.51 (1) 94.51 (1) 75.34 (7) 74.92 (8) 44.30 (10) 85.19 (5) 71.89 (9) 84.07 (6) 92.83 (4) 94.30 (3)

tit 5 73.66 (1) 66.42 (6) 0.00 (10) 5.62 (9) 70.46 (4) 68.28 (5) 56.43 (7) 24.98 (8) 70.65 (3) 71.24 (2)
10 74.67 (1) 71.61 (5) 0.00 (10) 6.27 (9) 72.31 (4) 71.26 (6) 54.63 (7) 44.90 (8) 73.86 (2) 73.63 (3)
25 76.02 (3) 72.93 (5) 0.00 (10) 9.82 (9) 74.71 (4) 72.18 (6) 60.83 (7) 53.72 (8) 76.68 (1) 76.28 (2)
50 76.50 (3) 75.14 (6) 0.00 (10) 12.22 (9) 75.40 (5) 75.67 (4) 64.22 (7) 54.14 (8) 78.64 (1) 78.48 (2)
75 76.55 (3) 76.27 (4) 0.00 (10) 13.18 (9) 75.13 (6) 75.59 (5) 63.87 (7) 55.31 (8) 80.55 (1) 79.71 (2)
100 76.92 (4) 76.92 (4) 43.61 (9) 43.61 (9) 75.97 (6) 76.95 (3) 64.10 (7) 55.87 (8) 80.87 (2) 80.98 (1)

veh 5 42.86 (4) 33.81 (7) 0.00 (9) 0.00 (9) 39.31 (6) 49.36 (3) 41.22 (5) 7.66 (8) 54.07 (2) 54.72 (1)
10 50.63 (4) 45.02 (6) 0.00 (9) 0.00 (9) 39.79 (7) 54.67 (3) 47.92 (5) 14.49 (8) 61.53 (2) 63.03 (1)
25 56.43 (4) 49.23 (6) 0.00 (9) 0.00 (9) 33.17 (7) 63.20 (3) 51.99 (5) 19.30 (8) 68.59 (1) 67.94 (2)
50 55.90 (5) 54.30 (6) 0.00 (9) 0.00 (9) 37.39 (7) 65.25 (3) 56.82 (4) 27.86 (8) 69.00 (2) 69.94 (1)
75 55.78 (5) 55.52 (6) 0.00 (9) 0.00 (9) 36.32 (8) 66.54 (3) 59.32 (4) 36.61 (7) 71.24 (1) 70.34 (2)
100 55.88 (5) 55.88 (5) 0.00 (9) 0.00 (9) 37.78 (8) 68.60 (3) 60.18 (4) 44.01 (7) 70.86 (2) 71.84 (1)

wdb 5 89.17 (4) 82.79 (7) 0.00 (9) 0.00 (9) 92.79 (1) 85.91 (6) 85.92 (5) 82.76 (8) 89.93 (3) 90.09 (2)
10 90.45 (4) 86.18 (7) 0.00 (9) 0.00 (9) 92.71 (1) 89.40 (6) 89.69 (5) 84.71 (8) 92.25 (2) 91.40 (3)
25 90.84 (6) 89.81 (7) 0.00 (9) 0.00 (9) 92.80 (3) 91.09 (4) 90.96 (5) 86.46 (8) 93.44 (1) 93.14 (2)
50 92.35 (4) 90.52 (7) 0.00 (9) 0.00 (9) 92.69 (3) 91.77 (5) 91.20 (6) 87.13 (8) 94.52 (1) 94.35 (2)
75 91.04 (6) 90.00 (7) 0.00 (9) 0.00 (9) 92.89 (3) 92.27 (4) 91.32 (5) 87.67 (8) 95.30 (1) 94.70 (2)
100 91.57 (5) 91.57 (5) 0.00 (9) 0.00 (9) 93.01 (3) 92.84 (4) 91.38 (7) 89.07 (8) 95.27 (2) 95.45 (1)

yea 5 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1)
10 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1)
25 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1)
50 0.00 (3) 1.57 (2) 0.00 (3) 0.00 (3) 2.76 (1) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3) 0.00 (3)
75 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 3.28 (1) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2)
100 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 1.42 (1) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2)

V.3 Comparison of PAST to several machine learning techniques 157

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ac

cu
ra

cy

5% labeled 10% labeled

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ac

cu
ra

cy

25% labeled 50% labeled

PAST CLAST LP LS NB DT kNN SVC RF Bagging

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ac

cu
ra

cy

75% labeled

PAST CLAST LP LS NB DT kNN SVC RF Bagging

100% labeled

Figure V.7: Distribution of the normalized test accuracy achieved by each classifier in the
different labeling scenarios.

158 Chapter V. PAST: Learning rules in data stream semi-supervised learning

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
g-

m
ea

n

5% labeled 10% labeled

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
g-

m
ea

n

25% labeled 50% labeled

PAST CLAST LP LS NB DT kNN SVC RF Bagging

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
g-

m
ea

n

75% labeled

PAST CLAST LP LS NB DT kNN SVC RF Bagging

100% labeled

Figure V.8: Distribution of the normalized test G-mean achieved by each classifier in the
different labeling scenarios.

V.3 Comparison of PAST to several machine learning techniques 159

Table V.12: Comparison of the average performance of PAST with CLAST and the different
offline learners for each percentage of labeled samples (%Lab). The classifiers are grouped
according to whether they are online or offline, and supervised (SL) or semi-supervised
(SSL).

Online SSL Online SL Offline SSL Offline SL

%Lab PAST CLAST LP LS NB DT kNN SV C RF Bagging

Accuracy 5 0.71 (4.53) 0.46 (6.84) 0.24 (7.74) 0.33 (6.79) 0.61 (5.47) 0.61 (5.63) 0.56 (5.89) 0.57 (5.84) 0.88 (2.53) 0.84 (3.05)
10 0.71 (4.37) 0.53 (6.58) 0.23 (7.74) 0.28 (7.21) 0.57 (5.58) 0.65 (5.47) 0.55 (6.37) 0.57 (5.68) 0.89 (2.53) 0.88 (2.95)
25 0.74 (4.74) 0.65 (6.21) 0.21 (8.05) 0.25 (7.84) 0.61 (5.37) 0.68 (5.68) 0.57 (6.11) 0.59 (5.68) 0.95 (1.95) 0.92 (2.79)
50 0.75 (4.37) 0.67 (5.79) 0.24 (7.84) 0.25 (7.79) 0.56 (5.89) 0.64 (5.74) 0.56 (6.42) 0.64 (5.32) 0.91 (2.26) 0.88 (2.95)
75 0.76 (4.53) 0.73 (5.11) 0.29 (7.79) 0.28 (7.95) 0.52 (6.16) 0.65 (5.58) 0.56 (6.68) 0.67 (5.21) 0.92 (2.37) 0.89 (3.11)
100 0.74 (4.68) 0.74 (4.68) 0.37 (7.05) 0.34 (7.68) 0.49 (6.32) 0.67 (5.89) 0.54 (6.95) 0.68 (5.11) 0.95 (2.26) 0.93 (2.79)

G-mean 5 0.78 (3.58) 0.71 (4.37) 0.23 (7.32) 0.32 (6.16) 0.58 (4.95) 0.87 (3.53) 0.56 (6.11) 0.31 (7.05) 0.84 (3.63) 0.85 (3.16)
10 0.79 (3.63) 0.73 (4.74) 0.20 (7.95) 0.30 (6.89) 0.66 (4.63) 0.93 (3.58) 0.63 (5.95) 0.34 (7.58) 0.84 (3.89) 0.95 (2.58)
25 0.86 (3.37) 0.76 (4.84) 0.19 (7.89) 0.27 (7.47) 0.69 (4.68) 0.91 (4.11) 0.63 (6.16) 0.42 (7.47) 0.92 (2.79) 0.93 (2.84)
50 0.79 (3.63) 0.73 (5.11) 0.15 (7.84) 0.21 (7.47) 0.66 (5.05) 0.78 (4.42) 0.60 (6.16) 0.49 (6.58) 0.86 (3.05) 0.85 (3.21)
75 0.78 (4.11) 0.75 (4.47) 0.17 (7.74) 0.20 (7.53) 0.58 (5.21) 0.79 (4.68) 0.59 (6.37) 0.50 (6.37) 0.85 (2.68) 0.82 (3.16)
100 0.74 (3.95) 0.74 (3.95) 0.28 (6.68) 0.27 (7.11) 0.53 (5.68) 0.76 (4.89) 0.55 (6.74) 0.48 (6.53) 0.84 (2.79) 0.83 (2.79)

Both the average performance and average rank of PAST and CLAST are higher for
G-mean. On the contrary, the results of LP, LS, SVC, RF and Bagging are lower for
G-mean. This allows PAST to shorten distances with RF and Bagging. Despite the
inherent limitations of online incremental learning, PAST is able to beat several offline
widely used learners; its performance is close to that of the best positioned ensemble offline
classifiers; it behaves specially well when the class imbalanced is taken into account, and
it improves the average results of CLAST for all those cases in which unlabeled samples
are received.

Finally, as we did in the previous section, we conducted a statistical analysis on
the results. First, Friedman’s test rejected the hypothesis of all the algorithms performing
equivalently. Then, we apply post-hoc Finner test and also pairwise comparisons by
means of Wilcoxon signed ranks test. Tables V.13 and V.14 summarize the differences
encountered between PAST and the rest of the approaches according to post-hoc Finner
test and Wilcoxon signed ranks test, respectively. Finner test found PAST to perform
significantly better than LP and LS in all the cases for both accuracy and G-mean. Using
G-mean as evaluation metric, Finner test also considered PAST to significantly improve
the performance of kNN and SVC in four of the six labeling scenarios. On the other
hand, PAST significantly degrades the accuracy reached by RF and Bagging for some
specific labeling scenarios (RF: 25% and 100% labeled, and Bagging: 100%). The pairwise
comparisons yielded slightly different results. PAST is found to significantly improve
CLAST, LP, LS and kNN in all the cases, and NB and SVC in many of them. Meanwhile,
RF and Bagging significantly outperform PAST in terms of accuracy and for the highest
labeling percentages also in terms of G-mean.

160 Chapter V. PAST: Learning rules in data stream semi-supervised learning

Table V.13: Multiple comparison of the performance of PAST with the remaining data
stream learners by means of a post-hoc Finner test after Friedman’s test rejected null
hypothesis of equality of all learners.

Online SL Offline SSL Offline SL

%Lab CLAST LP LS NB DT kNN SV C RF Bagging

Accuracy 5 + ⊕ ⊕ + + + + - -
10 + ⊕ ⊕ + + + + - -
25 + ⊕ ⊕ + + + + 	 -
50 + ⊕ ⊕ + + + + - -
75 + ⊕ ⊕ + + + + - -
100 = ⊕ ⊕ + + + - 	 	

G-mean 5 + ⊕ ⊕ + - ⊕ ⊕ - -
10 + ⊕ ⊕ + - + ⊕ + -
25 + ⊕ ⊕ + + ⊕ ⊕ - -
50 + ⊕ ⊕ + + + ⊕ - -
75 + ⊕ ⊕ + + ⊕ + - -
100 = ⊕ ⊕ + + ⊕ + - -

1 ⊕/	: PAST significantly improves/degrades the performance of the method in the column
+/−: PAST improves/degrades the performance of the method in the column
=: PAST obtains the same results that the method in the column

Table V.14: Pairwise comparison of the performance of PAST with CLAST and the set of
offline learners by means of Wilcoxon signed ranks test.

Online SL Offline SSL Offline SL

%Lab CLAST LP LS NB DT kNN SV C RF Bagging

Accuracy 5 ⊕ ⊕ ⊕ + + ⊕ + 	 	
10 ⊕ ⊕ ⊕ + + ⊕ + 	 	
25 ⊕ ⊕ ⊕ ⊕ + ⊕ ⊕ 	 	
50 ⊕ ⊕ ⊕ ⊕ + ⊕ + 	 	
75 ⊕ ⊕ ⊕ ⊕ - ⊕ + 	 	
100 = ⊕ ⊕ ⊕ - ⊕ + 	 	

G-mean 5 ⊕ ⊕ ⊕ ⊕ - ⊕ ⊕ - -
10 ⊕ ⊕ ⊕ + - ⊕ ⊕ - 	
25 ⊕ ⊕ ⊕ ⊕ - ⊕ ⊕ - -
50 ⊕ ⊕ ⊕ ⊕ - ⊕ ⊕ 	 	
75 ⊕ ⊕ ⊕ ⊕ - ⊕ ⊕ 	 	
100 = ⊕ ⊕ ⊕ - ⊕ ⊕ 	 	

1 ⊕/	: PAST significantly improves/degrades the performance of the method in the column
+/−: PAST improves/degrades the performance of the method in the column
=: PAST obtains the same results that the method in the column

V.3 Comparison of PAST to several machine learning techniques 161

V.3.3 Real world data stream problems

In this section, we conduct experiments on different Real-World (RW) data stream problems
and compare the performance of PAST with CLAST and other data stream classifiers.
Below, we describe the experimental methodology and present the results obtained on
each problem.

V.3.3.1 Experimental setup

We followed the same methodology described in Section V.3.1.1. The performance of PAST
is compared with the same eight data stream classifiers: CLAST, CVFDT, CVFDTNB,
CVFDTNBA, HAT, VFDR, AWEC and DWM. Likewise, the datasets are processed
following a test-then-train setup, performance is assessed in terms of accuracy and G-mean,
and six different labeling percentages are explored for each problem. The real-world
data stream problems are the same that were used in Section III.3.3: EEG Eye State,
Powersupply, London Bike Sharing and Bike Rental. See Table III.12 for details on the
characteristics of each data stream. The results on the different problems are analyzed
independently. As we are dealing with real data stream problems, the data distribution
may suffer changes along time and, therefore, the performance evolution of the learners
may not draw a stable increasing trend.

V.3.3.2 Detecting open/close eyes through EEG

EEG Eye State data stream (Roesler, 2013) is composed of a continuous flow of 14980
samples from 14 EEG channels where each sample is labeled according to whether it
matches an eye-open or an eye-close state.

Table V.15 includes the performance achieved by each online learner in the EEG
Eye State dataset for each one of the six labeling scenarios. The rank positions of the
algorithms are specified in brackets. The accuracy and G-mean values included in the
table are calculated at the end of the stream and, therefore, are based on the predictions
for all the examples in the data stream. Figure V.9 illustrates how this final performance
of each algorithm correlates with the percentage of labeled examples. Figures V.10 and
V.11 add context about the evolution along time of accuracy and G-mean, respectively.

At the end of the stream, PAST is the best ranked classifier for the two lowest
labeling percentages. Once the ratio of labeled examples reaches 25%, PAST is surpassed
by DWM and, for percentages superior to 50%, also by HAT. It is worth noting, the high
performance of CLAST with high ratios of unlabeled examples. CLAST suffers from less
wear due to the lack of labels than other proposals. It is the second best approach in the
scenarios with higher label scarcity. Still, PAST obtains better performance than CLAST
in all those scenarios where the labeling percentage is below 100% (when all the examples
are labeled the behaviors of PAST and CLAST are equivalent). This advantage of PAST
over CLAST is observed throughout the entire duration of the data flow, and becomes

162 Chapter V. PAST: Learning rules in data stream semi-supervised learning

Table V.15: Comparison of performance between PAST, CLAST and seven other online
learners in EEG Eye State problem. The results contained in the table are referred to the
final time stamp when all the examples in the stream have been used for both testing and
training.

%Lab PAST CLAST CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

Accuracy 5 74.88 (1) 72.61 (2) 54.88 (8) 60.44 (6) 60.79 (4) 60.64 (5) 60.44 (6) 53.82 (9) 68.43 (3)
10 76.30 (1) 73.44 (3) 54.90 (9) 58.14 (6) 59.05 (4) 58.78 (5) 58.14 (6) 56.09 (8) 75.58 (2)
25 78.32 (2) 74.69 (3) 51.63 (9) 62.57 (7) 63.66 (5) 68.85 (4) 62.97 (6) 53.27 (8) 83.40 (1)
50 79.10 (2) 76.54 (4) 55.64 (8) 70.01 (6) 70.57 (5) 79.02 (3) 69.24 (7) 44.16 (9) 88.51 (1)
75 79.22 (3) 77.24 (4) 54.91 (8) 73.33 (7) 73.66 (5) 85.29 (2) 73.42 (6) 45.51 (9) 91.53 (1)
100 78.44 (4) 78.44 (4) 60.59 (8) 72.13 (7) 75.31 (6) 88.65 (2) 81.61 (3) 57.21 (9) 91.52 (1)

G-mean 5 73.83 (1) 71.38 (2) 52.33 (9) 59.72 (6) 60.45 (4) 60.37 (5) 59.72 (6) 52.71 (8) 68.44 (3)
10 75.44 (1) 72.28 (3) 52.57 (8) 56.69 (6) 58.75 (4) 58.28 (5) 56.69 (6) 52.54 (9) 75.19 (2)
25 77.61 (2) 73.87 (3) 48.82 (8) 60.31 (7) 62.89 (5) 67.90 (4) 61.04 (6) 48.45 (9) 83.11 (1)
50 78.62 (3) 76.10 (4) 54.84 (8) 69.28 (6) 70.11 (5) 79.04 (2) 68.32 (7) 39.41 (9) 88.42 (1)
75 78.76 (3) 76.73 (4) 54.70 (8) 73.29 (7) 73.92 (5) 84.99 (2) 73.44 (6) 35.31 (9) 91.53 (1)
100 78.18 (4) 78.18 (4) 60.30 (8) 72.48 (7) 75.49 (6) 88.18 (2) 82.03 (3) 56.44 (9) 91.56 (1)

5 10 25 50 75 100
Labeled percentage

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

PAST
CLAST

CVFDT
CVFDTNB

CVFDTNBA

HAT
VFDR
AWEC

DWM

(a)

5 10 25 50 75 100
Labeled percentage

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

PAST
CLAST

CVFDT
CVFDTNB

CVFDTNBA

HAT
VFDR
AWEC

DWM

(b)

Figure V.9: Performance evolution of the data stream algorithms as percentage of labeled
data increases in EEG Eye State data stream.

V.3 Comparison of PAST to several machine learning techniques 163

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

5% labeled 10% labeled

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

25% labeled 50% labeled

0 2000 4000 6000 8000 10000 12000 14000
Number of samples

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

75% labeled

0 2000 4000 6000 8000 10000 12000 14000
Number of samples

100% labeled

PAST CLAST CVFDT CVFDTNB CVFDTNBA HAT VFDR AWEC DWM

Figure V.10: Test accuracy evolution as the amount of data processed increases in EEG
Eye State data stream.

164 Chapter V. PAST: Learning rules in data stream semi-supervised learning

0.0

0.2

0.4

0.6

0.8

1.0

G-
m

ea
n

5% labeled 10% labeled

0.0

0.2

0.4

0.6

0.8

1.0

G-
m

ea
n

25% labeled 50% labeled

0 2000 4000 6000 8000 10000 12000 14000
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

G-
m

ea
n

75% labeled

0 2000 4000 6000 8000 10000 12000 14000
Number of samples

100% labeled

PAST CLAST CVFDT CVFDTNB CVFDTNBA HAT VFDR AWEC DWM

Figure V.11: G-mean evolution as the amount of data processed increases in EEG Eye
State data stream.

V.3 Comparison of PAST to several machine learning techniques 165

more significant as the labeling rate decreases. All classifiers suffer performance ups and
downs caused by changes in the distribution of the incoming data. Both CLAST and
PAST maintain a fairly stable performance over time. These changes do not cause major
alterations in the algorithm’s ability to make accurate predictions. Furthermore, they
perform better than CVFDT, CVFDTNB, CVFDTNBA, VFDR and AWEC during almost
the entire duration of the stream for the seven labeling scenarios.

If accuracy and G-mean are compared, no major differences are observed between
the evolutions described by most of the algorithms. This is to be expected in a problem
with little imbalance between classes. Nonetheless, in the particular case of AWEC, some
differences are observed depending on the measure used, obtaining zero G-mean values in
different occasions.

V.3.3.3 Powersupply

Powersupply data stream (Zhu, 2010) is formed by 29928 instances that represent hourly
power supply records of an Italian electricity company. The target classification task is
aimed at predicting to which part of the day belongs the current power supply.

The results achieved at the end of the stream by the different learners for the six
labeling ratios are gathered in Table V.16. Furthermore, the correlation between the ratio
of labeled data and this final performance is visually represented in Figure V.12 for each
of the classifiers. Figures V.13 and V.14 how the performance of each algorithm evolves
along the stream.

Table V.16: Comparison of performance between PAST, CLAST and seven other online
learners in Powersupply problem. The results contained in the table are referred to the
final time stamp when all the examples in the stream have been used for both testing and
training.

%Lab PAST CLAST CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

Accuracy 5 49.05 (1) 48.79 (2) 24.91 (9) 47.34 (3) 47.29 (5) 46.92 (6) 47.34 (3) 43.08 (8) 46.37 (7)
10 50.67 (1) 50.51 (2) 24.84 (9) 48.11 (3) 48.09 (5) 47.75 (6) 48.11 (3) 45.44 (8) 46.81 (7)
25 52.47 (1) 52.28 (2) 24.73 (9) 48.83 (5) 48.82 (7) 48.94 (4) 48.83 (5) 49.16 (3) 48.00 (8)
50 53.36 (1) 53.22 (2) 27.33 (9) 48.33 (7) 48.46 (6) 49.54 (4) 48.33 (7) 50.34 (3) 48.77 (5)
75 53.67 (1) 53.56 (2) 33.01 (9) 48.96 (8) 49.09 (6) 49.25 (4) 48.96 (7) 51.48 (3) 49.13 (5)
100 53.94 (1) 53.94 (1) 36.40 (9) 49.53 (5) 49.52 (6) 48.86 (8) 50.22 (4) 51.98 (3) 49.27 (7)

G-mean 5 42.22 (1) 41.84 (2) 11.55 (9) 33.56 (6) 33.60 (5) 34.00 (4) 33.56 (6) 31.91 (8) 36.96 (3)
10 43.80 (1) 43.69 (2) 13.05 (9) 34.46 (6) 34.48 (5) 33.77 (8) 34.46 (6) 35.52 (4) 38.37 (3)
25 46.03 (1) 45.65 (2) 15.41 (9) 36.51 (7) 36.52 (6) 36.76 (5) 36.51 (7) 40.79 (3) 39.62 (4)
50 46.96 (1) 46.78 (2) 16.81 (9) 36.79 (6) 36.54 (8) 41.28 (4) 36.79 (6) 42.71 (3) 40.41 (5)
75 47.34 (1) 47.21 (2) 22.30 (9) 41.12 (4) 39.86 (8) 40.60 (7) 41.12 (5) 44.19 (3) 41.05 (6)
100 47.59 (1) 47.59 (1) 0.00 (9) 42.76 (5) 42.00 (6) 39.71 (8) 43.64 (4) 45.07 (3) 41.55 (7)

In Table V.16, PAST is ranked as the best classifier for the six labeling percentages
(tied with CLAST for 100%). The next best performing classifier is CLAST. In this case,
although PAST improves the outcome of CLAST, the results obtained by both are quite
similar. This can be clearly appreciated in Figures V.12-V.14.

166 Chapter V. PAST: Learning rules in data stream semi-supervised learning

5 10 25 50 75 100
Labeled percentage

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

PAST
CLAST

CVFDT
CVFDTNB

CVFDTNBA

HAT
VFDR
AWEC

DWM

(a)

5 10 25 50 75 100
Labeled percentage

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

PAST
CLAST

CVFDT
CVFDTNB

CVFDTNBA

HAT
VFDR
AWEC

DWM

(b)

Figure V.12: Performance evolution of the data stream algorithms as percentage of labeled
data increases in Powersupply data stream.

The improvement of PAST and CLAST over the rest of the algorithms is observed
for both evaluation metrics, for the different labeling percentages and over the entire
length of the data stream. Nevertheless, the difference is more noticeable for G-mean than
for accuracy. In general, the evolution of the performance of the algorithms shows some
oscillations but no abrupt changes. After PAST and CLAST, the following positions in
the ranking are fairly evenly distributed, since CVFDTNB, CVFDTNBA, HAT, VFDR and
DWM have quite similar results in most cases. AWEC lags behind for the lowest labeling
percentages, requiring a larger number of examples to get competitive results.

V.3 Comparison of PAST to several machine learning techniques 167

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

5% labeled 10% labeled

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

25% labeled 50% labeled

0 5000 10000 15000 20000 25000 30000
Number of samples

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

75% labeled

0 5000 10000 15000 20000 25000 30000
Number of samples

100% labeled

PAST CLAST CVFDT CVFDTNB CVFDTNBA HAT VFDR AWEC DWM

Figure V.13: Test accuracy evolution as the amount of data processed increases in
Powersupply data stream.

168 Chapter V. PAST: Learning rules in data stream semi-supervised learning

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G-
m

ea
n

5% labeled 10% labeled

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G-
m

ea
n

25% labeled 50% labeled

0 5000 10000 15000 20000 25000 30000
Number of samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G-
m

ea
n

75% labeled

0 5000 10000 15000 20000 25000 30000
Number of samples

100% labeled

PAST CLAST CVFDT CVFDTNB CVFDTNBA HAT VFDR AWEC DWM

Figure V.14: G-mean evolution as the amount of data processed increases in Powersupply
data stream.

V.3 Comparison of PAST to several machine learning techniques 169

V.3.3.4 London Bike Sharing

London Bike Sharing data stream (Mavrodiev, 2020) combines information about weather
conditions, bank holidays and hourly bike sharing in London. The aim of the classifiers is
to predict the level of bike demand.

Following the same structure as in the previous cases, Table V.17 displays the
performance (for the evaluation metrics accuracy and G-mean) of each data stream learner
based on the whole London Bike Sharing data stream under different labeling conditions.
In Figure V.15, we can observe the correlation of such performance and the amount of
labeled data for each of the algorithms. Finally, the evolution of the behavior of the
different approaches along the stream is shown in Figures V.16 and V.17.

Table V.17: Comparison of performance between PAST, CLAST and seven other online
learners in London Bike Sharing problem. The results contained in the table are referred
to the end of the stream.

%Lab PAST CLAST CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

Accuracy 5 61.28 (3) 58.43 (6) 57.19 (7) 61.11 (4) 61.74 (2) 63.38 (1) 58.61 (5) 42.01 (9) 45.02 (8)
10 68.18 (4) 65.00 (5) 62.81 (7) 68.62 (3) 69.37 (2) 69.88 (1) 62.83 (6) 41.21 (9) 45.70 (8)
25 73.10 (4) 70.29 (5) 66.20 (6) 74.30 (3) 74.89 (2) 75.13 (1) 64.80 (7) 44.76 (9) 47.44 (8)
50 75.27 (4) 73.01 (5) 67.23 (7) 77.28 (3) 77.93 (2) 77.99 (1) 67.71 (6) 47.12 (9) 48.65 (8)
75 75.71 (4) 75.07 (5) 67.61 (7) 78.09 (3) 79.11 (1) 78.37 (2) 68.85 (6) 47.77 (9) 49.34 (8)
100 76.00 (4) 76.00 (4) 67.81 (7) 78.52 (3) 79.67 (1) 78.88 (2) 69.08 (6) 48.12 (9) 50.41 (8)

G-mean 5 60.24 (4) 57.37 (6) 56.56 (7) 60.53 (3) 60.99 (2) 62.73 (1) 57.86 (5) 40.42 (9) 43.13 (8)
10 67.32 (4) 63.84 (5) 62.20 (6) 68.27 (3) 68.91 (2) 69.44 (1) 62.16 (7) 39.30 (9) 43.76 (8)
25 72.36 (4) 69.18 (5) 65.51 (6) 73.96 (3) 74.50 (2) 74.78 (1) 64.15 (7) 43.6 (9) 45.84 (8)
50 74.55 (4) 72.03 (5) 66.43 (7) 76.97 (3) 77.62 (2) 77.71 (1) 67.03 (6) 46.01 (9) 47.23 (8)
75 74.97 (4) 74.17 (5) 66.74 (7) 77.78 (3) 78.84 (1) 78.09 (2) 68.36 (6) 46.74 (9) 47.95 (8)
100 75.23 (4) 75.23 (4) 66.87 (7) 78.22 (3) 79.41 (1) 78.59 (2) 68.66 (6) 47.28 (9) 49.03 (8)

5 10 25 50 75 100
Labeled percentage

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

PAST
CLAST

CVFDT
CVFDTNB

CVFDTNBA

HAT
VFDR
AWEC

DWM

(a)

5 10 25 50 75 100
Labeled percentage

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

PAST
CLAST

CVFDT
CVFDTNB

CVFDTNBA

HAT
VFDR
AWEC

DWM

(b)

Figure V.15: Performance evolution of the data stream algorithms as percentage of labeled
data increases in London Bike Sharing data stream.

HAT obtains the best results for the four lowest labeling percentages. While
CVFDTNBA does it for the two remaining scenarios. PAST obtains the third highest

170 Chapter V. PAST: Learning rules in data stream semi-supervised learning

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

5% labeled 10% labeled

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

25% labeled 50% labeled

0 2500 5000 7500 10000 12500 15000 17500
Number of samples

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

75% labeled

0 2500 5000 7500 10000 12500 15000 17500
Number of samples

100% labeled

PAST CLAST CVFDT CVFDTNB CVFDTNBA HAT VFDR AWEC DWM

Figure V.16: Test accuracy evolution as the amount of data processed increases in London
Bike Sharing data stream.

V.3 Comparison of PAST to several machine learning techniques 171

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G-
m

ea
n

5% labeled 10% labeled

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G-
m

ea
n

25% labeled 50% labeled

0 2500 5000 7500 10000 12500 15000 17500
Number of samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G-
m

ea
n

75% labeled

0 2500 5000 7500 10000 12500 15000 17500
Number of samples

100% labeled

PAST CLAST CVFDT CVFDTNB CVFDTNBA HAT VFDR AWEC DWM

Figure V.17: G-mean evolution as the amount of data processed increases in London Bike
Sharing data stream.

172 Chapter V. PAST: Learning rules in data stream semi-supervised learning

accuracy when 5% of the examples are labeled. In the rest of the cases, for both accuracy
and G-mean, it occupies the fourth position. The third algorithm able to improve the
performance of PAST in several scenarios is CVFDTNB.

If we focus on the comparison with CLAST, we observe that PAST improves the
accuracy and G-mean values obtained by CLAST in all cases with missing labels Figure
V.15 shows how this advantage of PAST over CLAST remains fairly stable for the first few
labeling percentages (5-25%) and begins to converge after 50% of the labels are available.

Analyzing the evolution of the performance of the algorithms along the stream
(Figures V.16-V.17), we observe that PAST and CLAST tend to obtain very similar results
at the beginning of the stream but soon PAST starts to improve the results of CLAST. In
general, there are no major variations in ranking throughout the stream once the initial
learning curve is overcome. Thus, the snapshot shown in Table V.17 is extensible to most
of the stream. In addition, when comparing accuracy and G-mean, there are no major
differences between the learning curves described by the algorithms in either case.

V.3.3.5 Bike Rental

As in the previous problem, the aim in the case of Bike Rental (Bansal, 2020; Fanaee-T
and Gama, 2014) is to predict the level of bike demand based on the hour, weekday, month
and season, as well as, weather conditions. As in the previous cases, we compare the
performance of the algorithms at the end of the stream, we analyze how the number of
available labels affects their performance and also how their behavior evolves along the
data stream. Thus, Table V.18 shows the performance of the algorithms at the end of the
stream for each of the labeling scenarios; Figure V.18 illustrates how this final performance
correlates with the amount of labels, and Figures V.10 and V.11 depict the performance
evolution as data are being received.

Table V.18: Comparison of performance between PAST, CLAST and seven other online
learners in London Bike Sharing problem. The results contained in the table are referred
to the final time stamp when all the examples in the stream have been used for both
testing and training.

%Lab PAST CLAST CV FDT CV FDTNB CV FDTNBA HAT V FDR AWEC DWM

Accuracy 5 58.00 (1) 52.12 (2) 25.40 (9) 49.01 (3) 48.89 (5) 48.38 (6) 49.01 (3) 37.68 (8) 41.99 (7)
10 63.71 (1) 58.83 (2) 28.91 (9) 49.31 (5) 49.42 (4) 49.71 (3) 49.31 (5) 36.91 (8) 42.64 (7)
25 69.15 (1) 65.33 (2) 36.85 (9) 51.53 (5) 51.98 (4) 52.54 (3) 50.72 (6) 41.36 (8) 44.33 (7)
50 71.50 (1) 69.24 (2) 40.29 (8) 52.53 (5) 54.10 (4) 54.55 (3) 51.43 (6) 40.02 (9) 45.32 (7)
75 72.34 (1) 71.26 (2) 42.65 (8) 53.86 (5) 54.29 (4) 55.77 (3) 53.47 (6) 42.64 (9) 46.47 (7)
100 72.84 (1) 72.84 (1) 44.90 (9) 53.28 (5) 54.99 (4) 56.05 (3) 53.28 (5) 45.20 (8) 47.70 (7)

G-mean 5 56.09 (1) 49.66 (2) 6.94 (9) 46.35 (3) 46.28 (5) 46.07 (6) 46.35 (3) 31.78 (8) 39.86 (7)
10 61.86 (1) 56.12 (2) 13.56 (9) 46.46 (4) 46.28 (6) 46.54 (3) 46.46 (4) 33.93 (8) 40.07 (7)
25 67.45 (1) 62.91 (2) 30.68 (9) 47.57 (3) 46.93 (5) 47.15 (4) 46.55 (6) 40.07 (8) 41.85 (7)
50 69.81 (1) 67.17 (2) 33.24 (9) 48.57 (4) 48.40 (5) 49.71 (3) 47.13 (6) 37.57 (8) 43.33 (7)
75 70.59 (1) 69.40 (2) 36.36 (9) 50.32 (4) 49.79 (5) 52.22 (3) 49.79 (6) 41.24 (8) 44.60 (7)
100 71.08 (1) 71.08 (1) 38.02 (9) 49.23 (4) 48.85 (6) 52.48 (3) 49.23 (4) 44.09 (8) 46.11 (7)

V.3 Comparison of PAST to several machine learning techniques 173

5 10 25 50 75 100
Labeled percentage

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

PAST
CLAST

CVFDT
CVFDTNB

CVFDTNBA

HAT
VFDR
AWEC

DWM

(a)

5 10 25 50 75 100
Labeled percentage

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

PAST
CLAST

CVFDT
CVFDTNB

CVFDTNBA

HAT
VFDR
AWEC

DWM

(b)

Figure V.18: Performance evolution of the data stream algorithms as percentage of labeled
data increases in Bike Rental data stream.

PAST and CLAST are the best performing algorithms in this problem. In Table
V.18 we can see how they are the best positioned classifiers for all labeling percentages
and for both evaluation metrics. The next best positioned algorithms are CVFDTNB and
HAT, although the advantage of CLAST and PAST over them is quite noticeable in most
cases. Furthermore, PAST significantly improves the results of CLAST in those scenarios
with greater scarcity of labels. Figures V.19 and V.20 show that this improvement is not
achieved at the end of the stream but starts after about 2500 examples have been received.

As we discussed in Section III.3.3, one of the four classes of this problem appears
for the first time after more than 1000 instances have been received. This causes the
algorithms to misclassify instances of this class, previously unknown to them, which results
in the sudden decrease in G-mean observed in Figure V.20. As soon as the algorithms start
to learn this new class, the G-mean values increase again. This figure shows how PAST
and CLAST are able to learn this new class at the same velocity as most of the other
algorithms but, in addition, they are able to reach significantly higher G-mean values.

174 Chapter V. PAST: Learning rules in data stream semi-supervised learning

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

5% labeled 10% labeled

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

25% labeled 50% labeled

0 2500 5000 7500 10000 12500 15000 17500
Number of samples

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

75% labeled

0 2500 5000 7500 10000 12500 15000 17500
Number of samples

100% labeled

PAST CLAST CVFDT CVFDTNB CVFDTNBA HAT VFDR AWEC DWM

Figure V.19: Test accuracy evolution as the amount of data processed increases in Bike
Rental data stream.

V.3 Comparison of PAST to several machine learning techniques 175

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G-
m

ea
n

5% labeled 10% labeled

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G-
m

ea
n

25% labeled 50% labeled

0 2500 5000 7500 10000 12500 15000 17500
Number of samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G-
m

ea
n

75% labeled

0 2500 5000 7500 10000 12500 15000 17500
Number of samples

100% labeled

PAST CLAST CVFDT CVFDTNB CVFDTNBA HAT VFDR AWEC DWM

Figure V.20: G-mean evolution as the amount of data processed increases in Bike Rental
data stream.

Chapter VI

Applications

VI.1 Smartphone usage analysis through association

stream mining

The number of sensors surrounding us have significantly increased over the past few years,
pervading multitude of activities from our daily life. Pervasive computing and the Internet
of Things (IoT) are swiftly colonizing our daily routines. Thus, the number of cellular IoT
connections is forecast to increase from 1 billion in 2018 to 4.1 billion in 2024, while the
total IoT connections would raise from 8.6 billion to 22.3 billion (Ericsson, 2019). Part
of this phenomenon is the rising interest in wearable monitoring devices, systems that
accompany us during every single moment of our day and night and which are able to
continuously gather a great amount of data. According to the technological consulting
company Gartner, 178.91 million wearable devices were sold in 2018, a 25.8 increased was
expected for 2019, i.e., 225.12 million of shipments were predicted worldwide; an amount
that would reach 453.19 million in 2022 (Gartner, 2018).

From the analysis of data collected by such wearable devices we can extract insights
about life style and behavior patterns that are valuable for a wide range of use cases and
applications. Proof of this are the numerous studies from different areas that use them
(Oliver and Flores-Mangas, 2006; Sanchez-Valdes and Trivino, 2015; Gravenhorst et al.,
2015; Konsolakis et al., 2018; Ahmad et al., 2017; Wang et al., 2019; Casilari-Pérez and
Garćıa-Lagos, 2019). Many of these studies focus on achieving advances in both physical
and mental health, either by trying to encourage healthier life styles (Aharony et al.,
2011b) or by detecting patterns that can act as risk state alarm indicators (Oliver and
Flores-Mangas, 2006; Frost et al., 2013; Muaremi et al., 2014; Gravenhorst et al., 2015;
Casilari-Pérez and Garćıa-Lagos, 2019).

There is a wide range of wearable devices available; being smartphones and smart-
watches the current mainstream options. Smartphones, even though they are not wearable
in the strict sense, are often included in this category since they have become omnipresent

177

178 Chapter VI. Applications

up to the point that it is common to constantly carry them with us, both inside and
outside home. Furthermore, smartphones offer certain advantages over other wearable
devices. The number of smartphone connections reached 5.1 billion worldwide in 2018 and
it is expected to increase up to 7.16 billion for 2024 (Ericsson, 2019). Opposite to other
technologies, the fast extension of smartphones is not restricted to developed countries
(Ericsson, 2019; World Health Organization, 2011). This may be partially due to the fact
that smartphone cost has notably decreased while their functionality continued expanding.
Indeed, a smartphone currently constitutes a powerful technological platform with a
significant computation capacity, communication functionality, sensors, etc. This turns
smartphones into both an ideal tool to bring certain beneficial services and applications
straight to the user at any time and a valuable information source.

Smartphones are able to gather a wide range of different kind of data, from calls
and messages, through app usage to data collected by the sensors integrated in them.
Particularly useful is the accelerometer, a sensor included in virtually every current
smartphone, which records are fundamental, for instance, in many activity recognition
studies (Kwon et al., 2014; Sysoev et al., 2015; Ronao and Cho, 2016; Wang et al., 2019) or
in physical activity monitoring studies aimed at preventing physical and mental disorders
(Puiatti et al., 2011; Sanchez-Valdes and Trivino, 2015). Some studies based on smartphone
sensing data have focused on extracting patterns or association rules (Sarker and Salim,
2018), and some of them have been able to relate certain patterns obtained from such data
to risk situations. MONARCA project (Frost et al., 2013), centered on patients suffering
bipolar disorder, performed an analysis of accelerometer values from smartphones (Puiatti
et al., 2011) which revealed a correlation between physical activity levels and psychiatric
assessment of depression (Osmani et al., 2013). Moreover, further research has concluded
that certain assumptions about the emotional state of the user can be made based on
statistical analysis of mobile sensing data, such as use-pattern changes (Gravenhorst et al.,
2015). For instance, in Muaremi et al. (2014) several phone call parameters were examined
and it was shown that call duration and accumulated talking time can be used to predict
bipolar disorder episodes. In Sysoev et al. (2015) stress level is determined based on
behavioral and contextual data obtained exclusively from smartphones.

Despite a great part of these studies perform an offline a posteriori analysis of the
sensing data; the nature of this kind of data perfectly matches what is known as data
streams. Wearable sensing devices generate chronologically sorted information in real-time
and in a continuous way; data that are better modeled based not on persistent relations
but on changing streams. To address this kind of problems and bring out knowledge in
real-time we can use data stream mining. The potential of data stream mining in wearable
sensing data field has begun to be exploited through a few research works. In Gomes et al.
(2012) an activity recognition system on-board the mobile device itself learns through
ubiquitous data stream mining in an incremental way. Moreover, smartphones pool a
great amount of personal information and, therefore, they are a frequent cyber-attack
target. In Mirsky et al. (2017) data stream clustering and anomaly detection techniques
are combined in order to automatically detect attacks while they are in progress.

VI.1 Smartphone usage analysis through association stream mining 179

In this section, we address a real-world association stream mining application.
The stream comprises smartphone activity data gathered during several months. The
association stream mining algorithm dynamically maintains and constantly updates a set
of association rules that explain the user activity at any time in a very efficient way. Figure
VI.1 schematically represents the data stream scenario presented. The used algorithm is
Fuzzy-CSar-AFP. In Section IV.3, Fuzzy-CSar-AFP was already applied to a real-world
data stream problem. However, on that occasion the real-world problem was used as a
benchmark to conduct a comparative analysis between the performance of Fuzzy-CSar-
AFP and other proposals. In this case, the aim is not to analyze the performance of
Fuzzy-CSar-AFP but to focus on the analysis at different levels of the extracted rules and
the knowledge they provide.

Mobile Phone Sensing
Platform: accelerometer,
incoming calls, outgoing
calls, incoming messages,
outgoing messages,
battery, running
applications …

Streams of information
are constantly being

captured

10/11/10; 14:07; 1; 4; 5; 0; 85; False …
Data stream

algorithm

A new sample is
processed

If early morning and very low
incoming calls then very low
outgoing calls

0.35 0.9 7

If high battery and high
incoming messages and
medium incoming calls then
high outgoing calls

0.19 0.88 2

If afternoon and low incoming
calls then high accelerometer

0.27 0.82 4

Rule Population

The algorithm
updates the
population of rules

Alerts

Remote
MonitoringRecommendation

Systems

Many possible applications

Figure VI.1: Schema of the association stream mining scenario presented.

The data were gathered during a sociological experiment in the course of which, in
addition to the smartphone activity data employed by the algorithm, subjective information
about emotional state, collected through periodic surveys, was also available and is used
to complement the analysis of the discovered rules. Thus, the evolution over time of
the levels of happiness, stress, productivity and health expressed in the surveys (but not
shown to the algorithm) is compared with the evolution of the different rules generated
automatically in real time.

180 Chapter VI. Applications

VI.1.1 Some context on the real-world data: Friends and Family
Study

Friends and Family Study is a research work conducted by the Media Lab, Massachusetts
Institute of Technology over the years 2010 and 2011 (Aharony et al., 2011b,a). This study
transformed a residential community nearby to a well-known North American university
into a longitudinal living laboratory for over 15 months. For nearly a year, every behavior,
communication, and social detail from the lives of a large number of members of the
mentioned community were recorded while they went about their daily tasks as normal.
A total of 130 subjects were part of the study. During the study period, a huge amount
of data was collected giving rise to an unique and very rich longitudinal dataset, known
as Friends and Family dataset. Such dataset includes a large collection of phone-based
signals including location, communication activities (calls and text messages), installed
applications, running applications, accelerometer information, nearby Bluetooth devices,
... The study was divided into two phases. The first phase consisted of a pilot stage
that started in March 2010 and lasted 6 months, 55 subjects took part in the study
during this phase. The second phase of the study was launched in September 2010 with
130 people participating in it (about 64 families). These 130 participants were selected
out from approximately 200 applicants following diversity criteria in order to obtain a
representative sample of the community and the different sub-communities. Due to the
origin and peculiarities of the information included in the dataset, the study was performed
under strict protocols that ensured the privacy of every participant.

If we focus on the data collection obtained from the study and, specially, on the
part that was published and has served as starting point dataset for our particular study,
we found a collection whose size exceeds 7 GB and which is distributed into several files
from different sources and with different formats. In general terms, in this data collection
we can differentiate the next components: (1) data from mobile phone sensing platform,
and (2) surveys. On the one hand, Android OS based mobile phones were provided to the
participants under the condition that these phones should be their main phones during
the study. These devices were supposed to make the role of wearable social sensors to
record subjects activity features. This information is the core of the data collection. On
the other hand, surveys were completed by the participants at regular intervals, combining
web-based and on-phone surveys. In the monthly surveys, subjects answered questions
related to self perception of relationships, group affiliation, and interactions, along with
standard scales such as the Big Five personality test (John et al., 1999). Meanwhile, daily
surveys included questions about sleep, mood and the amount of time spent on certain
activities.

Several studies have used this same dataset for a wide range of aims, such as:
inferring some characteristics of the subjects (personality traits, age, nationality, marital
status, etc.) (Mønsted et al., 2018; Altshuler et al., 2012, 2013); better understanding
social systems, friendship and human behavior (Shmueli et al., 2014), or building social
networks to study diffusion and interaction dynamics (Pan et al., 2011). Despite this type

VI.1 Smartphone usage analysis through association stream mining 181

of data fits perfectly the concept of data stream, none of these studies explores the option
of treating this data collection as a stream. In fact, just a few of the cited studies exploit
the temporal dimension of the data collection (Altshuler et al., 2012, 2013) and they are
limited to offline traditional machine learning algorithms. This forces them to carry out
series of repetitive experiments in which the period covered by the samples is increased
from one experiment to the next in order to get a result evolution (the algorithms used
are not capable of incremental learning). Furthermore, they often restrict the experiments
to a small part of the full data collection, not reaching to cover the totality of the period
for which data are available.

VI.1.2 Data stream preparation

The Friends and Family study was not aimed at data stream mining. Hence, although
the nature of the smartphone activity data matches a data stream, the way the published
data collection is organized and structured does not fit with the input of a data mining
algorithm. It is necessary to undertake a certain preparation process to structure the data
as a unique input stream to a data stream mining algorithm.

The Friends and Family study had a sociological perspective, studying different
types of interactions between community members and their consequences. Therefore,
data collection combines data from different subjects while dividing the data according to
their type. In our case, we will treat the data generated by each subject as an independent
flow in which the different types of information from the mobile phone are combined.
Thereby, the data will be processed as if they were being received by the algorithm in real
time directly from the phone.

Each information type was gathered with its own peculiarities. Depending on
information type and collection method, data format, organization and sampling frequency
varied. For instance, information about calls or text messages were only registered when a
new call or message was sent or received. However, records of accelerometry were generated
once each 2 minutes and each one represented an agglutinated measure of what has been
occurring during that couple of minutes. By the same token, apps present in the phone
were scanned with a 10-minute frequency and information about app usage gathered every
30 seconds. In order to unify and integrate all the types of data, a sampling frequency of
one minute was chosen trying not to lose too much detail but, at the same time, avoiding
data granularity needlessly small.

Moreover, an incremental and completely online algorithm presents some pecu-
liarities derived from the fact that each data is going to be processed only once and the
algorithm does never deal with the full dataset. For instance, this can make data that
appear only for a moment of time to end up disappearing for the algorithm despite they
could provide relevant information. Trying to minimize this risk, modifications related to
call logs, message logs, and running applications were made, generating variables in the
way of “how many calls have been registered in the last X minutes”.

182 Chapter VI. Applications

Likewise, not all the information contained in the raw data turned out to be useful
for our goals. All those data whose main purpose is to highlight the relationships between
participants (all of them members of the same community) were likely to be excluded from
our study, since our goal is to monitor each participant’s individual behavior and not to
study the social relationships between them. Other data were also found irrelevant to our
study due to different reasons (e.g., battery technology type).

As it has been mentioned, the study was divided in two phases; the first one, a
pilot phase in which a lower number of participants took part and where the researchers
experimented with different data collection options. Hence, for reasons of coherence and
consistency we decided to use only data collected during the second phase of the study.
Finally, duplicated information was cleaned up, and data was grouped by participant and
chronologically sorted.

Note that this preparation process is only needed because the published data
collection was structured in a way that matches the requirements of the sociological study.
In fact, the output of this process is much more similar to the raw data generated by the
mobile phones. The process from those raw data to the input stream for the algorithm
would be much more trivial and could be done in a real-time online manner.

Although the information from the surveys is not provided to the algorithm, it is
also necessary to carry out the part of the process corresponding to duplicate cleaning,
aggregation by participant and chronological sorting, in order to use this information to
complement the rule analysis. Furthermore, taking into account both the scope of the
surveys and their periodicity, we only use information collected through the daily surveys.
These daily surveys assessed interesting aspects about the lives of the participants that
could potentially complement the information from the mobile phone sensing platform.
They gathered information about happiness, health perception, productivity sensation,
stress, sleeping hours and hanging out time. Meanwhile, the monthly surveys are focus on
social aspects that do not fit the individual approach we are taking. Moreover, the daily
surveys were on-phone. Compliance rate usually gets better when the subjects can use
their own smartphone to fulfill the survey since they usually have it on hand and memory
errors are more likely avoided (Bardram et al., 2013).

Figure VI.2 represents the evolution over time of the main attributes after the
data preparation process. The data presented in such figure correspond to six different
subjects who are also included as examples in different parts of the result analysis described
in Section VI.1.4. The plots have a 1-day resolution, so it must be kept in mind that
variables which represent call and message counters indicate for each minute the number
of calls/messages registered in the last ten minutes. Thus, the values shown for these
accumulative variables (call and message counters) in the graphics for a given day are ten
times the actual number of calls/messages that have occurred that day. This figure helps
us to understand how complicated it would be to extract useful information and discover
interesting associations between different features without the assistance provided by the
association stream mining algorithm.

VI.1 Smartphone usage analysis through association stream mining 183

0

50Comb_Accel

0

1
Incoming_SMS

0

5
Incoming_Calls

2.5

5.0Happiness

2.5

5.0Health

2.5
5.0Productivity

10/2010 11/2010 12/2010 01/2011 02/2011 03/2011 04/2011 05/2011 06/2011
Date

2.5
5.0Stress

(a) fa10-01-22

0

25Comb_Accel

0

2
Incoming_SMS

0.0

2.5Incoming_Calls

2.5
5.0Happiness

2.5

5.0Health

2.5
5.0Productivity

10/2010 11/2010 12/2010 01/2011 02/2011 03/2011 04/2011 05/2011 06/2011
Date

2.5
5.0Stress

(b) fa10-01-39

0

50Comb_Accel

0

2
Incoming_SMS

0.0

2.5Incoming_Calls

2.5

5.0Happiness

2.5

5.0Health

2.5

5.0Productivity

10/2010 11/2010 12/2010 01/2011 02/2011 03/2011 04/2011 05/2011 06/2011 07/2011
Date

2.5

5.0Stress

(c) fa10-01-49

0

25Comb_Accel

0

10Incoming_SMS

0

2
Incoming_Calls

2.5

5.0Happiness

2.5

5.0Health

2.5
5.0Productivity

10/2010 11/2010 12/2010 01/2011 02/2011 03/2011 04/2011 05/2011 06/2011 07/2011
Date

2.5
5.0Stress

(d) fa10-01-75

0

25Comb_Accel

0

10
Incoming_SMS

0.0

2.5Incoming_Calls

4

6Happiness

2.5

5.0Health

2.5
5.0Productivity

10/2010 11/2010 12/2010 01/2011 02/2011 03/2011 04/2011 05/2011 06/2011 07/2011
Date

2.5
5.0Stress

(e) fa10-01-76

0

20Comb_Accel

0

10Incoming_SMS

0

2
Incoming_Calls

2.5

5.0Happiness

2.5

5.0Health

2.5
5.0Productivity

10/2010 11/2010 12/2010 01/2011 02/2011 03/2011 04/2011 05/2011 06/2011
Date

2.5
5.0Stress

(f) sp10-01-32

Figure VI.2: Evolution over time of part of the data gathered through the mobile phone
sensing platform and surveys for six different subjects, after data preparation process.

184 Chapter VI. Applications

VI.1.3 Experimental setup

The dataset which is finally provided to Fuzzy-CSar-AFP is formed by 11 input attributes:
(1) weekday; (2) day minute (from 0 to 1439); (3) battery level; (4) number of incoming
text messages; (5) number of outgoing text messages; (6) number of incoming calls;
(7) number of outgoing calls; (8) number of missed calls; (9) accelerometer; (10) any
application removed (uninstalled) from the device (boolean); and (11) any application
running (boolean). Hence, for each participant in the second phase of the Friends and
Famility study, a data stream composed by the former eleven attributes is provided as
input to Fuzzy-CSar-AFP and the evolution over time of the resulting rule populations is
analyzed below.

Regarding the configuration of Fuzzy-CSar-AFP, for most of its configuration pa-
rameters, we took as a reference the values used in Sancho-Asensio et al. (2016) for the
algorithm Fuzzy-CSar, which were obtained experimentally following the recommendations
claimed in Orriols-Puig et al. (2008a). Thus, υ = 1, P# = 0.2, Pχ = 0.8, {PI/R, Pµ, PC} =
0.1, δ = 0.1, and θmna is automatically set to the number of variables. Nonetheless, other
parameters were adjusted based on the particular characteristics of the problem we are
addressing here, therefore: θGA = 25, {θdel = θsub} = 10, θexp = 20 and maxLingTermsPer-
Variable was automatically set to half of the total number of linguistic terms for the
used granularity. The population size was set to 10000 individuals. All the variables
use Ruspini’s strong fuzzy semantics with between 2 and 5 linguistic terms. The same
configuration is applied to the streams of all the subjects and, therefore, all the results
shown in the following sections have been obtained using these settings.

VI.1.4 Association rule analysis

Fuzzy-CSar-AFP continuously maintains a population of association rules. As part of our
analysis, we study how such population evolves over time for different subjects. In order
to be able to do that, we need the algorithm to periodically print the content of such
population. Furthermore, given the difficulty of trying to analyze the entire population
at once, along our analysis we will be focusing on different set of rules, consequents or
antecedents.

The nomenclature used to refer the linguistic terms is the same as in Chapter IV,
which was illustrated in Figure IV.3. Therefore, the possible sets of linguistic terms go
from {S2, L2} with granularity 2 to {XS5, S5,M5, L5, XL5} for granularity 5. Note that
the sub-index denotes the granularity.

VI.1.4.1 Better understanding rules through real examples

Table VI.1 shows six rules obtained by the algorithm. These sample rules help to understand
and visualize in a better way the structure of the association rules generated by the

VI.1 Smartphone usage analysis through association stream mining 185

algorithm. In addition to the structure of the rules, Table VI.1 also presents some
information about them. Concretely, for each rule the following attributes are presented:
(1) Rule Id, identifier used to refer the rule; (2) Subject Id, identifier of the subject to which
the rule corresponds; (3) Rule, structure of the rule; (4) supp, rule support at the time of
maximum numerosity; (5) conf , rule confidence at the time of maximum numerosity; and
(6) num maximum numerosity of the rule. Additionally, we can see the evolution of the
number of copies stored in the pool (numerosity) for each one of the rules from Table VI.1
in Figure VI.3. Numerosity is a representation of the relative importance of a rule at any
time.

Oct, 10 Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11 Jun, 11 Jul, 11
Date

0

2

4

6

8

10

N
um

er
os

ity

(a) R1

Oct, 10 Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11
Date

0

5

10

15

20

25

30

N
um

er
os

ity

(b) R2

Oct, 10 Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11 Jun, 11 Jul, 11
Date

0

2

4

6

8

10

12

14

N
um

er
os

ity

(c) R3

Oct, 10 Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11 Jun, 11 Jul, 11
Date

0

20

40

60

80

100

N
um

er
os

ity

(d) R4

Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11 Jun, 11
Date

0

5

10

15

20

25

N
um

er
os

ity

(e) R5

Oct, 10 Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11 Jun, 11
Date

0

2

4

6

8

10

12

N
um

er
os

ity

(f) R6

Figure VI.3: Numerosity evolution for six different rules. R1 was discovered for subject
fa10-01-06, R2 for fa10-01-35, R3 and R4 for sp10-01-12, R5 for fa10-01-67, and R6 for
fa10-01-13.

The rules included in Table VI.1 are different from each other in their meaning, in
their temporal evolution and in the subject for which they are true. These rules exemplify
both the capacity of the algorithm to adapt to the particularities of each subject and

186 Chapter VI. Applications

Table VI.1: Six example rules obtained for the data streams of five different subjects
(numerosity evolution of these rules is shown in Fig. VI.3). Support, confidence and
numerosity values shown in the table are referred to the maximum numerosity time stamp.

Rule Id Subject Id Rule supp conf num

R1 fa10-01-06 IF Battery Level is
M3

and 0.110 0.796 11

Incoming Calls is
S2

and

Missed Calls is
S2

and

Accelerometer is
L4

THEN Outgoing Calls is
XS4 S4

R2 fa10-01-35 IF Minute is
L2

and 0.017 0.938 30

Battery Level is
XS5 S5

and

Incoming Messages is
L4 XL4

and

Outgoing Calls is
S2

and

Missed Calls is
L2

and

Accelerometer is
L3

THEN Incoming Calls is
L4 XL4

R3 sp10-01-12 IF Weekday is Sunday and 0.103 1.0 14

Minute is
M5 L5

and

Missed Calls is
M5 L5

THEN Accelerometer is
L5 XL5

R4 sp10-01-12 IF Minute is
M5 L5

and 0.644 1.0 100

Missed Calls is
M5 L5

THEN Accelerometer is
L5 XL5

R5 fa10-01-67 IF Incoming Messages is
S4 L4

and 0.485 0.951 28

Outgoing Messages is
XS4 S4

and

Missed Calls is
M3

THEN Accelerometer is
L5 XL5

R6 fa10-01-13 IF Minute is
XS4 S4

and 0.055 0.783 13

Incoming Messages is
S2

and

Outgoing Messages is
M3

and

Incoming Calls is
S2

and

Accelerometer is
L4 XL4

and
Any Running App is False

THEN Outgoing Calls is
L4 XL4

VI.1 Smartphone usage analysis through association stream mining 187

the evolution the rule population experiences at the same time as the input data stream
itself evolves. Moreover, all these rules, despite representing diverse patterns, can be
easily interpreted. Thus, R1 describes how the number of outgoing calls tends to be low
or very low when few or no incoming and missed calls are registered and high levels of
accelerometer are being recorded even though battery level is medium. Later on, we will
explain how accelerometer can be interpreted as an indicator of the amount of physical
activity performed. According to this interpretation, it would make sense for the subject
to not be making too many calls during high physical activity periods. Other rules that
include variables related to calls and accelerometer are R2, R4 and R5. R2 implies that
the number of incoming calls is high when battery level is low, a high number of incoming
messages are being received and high levels of accelerometer are being registered. R4 and
R5, although corresponding to different subjects, share the same consequent (accelerometer
[L5, XL5]) and have similar antecedents. Both rules imply that the presence of missed
calls (combined with a certain time interval, in the case of R4, or with the existence of
incoming messages and the scarcity of outgoing messages, in the case of R5) coincides with
high levels of accelerometer (the subject could be engaged in physical activity). Regarding
their numerosity evolution, these four rules fit the same general pattern: they appear at a
certain point of the stream, their numerosity rapidly increases, reaches a peak and start
descending shortly afterwards. This behavior is particularly clear in the case of R1.

On the other hand, we have rules like R3 whose numerosity suffers periodic ups and
downs. R3 points that during Sunday afternoons and evenings, high values of accelerometer
are registered. The fact that the rule refers to something that occurs only once a week
causes the cyclical numerosity increases and decreases observed in Figure VI.3. R3 reaches
a certain number of copies in the population during Sunday. During the next days, copies
of the rule are removed from the population (its numerosity decreases) until Sunday arrives
again when the numerosity of the rule begins to increase. This occurs every week from
the last week of February to mid-April (for subject sp10-01-32). Lastly, some ups and
downs can also be appreciated in the evolution of R6 but without a fix temporal cycle (as
the one observed for R3). R6 links high number of outgoing calls with occasions where
there is a shortage of incoming messages and calls, some messages are sent, high levels of
accelerometer are being recorded and no application is running during the first half of the
day.

VI.1.4.2 Rule aggregation by consequent

Studying groups of rules rather than specific rules can allow us to generalize our analysis
and facilitate finding common ground between different subjects. Following this idea, we
aggregate rules based on their consequent and analyze the evolution of different groups of
rules.

As mentioned above, accelerometer records can be linked to the physical activity
performed by the subject. Over the last years, several studies have established and refined
accelerometer as a tool for tracing physical activity (Bouten et al., 1997; Troiano et al.,

188 Chapter VI. Applications

2008; Anderson et al., 2007; Toscos et al., 2008; Saponas et al., 2008; Puiatti et al., 2011;
Kwon et al., 2014; Wang et al., 2019). One of the main parts of the study presented in
Aharony et al. (2011b) was a fitness-centered intervention. Its principal aim was to analyze
social influence and motivation in the context of health and wellness activities. For that
purpose they tested different social strategies to try to encourage physical activity and
implemented an accelerometer-based algorithm to estimate physical activity levels. The
goal was not to discern the specific type of physical activity the subjects were performing
but only to identify the intensity of the activity so they decided to implement a less accurate
but more robust algorithm, which allowed more flexibility in the way participants could
carry the phone. As described in Aharony et al. (2011b), the fitness-centered intervention
was carried out between October and December 2010 and it was divided into three periods:
a baseline period before the beginning of the intervention was officially announced (from
October 5 to October 27); and two other periods after the intervention actually began
(from October 28 to November 15, and from November 16 to December 5). A total of 108
subjects elected to participate, part of them assigned to a control group.

Along these lines, if we focus on the group of rules whose consequent indicates high
(L) or very high (XL) accelerometer values and represent its numerosity evolution over
time, we observe how a significant rise is presented for multiple subjects coinciding with
the second and third periods of the fitness intervention. Some examples are included in
Figure VI.4. It is worth mentioning that the use of linguistic labels to build the fuzzy
sets allows the term ”high or very high accelerometer” (also referred as accelerometer
L −XL) to have an independent meaning for each subject. This meaning depends on
the range of the accelerometer values for each particular subject. Figure VI.5 helps us
to understand the distribution of the accelerometer values during the second period of
the fitness intervention using one of the subjects included in Figure VI.4 as example. o
special concentration of high or very high values are appreciated in Figure VI.5. Nor
can we appreciate significant increases in the values registered. Thus, we can infer the
higher number of rules with accelerometer L-XL in consequent is due to the fact that
the algorithm finds association relationships that explain these accelerometer values and,
consequently, the confidence of such rules increases and reaches the quality thresholds.

Delving deeper into the analysis of these same rules, we examine which relationships
are being discovered by the algorithm for those values of accelerometer. Despite the fact
that accelerometer has been already proved as a trustworthy indicator of the amount of
physical activity (Aharony et al., 2011b; Puiatti et al., 2011; Kwon et al., 2014; Wang
et al., 2019), examining those relationships can also reinforce the assumption that the
increases in rule numerosity are not caused by other activities or types of phone usage.

Figure VI.6 shows the disaggregation of the antecedents of the analyzed rules into
four different groups, i.e., each one of the antecedents of each individual rule is classified
into one out of four possible groups: (1) antecedents related to weekday or time, (2)
antecedents that indicate the phone is not being used much (few outgoing calls, few
outgoing messages...), (3) antecedents meaning the phone is being used (several outgoing
calls or messages, applications running...), and (4) other antecedents not directly related to

VI.1 Smartphone usage analysis through association stream mining 189

Oct, 10 Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11 Jun, 11 Jul, 11
Date

0

100

200

300

400

500

600

N
um

er
os

ity

Participant fa10-01-03

(a) fa10-01-03

Oct, 10 Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11 Jun, 11
Date

0

100

200

300

400

500

N
um

er
os

ity

Participant fa10-01-44

(b) fa10-01-44

Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11 Jun, 11
Date

0

100

200

300

400

500

600

700

N
um

er
os

ity

Participant fa10-01-82

(c) fa10-01-82

Oct, 10 Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11 Jun, 11 Jul, 11
Date

0

200

400

600

800

1000

1200

N
um

er
os

ity

Participant sp10-01-12

(d) sp10-01-12

Figure VI.4: High-very high accelerometer consequent rules: numerosity evolution over
time of rules (filtered by supp ≥ 0.2 and conf ≥ 0.75) with accelerometer L-XL in their
consequent for four different subjects.

(a) fa10-01-03 (b) fa10-01-44

(c) fa10-01-82 (d) sp10-01-12

Figure VI.5: Daily scatter plots of the accelerometer values (for four different subjects)
during part of the period in which the highest numerosity of quality rules are observed
with L-XL accelerometer in their consequent.

190 Chapter VI. Applications

active usage of the phone (battery level, missed calls, incoming messages...). For instance,
suppose the algorithm discovers the rule “If hour is S4 and weekday is Sunday and outgoing
calls is XS5 then accelerometer is XL5” and at a certain time stamp its numerosity is 4
(there are 4 copies of the rule in the pool). This means that two-thirds of the antecedents
are related to weekday or time (first group) and one-third to low level of a certain usage
(second group). Therefore, 2

3
· 4 is added to the first group counter and 1

3
· 4 to the second

one, for that particular time stamp; and we continue doing the same for every rule that
has accelerometer L-XL in the consequent at every time stamp.

Oct, 10 Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11 Jun, 11 Jul, 11
Date

0

100

200

300

400

500

600

N
um

er
os

ity

Medium-High Phone Usage
Weekday-Time
Low Phone Usage
Other

Participant fa10-01-03

(a) fa10-01-03

Oct, 10 Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11 Jun, 11
Date

0

100

200

300

400

500

N
um

er
os

ity

Medium-High Phone Usage
Weekday-Time
Low Phone Usage
Other

Participant fa10-01-44

(b) fa10-01-44

Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11 Jun, 11
Date

0

100

200

300

400

500

600

700

N
um

er
os

ity

Medium-High Phone Usage
Weekday-Time
Low Phone Usage
Other

Participant fa10-01-82

(c) fa10-01-82

Oct, 10 Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11 Jun, 11 Jul, 11
Date

0

200

400

600

800

1000

1200

N
um

er
os

ity

Medium-High Phone Usage
Weekday-Time
Low Phone Usage
Other

Participant sp10-01-12

(d) sp10-01-12

Figure VI.6: High-very high accelerometer consequent rules grouped by antecedents:
numerosity evolution over time of rules (filtered by supp ≥ 0.2 and conf ≥ 0.75) with
L-XL accelerometer in their consequent, distinguishing the proportion of antecedents that
belong to one of three different groups: (1) weekday and time; (2) low phone usage, and
(3) high phone usage.

Following this line of analysis, we also compare the evolution of the rules whose
consequent indicates high or very high accelerometer values with those rules whose
consequent indicates other accelerometer values. Figure VI.7 illustrates this comparison
for the same subjects shown in the two previous figures. We can observe how the rise
of the first group of rules (accelerometer L-XL) during the fitness-intervention (October
28 - December 5) does not overlap with a similar rise of those rules with other values of
accelerometer. Indeed, the number of rules with other values of accelerometer is specially
low during such period of time.

Nonetheless, accelerometer is not the only variable whose evolution in the association
rules might be worth analyzing. Figure VI.8 shows the evolution of the accumulated nu-
merosity of rules whose consequent implies high or very high amount of incoming/outgoing

VI.1 Smartphone usage analysis through association stream mining 191

Oct, 10 Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11 Jun, 11 Jul, 11
Date

0

100

200

300

400

500

600

N
um

er
os

ity

Very High - High
Medium - Low - Very Low

Participant fa10-01-03

(a) fa10-01-03

Oct, 10 Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11 Jun, 11
Date

0

100

200

300

400

500

N
um

er
os

ity

Very High - High
Medium - Low - Very Low

Participant fa10-01-44

(b) fa10-01-44

Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11 Jun, 11
Date

0

200

400

600

800

N
um

er
os

ity

Very High - High
Medium - Low - Very Low

Participant fa10-01-82

(c) fa10-01-82

Oct, 10 Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11 Jun, 11 Jul, 11
Date

0

200

400

600

800

1000

1200

N
um

er
os

ity

Very High - High
Medium - Low - Very Low

Participant sp10-01-12

(d) sp10-01-12

Figure VI.7: High-very high accelerometer versus other accelerometer consequents: compar-
ison between numerosity evolution of rules (filtered by supp ≥ 0.2 and conf ≥ 0.75) with
L-XL accelerometer as consequent and of rules which have accelerometer as consequent
with any other label (XS-S-M).

calls for two subjects. For the subject on the left, the high numerosities reached during part
of December and January are specially noteworthy. During this period, several association
rules explaining the high number of outgoing calls are discovered. Those same rules are
not sufficiently confident outside this specific period. Hence, we can infer the subject is
behaving differently during such period. Note that numerosity reaches its highest levels
around Christmas Day. In the case of the subject to whom the right plot corresponds,
confident enough rules are found during almost the entire duration of the study. However,
significant increases and decreases in numerosity can be noticed. A great part of the
patterns that are true at a given time may not continue being true after a while. In
addition, some of the numerosity peaks match special dates, such as Christmas or Saint
Valentine’s Day. These are just two more examples of how monitoring the evolution of
certain groups of association rules can help detect changes in behavioral patterns.

VI.1.4.3 Correlation with emotional state

Several studies have explored the use of wearable sensing data to obtain information
about mental health or emotional state, being some of them able to discover interesting
connections (Puiatti et al., 2011; Frost et al., 2013; Osmani et al., 2013; Gravenhorst et al.,
2015; Muaremi et al., 2014). In Sanchez-Valdes and Trivino (2015) the level of physical
activity is monitorized through smartphone accelerometer to provide therapists with an

192 Chapter VI. Applications

Oct, 10 Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11 Jun, 11
Date

0

5

10

15

20

25

30

35

40

N
um

er
os

ity

Participant fa10-01-13

(a) fa10-01-13

Oct, 10 Nov, 10 Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11
Date

0

10

20

30

40

50

60

N
um

er
os

ity

Participant fa10-01-35

(b) fa10-01-35

Figure VI.8: High-very high incoming/outgoing calls rules: numerosity evolution of rules
(filtered by supp ≥ 0.05 and conf ≥ 0.75) with (a) L-XL outgoing calls and (b) L-XL
incoming calls in their consequent for two different subjects.

objective and quantitative measurement tool to be applied when developing patient-specific
treatments.

As mentioned before, in addition to the information collected through the mobile
phone sensing platform, the data collection from the Friends and Family study also
included information gathered by means of surveys about different aspects of the lives of
the participants. Part of these surveys could be daily completed by the participants from
their own phones. These daily on-phone surveys asked the subjects to assess quantitatively
different variables related to their mood, such as happiness, stress, productivity or health.
A numerical scale from 1 to 7 was used to evaluate each variable, where 1 is the lowest
level and 7 the highest. In addition, these surveys also asked the participants about the
number of hours they spent sleeping or hanging out.

In Bogomolov et al. (2013) and Bogomolov et al. (2014) the mobile phone sensing
data part of the Friends and Family data collection is employed to predict happiness and
stress. Although this is done in an offline a posteriori process and not from a data stream
perspective, these studies can still be seen as an indicator of the possible links between
smartphone usage and subject’s mood. In the next part of our analysis, we incorporate
survey information as a way to complement the results obtained by Fuzzy-CSar-AFP.
Hence, we analyze possible correlations between the evolution of certain rules and the
answers to the surveys.

Figure VI.9 shows together the evolution of the numerosity of rules whose consequent
is accelerometer L-XL and the evolution of two aspects assessed by the surveys (happiness
and health). In both two graphics it is possible to appreciate certain parallelism between
both evolutions. Certainly, such correlation is not perfect, a person perception of his/her
level of happiness or health can be influenced by a bunch of factors. Furthermore, happiness
(as well as, health sensation, stress, productivity...) is habitually not expressed in absolute
terms. That is, each time a person reaches level 5 of happiness does not mean that this
person is just as happy as the past times that he/she said his/her happiness was at level 5.
The scale changes with the pass of time and the context. Every time we say “it is the
happiest day of my life” we would have to look back and correct all our previous feelings of

VI.1 Smartphone usage analysis through association stream mining 193

happiness. What is really meaningful is trend. Increases or decreases in happiness (health
sensation, stress, productivity...) is what really matters, and these trends show sync with
the analyzed groups of rules.

15-Mar-11 01-Apr-11 15-Apr-11 01-May-11 15-May-11
Date

425

450

475

500

525

550

N
um

er
os

ity

Very High - High Accel

5.0

5.5

6.0

6.5 H
appiness Level

Happiness

Participant sp10-01-34

(a) sp10-01-34

15-Nov-10 01-Dec-10 15-Dec-10 01-Jan-11 15-Jan-11
Date

500

520

540

560

580

600

620

640

N
um

er
os

ity

Very High - High Accel

4.0

4.5

5.0

5.5

H
ealth Level

Health

Participant fa10-01-45

(b) fa10-01-45

Figure VI.9: High-very high accelerometer, happiness and health: numerosity evolution
of rules (filtered by supp ≥ 0.2 and conf ≥ 0.75) with L-XL accelerometer as consequent
along with evolution of (a) happiness and (b) health perception gathered through surveys.

But this is not the only group of rules whose evolution seems to present similarities
with subjective perceptions collected through the surveys. Figure VI.10 contains four
graphics showing the numerosity evolution of those rules whose consequent implies a high
or very high number of calls along with the evolution of productivity perception ((a)-(c))
and stress (b). Once more, similarity between both lines for all four subjects is noteworthy.
This would point out that for the first three subjects some of the moments with higher
sensation of productivity coincide with some of the occasions when more high-confidence
patterns related to high number of calls are being detected by the algorithm (and equivalent
for the most stressful periods in the case of the fourth subject).

As mentioned before, thanks to the use of fuzzy labels the concept of “high number
of calls” can be different for each subject, the algorithm does not assume any a priori data
structure and adapts itself to each particular case. This allows to discover completely
different sets of rules for different subjects. Figure VI.11 includes two more plots showing
the numerosity evolution of a certain set of rules along with that of the answers given by
the subject to a specific question of the daily surveys. The left plot illustrates this for
those rules with consequents point out low levels of accelerometer and for the evolution
in the level of stress claimed in the surveys. The right plot represents, for a different
participant, the evolution of those rules whose consequent refers to low amount of calls
together with the evolution of the productivity perception. If we delve into the meaning
of the parallelisms detected here between groups of rules and subjective aspects, they
are found to be logical. Taking accelerometer as an estimator of physical activity, it
seems reasonable that periods of higher physical activity coincide with periods of greater
happiness or health sensation. In the same way, the parallelisms between high number of
calls and productivity or stress, between low physical activity and stress, or low number
of calls and productivity, seem equally reasonable.

194 Chapter VI. Applications

01-Nov-10 15-Nov-10 01-Dec-10 15-Dec-10 01-Jan-11 15-Jan-11 01-Feb-11 15-Feb-11
Date

0

10

20

30

40

50

60

N
um

er
os

ity

Very High - High Calls

3.0

3.5

4.0

4.5

5.0 Productivity Level

Productivity

Participant fa10-01-39

(a) fa10-01-39

15-Jan-11 01-Feb-11 15-Feb-11 01-Mar-11 15-Mar-11 01-Apr-11 15-Apr-11 01-May-11
Date

250

300

350

400

450

500

N
um

er
os

ity

Very High - High Calls

3

4

5

6

7

Productivity Level

Productivity

Participant fa10-01-36

(b) fa10-01-36

15-Nov-10 01-Dec-10 15-Dec-10 01-Jan-11 15-Jan-11 01-Feb-11 15-Feb-11
Date

100

125

150

175

200

225

250

275

N
um

er
os

ity

Very High - High Calls

3

4

5

6

7

Productivity Level

Productivity

Participant sp10-01-30

(c) sp10-01-30

15-Mar-11 01-Apr-11 15-Apr-11 01-May-11 15-May-11
Date

30

40

50

60

70

80

90

100

N
um

er
os

ity

Very High - High Calls

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Stress Level

Stress

Participant sp10-01-42

(d) sp10-01-42

Figure VI.10: High-very high number of calls, productivity and stress: numerosity evolution
of rules (filtered by supp ≥ 0.05 and conf ≥ 0.75) with L-XL calls as consequent along
with evolution of ((a), (b), (c)) productivity and (d) stress perception gathered through
surveys.

Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11 Jun, 11
Date

0

10

20

30

40

N
um

er
os

ity

Very Low - Low Accel

1

2

3

4

5

6

Stress Level

Stress

Participant fa10-01-24

(a) fa10-01-24

Dec, 10 Jan, 11 Feb, 11 Mar, 11 Apr, 11 May, 11
Date

10

20

30

40

50

60

70

80

90

N
um

er
os

ity

Very Low - Low Calls

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Productivity Level

Productivity

Participant fa10-01-12

(b) fa10-01-12

Figure VI.11: Numerosity evolution of rules (filtered by supp ≥ 0.2 and conf ≥ 0.75) with
(a) XS-S accelerometer and (b) XS-S calls as consequent, along with the evolution of (a)
stress and (b) productivity perception gathered through surveys.

VI.2 Real-Time relational analysis on Twitter 195

VI.2 Real-Time relational analysis on Twitter

Twitter is a clear example of the continuous generation of huge amounts of chronologically
ordered data. These data contain interesting and very rich information that can be
analyzed. The immediacy of social networks should also be transferred to the automatic
analysis of their information, providing answers that explain what is happening, when it
is happening. If we add to this a clearly non-stationary nature where reality is constantly
evolving and changing, we find ourselves with an ideal laboratory for analyzing data stream
mining algorithms. We focus on tweets related to political events because politics usually
generates a lively debate that adapts to different circumstances that could be considered
as concept drift. We analyze two use cases. On the one hand, a dataset concerning the
2016 U.S. presidential election. On the other, the 2019 investiture process in Spain. For
the latter, we analyze the messages on that topic published during July and August 2019.

The application of data mining techniques on data from social networks can reveal
patterns about the individuals immersed in the shared environment and produce knowledge
that was previously not feasible to find due to the variety and complexity of the information.
Thus, these social media have become a fundamental element to be considered by large
companies when analyzing the quality of their products, defining their marketing strategies
and even at the time of decision-making (Chamlertwat et al., 2012).

Twitter stands out as the most prominent social network for obtaining concise and
accurate information over time. Moreover, the micro-blogging structure provides an easy
mechanism for communication and discussions between users, as well as a tool within
marketing strategies for companies (Java et al., 2007). Since its appearance in 2006, it
has emerged as a massive social network. With more than 180 million active users and
656 million tweets per day at the end of 2020. The ease and speed with which users
can share their opinions and feelings makes Twitter a channel of communication with an
ever-increasing role in socio-political areas.

The information generated on Twitter is extremely abundant, making it an appealing
source to collect data in real time. However, the format in which the collected information
is presented entails some challenges. This is mainly due to the fact that the tweets are
written in natural language, so they do not have an adequate structure to be used in a
straightforward way to obtain quality knowledge. Therefore, although our main objective
will be the real-time analysis of frequent associations, this requires the processing and
simplification of the text present in the tweets studied. In this context, text mining
and natural language processing (NPL) techniques are very useful tools that allow us to
simplify and standardize the text of the tweets.

Thus, we need to apply an important preprocessing consisting of tokenization
(splitting the sentence into words), lowercase transformation, cleaning of repeated char-
acters (used by users for emphasis), stopwords, punctuation marks, numbers and links,
lemmatization (to give common form to words with different morphological and verbal
derivations), stemming (reduction of the word to its base or root), part-of-speech tagger

196 Chapter VI. Applications

(tagging of words to indicate their grammatical category, adding in our case the entities
user and hashtag) and, finally, identification of N-grams (groups of words that have a
meaning of interest as a whole). In addition, we will also try to analyze the positivity or
negativity of the tweets considered in order to be able to detect the presence of approval
or repulsion towards specific political terms or parties.

Social media and especially Twitter are playing an increasingly important role in
modern societies. Although there are different topics with great appeal, Twitter is closely
linked to politics. Indeed, political parties themselves use this platform actively to convey
their ideas, being a key medium in election campaigns.

The importance of social media in election campaigns was demonstrated after Barack
Obama’s successful campaign for the 2008 White House presidential election (Williams
and Gulati, 2008). Therefore, during the last decades, research has been conducted focused
on analyzing the use of Twitter as a medium to promote ideas or debate political issues
(Vilares et al., 2015). Thus, most of the research based on tweets has focused on the
prediction of election results (Ceron et al., 2014; Golbeck and Hansen, 2011), as well as
the monitoring of election campaigns, mainly in the United States (Jensen and Anstead,
2013; Wang et al., 2012), although research has also been conducted in Europe (Tumasjan
et al., 2010; Caldarelli et al., 2014).

VI.2.1 Text mining

A significant portion of the data generated by social networks is textual. In this context,
Text Mining arises within a new paradigm, called KDT (Knowledge Discovery in Textual-
Databases), which was introduced in Feldman and Dagan (1995) and is different from the
existing KDD (Knowledge Discovery in Databases), which was focused on the search for
patterns within completely structured data. Thus, this new approach aims to analyze
and extract useful and non-explicit information from textual data, lacking structure and
homogeneity, in which the attributes are unknown, which requires the use of machine
learning algorithms on textual data (Bloehdorn et al., 2011).

Thus, Text Mining is a subcategory of Data Mining, consisting of obtaining infor-
mation and discovering and identifying patterns, entities and relationships in unstructured
text data. This subcategory is relatively new and its interest and usefulness is increasing
significantly. In addition, it is a highly interdisciplinary area, which combines other impor-
tant branches such as natural language processing, information retrieval and information
extraction, as well as the use of machine learning techniques.

The structuring of textual data by means of Text Mining techniques makes it
possible to give the text a form that allows it to be studied by means of common machine
learning techniques.

Text preprocessing is one of the essential phases in any text mining task. Textual
communication offers the user a wide range of possibilities and a great freedom of expression,
which makes texts data with a greater amount of intrinsic information. However, this

VI.2 Real-Time relational analysis on Twitter 197

freedom means that there is not a common solution for text preprocessing, but that there
are several possibilities and each type of text requires an appropriate analysis (Rangu
et al., 2017). Thus, Text Mining has its own preprocessing techniques, not applicable
in other areas, and tremendously characteristic (Moreno and Redondo, 2016). In the
following, we list the preprocessing techniques used in this application:

� Tokenization. Tokenization appears as a technique that allows to divide every
sentence into words, making these as the minimal meaningful entity (Hofmann and
Chisholm, 2016). This minimal entity is known as a token.

� Transformation to lowercase. Transforming texts to lowercase is a common text
mining preprocessing technique.

� Elimination of repeated characters. There is a tendency for users to seek
emphasis by repeating (more than twice) the same letter within a word successively
(e.g., “Greeeat” in English or “Bieeeen” in Spanish). The objective is to eliminate
the distortion that this produces, identifying the actual word without the repeated
characters (i.e., “Great” or “Bien”).

� Filtering stopwords. Stopwords serve as connectors, quantifiers and other func-
tions (e.g., pronouns, prepositions, etc.), which provide practically no additional
information to the content of the text in terms of semantics. It is a common measure
to filter such stopwords.

� Removal of numbers and punctuation marks. In the context of association
analysis and sentiment analysis, numbers do not seem to be an element that is worth
taking into account. On the other hand, the removal of punctuation marks is a
technique commonly applied during preprocessing. This is because it results in a
significant reduction of the problem, although sometimes the presence of punctuation
marks can be interpreted as intensifiers (Effrosynidis et al., 2017).

� Link filtering. The presence of links is a common element in different types of
texts. Although there is the possibility of accessing the linked web, obtaining the
text contained in it and associating it with the tweet in question, we considered that
this would complicate the search for associations without providing a clear benefit.
In addition, it would defeat the spirit of analyzing short text, so we decided to filter
such links.

� Lemmatization. This technique allows to give a common form to words with
different morphological derivations (gender and number) and different verb forms.
The target is to obtain the morphological information of the word and focus the
study on its semantic information. Lemmatization is a costly technique, since it
requires a deep knowledge of the linguistics of the language in question. However, its
usefulness is remarkable, since it involves a substantial reduction of noise, improving
the results of Stemming, although taking a longer execution time.

198 Chapter VI. Applications

� Stemming. The aim of Stemming is also to transform a word to a common form,
although in this case it is achieved by reducing the word to its base or root form.
Thus, once again, the semantic section of the word is emphasized, forgetting its
morphology, allowing the dimensionality of the problem to be reduced.

� Named-Entity-Recognition. It allows the extraction of proper entities in the
text, such as names of people, organizations, locations, expressions of times, etc.
This allows the addition of a large amount of semantic knowledge that helps to
understand the subject of a text.

� POS (Part-Of-Speech) Tagger. It is a technique used to indicate the grammatical
category of each of the words within the sentence. Thus, this technique is used to
confront words with several possible meanings. It analyzes the position of the word
in the sentences to define the real meaning of the word, checking its situation and
comparing it with frequent grammatical sequences in different languages. In general,
the usefulness of this type of techniques for micro-blogging texts (Twitter case) is
debatable, mainly due to the brevity of the text (Go et al., 2009; Kouloumpis et al.,
2011). In this particular case, it is applied with the objective of eliminating words
that are not verbs, adjectives, names, entities, users or hashtags, thus reducing the
dimensionality of the problem.

� Identification of N-grams. We define a N-gram as a series of words that can
be grouped together because they have a meaning of interest that makes their
appearance in the database specially frequent. In the case of association analysis,
this technique becomes a fundamental point since, if any N-gram is not identified, it
could lead to the appearance of an association between the terms that make up the
unidentified N-gram. This could hide other associations of interest.

VI.2.2 Sentiment analysis

Sentiment analysis or opinion mining is a research area within the field of Natural Language
Processing (NLP). It is a discipline whose main objective is the automatic detection of
opinions, feelings and subjectivity within a text. Thus, it pursues the recognition of the
emotions behind the analyzed texts, seeking to determine the polarity of the text and its
strength.

Thus, different types of techniques are applied with the aim of representing the
subjectivity or opinion existing in a text by means of a quantitative value on a certain
scale, which makes it possible to classify such text in a certain type of feeling or opinion.
In this context, an opinion is a positive or negative evaluation about a product, service,
organization, person or any other type of entity about which a given text is expressed.
Nowadays, the popularization of micro-blogging social networks such as Twitter has
increased interest in this area, so that it is a question of achieving real-time monitoring of
the opinions of thousands of people.

VI.2 Real-Time relational analysis on Twitter 199

When performing sentiment analysis, three possible levels of study of a text are
distinguished. These three levels are defined on the basis of the granularity, depth and
detail required:

� Document-level analysis: The overall sentiment of a document is analyzed as an
indivisible whole. It is assumed that the document expresses an assessment of a
single entity.

� Sentence-level analysis: The document is divided into individual sentences in
order to subsequently extract the opinion contained in each one of them.

� Aspect-level analysis: An entity is considered to be made up of different elements
or aspects and an opinion is expressed on each of them, the polarity of which may
be different in each case.

Given the brief nature of the tweets, in this case we consider a document-level analysis,
assuming that each message expresses the opinion of the user, taking that there is only a
single entity.

Although the number of tools available for sentiment classification in English is
remarkable and there are some quite accurate ones, for the case of other languages not
everything is so advanced. Therefore, when facing sentiment analysis for the case of tweets
about Spanish politics there appears the difficulty of making an adequate determination
of the sentiment resulting from the messages. Therefore, the analysis of this problem for
other languages has become a topic of interest in research. In the case of Spanish, novel
analyses have appeared over the last decade (Brooke et al., 2009; Mart́ınez Cámara et al.,
2011).

In this case, we analyzed different options including: the use of Lexicons of words
labeled as positive and negative; the use of a corpus to create a learner ensemble capable
of classifying tweets; and the use of existing software tools capable of performing sentiment
classification of a text. In general, such software tools have been trained using a corpus of
messages or clusters of lexicons. The existing tools analyzed are: senti-py (Hofman, 2018),
MeaningCloudClassifier (MeaningCloud, 2018), AutoCop, SentiStrength (Culpeper et al.,
2018) Lingmotif (Sentitext) (Moreno-Ortiz and Hernández, 2013), and apiculture (Sogo,
2018). After studying the advantages and disadvantages of each of them, we chose to use
SentiStrength (Culpeper et al., 2018). This decision is also supported by the results of
several theoretical studies (Thelwall et al., 2010; Gonçalves et al., 2013).

VI.2.3 Experimental setup

As mentioned, the study conducted has been applied on two datasets, both with political
character: one focused on the 2016 US political elections and the other one related to
the Spanish investiture process during the summer of 2019. The first is a smaller dataset

200 Chapter VI. Applications

and already labeled, so it has been used for the initial study. The second one presents
a dataset with real data, extracted from Twitter for one month. Thus, we proceed to
describe the study carried out, together with the different considerations taken. After
that, the corresponding results obtained are presented.

In both cases, the same experimental scheme is followed. The aim has been to
follow a fixed analysis structure, starting with text processing and sentiment analysis (if
required), and then moving on to data stream analysis in search of association rules. For
this last step, two paths are explored. Figure VI.12 summarizes the sequence of steps
involved in this experimental scheme.

As shown in the figure, the first step is to perform a language filtering of the tweets
if necessary. For this, a language parser is applied, so that if the message is considered,
with a sufficiently high probability, to be in a different language than expected, it will
be labeled as foreign using a Language variable, based on which a subsequent filtering is
performed.

The next step is to check if the tweets have a sentiment tag associated with them.
If not, the SentiStrength classifier (Vilares et al., 2015) is applied, which allows extracting
the sentiment present in the text and reflecting it in the Sentiment attribute. Of the two
use cases addressed, these first two steps will only be necessary for the collection of tweets
about the 2019 Spanish investiture process.

Once, if necessary, the language filtering and sentiment identification have been
completed, a text analysis is applied on the tweets. Thus, we started by removing
links, numbers, punctuation (except for the # and @ that refer to hashtags and users,
respectively), emoticons and laughter from the messages. We have also eliminated the
appearance of the same letter multiple times (more than two) and consecutively, reducing
these to simply two consecutive appearances.

Next, SpaCy (Honnibal et al., 2020) was used as a tool for text analysis. Therefore,
we started by eliminating stopwords and short words (length less than 3). Likewise, the
POS-Tagger technique was applied, performing a grammatical tagging on the words. In
the case of hashtags and users, two new grammatical tags have been defined. Subsequently,
lemmatization was applied to the text.

Following this, a simplification of the text is performed by eliminating certain words
based on their grammatical category. While verbs tend to quantify the activity-passivity
in the content of the message, adjectives tend to be useful in identifying the feeling present
in the text. Since this approach aims to find relationships between terms, only nouns and
entities are relevant, in addition to users and hashtags. However, since adjectives can
sometimes be useful in discerning concepts, they have also been finally considered. When
working with texts in Spanish, certain errors were detected in the SpaCy tagger that cause
some nouns to be wrongly identified as verbs. This led us not to remove verbs in the case
of the collection of tweets related to the investiture process in Spain in 2019.

The next step is the analysis of N-grams in the text, mainly looking at bigrams

VI.2 Real-Time relational analysis on Twitter 201

Scraping from Twitter

Collection of tweets

Tweets in
other language?

Language filtering
YES

Is the sentiment of
the tweet known?

Application of sentiment
classification software

NO

NO

Removal of URLs

YES

Removal of elongated words and laughter

Removal of emoticons, punctuation and numbers

Removal of stopwords

Grammatical category labeling

Lemmatization

Term filtering. Reduction
to entities, nouns and adjectives.

Text normalization

Is there
a unified

structure?
N-grams

Entity unification

NO

Generation of the bag of words of interest

YES

Collection of transactions: Tweets represented
as sets of items from the bag of interest

Fuzzy-CSar-AFP: Association rule mining

Set of association rules

Visualization of association rules

IncMine: Frequent itemset mining

Manual association rule extraction

Set of association rules

Visualization of association rules

Figure VI.12: Flow chart of the experimental scheme followed in the study.

202 Chapter VI. Applications

and trigrams. After that, we proceeded to the unification of entities, since there are often
different ways of citing or referring to entities of interest in the dataset using different
terms.

Once the terms and elements of the messages in the database had been unified,
we proceeded to create a bag of elements of interest, in which interesting terms were
defined within the database based on the concept to which they refer and their frequency
of occurrence. The elements included in the bag have been considered of certain relevance
in the debates conducted in the set of tweets analyzed.

After that, each tweet in the database is represented by a sequence of words in the
bag of interest. Thus, at this point each tweet can be seen as a transaction, while each
of the words in the bag of interest is seen as an item, which can appear in sets, forming
itemsets. Therefore, it is possible to work on this set of transactions with the terms of
interest in search of the frequent itemsets and the association rules existing between the
different terms.

At this point, once we have managed to structure the textual data and generate a
transactional database based on the representation of the tweets by the terms of the defined
bag of interest, we move on to the last stage of the process. In this stage, the association
rules between terms will be extracted, performing real-time learning by applying data
stream mining algorithms. As shown in Figure VI.12, two different approaches are explored
in this stage.

On the one hand, an approach based on the incremental extraction and update of
frequent closed itemsets (FCIs) over data streams is applied using IncMine (Cheng et al.,
2008). Performing the extraction of association rules from these frequent itemsets in an
offline fashion.

On the other hand, it is possible to perform the direct extraction of the association
rules by applying a fuzzy and completely online technique, as is the case of the Fuzzy-
CSar-AFP algorithm (Ruiz and Casillas, 2018).

After collecting the rules, they are analyzed to look for links between the presence of
terms and sentiments. Thus, a count of the number of rules generated for each antecedent
plus consequent pair will be made, seeking to analyze the existence of term-consequent
relationships (where the consequent is the sentiment in this case). For this, the rules will
be filtered to keep only quality rules.

VI.2.4 Case 1: 2016 United States presidential election

For this case study, the SemEval-2016 Stance Dataset, related to the 2016 US political
elections, is used (Mohammad et al., 2017). In this dataset each of the tweets already
comes with an associated sentiment label. Specifically, the attributes associated with each
of the tweets are: (1) ID, identifying number of the tweet; (2) Target, unit of interest
in which the tweet encompasses; (3) Tweet, content of the tweet; (4) Stance, refers to

VI.2 Real-Time relational analysis on Twitter 203

the attitude of the user who wrote the tweet; (5) Opinion towards, this is the target of
the opinion expressed in the tweet; and (6) Sentiment. Each of the last three take three
possible values. In the case of Stance the possible values are: Favor, the user supports the
objective; Against, the user is against the objective, and None. As for the objective of the
opinion expressed (Opinion towards), it can be the entity of interest itself (Target), other
(Other) and none, in case the purpose of the text is not to give an opinion but to provide
other information. Finally, three possible sentiments are considered: positive, negative or
neither.

VI.2.4.1 Exploratory data analysis

Figure VI.13 shows the distribution of the values of the Target and Sentiment variables.
We can observe that while three targets are specially frequent, the overall set of tweets
is fairly evenly distributed among the different targets and no target is extremely rare
or infrequent. However, regarding sentiment, negative messages clearly predominate and
there is a very small amount of neutral messages.

0 200 400 600 800 1000
Frequency

Hillary

Feminism

Abortion

Atheism

Trump

ClimateChange

Ta
rg

et

(a)

0 500 1000 1500 2000 2500 3000
Frequency

NEGATIVE

POSITIVE

NEITHER

Se
nt

im
en

t

(b)

Figure VI.13: Plots with the distributions of the (a) target and (b) sentiment present in
the tweets to be studied.

The left plot of this figure summarizes the distribution of topics (targets) in the
total collection of tweets. However, it does not take into account the temporal component.
The distribution of the topics of interest may not be constant over time. A multitude
of factors, such as news published in the media or statements made by public figures,
can cause the popularity of topics to vary over time. The evolution of the frequency of
appearance of these targets is shown in Figure VI.14.

We can see how, indeed, the popularity of the different targets varies over time.
Thus, the topics “Trump”, “Hilary”, “Atheism” or “ClimateChange” are prominent in the
conversation throughout the entire period analyzed. However, “Feminism” and “Abortion”
only gain relevance towards the latter part of the period

204 Chapter VI. Applications

Figure VI.14: Temporal evolution of the frequency of publication on the topics of interest
present in the tweets related to the 2016 US election.

VI.2.4.2 Natural language processing

As described in Section VI.2.3, before applying the algorithms for frequent itemset extrac-
tion and association rules, we perform a series of preprocessing steps that culminate in
obtaining a bag of terms of interest that we use to represent the tweets in transactional
format.

First, links, numbers, punctuation marks (except # and @), emoticons, laughter
and repeated letters are removed from the text. Likewise, stopwords and short words
are also removed; certain words are discarded based on their grammatical category, and
lemmatization is applied to standardize the text.

After that, also as part of the preprocessing stage, we analyzed the N-grams present
in the tweets, focusing on bigrams and trigrams. After analyzing the trigrams obtained,
the only term of interest is anti choice law, which refers to the law against free abortion.
In the case of bigrams, a number of concepts have been found, which are shown in Table
VI.2.

After this, we proceeded to the unification of entities, with the aim of identifying
the different ways of citing or referring to the same entity of interest. Tables VI.3 and
VI.4 show, respectively, the different entities considered and unified terms along with the
terms that each one encompasses.

Once the terms and entities of the messages in the database were unified, we

VI.2 Real-Time relational analysis on Twitter 205

Bigram Concept

(gay, marriage) Gay marriage.
(supreme, court) U.S. Supreme Court.
(united, states) United States.
(birth, control) Birth control.

(marriage, equality) Marriage equality.
(confederate, flag) Confederate flag.

(sea, level) Sea level.
(david, attenborough) British broadcaster and natural historian.

(human, being) Human being.
(social, medium) Social medium.
(mother, teresa) Mother Teresa of Calcuta.
(death, penalty) Death penalty.

(gender, equality) Gender equality.
(preborn, child) Preborn childs.

Table VI.2: Table with the different bigrams found in the case of the US presidential
election and their corresponding concept.

Entity Associated terms

donald trump @realdonaldtrump, donald trump, mr trump, trump, #trump, donaldtrump, #donaldtrump

hillary clinton
#hillaryclinton, hillaryclinton, hillary, clinton, hilary, #stophillary,

#stophillarypac, hillary clinton, #readyforhillary, #nohillary, #killary
barack obama @barackobama, barackobama, obama, #obamas
democrat @thedemocrats, @vademocrats, democrat, #democrats, #democrat

republican republican, #republican, #republicans, #republicanvalues, republicans
USA unitedstates, united states, usa, @unitedstates, #unitedstates

SCOTUS scotus, #supremecourt, supremecourt, #scotus, supreme court
david attenboroug david attenboroug, @sir attenboroug, davidattenboroug, attenborough

Table VI.3: Table with the different entities considered and the terms included in them.

proceeded to create a bag of items of interest. The list of words included in the bag of
interest is gathered in Table VI.5.

These elements of interest are the items in our transactional database. Figure VI.15
shows them within a word cloud and Figure VI.16 represents the frequency of each of
them. In both figures, we can observe how the two presidential candidates appear with a
high frequency, along with the hottest topics and their most discussed policy proposals.

VI.2.4.3 Real-time association rule analysis

On the database obtained after preprocessing, in which each tweet is represented in
transactional format by a set of items included in the bag of interest, we conducted an
association rule analysis on data streams.

In the following, the results obtained through two different approaches are presented
and analyzed. In the first case, the IncMine algorithm is used to mine FCIs and, from these

206 Chapter VI. Applications

Figure VI.15: Word cloud with the words chosen for the interest bag of the US election
problem.

VI.2 Real-Time relational analysis on Twitter 207

Concept Associated terms

prolife prolife, pro life, prolifeyouth, prolifegen, alllivesmatter
prochoice prochoice, pro choice, prowomanchoice
feminism feminist, feminism, genderequality, gender equality

antifeminism antifeminism, antifeminist, feminazi, notafeminist, meninist, spankafeminist
misogyny misogyny, misogynism, misogynst, misogynist, misogynistic, misogynyisugly
immigrant immigrant, immigration, latino, hispanic
child child, kid, baby

unbornchild unborn child, preborn child, unborn, preborn, fetus
pregnant pregnant, pregnancy
equality equality, equalityforall, equal right, equalright, eaquality

marriageequality marriageequality, marriageequaility, marriage equality
gaymarriage scotusmarriage, gaymarriage, gay marriage
woman right woman right, womensright

lgbt lgbt, gay, homosex, homosexual, homosexuality, lesbian
rape rape, rapeculture, rapist, maritalrape, maritalrapedebate
sexism sexism, sexist
racism racism, racist

climate change
climate change, global warming, climate, climatehope, climatenexus,

emission, climatechangeisreal, mychangeforclimate, ecologyaction
freedom freedom, liberty
science science, sciencerule, scientist

anti choice law anti choice law, antichoice

catholic
catholic, romancatholic, church, christian, christ,

christianity, bible, jesus, teamjesus
atheism atheism, agnostic, atheist, atheistq
islamic islamic, islam, isis, islamicstate
man man, male
woman woman, girl, female, yesallwoman, yesallwomen

mexicanpeople mexicanpeople, wearemexico, mexico, mexican

Table VI.4: Table with the different terms of interest unified under the same concept.

FCIs, all possible rules are generated offline. In the second case, the Fuzzy-CSar-AFP
algorithm will be applied, which directly obtains and evolves the association rules in a
fully online way. In both cases, we rely on different visualizations to analyze the rules
obtained.

Our objective is not to compare the performance of both algorithms but to analyze
two possible ways of dynamically obtaining association rules from a stream of tweets. In
any case, the comparison between the performance of both algorithms is not directly
applicable since the quality measures of the rules (support, confidence, lift, etc.) are
different in one algorithm and the other. To perform a fair comparison between both
methods a more in-depth study would be required.

208 Chapter VI. Applications

Table VI.5: Set of elements of interest considered for the 2016 US presidential election
database.

hillary clinton woman donald trump feminism man

catholic child abortion equality climate change

prolife barack obama rape unbornchild religion

islam pregnant freedom marriage liberal

democrat black antifeminism woman right republican

family racism sexism immigrant murder

mexicanpeople science religious gaymarriage prochoice

atheism justice human right marriageequality crime

obamacare misogyny patriarchy violence muslim

anti choice law conception humanist lgbt birth control

Association stream mining with Fuzzy-CSar-AFP

Unlike IncMine and most frequent pattern mining methods from data streams, the
Fuzzy-CSar-AFP algorithm allows direct mining of association rules. Instead of focusing
on the identification of frequent itemsets and relegating rule construction to an offline
stage, Fuzzy-CSar-AFP directly generates and evolves a population of association rules
along with their respective quality measures. It performs online learning as data is received
from the data stream.

To apply the algorithm on this dataset, we configure the algorithm so that the
antecedent of the rules is generated from the variables referring to the part of the day
and the variables corresponding to the terms of the stock market of interest, while the
consequent is based on the sentiment of the message.

The algorithm is able to return the rules that form the population at any time.
In this case, we decided to print the set of rules every 487 tweets (which corresponds
to 10% of the data). As for other configuration parameters of the algorithm: θmna = 3,
the mutation parameters pC and pM have been defined as 0.4, while pS turns out to be
irrelevant in this case (no variable changes in the consequent are possible).

In Figures VI.17-VI.18, three Sankey diagrams are shown to summarize the linkage
patterns in the association rules obtained by Fuzzy-CSar-AFP at different times in the data
stream. These diagrams represent the relationships found between the terms of interest
(antecedent) and the sentiment manifested in the tweets (consequent). The strength of
these relationships is given by the frequency with which they occur and is represented in
the diagram by the width of the link between the elements.

We can see how, the larger the amount of data examined, the more term-sentiment
relationships appear. Figure VI.18 illustrates the relationships present in the population
of rules corresponding to the final instant of the tweet stream.

It is clear from Figure VI.17 that at the beginning of the stream the rule set
generated by Fuzzy-CSar-AFP is quite poor. The purely online approach of Fuzzy-CSar-

VI.2 Real-Time relational analysis on Twitter 209

Figure VI.16: Histogram showing the frequency of occurrence of each of the words chosen
for the interest bag in the US election problem.

AFP, in which the data stream is processed in an instance-based manner, has clear
advantages but also brings certain limitations, such as the fact that the algorithm needs
to receive a certain amount of data to start obtaining quality results. The amount of data
is not a problem in real data stream environments, but this is a limited dataset and 487
tweets are insufficient for Fuzzy-CSar-AFP to obtain competitive results.

If we focus on Figure VI.18 we can see how terms such as Feminism, Climate change

and Atheism present a considerable weight. Among them, Climate change stands out
as it is the only term that appears associated with tweets that are neither linked to a
positive nor a negative sentiment.

210 Chapter VI. Applications

(a) (b)

Figure VI.17: Sankey diagram illustrating the set of term-sentiment links obtained based
on the rules generated by Fuzzy-CSarAFP after analyzing (a) 487 and (b) 2,435 tweets.

Dynamic extraction of association rules with IncMine

To carry out this analysis we use the IncMine extension for MOA (Bifet et al.,
2010a). The use of IncMine requires the definition of some common parameters such
as the minimum support (always necessary to obtain frequent itemsets) but also others
specific to the algorithm, such as the relaxation rate. Thus, a threshold support of 0.05
and a relaxation rate of 0.3 have been set. In addition, the segment length is set to 487 so
that it matches the frequency with which Fuzzy-CSar-AFP prints the rules. In the offline
extraction of the association rules, all possible rules according to the FCIs of each data
batch will be generated. By analyzing their lift value, the most interesting rules will be
determined. On the resulting set, we will search for indications of relationships between
terms of interest and sentiments.

In Figures VI.19-VI.20 Sankey diagrams are used to represent, based on the rules
generated from IncMine, the relationships between different terms of interest and message
sentiment. Each of the diagrams corresponds to a learning point, i.e., to the rules obtained
offline after different batches of data. Figure VI.20 corresponds to the association rules
obtained after analyzing the whole stream.

It can be seen that the links represented by the rules obtained are directed to
a specific sentiment and almost never neutral. This fits with the context of Twitter, a
social network employed by users to vindicate their opinions and where there is usually a
tendency of dominance by those extreme users or attitudes. Polarization that becomes
more intense when it comes to political issues.

VI.2 Real-Time relational analysis on Twitter 211

Figure VI.18: Sankey diagram illustrating the set of term-sentiment links obtained based
on the rules generated by Fuzzy-CSarAFP after analyzing all the 4870 tweets.

212 Chapter VI. Applications

(a) (b)

Figure VI.19: Sankey diagram illustrating the set of term-sentiment links present on the
rules obtained through the use of IncMine after the (a) first and (b) fifth batch of tweets
have been processed.

At the end of the stream (Figure VI.20), there is a considerable variety of terms
present in the relationships, and many of them, with similar weights. One of the most
prominent is Donald trump, which appears strongly linked to negative messages at this
final stage. However, it also appears related to positive messages. Other examples of rules
with a large number of appearances are those containing Hillary clinton→ Negative
relations. Few terms appear related to both negative and positive sentiment. In addition
to the case of Donald trump, other terms that also relate to both sentiments in this final
stage are Woman and Feminism.

If we compare the different images, we can clearly appreciate evolution both in the
terms present and in the relationship of some of them with sentiments. This comparison
allows us to observe, for example, the parallelism that exists between the evolution of the
terms Woman and Feminism. Both terms present similar relevance at the three timestamps
illustrated in the figures. Initially, they are related only to negative sentiments, but in
Figure VI.20 they also appear linked to positive sentiment.

Another term that shows an interesting evolution is Climate change, which begins
with an important weight but with a negative connotation; it still maintains a certain
weight in the conversation towards the middle of the stream but moving from that initial
negative association to a link with neutral and positive messages; and, finally, it appears
linked only to positive sentiment but having lost much weight in the conversation in the
face of the new topics of discussion that have surfaced.

VI.2 Real-Time relational analysis on Twitter 213

Figure VI.20: Sankey diagram illustrating the set of term-sentiment links present on
the rules obtained through the use of IncMine after the last batch of tweets has been
processed.

214 Chapter VI. Applications

VI.2.5 Case 2: 2019 Spain investiture process

After conducting the initial study on the previous dataset, we decided to apply the same
experimental setup on an original set of real data, extracted from Twitter through the use
of its API. The tweets studied are also connected politics but in this case the messages are
related to the 2019 Spain investiture process, which have been published in the period
between July 15, 2019 and August 29, 2019. Moreover, in this case we will analyze tweets
in Spanish, unlike the dataset used previously which contains only tweets in English.

In total, 261,080 tweets were extracted. For this purpose, a scraping task was
performed using a series of hashtags as a reference for the searches. The hashtags used
were: #PSOE, #PP, #UnidasPodemos, #CiudadanosCs, #VOX, #InvestiduraCongreso19

and #InvestiDudaARV.

The tool provided by Twitter for extracting tweets offers numerous options. Taking
advantage of this, several metadata are obtained to describe each message. Thus, the
attributes associated with each of the tweets collected are: (1) Created at, date of creation
of the tweet; (2) ID, identification number of the tweet; (3) Text, message contained in the
tweet; (4) User ID, identification of the user posting the tweet; (5) User Name, name of
the user posting the tweet; (6) Entities Hashtags, contains the various hashtags present in
the tweet; (7) RT, indicates whether the posted message is a retweet; (8) RT Count, count
of the number of times the message has been retweeted; and (9) Favorite Count, count of
the number of times the message has been marked as a favorite (favs).

Furthermore, we generate two additional variables from the date of publication
of the tweets: Weekday, which indicates whether the message was published during the
week or at the weekend; and DayPart, which refers to the part of the day in which the
message was published. The parts of the day are defined as:morning (from 7 AM to 2
PM), afternoon-evening (from 2 PM to 9 PM), night (from 9 PM to 7 AM).

Moreover, since we intend to extract rules with the sentiment of the message as a
consequent, we need a variable that contains this sentiment. For this purpose, we have
applied the SentiStrength classifier previously introduced, which will allow us to extract in
a Sentiment attribute the sentiment present in the text. Likewise, it has been detected
that some of the hashtags used gave rise to messages in other languages. In view of this, it
has been decided to apply a language analyzer, so that if the message is considered to be in
a language other than Spanish, it is classified as foreign. This is collected in the Language
variable, which allows further filtering. The filtering derived from the application of this
language analyzer reduces the total number of messages to 250,152, meaning that more
than 10,000 tweets are discarded for being in a language other than Spanish.

VI.2.5.1 Exploratory data analysis

As we did in the previous case study, we analyzed the distribution of the values of some
attributes of interest. Figures VI.21-VI.22 show the distributions of the variables Weekday,

VI.2 Real-Time relational analysis on Twitter 215

DayPart and Sentiment. Figure VI.21 shows that the part of the day in which more tweets
are published is the morning, this matches the part of the day in which both politicians
and journalists tend to be more active. Along the same lines, in proportion to the number
of days, there is greater activity on weekdays than on weekends. On the other hand, the
variable whose distribution presents a priori greater interest is the sentiment expressed
in the messages. In Figure VI.22, it can be seen that the neutral is the most common
sentiment, followed by positive, and that the imbalance between positive and negative is
limited.

0 25000 50000 75000 100000 125000 150000 175000 200000
Frequency

Weekday

Weekend

W
ee

k
pa

rt

(a)

0 20000 40000 60000 80000 100000 120000
Frequency

Morning

Afternoon

Night

Da
y

pa
rt

(b)

Figure VI.21: Distribution of values of the variables (a) week part and (b) day part.

0 20000 40000 60000 80000 100000
Frequency

NEUTRAL

POSITIVE

NEGATIVE

Se
nt

im
en

t

Figure VI.22: Distribution of the Sentiment variable in the set of tweets studied.

In addition, the influence of the political groups has been analyzed based on the
mentions to the parties themselves and their members in the tweets published throughout
the timeline. The individual names tracked have been chosen based on their relevance in
the historical messages. Thus, while for the PSOE (Partido Socialista Obrero Español),
names such as Pedro Sánchez (leader), Carmen Calvo and Adriana Lastra have been

216 Chapter VI. Applications

considered, in the case of the PP (Partido Popular), relevant members such as Pablo
Casado (leader) or Isabel Dı́az Ayuso appear. For Ciudadanos, Inés Arrimadas and Albert
Rivera (leader) have been highlighted, while for VOX, Santiago Abascal (leader) and
Ortega Smith have been taken into account. Finally, in Unidas Podemos, Pablo Iglesias
(leader), Irene Montero and Pablo Echenique were considered. The evolution of the amount
of mentions of the different parties and their members over the analyzed time period is
shown in Figure VI.23.

Figure VI.23: Evolution over time of the frequency of publication on the topics of interest
in the tweets related to the 2019 Spanish investiture process.

We can observe how the two parties that were in the midst of negotiations to form a
government, PSOE and Unidas Podemos, initially monopolize practically all the attention.
The relevance of both parties remains fairly close until the days prior to the start of the
investiture debate (July 22, 2019). From that moment on, the number of mentions linked
to Unidas Podemos declines while those of the PSOE remain fairly stable. As for the three
remaining parties, as the days go by, a rise in their number of mentions can be seen, thus
balancing the situation of all parties, with the exception of the PSOE, which continues
to stand out clearly. This prominent position of the PSOE is not surprising, since it had
been the most voted party and its leader was the candidate to be sworn in as president.
In general, the evolution in the mentions moves from a scenario of concentration of the
discussion around only two parties (PSOE and Unidas Podemos) towards a more open
scenario. This is consistent with the fact that at the beginning of the period analyzed
there were intense negotiations to try to form a coalition government between PSOE and
Unidas Podemos, while as the summer progresses the possibility of a repeat election is

VI.2 Real-Time relational analysis on Twitter 217

gaining more and more strength.

VI.2.5.2 Natural language processing

A text analysis very similar to the one discussed for the US election dataset has been
applied. Thus, links, numbers, punctuation (with the exception of # and @), emoticons and
laughter have been removed from the messages, as well as possible repetitions of consecutive
letters. Common text mining techniques have also been applied, starting with the removal
of stopwords and short words, and applying grammatical tagging (again considering that
hashtags and users have their own grammatical tags) and the lemmatization technique
to standardize the text. Again, SpaCy has been used as a tool for text analysis because,
although its speed of analysis is not the best, it presents a better library for the analysis
of Spanish texts. In addition, a simplification of the text according to the grammatical
category of the words has been conducted. A strategy similar to the one applied to the
US election database has been followed, except that this time verbs have been considered.

After that, we analyzed the identifiable N-grams, looking for bigrams, tri-
grams and quatrigrams. After analyzing the obtained quatrigrams, the only
term of interest is partido socialista obrero espa~nol, which refers to the po-
litical party PSOE. On the other hand, in the case of trigrams, a total of 6
have been found that may be of interest. Five of them refer to political per-
sonalities (isabel diaz ayuso, cayetana alvarez toledo, pedro sanchez castejon,
javier ortega smith, miguel angel blanco) and two (ley patrimonio natural and
ley violencia genero) refer to laws. In particular, the first refers to a law that defends
the conservation of the natural heritage and biodiversity of ecosystems (which is probably
related to views on a serious forest fire in Gran Canaria) while the second refers to a
2004 law about violence against women (probably cited in the context of the news of the
murders of women or the claims made by the VOX political party against feminism and
against this law).

In the case of the bigrams, numerous terms of interest have been found, which are
listed in Table VI.6. As can be seen, most of the bigrams refer to political personalities or
Autonomous Communities. However, there are also groups or public institutions (such
as guardia civil, sanidad publica, seguridad social or audiencia nacional) and
programs or measures (such as politica social, servicio publico or ley electoral),
as well as interesting concepts related to political discussion (such as preso politico,
violencia genero, libertad expresion or agresion sexual).

Again, it is necessary to carry out a unification of entities since there is a great
variety of terms to refer to personalities, political groups or other entities of interest. Table
VI.7 shows the entities considered together with the terms that come under each of them.

Once this is done, the texts are as standardized as possible, so we proceed to the
creation of a bag of terms of interest from the database, which we deem relevant based on
the concept to which they refer and their frequency of occurrence. On this occasion, this

218 Chapter VI. Applications

(pedro, sanchez) (pablo, iglesias) (unidas, podemos) (carmen, calvo) (violencia, genero)
(mayoria, absoluto) (adriana, lastra) (albert, rivera) (partir, politico) (susana, diaz)

(pablo, casado) (mocion, censura) (open, arms) (santiago, abascal) (guardia, civil)
(comunidad, madrid) (reformar, laboral) (irene, montero) (repetir, eleccion) (castilla, leon)

(diaz, ayuso) (consejo, ministro) (aitor, esteban) (felipe, gonzalez) (ivan, redondo)
(señor, sanchez) (repeticion, electoral) (campaña, electoral) (politico, social) (ley, mordaza)
(gabriel, rufian) (congreso, diputados) (preso, politico) (partido, popular) (grupo, parlamentario)

(antonio, martinez) (rocio, monasterio) (esperanza, aguirre) (señor, iglesias) (violencia, machista)
(ana, oramas) (repeticion, eleccion) (ortega, smith) (alvarez, toledo) (reforma, laboral)

(seguridad, social) (pais, vasco) (ortega, lara) (ana, botella) (guerra, civil)
(isabel, #diazayuso) (señor, rivera) (servicio, publico) (señora, calvo) (mariano, rajoy)

(javier, maroto) (junta, andalucia) (audiencia, nacional) (alberto, garzon) (lopez, miras)
(raquel, romero) (sanchez, castejon) (iñigo, errejon) (region, murcia) (libertad, expresion)
(santi, abascal) (cristina, cifuentes) (partido, socialista) (ines, arrimadas) (pablo, montesinos)

(pablo, echenique) (julio, anguita) (sra, calvo) (maria, claver) (agresion, sexual)
(sanidad, publico) (laura, borras) (ley, electoral) (noelia, vera) (ana, beltran)

(señor, pedro) (coalicion, canaria) (diaz, #ayuso) (policia, nacional) (yolanda, diaz)

Table VI.6: Table with the different bigrams found in the set of tweets in Spanish.

bag contains a total of 40 terms of interest, which are shown in Table VI.8.

Figures VI.24 and VI.25, graphically represent the frequency of each of the terms
included in the bag. These 40 terms are the items on which we rely to represent the tweets
in transactional format.

VI.2.5.3 Real-time association rule analysis

Once the transaction database has been generated based on the terms of interest, the
association rules between these terms and the links between terms and sentiments are
obtained. As in the previous case, a study will be conducted following the two approaches
considered: an incremental learning of data streams to extract the FCIs by using IncMine
(Cheng et al., 2008), followed by offline rule learning; and a direct extraction of the
association rules present by applying a fuzzy and online technique such as Fuzzy-CSar-
AFP (Ruiz and Casillas, 2018).

After that, these rules are analyzed to look for the presence of relations between
terms and sentiments in them. After obtaining all the rules, the corresponding
analysis has to be carried out to look for relations of the term of interest-sentiment
type. It is necessary to pay attention only to those that are sufficiently valid, for
which the lift is again used as a quality measure: we look for rules with lift greater than 1.2.

Association stream mining with Fuzzy-CSar-AFP

At this point, we apply the online learning algorithm. Fuzzy-CSarAFP proceeding
similarly to the previous case. Thus, it is established that the sentiment variable is the
one that acts as the consequent, while the rest of the variables (part of the day, part of
the week, retweet and the variables of the 40 terms of the bag of interest) will be part of
the antecedents of the rules. Likewise, it has been defined that the writing of the rules

VI.2 Real-Time relational analysis on Twitter 219

Entity Associated terms

PSOE partido socialista obrero español, psoe, #psoe, #partidosocialistaobreroespañol, @psoe, partido socialista

pedro sanchez

sanchez castejon, @sanchezcastejon, #sanchez, #pedrosanchez, pedro sanchez castejon,
#pedrosanchezcastejon, #sanchezcastejon, pedro sanchez, señor pedro, #pedrosanchezenlaser,

#sanchezsi, #siapedro, #pedronoseatreve, #pedronoquiere, #sanchezdimision
carmen calvo carmen calvo, señor calvo, sra calvo, #carmencalvo, @carmencalvo, @carmencalvo

VOX
vox, @voxes,@vox, #vox, #sentidocomunvox,

#voxutil, #voxverdaderaoposicion, #yovolvereavotarvox, #voxextremanecesidad
adriana lastra adriana lastra, adrianalastra, #adrianalastra, @adrilastra, lastra

santiago abascal
santiago abascal, @santiabascal, @santi abascal, santi abascal, abascal,

#abascal, señor abascal, #santiabascal
ortega smith ortega smith, javier ortega smith, @ortegasmith, @ortega smith, #ortegasmith

unidas podemos
unidas podemos, podemos, #unidaspodemos, @unidas podemos,
@unidaspodemos,@ahorapodemos, #podemos, #ahorapodemos

pablo iglesias pablo iglesias, señor iglesias, @pabloiglesias, iglesias, @pablo iglesias , #pabloiglesias, #iglesias
irene montero irene montero, @irenemontero, #irenemontero, @irene montero , #montero, irenemontero

pablo echenique pablo echenique, echenique, @pnique, #pabloechenique, #echenique
i~nigo errejon iñigo errejon, errejon, #errejon, #iñigoerrejon, @ierrejon
alberto garzon alberto garzon, #garzon, @garzon, #albertogarzon, @agarzon
ciudadanos #ciudadanoscs, @ciudadanoscs, #cs, @ciudadanos, #ciudadanos

ines arrimadas ines arrimadas, #inesarrimadas, #arrimadas, arrimadas, @inesarrimadas
albert rivera albert rivera, señor rivera, #albertrivera, albertrivera, #rivera, @albert rivera, @albertrivera
gabriel rufian gabriel rufian, señor rufian, #rufian, rufian, @rufian, @gabrielrufian, #gabrielrufian
partido popular partido popular, #partidopopular, partidopopular, @partidopopular, #pp, @ppopular, #ppopular, @populares
pablo casado pablo casado, señor casado, #casado, casado, @pablocasado, @pablocasado , #pablocasado

isabel diaz ayuso
diaz ayuso, @idiazayuso, #isabeldiazayuso, #diazayuso, #ayuso,

isabel diaz ayuso, isabeldiazayuso, @isabeldiazayuso
cayetana alvarez toledo cayetana alvarez toledo, #cayetanaalvarez, @cayetanaat, alvarez toledo, #cayetanaalvareztoledo

investidura

#investidurapublico, #mvtinvestidura, #investiduraarv, #debatedeinvestidura,
#mvtinvestidura, investidura, #investidurave, #investidura, #investiduracongreso
#investidurafallida, #debateinvestiduraespv, #investiduravej, #sesiondeinvestidura

elecciones elecciones, #elecciones, electoral, eleccion, #eleccionesespaña
derecha derecha, #derecha, ultraderechista, ultraderecha, #ultraderecha, #trifachito, trifachito

izquierda izquierda, izquierdo, progresista, #izquierda, #progresista, #socialista, #sociolisto, #sociolista
independentismo independentismo, independentista, #independentista, #independencia, independencia

abstencion abstencion, #abstencion, abstenerse, abstenido, abstener, #abstener

repeticion electoral
repeticion electoral, repeticion eleccion, repeticion elecciones, repetir elecciones,
repetir eleccion, #repeticionelectoral, #repeticionelecciones, #repeticioneleccion

negociacion dialogo, #dialogo, dialogar, negociar, negociacion, #negociacion
pacto pacto, #pacto, pactar

gobierno gobierno, #gobierno, gobernar, #construirgobierno
feminismo feminismo, #feminismo, feminista, #feminista, feminazi
open arms open arms, #openarms, @openarms
democracia #democracia, democratico, democracia
inmigracion open arms, #openarms, @openarms, inmigracion, #inmigracion, inmigrante

violencia genero #violenciamachista, violencia genero, agresion sexual, #violenciadegenero, #misoginia
corrupcion corrupto, #corrupcion, corrupcion

Table VI.7: Table with the different entities considered and the terms included in them.

investidura PSOE pedro sanchez pablo iglesias gobierno
unidas podemos VOX partido popular izquierda izquierda

ciudadanos elecciones coaliccion negociacion pacto
albert rivera carmen calvo santiago abascal isabel diaz ayuso democracia
pablo casado gabriel rufian abstencion adriana lastra irene montero

reforma laboral feminismo violencia genero iñigo errejon corrupcion
pablo echenique independentismo ortega smith bipartidismo alberto garzon

inmigracion mayoria absoluta repeticion electoral regeneracion ines arrimadas

Table VI.8: Set of elements of interest considered for the 2019 Spanish investiture process
case.

220 Chapter VI. Applications

Figure VI.24: Word cloud with the words chosen for the interest bag of the Spanish
investiture process problem.

VI.2 Real-Time relational analysis on Twitter 221

Figure VI.25: Histogram showing the frequency of occurrence of each of the words chosen
for the interest bag in the Spanish investiture process problem.

222 Chapter VI. Applications

obtained will be done every 5,600 elements, which corresponds to the average number
of tweets per day. On the other hand, given the increase in the number of variables to
consider, we set θmna = 6. Meanwhile, the mutation parameters pC and pM have been set
to 0.1, whereas, given its definition, pS is irrelevant as there is only one possible variable
for the consequent.

Once more, we analyze the resulting rules by focusing on the links between the
defined terms of interest and the sentiments expressed in the tweets. Figures VI.26-VI.27
show three examples of the Sankey diagrams generated for such relations based on the rules
obtained by Fuzzy-CSar-AFP at three different times in the stream. Of particular note is
Figure VI.27, which presents the final rules, i.e., reflects the state of the Fuzzy-CSar-AFP
rule population once the algorithm has processed all the tweets.

(a) (b)

Figure VI.26: Sankey diagram illustrating the set of term-sentiment links obtained based
on the rules generated by Fuzzy-CSarAFP after analyzing (a) 5,600 and (b) 128,800 tweets.

These figures show variations in the number and content of the links found over
time. There are, therefore, concept drifts, as would be expected in a real dataset such as
the one studied. Over time, there are changes in the relations present in the data received,
with terms or sentiments that are different from those of previous instants. These changes
cause the population of rules maintained by Fuzzy-CSar-AFP to evolve and this is reflected
in the Sankey diagrams shown.

Comparing the two diagrams included in Figure VI.26, the aforementioned evolution
of the sets of relationships obtained (result of the concept changes discussed) can be
appreciated. In spite of these variations, a stable link of the PSOE with positive messages
can be appreciated, although the weight of this type of rules is reduced. However, certain
changes can be seen in the case of other parties. Such is the case of Ciudadanos, which

VI.2 Real-Time relational analysis on Twitter 223

Figure VI.27: Sankey diagram illustrating the set of term-sentiment links obtained based
on the rules generated by Fuzzy-CSarAFP after analyzing 250,147 tweets.

224 Chapter VI. Applications

goes from having a link (albeit weak) with positive sentiment to a significant relationship
with neutral sentiment. Likewise, in the case of the PP we see how it evolves from being
linked to a positive sentiment to the disappearance of this link and to an important weight
of rules that associate it with a negative sentiment.

Another interesting case is that of VOX, which initially does not appear in the
rules but gradually gains weight in the messages and begins to be included in the rules
generated. It is noteworthy that at the midpoint of the stream it appears linked to the
positive and negative sentiments with almost equal strength, and presenting a great weight
with respect to the rest of the terms, since it is present in the antecedents of around half
of the rules. This can be clearly seen in Figure VI.26.

The analysis of Figure VI.27 presents a very interesting scenario, in which all
political parties appear associated with a sentiment, giving us a summary of the sentiment
generated by the different political groups once all the tweets have been visited. Thus,
while PSOE and Podemos present a high number of rules with positive sentiment;
Ciudadanos appears related to neutral sentiment, and PP and VOX get linked to negative
sentiment.

Dynamic extraction of association rules with IncMine

As in the previous case, we applied IncMine available in MOA (Bifet et al., 2010a)
to extract FCIs from the data stream and then, at the end of each data batch, generate
the association rules offline. For the IncMine configuration, we keep the threshold support
of 0.05, but set a relaxation ratio of 0.3. Again, the segment length matches the rule
writing frequency of Fuzzy-CSar-AFP. After obtaining the FCIs and the subsequent offline
extraction of association rules from them, the presence of relationships between terms
of interest and sentiments is analyzed based on the existing relationships in the set of
association rules filtered according to the lift threshold.

Figures VI.28-VI.29 show the link patterns present in the association rules obtained
using the IncMine algorithm for this second case study based on Spanish tweets. Each
of the plots corresponds to a different learning point, i.e., to the rules generated after
different batches of data have been processed. The association rules obtained after IncMine
processes the last batch of data yield Figure VI.20.

We can appreciate how the number of rules obtained at different points in the
stream is uneven, so that the number and type of relationships between terms vary over
time. The analysis of Figure VI.29 shows us a very similar situation to that obtained for
Fuzzy-CSarAFP, where the five political parties are associated to sentiments. However,
the links created are different. This can be explained by the differences between the two
algorithms when it comes to processing the data and evolving the models.

The analysis of the different stages and their comparison makes it possible to
identify many relationships that remain constant over time, such as the CORRUPCION→
NEGATIVE link. However, there are also other rules that present clear variations, so that

VI.2 Real-Time relational analysis on Twitter 225

(a) (b)

Figure VI.28: Sankey diagram illustrating the set of term-sentiment links obtained based
on the rules obtained through the use of IncMine after analyzing (a) 5,600 and (b) 128,800
tweets.

the phenomenon of concept drift is made evident again. An example is the case of PP,
which initially appears linked to a positive sentiment but soon evolves to a relationship of
the type PP → NEUTRAL, although maintaining links of lesser weight with the other
two sentiments. Thus, along the timeline it relates with sentiments of all kinds, whereby
messages received in the data stream show changes in the opinions of users, which give
rise to rules implying different consequents. Towards the end of the stream, the sentiment
with which it appears most strongly linked is the negative one.

226 Chapter VI. Applications

Figure VI.29: Sankey diagram illustrating the set of term-sentiment links obtained based
on the rules obtained through the use of IncMine after analyzing 250,147 tweets.

Chapter VII

Conclusions and future work

VII.1 Concluding remarks

The main objective of this thesis is to contribute to the existence of online learning
proposals for data stream mining that are useful and applicable in real problems. In
this sense, we advocate the development of descriptive models, based on interpretable
knowledge representations, that allow to understand what is happening in the system. We
study the use of rule learning in classification problems, but we focus on other learning
paradigms that do not require large amounts of labeled data and that we believe may be
more directly applicable to many real data stream contexts.

Three algorithmic proposals are presented throughout this thesis. Each of them is
based on a different learning paradigm. First, a supervised approach for classification in
data streams, CLAST, is presented. CLAST learns rules that allow it to approach the
classification task with competitive results, while generating descriptive models that can be
analyzed and interpreted to understand the basis for classification decisions. The method
present a purely online design approach, where each example is visited just once upon its
arrival. The population of rules evolves dynamically and a steady-state genetic algorithm
is used for the discovery of new rules. A Hoeffding bound is incorporated for some of the
decisions made in the evolution of the population, which allows, among other things, to
reduce the number of parameters required. In addition, the system maintains a set of
histograms that are also updated online and provide additional information about the
underlying class distribution. At any time, the rules in the population can work together
to predict the class label of a received example. Compared to other data stream classifiers,
CLAST obtains the best average results in the extensive benchmark experiments conducted
and present very competitive performance in various real-world data stream scenarios.

Given the high cost of maintaining a high level of labeling in data streams, we
consider that other learning paradigms may be more applicable than the supervised
paradigm. In this line, an unsupervised learning algorithm for association stream mining
is proposed. Unlike most methods in the literature, our proposal, Fuzzy-CSar-AFP, is

227

228 Chapter VII. Conclusions and future work

not limited to the identification of frequent itemsets nor does it relegate the generation
of association rules to an offline phase. The use of an evolutionary algorithm allows
Fuzzy-CSar-AFP to evolve the association rules directly from the data without the need for
the classical two-step process of rule mining algorithms. Thus, the algorithm dynamically
maintains a set of fuzzy association rules that explain what is happening in the system
at any given time. Fuzzy-CSar-AFP is an advanced version of an earlier proposal that
incorporates new mechanisms which adapt membership functions and fuzzy partitions
so that the algorithm might be endowed with more flexibility to fit the features of each
variable. The better behavior of Fuzzy-CSar-AFP as compared with Fuzzy-CSar and
Fuzzy-Apriori is evidenced through the conducted experiments. These experiments are
conducted on complex original real-world data streams related with a Psychophysiology
problem. Moreover, we tackle the difficulties of fairly evaluating association stream
mining by incorporating a new methodology to assess and compare results from different
algorithms. This new methodology comprises both new quantitative metrics and visual
representations. Thus, we are able to show how the quality rules generated by Fuzzy-CSar-
AFP are distributed in a more spacious way. This more spaced distribution means that
the rules are more relevant as they represent different knowledge.

The last one of the algorithmic proposals brings together the supervised and
unsupervised worlds. PAST, is a semi-supervised approach to deal with label scarcity in
data stream classification. It takes advantage of unlabeled examples (much more frequent
and easily available in data streams) to alleviate the shortcomings resulting from label
scarcity. Given the good performance shown by CLAST and the difficulty to obtain
labeled data in many data stream environments, we present this adaptation of CLAST
that operates under the semi-supervised learning paradigm. The algorithm continues
to be fully online and maintains the ability to predict the class label of an example at
any time, but, in this case, both labeled and unlabeled examples are used to update
the population of rules and the set of histograms, i.e., to evolve the knowledge of the
system. We compare the performance of PAST with that of CLAST and other classifiers
both online and offline. The experiments are conducted on different datasets among
which real data stream problems are included. For each of the problems, the behavior
of the algorithms is studied under different labeling conditions, ranging from only 5% to
100% labeled data. PAST obtains the best average results in the collection of benchmark
datasets. It significantly improves the performance of the rest of data stream classifiers
tested. It also obtains highly competitive results in the real data stream problems included
in the experimentation, being the best performing algorithm for low labeling percentages
in three of the four problems addressed. PAST improves the results obtained by CLAST
in all cases where there is unlabeled data, although this improvement is more noticeable
for low labeling percentages (5-10%).

In addition, two real use cases are presented in which the value of the knowledge
extracted through association stream mining is demonstrated. The first of these applications
uses smartphone usage data collected over several months. The association stream mining
algorithm helps to explain what is happening at any time. The results obtained show the

VII.2 Future work 229

evolution experienced by the population of rules as the data stream is received. These
results exemplify how Fuzzy-CSar-AFP and the association rules discovered by it make
possible to find data properties out, properties that otherwise would not have been detected.
Since the algorithm does not assume any a priori structure for the problem, it is able to
adapt itself to the specific characteristics of each subject’s data. Moreover, this is achieved
in a very efficient way, it takes only 1.97ms to Fuzzy-CSar-AFP to process each datum,
i.e., with this specific data structure an input rate of about 500Hz could be handled.

The analysis of the rules discovered by the algorithm is complemented with periodical
subjective information about emotional state. Thus, the evolution over time of the levels of
happiness, stress, productivity and health expressed by the subjects (but not shown to the
algorithm) is compared with the evolution of the different rules generated automatically in
real time. Interestingly, an important correlation is detected between the user’s emotional
state and certain patterns in the use of the smartphone.

The second application focuses on the use of association rules to analyze streams
of tweets. The obtained tweets are related to political topics. Specifically, two cases are
analyzed: a first smaller collection of tweets linked to the 2016 US presidential election, and
a second original real collection with more than 250,000 tweets related to the investiture
process in Spain during the summer of 2019. In both cases, after extracting the tweets,
natural language processing techniques are applied to identify a collection of terms of
interest (items) based on which the tweets are represented as transactions. In addition,
in the second case, sentiment analysis techniques are applied to associate each tweet
with a sentiment label. On these data, we apply the IncMine frequent itemset mining
algorithm and the Fuzzy-CSar-AFP association stream mining algorithm. The analysis
of the obtained association rules focuses on the term-sentiment links present in the rules.
Through this analysis, it is possible to observe how certain political parties, personalities
or themes tend to maintain stable associations with a given sentiment, while for others
it is observed how the type of associated sentiment changes over time. In some cases,
parallelism between the evolutions of the sentiments associated with two terms is observed.

In summary, we have managed to design solutions based on evolutionary learning of
rules from data streams, which successfully address different types of data mining problems.
The good performance and usefulness of the proposals has been evidenced in real-world
applications.

VII.2 Future work

The work developed in this thesis and its outcomes enable new open challenges, improve-
ments and research works. Some future research lines related to the previously drawn
conclusions are detailed below:

� Concept-drift and Non-stationary environments. We plan to conduct a more extensive
study of the performance of the proposals, especially CLAST and PAST, under

230 Chapter VII. Conclusions and future work

concept-drift conditions. From the results of this study, we could analyze the
possibility of incorporating techniques based on decay factor to favor a greater
influence of the current data allowing a faster adaptation to changes that may occur
in the data. Another possibility to be studied would be the adaptation of techniques
on concept change detection in supervised or semi-supervised learning (Žliobaitė
et al., 2013; Casillas et al., 2018). Indeed, the proposal presented in Casillas et al.
(2018) is based on structures that are already incorporated in the learning iteration
of CLAST and PAST.

� Improvement of our unsupervised learning proposal. Along the same lines that
have driven the novelties already introduced by Fuzzy-CSar-AFP (i.e., favoring rule
diversity and better adaptation of the algorithm to the conditions of real problems),
the use of diversity mechanisms to guarantee the generation of heterogeneous rules
(Rodŕıguez et al., 2013), as well as, the use of online preprocessing in problems with
a high number of input variables (Žliobaitė and Gabrys, 2012) could be explored.

� Exploring new real-world applications. Apply these techniques to other real problems
where they may be useful, working in an interdisciplinary way with experts from
other areas that can benefit from the knowledge extracted by the algorithms. In
this PhD dissertation, we have shown examples of real applications of the proposals.
In this sense, researchers in psychophysiology at the University of Granada have
already shown their interest in applying this type of techniques to the study of
the dynamic causal model of EEG in different scenarios. In any case, as has been
demonstrated with the applications presented, there is a wide range of potential
fields of application.

� Dissemination. It is our intention to share the developed algorithms with the
community. Different options are being considered, from publishing the developed
algorithms in general open source repositories (e.g. GitHub) to incorporating them
in specific software for data mining or data stream mining (such as MOA (Bifet et al.,
2010a) or Spark Streaming (Spark, 2021)). Another of the possibilities contemplated
is to enable a web tool through which users can enter their data and make use of
some of the techniques. Some steps have been taken in this direction, but for the
moment they are still premature and limited to rule visualization techniques.

� Further exploiting the descriptive power of rules. As the number of rules grows,
interpreting the results becomes more challenging. However, since the rules represent
relationships between variables, they offer the ability to reach a level of interpretability
detail that cannot be approached with other techniques. In this sense, we consider
interesting to investigate methods that allow us to deepen the interpretation of
the rules. One of the possible paths to explore is the development of specialized
visualizations. Nevertheless, other types of approaches aimed at synthesizing the
knowledge present in the rules are also worth studying.

VII.2 Future work 231

� Proposal of a greedy algorithm for association stream mining. A greedy proposal,
which is not based on optimization paradigms such as evolutionary computation
and which does not use fuzzy representation of variables, present two main potential
advantages: its simplicity and the possibility of increasing efficiency. These two
potential advantages could also facilitate its incorporation into tools or repositories
of data mining methods, increasing the usefulness and impact of the proposal. Part
of the objective would also be to minimize the number of parameters to try to ensure
the greatest possible ease of use.

Bibliography

Agarwal, R. C., Aggarwal, C. C., and Prasad, V. (2000). Depth first generation of
long patterns. In Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 108–118.

Aggarwal, C. C. (2003). A framework for diagnosing changes in evolving data streams. In
Proceedings of the 2003 ACM SIGMOD International Conference on Management of
Data, pages 575–586.

Aggarwal, C. C., Hinneburg, A., and Keim, D. A. (2001). On the surprising behavior of
distance metrics in high dimensional space. In International Conference on Database
Theory, pages 420–434. Springer.

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules. In
VLDB’94, Proceedings of 20th International Conference on Very Large Data Bases,
September 12–15, 1994, Santiago de Chile, Chile, pages 487–499.

Aharony, N., Pan, W., Ip, C., Khayal, I., and Pentland, A. (2011a). Friends
and family dataset. Reality Commons. http://realitycommons.media.mit.edu/

friendsdataset.html. Accessed February 21, 2021.

Aharony, N., Pan, W., Ip, C., Khayal, I., and Pentland, A. (2011b). Social fMRI:
Investigating and shaping social mechanisms in the real world. Pervasive and Mobile
Computing, 7(6):643–659.

Ahmad, S., Lavin, A., Purdy, S., and Agha, Z. (2017). Unsupervised real-time anomaly
detection for streaming data. Neurocomputing, 262:134–147.

Ahmadi, Z. and Beigy, H. (2012). Semi-supervised ensemble learning of data streams in the
presence of concept drift. In International Conference on Hybrid Artificial Intelligence
Systems, pages 526–537. Springer.

Akbarinia, R. and Masseglia, F. (2013). Fast and exact mining of probabilistic data
streams. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 493–508. Springer.

233

234 BIBLIOGRAPHY

Alcalá, R., Casillas, J., Cordón, O., and Herrera, F. (2001). Building fuzzy graphs: features
and taxonomy of learning for non-grid-oriented fuzzy rule-based systems. Journal of
Intelligent & Fuzzy Systems, 11(3, 4):99–119.

Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., Garćıa, S., Sánchez, L., and
Herrera, F. (2011). Keel data-mining software tool: data set repository, integration of
algorithms and experimental analysis framework. Journal of Multiple-Valued Logic &
Soft Computing, 17.

Altshuler, Y., Aharony, N., Fire, M., Elovici, Y., and Pentland, A. (2012). Incremental
learning with accuracy prediction of social and individual properties from mobile-phone
data. In 2012 International Conference on Privacy, Security, Risk and Trust and 2012
International Confernece on Social Computing, pages 969–974. IEEE.

Altshuler, Y., Fire, M., Aharony, N., Volkovich, Z., Elovici, Y., and Pentland, A. S.
(2013). Trade-offs in social and behavioral modeling in mobile networks. In International
Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction, pages
412–423. Springer.

Anderson, I., Maitland, J., Sherwood, S., Barkhuus, L., Chalmers, M., Hall, M., Brown,
B., and Muller, H. (2007). Shakra: tracking and sharing daily activity levels with
unaugmented mobile phones. Mobile Networks and Applications, 12(2-3):185–199.

Bansal, A. (2020). London bike sharing dataset. https://www.kaggle.com/archit9406/
bike-sharing. Accessed February 21, 2021.

Bardram, J. E., Frost, M., Szántó, K., Faurholt-Jepsen, M., Vinberg, M., and Kessing,
L. V. (2013). Designing mobile health technology for bipolar disorder: a field trial of
the MONARCA system. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 2627–2636. ACM.

Bartsch, R. P., Liu, K. K., Bashan, A., and Ivanov, P. C. (2015). Network physiology:
how organ systems dynamically interact. PLOS ONE, 10(11):e0142143.

Basat, R. B., Einziger, G., Friedman, R., Luizelli, M. C., and Waisbard, E. (2017). Constant
time updates in hierarchical heavy hitters. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pages 127–140.

Basat, R. B., Einziger, G., Keslassy, I., Orda, A., Vargaftik, S., and Waisbard, E. (2018).
Memento: Making sliding windows efficient for heavy hitters. In Proceedings of the 14th
International Conference on Emerging Networking EXperiments and Technologies, pages
254–266.

Beringer, J. and Hüllermeier, E. (2007). Efficient instance-based learning on data streams.
Intelligent Data Analysis, 11(6):627–650.

BIBLIOGRAPHY 235

Bernecker, T., Kriegel, H.-P., Renz, M., Verhein, F., and Zuefle, A. (2009). Probabilistic
frequent itemset mining in uncertain databases. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
119–128.

Bertini, J. R., de Andrade Lopes, A., and Zhao, L. (2012). Partially labeled data stream
classification with the semi-supervised k-associated graph. Journal of the Brazilian
Computer Society, 18(4):299–310.

Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft, U. (1999). When is “nearest
neighbor” meaningful? In International Conference on Database Theory, pages 217–235.
Springer.

Bifet, A. (2010). Adaptive stream mining: Pattern learning and mining from evolving data
streams, volume 207. IOS Press.

Bifet, A. and Gavaldà, R. (2007). Learning from time-changing data with adaptive
windowing. In Proceedings of the 2007 SIAM International Conference On Data Mining,
pages 443–448.

Bifet, A. and Gavaldà, R. (2009a). Adaptive learning from evolving data streams. In
International Symposium on Intelligent Data Analysis, pages 249–260. Springer.

Bifet, A. and Gavaldà, R. (2009b). Adaptive xml tree classification on evolving data
streams. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 147–162. Springer.

Bifet, A., Gavaldà, R., Holmes, G., and Pfahringer, B. (2018). Machine learning for data
streams: with practical examples in MOA. MIT press.

Bifet, A., Holmes, G., Kirkby, R., and Pfahringer, B. (2010a). MOA: Massive Online
Analysis. Journal of Machine Learning Research, 11:1601–1604.

Bifet, A., Holmes, G., and Pfahringer, B. (2010b). Leveraging bagging for evolving data
streams. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 135–150. Springer.

Bifet, A., Holmes, G., Pfahringer, B., and Gavaldà, R. (2009a). Improving adaptive
bagging methods for evolving data streams. In Asian Conference on Machine Learning,
pages 23–37. Springer.

Bifet, A., Holmes, G., Pfahringer, B., and Gavaldà, R. (2011). Mining frequent closed
graphs on evolving data streams. In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 591–599.

Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., and Gavaldà, R. (2009b). New en-
semble methods for evolving data streams. In Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 139–148.

236 BIBLIOGRAPHY

Bloehdorn, S., Blohm, S., Cimiano, P., Giesbrecht, E., Hotho, A., Lösch, U., Mädche,
A., Mönch, E., Sorg, P., Staab, S., et al. (2011). Combining data-driven and semantic
approaches for text mining. In Foundations for the Web of Information and Services,
pages 115–142. Springer.

Blum, A. and Mitchell, T. (1998). Combining labeled and unlabeled data with co-training.
In Proceedings of the Eleventh Annual Conference on Computational Learning Theory,
pages 92–100.

Bogomolov, A., Lepri, B., Ferron, M., Pianesi, F., and Pentland, A. S. (2014). Pervasive
stress recognition for sustainable living. In 2014 IEEE International Conference on
Pervasive Computing and Communication Workshops, pages 345–350. IEEE.

Bogomolov, A., Lepri, B., and Pianesi, F. (2013). Happiness recognition from mobile
phone data. In 2013 International Conference on Social Computing, pages 790–795.
IEEE.

Bordes, A., Ertekin, S., Weston, J., and Bottou, L. (2005). Fast kernel classifiers with
online and active learning. Journal of Machine Learning Research, 6(Sep):1579–1619.

Bouten, C. V., Koekkoek, K. T., Verduin, M., Kodde, R., and Janssen, J. D. (1997). A
triaxial accelerometer and portable data processing unit for the assessment of daily
physical activity. IEEE Transactions on Biomedical Engineering, 44(3):136–147.

Boyer, R. S. and Moore, J. S. (1991). MJRTY—a fast majority vote algorithm. In
Automated Reasoning, pages 105–117. Springer.

Braverman, V., Chestnut, S. R., Ivkin, N., and Woodruff, D. P. (2016). Beating countsketch
for heavy hitters in insertion streams. In Proceedings of the Forty-eighth Annual ACM
Symposium on Theory of Computing, pages 740–753.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123–140.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and
Regression Trees. CRC press.

Brin, S., Motwani, R., Ullman, J. D., and Tsur, S. (1997). Dynamic itemset counting and
implication rules for market basket data. In Proceedings of the 1997 ACM SIGMOD
International Conference on Management of Data, pages 255–264.

Brooke, J., Tofiloski, M., and Taboada, M. (2009). Cross-linguistic sentiment analysis:
From english to spanish. In Proceedings of the International Conference RANLP-2009,
pages 50–54.

BIBLIOGRAPHY 237

Brzeziński, D. and Stefanowski, J. (2011). Accuracy updated ensemble for data streams
with concept drift. In International Conference on Hybrid Artificial Intelligence Systems,
pages 155–163. Springer.

Brzezinski, D. and Stefanowski, J. (2013). Reacting to different types of concept drift:
The accuracy updated ensemble algorithm. IEEE Transactions on Neural Networks and
Learning Systems, 25(1):81–94.

Brzezinski, D. and Stefanowski, J. (2014). Combining block-based and online methods in
learning ensembles from concept drifting data streams. Information Sciences, 265:50–67.

Bustio-Mart́ınez, L., Letras-Luna, M., Cumplido, R., Hernández-León, R., Feregrino-Uribe,
C., and Bande-Serrano, J. M. (2019). Using hashing and lexicographic order for frequent
itemsets mining on data streams. Journal of Parallel and Distributed Computing,
125:58–71.

Cafaro, M., Epicoco, I., and Pulimeno, M. (2019). Cmss: Sketching based reliable tracking
of large network flows. Future Generation Computer Systems, 101:770–784.

Caldarelli, G., Chessa, A., Pammolli, F., Pompa, G., Puliga, M., Riccaboni, M., and
Riotta, G. (2014). A multi-level geographical study of italian political elections from
twitter data. PLOS ONE, 9(5):e95809.

Casilari-Pérez, E. and Garćıa-Lagos, F. (2019). A comprehensive study on the use of
artificial neural networks in wearable fall detection systems. Expert Systems with
Applications, 138:112811.

Casillas, J. and Mart́ınez-López, F. J. (2009). Mining uncertain data with multiobjective
genetic fuzzy systems to be applied in consumer behaviour modelling. Expert Systems
with Applications, 36(2):1645–1659.

Casillas, J., Wang, S., and Yao, X. (2018). Concept drift detection in histogram-based
straightforward data stream prediction. In 2018 IEEE International Conference on
Data Mining Workshops (ICDMW 2018), pages 878–885. IEEE.

Castellano, G. and Fanelli, A. M. (2016). Classification of data streams by incremental semi-
supervised fuzzy clustering. In International Workshop on Fuzzy Logic and Applications,
pages 185–194. Springer.

Ceron, A., Curini, L., and Iacus, S. (2014). Using social media to forecast electoral
results. a meta-analysis. UNIMI-Research Papers in Economics, Business, and Statistics,
page 62.

Chamlertwat, W., Bhattarakosol, P., Rungkasiri, T., and Haruechaiyasak, C. (2012).
Discovering consumer insight from twitter via sentiment analysis. Journal of Universal
Computer Science, 18(8):973–992.

238 BIBLIOGRAPHY

Chan, T. F., Golub, G. H., and LeVeque, R. J. (1983). Algorithms for computing the sample
variance: Analysis and recommendations. The American Statistician, 37(3):242–247.

Chang, C.-C. and Lin, C.-J. (2011). Libsvm: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3):1–27.

Chang, J. H. and Lee, W. S. (2003). Finding recent frequent itemsets adaptively over online
data streams. In Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 487–492.

Chang, J. H. and Lee, W. S. (2005). Effect of count estimation in finding frequent itemsets
over online transactional data streams. Journal of Computer Science and Technology,
20(1):63–69.

Charikar, M., Chen, K., and Farach-Colton, M. (2004). Finding frequent items in data
streams. Theoretical Computer Science, 312(1):3–15.

Chen, P., Su, H., Guo, L., and Qu, Y. (2010). Mining fuzzy association rules in data
streams. In 2010 2nd International Conference on Computer Engineering and Technology,
volume 4, pages V4–153. IEEE.

Cheng, J., Ke, Y., and Ng, W. (2008). Maintaining frequent closed itemsets over a sliding
window. Journal of Intelligent Information Systems, 31(3):191–215.

Chi, Y., Wang, H., Philip, S. Y., and Muntz, R. R. (2006). Catch the moment: maintaining
closed frequent itemsets over a data stream sliding window. Knowledge and Information
Systems, 10(3):265–294.

Choi, H.-J. and Park, C. H. (2019). Emerging topic detection in twitter stream based on
high utility pattern mining. Expert Systems with Applications, 115:27–36.

Chui, C.-K., Kao, B., and Hung, E. (2007). Mining frequent itemsets from uncertain data.
In Pacific-Asia Conference on Knowledge Discovery and Data mining, pages 47–58.
Springer.

Cordón, O. et al. (2001). Genetic Fuzzy Systems: evolutionary tuning and learning of
fuzzy knowledge bases, volume 19. World Scientific.

Cormode, G. and Hadjieleftheriou, M. (2009). Finding the frequent items in streams of
data. Communications of the ACM, 52(10):97–105.

Cormode, G., Korn, F., Muthukrishnan, S., and Srivastava, D. (2004). Diamond in the
rough: Finding hierarchical heavy hitters in multi-dimensional data. In Proceedings
of the 2004 ACM SIGMOD International Conference on Management of Data, pages
155–166.

BIBLIOGRAPHY 239

Cormode, G., Korn, F., Muthukrishnan, S., and Srivastava, D. (2008). Finding hierarchical
heavy hitters in streaming data. ACM Transactions on Knowledge Discovery from Data
(TKDD), 1(4):1–48.

Cormode, G. and Muthukrishnan, M. (2011). Approximating data with the count-min
sketch. IEEE Software, 29(1):64–69.

Corral, G., Garcia-Piquer, A., Orriols-Puig, A., Fornells, A., and Golobardes, E. (2011).
Analysis of vulnerability assessment results based on caos. Applied Soft Computing,
11(7):4321–4331.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions
on Information Theory, 13(1):21–27.

Culpeper, J., Findlay, A., Cortese, B., and Thelwall, M. (2018). Measuring emotional
temperatures in shakespeare’s drama. English Text Construction, 11(1):10–37.

Dal, A. P., Boracchi, G., Caelen, O., Alippi, C., and Bontempi, G. (2018). Credit card
fraud detection: A realistic modeling and a novel learning strategy. IEEE Transactions
on Neural Networks and Learning Systems, 29(8):3784–3797.

Dang, X. H., Lee, V. C., Ng, W. K., and Ong, K. L. (2009). Incremental and adaptive
clustering stream data over sliding window. In International Conference on Database
and Expert Systems Applications, pages 660–674. Springer.

Datar, M., Gionis, A., Indyk, P., and Motwani, R. (2002). Maintaining stream statistics
over sliding windows. SIAM Journal on Computing, 31(6):1794–1813.

Dawar, S., Sharma, V., and Goyal, V. (2017). Mining top-k high-utility itemsets from a
data stream under sliding window model. Applied Intelligence, 47(4):1240–1255.

Deckert, M. (2011). Batch weighted ensemble for mining data streams with concept drift.
In International Symposium on Methodologies for Intelligent Systems, pages 290–299.
Springer.

Delalleau, O., Bengio, Y., and Roux, N. L. (2005). Efficient non-parametric function induc-
tion in semi-supervised learning. In Proceedings of the Tenth International Workshop
on Artificial Intelligence and Statistics, Jan 6-8, 2005, Barbados, pages 96–103. Society
for Artificial Intelligence and Statistics.

Demaine, E. D., López-Ortiz, A., and Munro, J. I. (2002). Frequency estimation of
internet packet streams with limited space. In European Symposium on Algorithms,
pages 348–360. Springer.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7:1–30.

240 BIBLIOGRAPHY

Denil, M., Matheson, D., and Freitas, N. (2013). Consistency of online random forests. In
International Conference on Machine Learning, pages 1256–1264.

Derrac, J., Garćıa, S., Molina, D., and Herrera, F. (2011). A practical tutorial on the
use of nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1):3–18.

Din, S. U., Shao, J., Kumar, J., Ali, W., Liu, J., and Ye, Y. (2020). Online reliable
semi-supervised learning on evolving data streams. Information Sciences, 525:153–171.

Ditzler, G. and Polikar, R. (2011). Semi-supervised learning in nonstationary environments.
In The 2011 International Joint Conference on Neural Networks, pages 2741–2748. IEEE.

Ditzler, G., Roveri, M., Alippi, C., and Polikar, R. (2015). Learning in nonstationary
environments: A survey. IEEE Computational Intelligence Magazine, 10(4):12–25.

Domeniconi, C. and Gunopulos, D. (2001). Incremental support vector machine con-
struction. In Proceedings 2001 IEEE International Conference on Data Mining, pages
589–592. IEEE.

Domingos, P. and Hulten, G. (2000). Mining high-speed data streams. In Proceedings of
the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 71–80.

Dua, D. and Graff, C. (2017). UCI Machine Learning Repository. http://archive.ics.
uci.edu/ml. Accessed February 21, 2021.

Dubois, D., Hüllermeier, E., and Prade, H. (2006). A systematic approach to the assessment
of fuzzy association rules. Data Mining and Knowledge Discovery, 13(2):167–192.

Dyer, K. B., Capo, R., and Polikar, R. (2013). Compose: A semisupervised learning
framework for initially labeled nonstationary streaming data. IEEE Transactions on
Neural Networks and Learning Systems, 25(1):12–26.

Effrosynidis, D., Symeonidis, S., and Arampatzis, A. (2017). A comparison of pre-processing
techniques for twitter sentiment analysis. In International Conference on Theory and
Practice of Digital Libraries, pages 394–406. Springer.

Ericsson (2019). Ericsson mobility report (june 2019). https://www.

ericsson.com/49d1d9/assets/local/mobility-report/documents/2019/

ericsson-mobility-report-june-2019.pdf. Accessed February 21, 2021.

Fan, W., Watanabe, T., and Asakura, K. (2009). Ratio rules mining in concept drifting
data streams. In Proceedings of the World Congress on Engineering and Computer
Science, volume 2.

Fanaee-T, H. and Gama, J. (2014). Event labeling combining ensemble detectors and
background knowledge. Progress in Artificial Intelligence, 2(2):113–127.

BIBLIOGRAPHY 241

Feldman, R. and Dagan, I. (1995). Knowledge discovery in textual databases (kdt). In
Knowledge Discovery in Databases, volume 95, pages 112–117.

Feng, Z., Wang, M., Yang, S., and Jiao, L. (2016). Incremental semi-supervised classification
of data streams via self-representative selection. Applied Soft Computing, 47:389–394.

Fern, A. and Givan, R. (2003). Online ensemble learning: An empirical study. Machine
Learning, 53(1-2):71–109.

Ferreira, R. S., Zimbrão, G., and Alvim, L. G. (2019). Amanda: Semi-supervised density-
based adaptive model for non-stationary data with extreme verification latency. Infor-
mation Sciences, 488:219–237.

Finner, H. (1993). On a monotonicity problem in step-down multiple test procedures.
Journal of the American Statistical Association, 88(423):920–923.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. Journal of the American Statistical Association, 32(200):675–701.

Friedman, M. (1940). A comparison of alternative tests of significance for the problem of
m rankings. The Annals of Mathematical Statistics, 11(1):86–92.

Frost, M., Doryab, A., Faurholt-Jepsen, M., Kessing, L. V., and Bardram, J. E. (2013).
Supporting disease insight through data analysis: refinements of the MONARCA self-
assessment system. In Proceedings of the 2013 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, pages 133–142. ACM.

Gama, J. (2010). Knowledge Discovery from Data Streams. CRC Press.

Gama, J., Medas, P., Castillo, G., and Rodrigues, P. (2004). Learning with drift detection.
In Brazilian Symposium on Artificial Intelligence, pages 286–295. Springer.

Gama, J., Medas, P., and Rodrigues, P. (2005). Learning decision trees from dynamic data
streams. In Proceedings of the 2005 ACM Symposium on Applied Computing, pages
573–577.

Gama, J., Rocha, R., and Medas, P. (2003). Accurate decision trees for mining high-speed
data streams. In Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 523–528.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., and Bouchachia, A. (2014). A survey
on concept drift adaptation. ACM Computing Surveys (CSUR), 46(4):1–37.

Gao, J., Fan, W., Jiang, J., and Han, J. (2008). Knowledge transfer via multiple model local
structure mapping. In Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 283–291.

242 BIBLIOGRAPHY

Garćıa, S., Molina, D., Lozano, M., and Herrera, F. (2009). A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on
the CEC’2005 Special Session on Real Parameter Optimization. Journal of Heuristics,
15(6):617.

Garćıa-Mart́ınez, C., Lozano, M., Herrera, F., Molina, D., and Sánchez, A. M. (2008).
Global and local real-coded genetic algorithms based on parent-centric crossover opera-
tors. European Journal of Operational Research, 185(3):1088–1113.

Gartner (2018). Gartner says worldwide wearable device sales to grow
26 percent in 2019. https://www.gartner.com/en/newsroom/press-releases/

2018-11-29-gartner-says-worldwide-wearable-device-sales-to-grow-. Ac-
cessed February 21, 2021.

Giannella, C., Han, J., Pei, J., Yan, X., and Yu, P. S. (2003). Mining frequent patterns in
data streams at multiple time granularities. Next Generation Data Mining, 212:191–212.

Go, A., Bhayani, R., and Huang, L. (2009). Twitter sentiment classification using distant
supervision. CS224N Project Report, Stanford, 1(12):2009.

Godberg, D. E. (1989). Genetic algorithms in search. Optimization, and Machine Learning.

Golbeck, J. and Hansen, D. (2011). Computing political preference among twitter followers.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 1105–1108.

Gomes, J. B., Krishnaswamy, S., Gaber, M. M., Sousa, P. A., and Menasalvas, E. (2012).
Mobile activity recognition using ubiquitous data stream mining. In International
Conference on Data Warehousing and Knowledge Discovery, pages 130–141. Springer.

Gonçalves, P., Araújo, M., Benevenuto, F., and Cha, M. (2013). Comparing and combining
sentiment analysis methods. In Proceedings of the First ACM Conference on Online
Social Networks, pages 27–38.

Goyal, A. and Daumé III, H. (2011). Approximate scalable bounded space sketch for large
data NLP. In Proceedings of the 2011 Conference on Empirical Methods in Natural
Language Processing, pages 250–261.

Goyal, P., Challa, J. S., Shrivastava, S., and Goyal, N. (2020). Anytime frequent itemset
mining of transactional data streams. Big Data Research, 21:100146.

Gravenhorst, F., Muaremi, A., Bardram, J., Grünerbl, A., Mayora, O., Wurzer, G., Frost,
M., Osmani, V., Arnrich, B., Lukowicz, P., et al. (2015). Mobile phones as medical
devices in mental disorder treatment: an overview. Personal and Ubiquitous Computing,
19(2):335–353.

BIBLIOGRAPHY 243

Guha, S., Mishra, N., Motwani, R., and o’Callaghan, L. (2000). Clustering data streams.
In Proceedings 41st Annual Symposium on Foundations of Computer Science, pages
359–366. IEEE.

Gunning, D. (2017). Explainable Artificial Intelligence (XAI). Defense Advanced Research
Projects Agency (DARPA), 2(2).

Han, J., Pei, J., Yin, Y., and Mao, R. (2004). Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery,
8(1):53–87.

Haque, A., Khan, L., and Baron, M. (2016). SAND: Semi-supervised adaptive novel
class detection and classification over data stream. In Thirtieth AAAI Conference on
Artificial Intelligence, pages 1652–1658.

He, Y. and Zhou, D. (2011). Self-training from labeled features for sentiment analysis.
Information Processing & Management, 47(4):606–616.

HewaNadungodage, C., Xia, Y., Lee, J. J., and Tu, Y.-c. (2013). Hyper-structure mining
of frequent patterns in uncertain data streams. Knowledge and Information Systems,
37(1):219–244.

Hoeffding, W. (1994). Probability inequalities for sums of bounded random variables. In
The Collected Works of Wassily Hoeffding, pages 409–426. Springer.

Hofman, E. (2018). senti-py. https://github.com/aylliote/senti-py. Accessed Febru-
ary 21, 2021.

Hofmann, M. and Chisholm, A. (2016). Text mining and visualization: case studies using
open-source tools, volume 40. CRC Press.

Holmes, G., Kirkby, R., and Pfahringer, B. (2005). Stress-testing hoeffding trees. In
European Conference on Principles of Data Mining and Knowledge Discovery, pages
495–502. Springer.

Hong, T.-P., Kuo, C.-S., and Chi, S.-C. (1999). Mining association rules from quantitative
data. Intelligent Data Analysis, 3(5):363–376.

Hong, T.-P., Kuo, C.-S., and Chi, S.-C. (2001). Trade-off between computation time
and number of rules for fuzzy mining from quantitative data. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 9(05):587–604.

Honnibal, M., Montani, I., Van Landeghem, S., and Boyd, A. (2020). spaCy: Industrial-
strength Natural Language Processing in Python.

Hosseini, M. J., Gholipour, A., and Beigy, H. (2016). An ensemble of cluster-based
classifiers for semi-supervised classification of non-stationary data streams. Knowledge
and Information Systems, 46(3):567–597.

244 BIBLIOGRAPHY

Huang, D., Koh, Y. S., and Dobbie, G. (2012). Rare pattern mining on data streams.
In International Conference on Data Warehousing and Knowledge Discovery, pages
303–314. Springer.

Hulten, G., Spencer, L., and Domingos, P. (2001). Mining time-changing data streams.
In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 97–106.

Iosifidis, V. and Ntoutsi, E. (2019). Sentiment analysis on big sparse data streams with
limited labels. Knowledge and Information Systems, pages 1–40.

Ishibuchi, H., Kaisho, Y., and Nojima, Y. (2009). Complexity, interpretability and
explanation capability of fuzzy rule-based classifiers. In Fuzzy Systems, 2009. FUZZ-
IEEE 2009. IEEE International Conference on, pages 1730–1735. IEEE.

Ishibuchi, H. and Yamamoto, T. (2004). Fuzzy rule selection by multi-objective genetic
local search algorithms and rule evaluation measures in data mining. Fuzzy Sets and
Systems, 141(1):59–88.

Jackowski, K. (2014). Fixed-size ensemble classifier system evolutionarily adapted to a
recurring context with an unlimited pool of classifiers. Pattern Analysis and Applications,
17(4):709–724.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87.

Jang, J.-S. and Sun, C.-T. (1993). Functional equivalence between radial basis function
networks and fuzzy inference systems. IEEE Transactions on Neural Networks, 4(1):156–
159.

Java, A., Song, X., Finin, T., and Tseng, B. (2007). Why we twitter: understanding
microblogging usage and communities. In Proceedings of the 9th WebKDD and 1st
SNA-KDD 2007 workshop on Web mining and social network analysis, pages 56–65.

Jensen, M. J. and Anstead, N. (2013). Psephological investigations: Tweets, votes,
and unknown unknowns in the republican nomination process. Policy & Internet,
5(2):161–182.

Jin, C., Qian, W., Sha, C., Yu, J. X., and Zhou, A. (2003). Dynamically maintaining
frequent items over a data stream. In Proceedings of the Twelfth International Conference
on Information and Knowledge Management, pages 287–294.

John, O. P., Srivastava, S., et al. (1999). The big five trait taxonomy: History, measurement,
and theoretical perspectives. Handbook of personality: Theory and research, 2(1999):102–
138.

BIBLIOGRAPHY 245

Karp, R. M., Shenker, S., and Papadimitriou, C. H. (2003). A simple algorithm for
finding frequent elements in streams and bags. ACM Transactions on Database Systems
(TODS), 28(1):51–55.

Kolter, J. Z. and Maloof, M. A. (2005). Using additive expert ensembles to cope with
concept drift. In Proceedings of the 22nd International Conference on Machine learning,
pages 449–456.

Kolter, J. Z. and Maloof, M. A. (2007). Dynamic weighted majority: An ensemble method
for drifting concepts. The Journal of Machine Learning Research, 8:2755–2790.

Konsolakis, K., Hermens, H., Villalonga, C., Vollenbroek-Hutten, M., and Banos, O. (2018).
Human behaviour analysis through smartphones. In Multidisciplinary Digital Publishing
Institute Proceedings, volume 2, page 1243.

Kosina, P. and Gama, J. (2015). Very fast decision rules for classification in data streams.
Data Mining and Knowledge Discovery, 29(1):168–202.

Kotler, J. and Maloof, M. (2003). Dynamic weighted majority: A new ensemble method
for tracking concept drift. In IEEE International Conference on Data Mining, pages
123–130.

Kouloumpis, E., Wilson, T., and Moore, J. (2011). Twitter sentiment analysis: The good
the bad and the omg! In Proceedings of the International AAAI Conference on Web
and Social Media, volume 5.

Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J., and Woźniak, M. (2017). Ensemble
learning for data stream analysis: A survey. Information Fusion, 37:132–156.

Kum, H.-C., Pei, J., Wang, W., and Duncan, D. (2003). Approxmap: Approximate
mining of consensus sequential patterns. In Proceedings of the 2003 SIAM International
Conference on Data Mining, pages 311–315. SIAM.

Kuncheva, L. I. (2004). Classifier ensembles for changing environments. In International
Workshop on Multiple Classifier Systems, pages 1–15. Springer.

Kusumakumari, V., Sherigar, D., Chandran, R., and Patil, N. (2017). Frequent pattern
mining on stream data using hadoop cantree-gtree. Procedia Computer Science, 115:266–
273.

Kwon, Y., Kang, K., and Bae, C. (2014). Unsupervised learning for human activity
recognition using smartphone sensors. Expert Systems with Applications, 41(14):6067–
6074.

Last, M., Maimon, O., and Minkov, E. (2002). Improving stability of decision trees.
International Journal of Pattern Recognition and Artificial Intelligence, 16(02):145–159.

246 BIBLIOGRAPHY

Leung, C. K.-S., Carmichael, C. L., and Hao, B. (2007). Efficient mining of frequent
patterns from uncertain data. In Seventh IEEE International Conference on Data
Mining Workshops (ICDMW 2007), pages 489–494. IEEE.

Leung, C. K.-S. and Hao, B. (2009). Mining of frequent itemsets from streams of uncertain
data. In 2009 IEEE 25th International Conference on Data Engineering, pages 1663–1670.
IEEE.

Leung, C. K.-S., Mateo, M. A. F., and Brajczuk, D. A. (2008). A tree-based approach for
frequent pattern mining from uncertain data. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pages 653–661. Springer.

Li, H., Zhang, N., Zhu, J., Wang, Y., and Cao, H. (2018). Probabilistic frequent itemset
mining over uncertain data streams. Expert Systems with Applications, 112:274–287.

Li, P., Wu, X., and Hu, X. (2010). Mining recurring concept drifts with limited labeled
streaming data. In Proceedings of 2nd Asian Conference on Machine Learning, pages
241–252. JMLR Workshop and Conference Proceedings.

Ling, R. F. (1974). Comparison of several algorithms for computing sample means and
variances. Journal of the American Statistical Association, 69(348):859–866.

Littlestone, N. and Warmuth, M. K. (1994). The weighted majority algorithm. Information
and Computation, 108(2):212–261.

Liu, H., Lin, Y., and Han, J. (2011). Methods for mining frequent items in data streams:
an overview. Knowledge and Information Systems, 26(1):1–30.

Liu, H., Zhou, K., Zhao, P., and Yao, S. (2018). Mining frequent itemsets over uncertain
data streams. International Journal of High Performance Computing and Networking,
11(4):312–321.

Liu, M. and Qu, J. (2012). Mining high utility itemsets without candidate generation. In
Proceedings of the 21st ACM International Conference on Information and Knowledge
Management, pages 55–64.

Loo, H. R. and Marsono, M. N. (2015). Online data stream classification with incremental
semi-supervised learning. In Proceedings of the Second ACM IKDD Conference on Data
Sciences, pages 132–133.

Losing, V., Hammer, B., and Wersing, H. (2016). KNN classifier with self adjusting
memory for heterogeneous concept drift. In 2016 IEEE 16th International Conference
on Data Mining (ICDM 2016), pages 291–300. IEEE.

Lozano, M., Herrera, F., Krasnogor, N., and Molina, D. (2004). Real-coded memetic
algorithms with crossover hill-climbing. Evolutionary Computation, 12(3):273–302.

BIBLIOGRAPHY 247

Lughofer, E. (2011). Evolving Fuzzy Systems-Methodologies, Advanced Concepts and
Applications, volume 53. Springer.

Manerikar, N. and Palpanas, T. (2009). Frequent items in streaming data: An experimental
evaluation of the state-of-the-art. Data & Knowledge Engineering, 68(4):415–430.

Manku, G. S. and Motwani, R. (2002). Approximate frequency counts over data streams.
In VLDB’02: Proceedings of the 28th International Conference on Very Large Databases,
pages 346–357. Elsevier.

Marascu, A. and Masseglia, F. (2006). Mining sequential patterns from data streams: a
centroid approach. Journal of Intelligent Information Systems, 27(3):291–307.

Mart́ınez-Ballesteros, M., Mart́ınez-Álvarez, F., Troncoso, A., and Riquelme, J. C. (2011).
An evolutionary algorithm to discover quantitative association rules in multidimensional
time series. Soft Computing, 15(10):2065.

Mart́ınez Cámara, E., Mart́ın Valdivia, M. T., Perea Ortega, J. M., and Ureña López,
L. A. (2011). Técnicas de clasificación de opiniones aplicadas a un corpus en español.
Procesamiento del Lenguaje Natural, 47:163–170.

Masseglia, F., Cathala, F., and Poncelet, P. (1998). The psp approach for mining sequential
patterns. In Proceedings of the 2nd European Symposium on Principles of Data Mining
and Knowledge Discovery, pages 176–184. Springer.

Masud, M. M., Gao, J., Khan, L., Han, J., and Thuraisingham, B. (2008). A practical
approach to classify evolving data streams: Training with limited amount of labeled
data. In 2008 Eighth IEEE International Conference on Data Mining, pages 929–934.
IEEE.

Masud, M. M., Gao, J., Khan, L., Han, J., and Thuraisingham, B. (2010). Classification
and novel class detection in data streams with active mining. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pages 311–324. Springer.

Masud, M. M., Woolam, C., Gao, J., Khan, L., Han, J., Hamlen, K. W., and Oza, N. C.
(2012). Facing the reality of data stream classification: coping with scarcity of labeled
data. Knowledge and information systems, 33(1):213–244.

Matuszyk, P. and Spiliopoulou, M. (2015). Semi-supervised learning for stream recom-
mender systems. In International Conference on Discovery Science, pages 131–145.
Springer.

Mavrodiev, H. (2020). London bike sharing dataset. https://www.kaggle.com/

hmavrodiev/london-bike-sharing-dataset. Accessed February 21, 2021.

MeaningCloud (2018). meaningcloud-python. https://github.com/MeaningCloud/

meaningcloud-python. Accessed February 21, 2021.

248 BIBLIOGRAPHY

Memar, M., Sadreddini, M. H., Deypir, M., and Fakhrahmad, S. M. (2011). A block-based
approach for frequent itemset mining over data streams. In 2011 Eighth International
Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2011), volume 3, pages
1647–1651. IEEE.

Metwally, A., Agrawal, D., and El Abbadi, A. (2005). Efficient computation of frequent
and top-k elements in data streams. In International Conference on Database Theory,
pages 398–412. Springer.

Meulman, J. J. (1992). The integration of multidimensional scaling and multivariate
analysis with optimal transformations. Psychometrika, 57(4):539–565.

Minku, F. L., Inoue, H., and Yao, X. (2009). Negative correlation in incremental learning.
Natural Computing, 8(2):289–320.

Minku, L. L. and Yao, X. (2011). DDD: A new ensemble approach for dealing with concept
drift. IEEE Transactions on Knowledge and Data Engineering, 24(4):619–633.

Mirsky, Y., Shabtai, A., Shapira, B., Elovici, Y., and Rokach, L. (2017). Anomaly detection
for smartphone data streams. Pervasive and Mobile Computing, 35:83–107.

Misra, J. and Gries, D. (1982). Finding repeated elements. Science of Computer Program-
ming, 2(2):143–152.

Mohammad, S. M., Sobhani, P., and Kiritchenko, S. (2017). Stance and sentiment in
tweets. ACM Transactions on Internet Technology (TOIT), 17(3):1–23.

Mønsted, B., Mollgaard, A., and Mathiesen, J. (2018). Phone-based metric as a predictor
for basic personality traits. Journal of Research in Personality, 74:16–22.

Montiel, J., Read, J., Bifet, A., and Abdessalem, T. (2018). Scikit-multiflow: A multi-
output streaming framework. Journal of Machine Learning Research, 19(1):2915–2914.

Moreno, A. and Redondo, T. (2016). Text analytics: the convergence of big data and
artificial intelligence. International Journal of Interactive Multimedia and Artificial
Intelligence, 3(6):57–64.

Moreno-Ortiz, A. and Hernández, C. P. (2013). Lexicon-based sentiment analysis of twitter
messages in spanish. Procesamiento del Lenguaje Natural, 50:93–100.

Muaremi, A., Gravenhorst, F., Grünerbl, A., Arnrich, B., and Tröster, G. (2014). Assessing
bipolar episodes using speech cues derived from phone calls. In International Symposium
on Pervasive Computing Paradigms for Mental Health, pages 103–114. Springer.

Nishida, K. (2008). Learning and detecting concept drift. Information Science and
Technology.

BIBLIOGRAPHY 249

Nishida, K. and Yamauchi, K. (2007). Adaptive classifiers-ensemble system for tracking
concept drift. In 2007 International Conference on Machine Learning and Cybernetics,
volume 6, pages 3607–3612. IEEE.

Noorbehbahani, F., Fanian, A., Mousavi, R., and Hasannejad, H. (2017). An incremental
intrusion detection system using a new semi-supervised stream classification method.
International Journal of Communication Systems, 30(4):e3002.

Oliver, N. and Flores-Mangas, F. (2006). Healthgear: a real-time wearable system for
monitoring and analyzing physiological signals. In International Workshop on Wearable
and Implantable Body Sensor Networks (BSN’06). IEEE.

Orriols-Puig, A. and Casillas, J. (2011). Fuzzy knowledge representation study for
incremental learning in data streams and classification problems. Soft Computing,
15(12):2389–2414.

Orriols-Puig, A., Casillas, J., and Bernadó-Mansilla, E. (2008a). First approach toward
on-line evolution of association rules with learning classifier systems. In Proceedings
of the 10th Annual Conference Companion on Genetic and Evolutionary Computation,
pages 2031–2038. ACM.

Orriols-Puig, A., Casillas, J., and Bernadó-Mansilla, E. (2008b). Fuzzy-UCS: a michigan-
style learning fuzzy-classifier system for supervised learning. IEEE Transactions on
Evolutionary Computation, 13(2):260–283.

Osmani, V., Maxhuni, A., Grünerbl, A., Lukowicz, P., Haring, C., and Mayora, O. (2013).
Monitoring activity of patients with bipolar disorder using smart phones. In Proceedings
of International Conference on Advances in Mobile Computing & Multimedia, page 85.
ACM.

Ovi, J. A., Ahmed, C. F., Leung, C. K., and Pazdor, A. G. (2019). Mining weighted
frequent patterns from uncertain data streams. In International Conference on Ubiquitous
Information Management and Communication, pages 917–936. Springer.

Oza, N. C. (2005). Online bagging and boosting. In 2005 IEEE International Conference
on Systems, Man and Cybernetics, volume 3, pages 2340–2345. IEEE.

Oza, N. C. and Russell, S. (2001). Online Ensemble Learning. University of California,
Berkeley.

Pan, W., Aharony, N., and Pentland, A. (2011). Composite social network for predicting
mobile apps installation. In Twenty-Fifth AAAI Conference on Artificial Intelligence.

Papadimitriou, S., Brockwell, A., and Faloutsos, C. (2003). Adaptive, hands-off stream
mining. In Proceedings 2003 VLDB Conference, pages 560–571. Elsevier.

250 BIBLIOGRAPHY

Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L. (1999). Discovering frequent closed
itemsets for association rules. In International Conference on Database Theory, pages
398–416. Springer.

Patnaik, D., Laxman, S., Chandramouli, B., and Ramakrishnan, N. (2013). A gen-
eral streaming algorithm for pattern discovery. Knowledge and Information Systems,
37(3):585–610.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine
learning in python. Journal of Machine Learning Research, 12:2825–2830.

Pedrycz, W. (2018). Granular Computing: Analysis and Design of Intelligent Systems.
CRC press.

Pedrycz, W. and Waletzky, J. (1997). Fuzzy clustering with partial supervision. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 27(5):787–795.

Polikar, R., Upda, L., Upda, S. S., and Honavar, V. (2001). Learn++: An incremental
learning algorithm for supervised neural networks. IEEE Transactions on Systems, Man,
and Cybernetics, part C (Applications and Reviews), 31(4):497–508.

Puiatti, A., Mudda, S., Giordano, S., and Mayora, O. (2011). Smartphone-centred
wearable sensors network for monitoring patients with bipolar disorder. In 2011 Annual
International Conference of the IEEE Engineering in Medicine and Biology Society,
pages 3644–3647. IEEE.

Qin, K. and Wen, Y. (2018). Semi-supervised classification of concept drift data stream
based on local component replacement. In International CCF Conference on Artificial
Intelligence, pages 98–112. Springer.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1):81–106.

Quinlan, J. R. (2014). C4. 5: Programs for Machine Learning. Elsevier.

Rai, P., Daumé III, H., and Venkatasubramanian, S. (2009). Streamed learning: one-pass
SVMs. arXiv preprint arXiv:0908.0572.

Räıssi, C. and Poncelet, P. (2007). Sampling for sequential pattern mining: From static
databases to data streams. In Seventh IEEE International Conference on Data Mining
(ICDM 2007), pages 631–636. IEEE.

Ramamurthy, S. and Bhatnagar, R. (2007). Tracking recurrent concept drift in streaming
data using ensemble classifiers. In Sixth International Conference on Machine Learning
and Applications (ICMLA 2007), pages 404–409. IEEE.

BIBLIOGRAPHY 251

Rangu, C., Chatterjee, S., and Valluru, S. R. (2017). Text mining approach for product
quality enhancement:(improving product quality through machine learning). In 2017
IEEE 7th International Advance Computing Conference (IACC 2017), pages 456–460.
IEEE.

Read, J., Bifet, A., Pfahringer, B., and Holmes, G. (2012). Batch-incremental versus
instance-incremental learning in dynamic and evolving data. In International Symposium
on Intelligent Data Analysis, pages 313–323. Springer.

Rodŕıguez, F. J., Lozano, M., Garćıa-Mart́ınez, C., and González-Barrera, J. D. (2013). An
artificial bee colony algorithm for the maximally diverse grouping problem. Information
Sciences, 230:183–196.

Rodŕıguez, J. J. and Kuncheva, L. I. (2008). Combining online classification approaches for
changing environments. In Joint IAPR International Workshops on Statistical Techniques
in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR),
pages 520–529. Springer.

Roesler, O. (2013). EEG eye state dataset. https://archive.ics.uci.edu/ml/

datasets/EEG+Eye+State. Accessed February 21, 2021.

Ronao, C. A. and Cho, S.-B. (2016). Human activity recognition with smartphone sensors
using deep learning neural networks. Expert Systems with Applications, 59:235–244.

Roy, P., Khan, A., and Alonso, G. (2016). Augmented sketch: Faster and more accurate
stream processing. In Proceedings of the 2016 International Conference on Management
of Data, pages 1449–1463.

Ruiz, E. and Casillas, J. (2018). Adaptive fuzzy partitions for evolving association rules in
big data stream. International Journal of Approximate Reasoning, 93:463–486.

Rutkowski, L., Jaworski, M., Pietruczuk, L., and Duda, P. (2014). The cart decision tree
for mining data streams. Information Sciences, 266:1–15.

Rutkowski, L., Pietruczuk, L., Duda, P., and Jaworski, M. (2012). Decision trees for
mining data streams based on the mcdiarmid’s bound. IEEE Transactions on Knowledge
and Data Engineering, 25(6):1272–1279.

Saffari, A., Leistner, C., Santner, J., Godec, M., and Bischof, H. (2009). On-line random
forests. In 2009 IEEE 12th International Conference on Computer Vision Workshops,
ICCV Workshops, pages 1393–1400. IEEE.

Sanchez-Valdes, D. and Trivino, G. (2015). Linguistic and emotional feedback for self-
tracking physical activity. Expert Systems with Applications, 42(24):9574–9586.

Sancho-Asensio, A., Orriols-Puig, A., and Casillas, J. (2016). Evolving association streams.
Information Sciences, 334:250–272.

252 BIBLIOGRAPHY

Saponas, T., Lester, J., Froehlich, J., Fogarty, J., and Landay, J. (2008). iLearn on the
iPhone: Real-time human activity classification on commodity mobile phones. University
of Washington CSE Tech Report UW-CSE-08-04-02, 2008.

Sarker, I. H. and Salim, F. D. (2018). Mining user behavioral rules from smartphone data
through association analysis. In Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pages 450–461. Springer.

Sayed-Mouchaweh, M. and Lughofer, E. (2012). Learning in non-stationary environments:
methods and applications. Springer Science & Business Media.

Scholz, M. and Klinkenberg, R. (2007). Boosting classifiers for drifting concepts. Intelligent
Data Analysis, 11(1):3–28.

Shaker, A. and Hüllermeier, E. (2012). Iblstreams: a system for instance-based classification
and regression on data streams. Evolving Systems, 3(4):235–249.

Shao, J., Huang, C., Yang, Q., and Luo, G. (2016). Reliable semi-supervised learning.
In 2016 IEEE 16th International Conference on Data Mining (ICDM 2016), pages
1197–1202. IEEE.

Sheskin, D. J. (2020). Handbook of parametric and nonparametric statistical procedures.
CRC Press.

Shimojima, K., Fukuda, T., and Hasegawa, Y. (1995). RBF-fuzzy system with GA based
unsupervised/supervised learning method. In Proceedings of 1995 IEEE International
Conference on Fuzzy Systems., volume 1, pages 253–258. IEEE.

Shmueli, E., Singh, V. K., Lepri, B., and Pentland, A. (2014). Sensing, understanding,
and shaping social behavior. IEEE Transactions on Computational Social Systems,
1(1):22–34.

Silva, J. A., Faria, E. R., Barros, R. C., Hruschka, E. R., Carvalho, A. C. d., and Gama, J.
(2013). Data stream clustering: A survey. ACM Computing Surveys (CSUR), 46(1):1–31.

Sobolewski, P. and Woźniak, M. (2017). SCR: simulated concept recurrence–a non-
supervised tool for dealing with shifting concept. Expert Systems, 34(5):e12059.

Sogo, J. G. (2018). apicultur-python. https://github.com/jgsogo/apicultur-python.
Accessed February 21, 2021.

Spark, A. (2021). Spark streaming. http://spark.apache.org/streaming. Accessed
February 21, 2021.

Stefanowski, J. (2015). Adaptive ensembles for evolving data streams–combining block-
based and online solutions. In International Workshop on New Frontiers in Mining
Complex Patterns, pages 3–16. Springer.

BIBLIOGRAPHY 253

Street, N. and Kim, Y. (2005). A streaming ensemble algorithm for large-scale classification.
In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining,, pages 377–382.

Sysoev, M., Kos, A., and Pogačnik, M. (2015). Noninvasive stress recognition considering
the current activity. Personal and Ubiquitous Computing, 19(7):1045–1052.

Tan, J., Bu, Y., and Zhao, H. (2010). Incremental maintenance of association rules over
data streams. In 2010 International Conference on Networking and Digital Society,
volume 2, pages 444–447. IEEE.

Tang, M., Nie, F., Pongpaichet, S., and Jain, R. (2017). Semi-supervised learning on
large-scale geotagged photos for situation recognition. Journal of Visual Communication
and Image Representation, 48:310–316.

Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., and Kappas, A. (2010). Sentiment
strength detection in short informal text. Journal of the American Society for Information
Science and Technology, 61(12):2544–2558.

Toscos, T., Faber, A., Connelly, K., and Upoma, A. M. (2008). Encouraging physical
activity in teens can technology help reduce barriers to physical activity in adolescent
girls? In Pervasive Computing Technologies for Healthcare, 2008. PervasiveHealth 2008.
Second International Conference on, pages 218–221. IEEE.

Trevisan, D. G., Sanchez-Pi, N., Marti, L., and Garcia, A. C. B. (2015). Big Data
Visualization for Occupational Health and Security Problem in Oil and Gas Industry.
In Human Interface and the Management of Information. Information and Knowledge
Design, pages 46–54. Springer.

Troiano, R. P., Berrigan, D., Dodd, K. W., Masse, L. C., Tilert, T., McDowell, M., et al.
(2008). Physical activity in the United States measured by accelerometer. Medicine and
Science in Sports and Exercise, 40(1):181.

Tsang, I. W., Kwok, J. T., and Cheung, P.-M. (2005). Core vector machines: Fast svm
training on very large data sets. Journal of Machine Learning Research, 6(Apr):363–392.

Tu, Q., Lu, J.-f., Tang, J.-b., and Yang, J.-y. (2010). The FP-tree algorithm used for data
stream. In 2010 Chinese Conference on Pattern Recognition (CCPR), pages 1–5. IEEE.

Tumasjan, A., Sprenger, T., Sandner, P., and Welpe, I. (2010). Predicting elections with
twitter: What 140 characters reveal about political sentiment. In Proceedings of the
International AAAI Conference on Web and Social Media, volume 4.

Vaynman, S. and Gomez-Pinilla, F. (2006). Revenge of the “sit”: how lifestyle impacts neu-
ronal and cognitive health through molecular systems that interface energy metabolism
with neuronal plasticity. Journal of Neuroscience Research, 84(4):699–715.

254 BIBLIOGRAPHY

Veloso, B., Martins, C., Espanha, R., Azevedo, R., and Gama, J. (2020). Fraud detection
using heavy hitters: a case study. In Proceedings of the 35th Annual ACM Symposium
on Applied Computing, pages 482–489.

Ventruto, F., Pulimeno, M., Cafaro, M., and Epicoco, I. (2020). On frequency estimation
and detection of heavy hitters in data streams. Future Internet, 12(9):158.

Vilares, D., Thelwall, M., and Alonso, M. A. (2015). The megaphone of the people?
spanish sentistrength for real-time analysis of political tweets. Journal of Information
Science, 41(6):799–813.

Vitter, J. S. (1985). Random sampling with a reservoir. ACM Transactions on Mathematical
Software (TOMS), 11(1):37–57.

Voss, M. W., Vivar, C., Kramer, A. F., and van Praag, H. (2013). Bridging animal
and human models of exercise-induced brain plasticity. Trends in Cognitive Sciences,
17(10):525–544.

Wang, E. T. and Chen, A. L. (2009). A novel hash-based approach for mining frequent
itemsets over data streams requiring less memory space. Data Mining and Knowledge
Discovery, 19(1):132–172.

Wang, E. T. and Chen, A. L. (2011). Mining frequent itemsets over distributed data
streams by continuously maintaining a global synopsis. Data Mining and Knowledge
Discovery, 23(2):252–299.

Wang, H., Can, D., Kazemzadeh, A., Bar, F., and Narayanan, S. (2012). A system for
real-time twitter sentiment analysis of 2012 us presidential election cycle. In Proceedings
of the ACL 2012 System Demonstrations, pages 115–120.

Wang, H., Fan, W., Yu, P. S., and Han, J. (2003a). Mining concept-drifting data streams
using ensemble classifiers. In Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 226–235.

Wang, J., Han, J., and Pei, J. (2003b). Closet+ searching for the best strategies for mining
frequent closed itemsets. In Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 236–245.

Wang, K., Tay, S. H. W., and Liu, B. (1998). Interestingness-based interval merger for
numeric association rules. In 4th International Conference on Knowledge Discovery and
Data Mining, AAAI Press, volume 98, pages 121–128.

Wang, S., Minku, L. L., and Yao, X. (2014). Resampling-based ensemble methods for
online class imbalance learning. IEEE Transactions on Knowledge and Data Engineering,
27(5):1356–1368.

BIBLIOGRAPHY 255

Wang, Y., Cang, S., and Yu, H. (2019). A survey on wearable sensor modality centred
human activity recognition in health care. Expert Systems with Applications, 137:167–
190.

Wang, Y. and Li, T. (2018). Improving semi-supervised co-forest algorithm in evolving
data streams. Applied Intelligence, 48(10):3248–3262.

Welford, B. (1962). Note on a method for calculating corrected sums of squares and
products. Technometrics, 4(3):419–420.

Wen, Y.-M. and Liu, S. (2020). Semi-supervised classification of data streams by birch
ensemble and local structure mapping. Journal of Computer Science and Technology,
35:295–304.

Wilcoxon, F. (1992). Individual comparisons by ranking methods. In Breakthroughs in
Statistics, pages 196–202. Springer.

Williams, C. and Gulati, G. (2008). What is a social network worth? facebook and vote
share in the 2008 presidential primaries. In Proceedings of the 104th Annual Meeting of
the American Political Science Association, page 17. Annual Meeting of the American
Political Science Association.

Wilson, S. (1998). Generalization in the XCS classifier system. Proceedings of Genetic
Programming 1998.

Wong, R. C.-W. and Fu, A. W.-C. (2006). Mining top-k frequent itemsets from data
streams. Data Mining and Knowledge Discovery, 13(2):193–217.

Woodruff, D. P. (2016). New algorithms for heavy hitters in data streams (invited talk).
In 19th International Conference on Database Theory, ICDT 2016, Bordeaux, France,
March 15–18, 2016, pages 4:1–4:12. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Woolam, C., Masud, M. M., and Khan, L. (2009). Lacking labels in the stream: classifying
evolving stream data with few labels. In International Symposium on Methodologies for
Intelligent Systems, pages 552–562. Springer.

World Health Organization (2011). mHealth: new horizons for health through mobile
technologies.

Wu, S., Yang, C., and Zhou, J. (2006). Clustering-training for data stream mining. In
Sixth IEEE International Conference on Data Mining-Workshops (ICDMW 2006), pages
653–656. IEEE.

Wu, X., Li, P., and Hu, X. (2012). Learning from concept drifting data streams with
unlabeled data. Neurocomputing, 92:145–155.

256 BIBLIOGRAPHY

Xiao, Q., Tang, Z., and Chen, S. (2020). Universal online sketch for tracking heavy hitters
and estimating moments of data streams. In IEEE INFOCOM 2020-IEEE Conference
on Computer Communications, pages 974–983. IEEE.

Xie, M. and Tan, L. (2019). An efficient algorithm for frequent pattern mining over
uncertain data stream. In 2019 12th International Symposium on Computational
Intelligence and Design (ISCID), volume 1, pages 84–88. IEEE.

Xu, W.-h., Qin, Z., and Chang, Y. (2011). Clustering feature decision trees for semi-
supervised classification from high-speed data streams. Journal of Zhejiang University
SCIENCE C, 12(8):615.

Yamada, S., Funayama, T., and Yamamoto, Y. (2015). Visualization of relations of stores
by using association rule mining. In 2015 13th International Conference on ICT and
Knowledge Engineering (ICT & Knowledge Engineering 2015), pages 11–14. IEEE.

Yan, X. and Han, J. (2003). CloseGraph: mining closed frequent graph patterns. In
Proceedings of the Nineth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 286–295.

Yang, H., Liu, H., and He, J. (2007). DELAY: a lazy approach for mining frequent patterns
over high speed data streams. In International Conference on Advanced Data Mining
and Applications, pages 2–14. Springer.

Yang, R., Ye, D., et al. (2020). Hybrid time decay model and probability decay window
model for data stream closed frequent pattern mining. Journal of Applied Science and
Engineering, 23(4):611–618.

Yen, S.-J., Lee, Y.-S., Wu, C.-W., and Lin, C.-L. (2009). An efficient algorithm for
maintaining frequent closed itemsets over data stream. In International Conference on
Industrial, Engineering and Other Applications of Applied Intelligent Systems, pages
767–776. Springer.

Yoshida, S.-i., Hatano, K., Takimoto, E., and Takeda, M. (2011). Adaptive online
prediction using weighted windows. IEICE Transactions on Information and Systems,
94(10):1917–1923.

Yu, Y., Guo, S., Lan, S., and Ban, T. (2008). Anomaly intrusion detection for evolving
data stream based on semi-supervised learning. In International Conference on Neural
Information Processing, pages 571–578. Springer.

Yun, U., Kim, D., Yoon, E., and Fujita, H. (2018). Damped window based high average
utility pattern mining over data streams. Knowledge-Based Systems, 144:188–205.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3):338–353.

BIBLIOGRAPHY 257

Zaki, M. J. (2001). Spade: An efficient algorithm for mining frequent sequences. Machine
Learning, 42(1):31–60.

Zaki, M. J. and Hsiao, C.-J. (2002). CHARM: An efficient algorithm for closed itemset
mining. In Proceedings of the 2002 SIAM International Conference on Data Mining,
pages 457–473. SIAM.

Zaki, M. J., Parthasarathy, S., Ogihara, M., and Li, W. (1997). New algorithms for fast
discovery of association rules. In Heckerman, D., Mannila, H., and Pregibon, D., editors,
Proceedings of the Third International Conference on Knowledge Discovery and Data
Mining (KDD-97), Newport Beach, California, USA, August 14-17, 1997, pages 283–286.
AAAI Press.

Zhang, H. (2004). Ithe optimality of naive bayes,”. In Proceedings of the Seventeenth
International Florida Artificial Intelligence Research Society Conference FLAIRS 2004,
volume 1, pages 1–6.

Zhang, P., Gao, B. J., Liu, P., Shi, Y., and Guo, L. (2012). A framework for application-
driven classification of data streams. Neurocomputing, 92:170–182.

Zhang, P., Gao, B. J., Zhu, X., and Guo, L. (2011). Enabling fast lazy learning for data
streams. In 2011 IEEE 11th International Conference on Data Mining, pages 932–941.
IEEE.

Zhang, P., Zhu, X., Tan, J., and Guo, L. (2010). Classifier and cluster ensembles for
mining concept drifting data streams. In 2010 IEEE International Conference on Data
Mining, pages 1175–1180. IEEE.

Zhang, T., Ramakrishnan, R., and Livny, M. (1996). Birch: an efficient data clustering
method for very large databases. ACM Sigmod Record, 25(2):103–114.

Zhao, Q. L., Jiang, Y. H., and Xu, M. (2010). Incremental learning by heterogeneous bag-
ging ensemble. In International Conference on Advanced Data Mining and Applications,
pages 1–12. Springer.

Zhu, X. (2010). Stream data mining repository. http://www.cse.fau.edu/~xqzhu/

stream.html. Accessed February 21, 2021.

Zhu, X. and Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 3(1):1–130.

Zhu, X. and Jin, R. (2009). Multiple information sources cooperative learning. In
Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence
(IJCAI-09), pages 1369–1376.

Zihayat, M. and An, A. (2014). Mining top-k high utility patterns over data streams.
Information Sciences, 285:138–161.

258 BIBLIOGRAPHY

Zihayat, M., Chen, Y., and An, A. (2017). Memory-adaptive high utility sequential pattern
mining over data streams. Machine Learning, 106(6):799–836.

Zimmerann, M., Ntoutsi, E., and Spiliopoulou, M. (2014). A semi-supervised self-adaptive
classifier over opinionated streams. In 2014 IEEE International Conference on Data
Mining Workshop, pages 425–432. IEEE.

Žliobaitė, I. (2010). Adaptive Training Set Formation. PhD thesis, Vilnius University.

Žliobaitė, I., Bifet, A., Pfahringer, B., and Holmes, G. (2011). Active learning with evolving
streaming data. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 597–612. Springer.

Žliobaitė, I., Bifet, A., Pfahringer, B., and Holmes, G. (2013). Active learning with
drifting streaming data. IEEE Transactions on Neural Networks and Learning Systems,
25(1):27–39.

Žliobaitė, I. and Gabrys, B. (2012). Adaptive preprocessing for streaming data. IEEE
Transactions on Knowledge and Data Engineering, 26(2):309–321.

