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Resumen

Las predicciones teóricas de precisión en Física de Partículas, incluyendo las necesarias pa-
ra comparar con experimentos en el Gran Colisionador de Hadrones (LHC), conllevan el
cálculo de correcciones radiativas, es decir, correcciones de alto orden en una serie pertur-
bativa. Estas correcciones cuánticas están plagadas de infinitos, siendo inevitable un proceso
de renormalización para poder sacar información de ellas. Hay diferentes métodos de tratar
la renormalización. La mayoría de ellos implican dos pasos: (i) regularización de las inte-
grales, dando forma a su comportamiento divergente y (ii) substracción de las divergencias,
usualmente mediante la incorporación de contratérminos en el Lagrangiano. El método más
popular hoy en día consiste en regularizar las integrales mediante continuación analítica de la
dimensión del espacio-tiempo, el método llamado Regularización Dimensional (DReg), y des-
pués usar substracción mínima (MS) para eliminar las partes singulares de la correspondiente
expansión en serie de Laurent de la dimensión física. Las ventajas de este método son la re-
lativa simplicidad de los cálculos y el hecho de que preserva invariancia gauge. Sin embargo,
DReg tiene problemas en teorías quirales, lo que incluye al Modelo Estándar de interacciones
electrodébiles y a teorías supersimétricas. La razón por la que presenta problemas con estas
teorías recae en la continuación analítica de la matriz γ5 hacia dimensiones complejas. Por
tanto es necesario crear variaciones de DReg que preserven la matriz γ5 común, como por
ejemplo la regularización por reducción dimensional (DRed). Estas variaciones, sin embargo,
también presentan inconsistencias o acaban con problemas similares a DReg con la matriz
γ5.

Otros métodos tradicionales de regularización o bien rompen la invariancia gauge o bien
son demasiado complicados para usarse en situaciones realistas. Es por tanto interesante, de-
sarrollar métodos alternativos en cuatro dimensiones que combinen la simplicidad con la pre-
servación de las simetrías más importantes. Los métodos implícitos estudiados en esta tesis,
renormalización diferencial restringida (CDR), renormalización implícita restringida (CIR) y
renormalización cuatridimensional (FDR), son candidatos prometedores. Se ha demostrado
que estos métodos respetan las identidades de Ward asociadas a la invariancia gauge. Los
llamamos implícitos porque se saltan el paso (i) realizando la substracción sin necesidad de
regularización. Esto puede ser bueno y malo al mismo tiempo: por una parte, los métodos
son extraordinariamente simples y trabajan en cuatro dimensiones (u otra dimensión física
de interés); pero por otro lado, debido a la ausencia de un regulador explícito, se debe tener
mucho cuidado con el fin de evitar inconsistencias. Esto requiere el uso de reglas estrictas
que limiten las operaciones que se puedan realizar con los integrandos e integrales. Además,
con la ausencia de contratérminos explícitos, las substracciones en integrales de varios loops



pueden fácilmente romper propiedades sagradas de la Teoría Cuántica de Campos (QFT),
como localidad o unitariedad. Esta tesis trata con estas sutilezas de los métodos implícitos.
Nuestro objetivo es encontrar un proceso sistemático de renormalización implícita que auto-
máticamente cumpla con las propiedades esenciales. Esto es necesario para realizar pruebas
rigurosas o también para poder usar el método con confianza como alternativa a DReg para
cálculos novedosos.

En la primera parte de la tesis, estudiamos el comportamiento de los métodos implíci-
tos en teorías quirales. El hecho de que los métodos implícitos trabajen en dimensión fija,
los hace buenos candidatos para la renormalización de teorías gauge quirales. Sin embargo,
mostramos que, bajo leves suposiciones se da un conflicto inevitable entre la preservación
de la invariancia gauge y la validez de identidades específicas de la dimensión que están
relacionadas con las propiedades comunes de la matriz γ5. Como consecuencia, los métodos
implícitos que mencionamos anteriormente, presentan exactamente los mismos problemas con
las teorías quirales que los métodos dimensionales. Las formulaciones originales de estos mé-
todos llevan, de hecho, a inconsistencias en el trato del tensor antisimétrico ε y la matriz γ5.
Para remediarlo, añadimos unas reglas adicionales a estos métodos implícitos que eliminan
cualquier ambigüedad en el resultado. De esta forma, pueden ser usados de forma segura en
teorías gauge quirales. El precio a pagar es dejar a un lado las identidades de Fierz y algunas
de las propiedades familiares de γ5. Una vez bien definidas estas reglas, realizamos cálculos
explícitos a un loop en teorías quirales con FDR para evaluar el comportamiento de estos
métodos mejorados.

La segunda parte de la tesis trata con cálculos a varios loops. Nos concentramos en
FDR. Como se ha mencionado anteriormente, en ausencia de contratérminos explícitos, la
unitariedad y localidad de la teoría renormalizada no está garantizada a priori. De hecho, se
descubrió que la formulación de FDR es inconsistente con la estructura de contratérminos de
las teorías renormalizables. Esto fue solucionado en cálculos explícitos a dos loops incorporan-
do al método una “sub-prescripción” que fuerza la consistencia al sub-integrar, es decir fuerza
la correspondencia entre renormalizar primero el subdiagrama para después introducirlo en
el diagrama completo y continuar la renormalización, con renormalizar todo el diagrama a
la vez. Esto funciona en ejemplos conocidos, aun así, es una corrección a posteriori y no
está claro que vaya a funcionar para cualquier diagrama de Feynman, especialmente a altos
órdenes o en la presencia de singularidades infrarrojas.

Nuestra propuesta es imponer las propiedades esenciales organizando la renormalización
de diagramas y subdiagramas de acuerdo con la Forest Formula de Zimmermann. Para ha-
cer esto, definimos un operador de substracción en el contexto de FDR. Esto determina el



método. Analizamos diferentes definiciones y las probamos en cálculos explícitos a dos loops.
Encontramos que todos los cálculos respetan las identidades de Ward. Sin embargo, algunas
de las definiciones presentan problemas al reproducir los valores conocidos de la función beta
del Grupo de Renormalización, lo que refleja que las amplitudes renormalizadas contienen
partes no locales incorrectas. Finalmente, seleccionamos la definición más simple y compro-
bamos que lleva a las propiedades deseadas. De hecho, mostramos que la Forest Formula
con el operador elegido genera automáticamente los mismos “extra-extra” términos que la
“sub-prescripción” de FDR en todos los ejemplos que se han estudiado.

Los trabajos de ambos capítulos llevan, como principal resultado de esta tesis, a una
definición precisa de un método sistemático e implícito que respeta la invariancia gauge y
otras propiedades básicas de las teóricas cuánticas quirales y no quirales, al menos hasta
dos loops. Basado en nuestro análisis, creemos que el mismo método se puede usar también
satisfactoriamente sin más perfeccionamientos, a cualquier orden. Sin embargo, una prueba
rigurosa de este hecho va más allá del alcance de esta tesis.



Abstract

Precise theoretical predictions in Particle Physics, including those required to compare with
experimental results at the Large Hadron Collider, involve the calculation of radiative cor-
rections, that is, higher order corrections in a perturbative expansion. These quantum cor-
rections are plagued with infinities, and a non-trivial renormalization process is unavoidable
to make sense of them. There are different methods to deal with renormalization. Most
of them involve two steps: (i) regularization of the integrals, which gives a precise form to
their divergent behaviour and (ii) subtraction of the divergences, typically by the addition
of counterterms in the Lagrangian. The most popular method nowadays is to regularize the
integrals by analytical continuation in the space-time dimension, the so-called dimensional
regularization (DReg), and then use minimal subtraction (MS) to eliminate the singular part
of the corresponding Laurent series at the physical dimension. The advantages of this method
are the relative simplicity of the calculations and the fact that it preserves gauge invariance.
However, DReg has problems in chiral theories, which include the Standard Model of elec-
troweak interactions and supersymmetric theories. The reason lies in problems with the
analytical continuation of the γ5 matrix into complex dimensions. Variations of DReg that
preserve the standard γ5 matrix, such as regularization by dimensional reduction (DRed),
have been proposed. These variations, however, either present inconsistencies or end up with
similar problems with the γ5.

Other traditional methods of regularization either break gauge invariance or are too
complicated to be used in practice in realistic situations. It is therefore interesting to develop
alternative methods in four dimensions that combine simplicity with the preservation of the
relevant symmetries. The implicit methods studied in this thesis—constrained differential
renormalization (CDR), constrained implicit renormalization (CIR) and four-dimensional
renormalization (FDR)—are promising candidates. These methods have been shown to re-
spect the Ward identities associated to gauge invariance. We call them implicit because they
bypass step (i) by providing the necessary subtraction without any regularization. This is
both a blessing and a curse: on the one hand, the methods are remarkably simple and work
in four dimensions (or any other physical dimension of interest); on the other, in the absence
of a regulator one must be extremely careful to avoid inconsistencies. This requires the use
of strict rules that limit the operations that can be performed on integrands and integrals.
Moreover, in the absence of explicit counterterms the subtractions in multi-loop integrals
could easily break sacred properties of quantum field theory, such as locality or unitarity.
This thesis deals with these subtleties of the implicit methods. Our aim is to find a system-
atic procedure of implicit renormalization that automatically fulfils the essential properties.



This is necessary for rigorous proofs and also if the method is to be used with confidence as
an alternative to DReg in novel calculations.

In the first part of the thesis, we study the performance of implicit methods in chiral
theories. The fact that implicit methods work at fixed dimension make them good candidates
for the convenient renormalization of chiral gauge theories. However, we show that, under
very mild assumptions (which hold in these methods) there is an unavoidable conflict between
the preservation of gauge invariance and the validity of dimension-specific identities that are
related to the standard properties of the γ5 matrix. As a consequence, the implicit methods of
interest present exactly the same problems with chiral theories as the dimensional methods.
The original formulations of these methods lead in fact to inconsistencies in dealing with the
ε antisymmetric tensor and the γ5 matrix. To remediate this, we supplement the implicit
methods with additional rules that render the results unambiguous. In this way, they can be
safely used in chiral gauge theories. The price to pay is giving up standard Fierz identities
and some of the familiar properties of the γ5. We perform explicit one-loop calculations in
chiral theories with FDR to assess the performance of the improved methods.

The second part of the thesis deals with multi-loop calculations. We concentrate on
FDR. As mentioned above, in the absence of explicit counterterms the unitarity and locality
of the renormalized theory is not guaranteed a priori. In fact, the naive formulation of
FDR was soon found to be inconsistent with the counterterm structure of renormalizable
theories. This was solved in explicit two-loop calculations by incorporating into the method
a “subprescription” that enforces subintegration consistency. This works in known examples,
but still, it is a correction a posteriori and it is not clear if it will work as such for all Feynman
diagrams, especially at higher loops or in the presence of infrared singularities.

Our proposal is to enforce the essential properties by organizing the renormalization
of diagrams and subdiagrams according to Zimmermann’s Forest Formula. To do this, we
define a subtraction operator in the context of FDR. This determines the method. We analyze
different definitions and test them in explicit two-loop calculations. They are all shown to
respect the Ward identities. However, some of them present problems in reproducing the
known beta functions, which reflect wrong non-local parts in the renormalized amplitudes.
Finally, we select the simplest definition and check that it leads to all the desirable properties.
In fact, we show that the Forest Formula with the selected operator automatically generates
the same “extra-extra” terms as the FDR subprescription in all the examples we study.

The developments of the two chapters lead, as the main result of the thesis, to the
precise definition of a systematic implicit method that respects gauge invariance and other
basic properties of chiral and non-chiral quantum field theories, at least at the two-loop level.



Based on our analysis, we believe that the very same method can also be used successfully,
without any further refinement, at arbitrary order. But a rigorous proof to all orders goes
beyond the scope of this work.
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Chapter 1

Introduction

Nowadays, due to the emergence and improvement of particle colliders, precision Physics
research at High Energy Physics framework has become so essential. Increasing colliders
energy in order to look for New Physics beyond the Standard Model is a hard work and has
engineering limitations. So finding another way of sensing New Physics turns necessary, and
there is where precision acquires an important role. Detecting some small deviations between
theory and experiment at available energy scales could be a signal of New Physics. A massive
unknown particle that we cannot produce and detect in a collider due to its large mass, may
virtually contribute to a lower energy process that we are able to measure. This contribution,
which is inversely proportional to the particle mass, provokes a small discrepancy since it
is not theoretically expected. Therefore, it is extremely important to extract measurable
observable values from theory as well as from experiment with high precision.

In this way, Theoretical Physics task is to develop and improve mathematical methods
which allow us to compute amplitudes of physical processes. These methods are framed at
perturbative Quantum Field Theory (pQFT) where every fields interaction is described as
an infinite series in fields coupling and ~, i.e. quantum effects. The lowest order is called tree
level and it represents the more important contribution to the amplitude. The remaining
are called radiative corrections because they mean a little rectification to the principal value.
Furthermore, some physical process could be highly suppressed because of the lack of the
tree level. Thus, the bigger the pQFT order we are able to reach while evaluating a physical
amplitude, the higher the precision we get in the computation.

Nevertheless, beyond tree level, in an intermediate step of the physical process, particles
without any momentum restriction arise forming the so-called loops. While computing the
amplitude of that process, logically, a sum over all possible momenta of those particles needs
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to be performed. That sum involves an integral of every free momenta, from −∞ to ∞ in
all space-time dimensions. And as expected, this integral could diverge. However, despite of
those arisen infinities, real physical information related to the interaction process is hidden
behind them and has to be extracted somehow.

In order to achieve that, a regularization procedure must be done. Regularization
parametrizes the divergences in a regulator which can be isolated and later ejected from the
theory by the introduction of local counterterms to the Lagrangian and reabsorbing them
into the parameters of the theory, what is called a renormalization procedure. Throughout
the years, multiple regularization schemes have been developed such as cut-off, Pauli-Villars,
etc., as well as implicit renormalization methods where a regulator is not needed since renor-
malization occurs at the integrand level leaving the Lagrangian untouched. However, several
of them does not respect shift or gauge invariance, unitarity, etc., that is important symme-
tries of the theory necessary for a consistent renormalization that fulfils the quantum action
principle. That is why Dimensional Regularization (or some versions of it) has become the
standard for QFT calculations since it respects all mentioned symmetries. It consists in
perfoming the calculations in d space-time dimensions, and then taking the limit to four
dimensions d = 4 + ε (or the target one n), using ε → 0 as a regulator. In spite of its good
properties, theories where dimension is relevant as in chiral or supersymmetric ones, it stops
being consistent.

It is well known that regularization methods based on analytical continuation in a com-
plex dimension d face some problems in the presence of γ5 matrices and completely anti-
symmetric ε tensors.1 The reason is that the usual properties of these objects in integer
dimension n are not consistent with the treatment of Lorentz tensors in dimensional regular-
ization (DReg) [2, 3]. Therefore, one has to give up some of these properties [4]. In particular,
a consistently-defined γ5 that approaches the standard γ5 as d→ n cannot anticommute with
the Dirac matrices in DReg [4, 5] 2 and there is no finite-dimensional complete set in Dirac
space—which is an obstacle, for instance, for Fierz reorderings and supersymmetry. These
complications are related to the fact that Lorentz covariants in complex dimension d are
treated as formal objects, in which the indices do not take actual values. Even if quantities
such as {γ5, γµ} are evanescent, i.e. they approach zero as d→ n, due to the poles at d = n in
the loop integrals they leave a vestige in the renormalized functions after minimal subtraction

1See [1] for a review. We follow the conventions in that reference only to some extent.
2An anticommuting γ5 is often employed in DReg, nevertheless. Although this may be safe for many

calculations, as shown in [6], a well-defined renormalized theory requires a consistent unified treatment of
arbitrary diagrams and amplitudes. In particular, this is necessary to prove important properties of the
theory to all orders.
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(MS).

A consistent set of rules in DReg to manipulate Lorentz tensors, including the ε tensor
and γ5 matrix, was proposed by Breitenlohner and Maison in [4]. They used the original
definition of γ5 by ’t Hooft and Veltman (tHV) [3]. Completed with these rules and MS
(or MS), DReg provides a consistent renormalization scheme. However, besides genuine
anomalies, spurious anomalies appear in some correlators of axial vector currents in QCD and
chiral gauge theories, including the Standard Model [7]. These pose no fundamental problem,
as it has been shown that they can be eliminated by an additional finite subtraction in a
systematic way [8]. But such a correction represents a complication in explicit calculations.
This is the main reason for looking for alternatives to the tHV definition of γ5. Furthermore,
DReg explicitly breaks supersymmetry, so it is not a convenient method in supersymmetric
theories.

An alternative set of rules for Lorentz tensors and Dirac matrices, which define regular-
ization by dimensional reduction (DRed), was proposed by Siegel in [9] with the purpose of
preserving supersymmetry. In this case, the ε tensor, the Dirac gamma matrices and the γ5

matrix are the original n-dimensional objects and thus the Dirac algebra is in principle per-
formed in integer dimensions. The name of the method indicates that when these objects are
contracted with tensors associated to the dimensionally-regularized integrals, they are pro-
jected into the formal d-dimensional Minkowski space. But due to this projection, the conflict
between the n-dimensional relations and the d-dimensional Lorentz space reappears. In fact,
Siegel himself showed in [10] that the set of rules in the original formulation is inconsistent.
A consistent set of rules can be defined by, once again, giving up genuine n-dimensional
relations that require giving explicit integer values to the Lorentz indices [11, 12, 13]. Un-
surprisingly, this consistent version of DRed does not manifestly preserve supersymmetry.
The four-dimensional helicity method (FDH) [14] is a variant of DRed that treats external
vector fields as strictly four dimensional [1]. For our purposes we need not distinguish it
from (consistent) DRed. On the other hand, we will often refer to the original, inconsistent
version of DRed, for comparison with the methods we are interested in.

In view of the unavoidable difficulties of the dimensional methods when applied to chiral
theories or chiral operators, it is reasonable to turn to methods defined in the fixed dimension
of interest (often n = 4). Indeed, none of the issues discussed above seems at first sight to
be relevant when the original dimension is kept fixed. However, in this thesis we show that
this expectation is too naïve. It turns out that the formal treatment of Lorentz tensors and
Dirac space in certain efficient fixed-dimension methods shares many properties with the one
in dimensional methods. As a consequence, the same consistency problems with ε and γ5 are
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found. Consistency can be recovered, once again, by giving up some n-dimensional relations.
The resulting methods do not preserve supersymmetry.

Among mentioned implicit and fixed-dimension methods, we will focus on FDR due to
its ability to work at the integrand level. The current definition of the method is order by
order where new rules are introduced when a problem appears. Thus a systematic approach
to the method is needed. In this way, Zimmermann’s Forest Formula [39] ensures locality,
unitarity and a systematic implementation of whatever renormalization method we choose.
Therefore, Forest Formula could be a very helpful tool in FDR development.

The thesis is organized as follows. Chapter 2 is mostly composed by paper [15] also
written by the author of this thesis, his supervisor and another collaborator. In section 2.1,
we describe the treatment of Lorentz tensors in DReg/DRed and in implicit methods. We
stress the fact that, in order to preserve basic properties of the integrals, the contraction of
Lorentz indices cannot commute with renormalization. We also explain how this requirement
is implemented in the different methods. In section 2.2 we show a consequence of it: some
identities that are valid in standard n-dimensional spaces are spoiled by the renormalization
process. Thus, using these identities leads to inconsistent results. In section 2.3 we study
how the Dirac algebra is affected by these potential inconsistencies. We find that implicit
methods have problems with the Dirac algebra in odd dimensions and with the γ5 matrix
in even dimensions. These issues parallel the ones in dimensional methods. In section 2.4
we propose a well-defined procedure that avoids inconsistencies in implicit methods. This
procedure is analogous to the consistent version of DRed. We discuss allowed simplifications
within this scheme, including shortcuts that have already been used in FDR. In section 2.5 we
show the FDR method as it was originally explained by its authors [20, 23]. We give simple
examples of chiral calculations using FDR in n = 2 and n = 4 in section 2.6. Chapter 3 is a
work in progress with the main FDR author Roberto Pittau (Full Professor at University of
Granada) which is expected that could lead to a paper publication in the future. In section
3.1 we define Forest Formula and show how it works with several renormalization methods.
In section 3.2 we systematize FDR thanks to Forest Formula. We present several conditions
configurations to successfully achieve the systematization. In section 3.3 we introduce Renor-
malization Group Equation as a tool to analyze all FDR schemes we found in the previous
section. Finally, in chapter 4 we perform some QED calculations trying to distinguish among
the several FDR systematizations. We compute one and two-loop vacuum polarization in
Spinorial and Scalar QED, and fermion self-energy in Spinorial QED in sections 4.1, 4.2 and
4.3 respectively. And we conclude in section 5. Appendix A contains all Feynman rules of
the theories we have treated in this thesis, appendix B has all master integrals and needed
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functions to evaluate one and two-loop integrals, and appendix C collects functions that
appear in the evaluation of axial vertex in four dimensions.
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Chapter 2

Lorentz algebra and chirality in implicit
methods of renormalization

In explicit regularizations in fixed dimension n, such as a momentum ultraviolet cutoff or
those based on a modification of the Lagrangian, the n-dimensional Lorentz and Dirac manip-
ulations inside or outside loop integrals are well defined. The same is true at the renormalized
level in physical renormalization schemes defined by renormalization conditions. However,
when some a priori subtraction prescription is used (similar to MS in DReg), the commuta-
tion of the usage of n-dimensional identities with the substraction of divergences needs to be
checked. This is specially so in fixed-dimension methods that directly provide renormalized
amplitudes without explicit counterterms. Here we are interested in methods of this kind
with the potential of satisfying the quantum action principle [16], from which basic proper-
ties, such as Ward identities, follow to all orders. We will generically refer to them as implicit
methods. Specifically, we study in detail three implicit methods: constrained differential reg-
ularization/renormalization (CDR)1 [18], constrained implicit regularization/renormalization
(CIReg) [19] and four-dimensional regularization/renormalization (FDR) [20]. These meth-
ods have been applied to one-loop and multi-loop calculations in QCD [21, 22, 23], the Stan-
dard Model [24, 25, 26], supersymmetric models [27, 28, 29] and supergravity [30], among
other theories. In all these examples, gauge invariance and supersymmetry, when relevant,
have been preserved. We will also make some comments about the four-dimensional formal-
ism (FDF) [31] of FDH, which shares some features with FDR.

The first of these methods was originally defined in position space, as a gauge-invariant
version of differential renormalization [32], but it works equally well in momentum space.

1Not to be confused with “conventional dimensional regularization”.
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Actually, its momentum-space version is implemented in FormCalc [33].2 CDR gives renor-
malized expressions without any intermediate regularization, essentially by an implicit sub-
traction of local singularities (polynomial in external momenta, in agreement with Weinberg’s
theorem). CIReg and FDR work in momentum space at the integrand level. Both methods
use straightforward partial-fraction identities to isolate the ultraviolet divergences, with no
external momenta in the denominators. The divergent parts are then ignored, that is, sub-
tracted. Again, no regularization is necessary. One difference between them is that CIReg
keeps physical masses in the divergent parts, while FDR does not, but these include an auxil-
iary mass µ, which is introduced before the algebraic manipulations to avoid artificial infrared
divergences and taken to zero at the end.3 This scale is essential in FDR and will be very
relevant in the discussion below. Let us stress that, notwithstanding its name, FDR can be
used in the very same manner in any integer dimension. All three methods can in principle
deal as well with genuine infrared divergences, but only FDR has been studied in detail in
this context, both for virtual and real singularities [20, 25]. The equivalences in non-chiral
theories and at the one-loop level of CDR, CIReg (in a massless scheme) and DRed have
been established in [33, 35] and [36]. Concerning the preservation of unitarity and locality
in multiloop calculations without counterterms, CDR and CIReg rely on Bogoliubov’s recur-
sive renormalization and Zimmermann’s Forest Formula [37, 38, 39, 40, 34] which we will
study in coming sections. At any rate, here we are concerned with the treatment of Lorentz
tensors and Dirac matrices in these fixed-dimension methods, and one-loop examples will be
sufficient to illustrate our main messages.

2.1 Lorentz tensors and index contraction

In dimensional methods, the contraction of Lorentz indices in a tensorial integral does not,
in general, commute with regularization and renormalization. This comes from the simple
fact that the trace of the d-dimensional metric tensor is gµµ = d = n− ε 6= n. When it hits
a pole 1/ε in a divergent integral, the term linear in ε will give rise to a finite contribution,
which is not subtracted in MS and survives when ε is taken to zero.

We show next that, actually, index contraction does not commute with renormaliza-
tion in any implicit method that respects the quantum action principle and consistently

2FormCalc has the option of working in d or 4 dimensions, that is, in DReg or CDR. The latter is more
suitable for supersymmetric theories.

3CIReg can also be implemented without masses in divergent parts [34]. In this mass-independent scheme,
and in all cases in massless theories, the scale µ is introduced in CIReg as well, but only in denominators.
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replaces each overall-divergent integral by a unique finite expression. CDR, CIReg and FDR
belong to this class. The proof of the quantum action principle in perturbation theory re-
lies on two non-trivial properties: invariance under shifts of the integration momenta and
numerator-denominator consistency. The first property is related to translational invariance
and guaranties independence of momentum rooting. The second one requires that the appli-
cation of the kinetic operator to the propagator associated to some line in a Feynman graph
is equivalent to pinching of that line, that is, its contraction to a point. This is necessary
for a consistent treatment of the quadratic and interaction terms in perturbation theory [4].
These properties need not hold in arbitrary definitions of regularized or subtracted integrals.

Shift invariance can be related to the vanishing of total derivatives with respect to
integration momenta:

0 =

[∫
dnk (f(k + p)− f(k))

]R
= pν

[∫
dnk

∂

∂kν
f(k)

]R
+O(p2) (2.1.1)

Here, R indicates that the expression inside the corresponding brackets is renormalized, i.e.
subtracted and with any possible regulator or auxiliary parameter removed (except for the
unavoidable renormalization scale). We require that the operation [.]R be linear:

[aF + bG]R = a [F ]R + b [G]R (2.1.2)

where a, b are numbers or external objects, such as external momenta. This holds in all the
methods we study in this thesis. Consider the following two-dimensional integral:

fµν =

∫
d2k

∂

∂kµ

kν
k2 −m2

=

∫
d2k

(
gµν

k2 −m2
− 2

kµkν
(k2 −m2)2

)
(2.1.3)

According to 2.1.1, shift invariance requires [fµν ]
R = 0, and thus, calling

Iµν =

∫
d2k

kµkν
(k2 −m2)2

(2.1.4)
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we have

[Iµν ]
R =

1

2
gµν

[∫
d2k

1

k2 −m2

]R
=

1

2
gµν

([∫
d2k

k2

(k2 −m2)2

]R
−
[∫

d2k
m2

(k2 −m2)2

]R)
=

1

2
gµν

(
[Iαα]R − iπ

)
(2.1.5)

That is, shift invariance forbids symmetric integration (in n dimensions). In the second line
we have used numerator-denominator consistency, (k2 − m2)/(k2 − m2) = 1. This looks
trivial in the formal equations above, but it is not so in methods that modify the propagators
at intermediate steps of the calculation. In the third line we have assumed that integrals
finite by power counting are not changed by renormalization. This assumption is essential
in the definition of dimensional regularization and also in the definition of CDR, CIReg and
FDR, as should already be clear from the brief explanations in the introduction. We can
rewrite 2.1.5 as

gµν [Iµν ]
R = [gµνIµν ]

R − iπ (2.1.6)

So, we see that renormalization does not commute with index contraction if it commutes with
shifts of integration momenta and respects numerator-denominator consistency. This is in
fact the origin of trace anomalies [41] and also of chiral anomalies, as we shall see. The same
conclusion can be proven in arbitrary integer dimension n using similar arguments.

Let us now examine how the different renormalization methods we are discussing recover
2.1.5, and thus comply with 2.1.1. In the case of dimensional methods, we have

[Iµν ]
R =

[∫
ddk

kµkν
(k2 −m2)2

]S
=

[∫
ddk

1

d
gµν

k2

(k2 −m2)2

]S
=

[∫
ddk

(
1

2
+
ε

4
+O(ε2)

)
gµν

k2

(k2 −m2)2

]S
=

[
1

2
gµν

∫
ddk

k2

(k2 −m2)2
+
(ε

4
+O(ε2)

)
gµν

(
−2iπ

1

ε
+O(ε0)

)]S
=

1

2
gµν

(
[Iαα]R − iπ

)
(2.1.7)

in agreement with 2.1.5. Here, S indicates MS followed by ε → 0. Note that before the S
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operation, g is the metric tensor in d formal dimensions, which satisfies gµµ = d.

In CDR, the finite local terms in the renormalized value of the different overall-divergent
tensor integrals are fixed by requiring compatibility with shift invariance and numerator-
denominator consistency. Hence, [fµν ]

R = 0 by construction and the extra local term in the
tensor integral is fixed just as in equation 2.1.6.

CIReg has the advantage of working at the integrand level. Tensor integrands are ex-
pressed as simpler integrands plus total derivatives. Integrating the latter gives potential
surface terms, which are dropped by definition. So, shift invariance is enforced by the very
definition of the method. For instance, using the same relation as in 2.1.3,

[Iµν ]
R =

[∫
d2k

(
1

2

gµν
k2 −m2

− 1

2

∂

∂kµ

kν
k2 −m2

)]R
=

1

2
gµν

[∫
d2k

1

k2 −m2

]R
=

1

2
gµν

(
[Iαα]R − iπ

)
(2.1.8)

We see that the same local terms as in CDR are found, but in this case there is a simple
prescription to obtain them. Obviously [fµν ]

R = 0 and 2.1.6 is satisfied. At this point, it is
important to make the following observation. We can also write

[Iαα]R =

[∫
d2k

(
1

k2 −m2
− 1

2

∂

∂kα

kα
k2 −m2

)]R
(2.1.9)

Dropping the second term would contradict 2.1.8. Accordingly, CIReg does not drop this sort
of surface term when the index in the total derivative is contracted with a loop momentum.
Therefore, just as CDR, CIReg distinguishes by definition contracted and non-contracted
Lorentz indices. Note that the vanishing of the second term on the right hand of 2.1.9 is not
necessary for shift invariance: in 2.1.1 the index in the total derivative is contracted with the
index in the (external) momentum shift, so it can never be contracted with the index of a
loop momentum.

In FDR, which also works at the integrand level, the extra local terms necessary for
shift invariance result automatically from the introduction of the scale µ, together with some
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additional prescriptions. In this method,

[Iµν ]
R =

[∫
d2k

kµkν
(k2 − µ2 −m2)2

]S
=

1

2
gµν

[∫
d2k

k2

(k2 − µ2 −m2)2

]S
=

1

2
gµν

[∫
d2k

k2 − µ2

(k2 − µ2 −m2)2
+

∫
d2k

µ2

(k2 − µ2 −m2)2

]S
=

1

2
gµν

(
[Iαα]R +

[∫
d2k

µ2

(k2 − µ2 −m2)2

]S)
=

1

2
gµν

(
[Iαα]R − iπ

)
(2.1.10)

Several explanations are in order. The first step in FDR is the introduction of the scale µ, as
done in the first line of 2.1.10. The symbol [.]S in this case refers to the FDR subtractions,
followed by the limit µ → 0 (outside logarithms). In the second line, we have used the
property of symmetric integration, which is allowed in this method after the scale µ has been
introduced. In the forth line we have used the so-called global prescription of FDR, according
to which the possible k2 in numerators inside [.]R should be also replaced by k2 − µ2, just
as in the denominators. As emphasized in [20], this is necessary to preserve numerator-
denominator consistency. Finally, the integral in the second term of the fourth line of 2.1.10
is finite and goes to zero as µ→ 0. However, a nonvanishing contribution is found as shown
in the last line, because FDR performs an oversubtraction, treating this integral as divergent
(for power counting, µ is counted like an integration momentum). In the FDR language
integrals of this kind are called extra integrals. They play the same role as the extra local
terms in CDR, with the advantage that the necessary terms arise directly from a simple and
universal prescription, formulated without reference to specific integrals. The result in 2.1.10
coincides with the one in the previous methods, as it should to guarantee [fµν ]

R = 0 and,
thereby, shift invariance.

Let us summarize this section. Just as in dimensional renormalization, the contraction
of Lorentz indices does not commute with renormalization in the implicit methods we are
considering, which respect invariance under shifts of the integration momenta and numerator-
denominator consistency. In the latter methods, k2 and kµkν have to be treated in a different
manner by hand. This requires writing the diagrams in some normal form that allows for a
unique identification of tensors with contracted and uncontracted indices.
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2.2 Relations in genuine integer dimension

Genuine n-dimensional identities (GnDI) spoil the uniqueness of the normal form and thus
can lead to inconsistencies in implicit methods, which parallel the ones in the original version
of DRed. By GnDI we mean equalities depending crucially on the fact that the Lorentz
indices can take n different integer values. Consider the determinant

Det(µ1 . . . µm; ν1 . . . νm) ≡

∣∣∣∣∣∣∣∣∣∣
gµ1ν1 gµ1ν2 . . . gµ1νm
gµ2ν1 gµ2ν2 . . . gµ2νm
...

...
...

gµmν1 gµmν2 . . . gµmνm

∣∣∣∣∣∣∣∣∣∣
(2.2.1)

In standard algebra, this object vanishes when m > n, since it is then unavoidable to have
at least two identical rows, as the indices can take only n different values. However, this
is not necessarily true when used inside [.]R, because contracted and uncontracted indices
are treated differently if index contraction does not commute with renormalization. To
show this more explicitly, let us consider the case with n = 2 and m = 3. Requiring the
determinant 2.2.1 to vanish we have

0 = [0]R

?
= [Det(αµν; βρσ)p1µp2νp3ρp4σIαβ]R

= (p1 · p3 p2 · p4 − p1 · p4 p2 · p3) [Iαα]R − pµ1p
ρ
3 p2 · p4 [Iρµ]R

+ pρ3p
ν
2 p1 · p4 [Iρν ]

R + pσ4p
µ
1 p2 · p3 [Iσµ]R − pν2pσ4 p1 · p3 [Iσν ]

R (2.2.2)

If we now use 2.1.5, we find

0
?
= iπ(p1 · p3 p2 · p4 − p1 · p4 p2 · p3) (2.2.3)

which is obviously not true for general pi.

This simple example is sufficient to prove the main assertion of this thesis: Using GnDI
before renormalization can lead to inconsistencies in implicit methods. The origin of this issue
is the non-commutation of index contraction with renormalization. The difficulties with γ5,
discussed in the next section, are a direct consequence of it.

In dimensional methods, it is clear that the determinant 2.2.1 does not vanish if g is
the d-dimensional metric, so obviously the second equality in 2.2.2 is invalid. However, an
n-dimensional metric ḡ (g̃) is introduced in DReg (DRed), with ḡµµ = g̃µµ = n. The relation
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between the n-dimensional and d-dimensional metrics is different in DReg and DRed:

gµ
ν ḡνρ = ḡµρ (DReg) (2.2.4)

gµ
ν g̃νρ = gµρ (DRed) (2.2.5)

Let us define

Det(µ1 . . . µm; ν1 . . . νm) ≡

∣∣∣∣∣∣∣∣∣∣
ḡµ1ν1 ḡµ1ν2 . . . ḡµ1νm
ḡµ2ν1 ḡµ2ν2 . . . ḡµ2νm
...

...
...

ḡµmν1 ḡµmν2 . . . ḡµmνm

∣∣∣∣∣∣∣∣∣∣
(2.2.6)

For n = 2, in DReg we have

0 = [0]R

=
[
Det(αµν; βρσ)p1µp2νp3ρp4σIαβ

]R
= (p1 · p3 p2 · p4 − p1 · p4 p2 · p3) [ḡαβIαβ]R − pµ1p

ρ
3 p2 · p4 [Iρµ]R

+ pρ3p
ν
2 p1 · p4 [Iρν ]

R + pσ4p
µ
1 p2 · p3 [Iσµ]R − pν2pσ4 p1 · p3 [Iσν ]

R (2.2.7)

This expression does vanish. The difference with 2.2.2 is that ḡµνkµkν 6= k2 if k is a d-
dimensional vector. Then, [

ḡαβIαβ
]R

= gαβ [Iαβ]R (2.2.8)

Note that g is the same as ḡ outside [.]R. We see that the rules in DReg are perfectly consistent
in our example: Det(αµν; βρσ) does not vanish in d dimensions while Det(αµν; βρσ) can be
safely set to zero in n = 2.

Things are very different in the original version of DRed. If we define D̃et just as in 2.2.6
but with ḡ → g̃, due to 2.2.5 and the fact that the integration momentum k is a d-dimensional
vector (in the sense explained above), we find g̃µνkµkν = k2. Hence, we recover 2.2.2 and
the inconsistency 2.2.3. The root of the problem in this case is apparent: the relation 2.2.5
projects n-dimensional objects into d-dimensions, which invalidates the GnDI used for the
former.

Note that in this version of DRed, the inconsistencies arise at the regularized level, due to
the incompatibility of the dimensional reduction rule 2.2.5 with GnDI. In implicit methods,
the GnDI are also dangerous before the identification and distinction of the different ten-
sors. But they can be safely used afterwards: in CDR, after the (non-trivial) trace-traceless
decompositions; in CIReg, after rewriting tensor integrals and eliminating surface terms by
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generalizations of 2.1.8; and in FDR, after the addition of µ2 in numerators, according to the
global prescription.

It will prove useful to mimic DReg and introduce in implicit methods a genuinely n-
dimensional metric ḡ, with the properties4

ḡ ν
µ ḡνρ = ḡ ν

µ gνρ = ḡµρ (implicit)

ḡµµ = n (2.2.9)

The distinguishing property of the metric ḡ with respect to g is that, by definition,

[ḡµνT...µ...ν...]
R = gµν [T...µ...ν...]

R (2.2.10)

for any tensor T . In general, 2.2.10 is different from [T µ
...µ... ... ]

R. In other words, for renor-
malization purposes ḡµνkµkν = k̄2 is not to be treated as k2 but as if the indices were
not contracted. For instance, in FDR, no µ2 is added to k̄2. (But once the µ2 shifts
have been performed, one can write k̄2 = k2.) Because ḡ commutes with renormalization,
Det(µ1µ2µ3; ν1ν2ν3) vanishes for n = 2, just as in DReg. But importantly, in expressions
such as 2.1.3, it is still the ordinary metric g of the formal n-dimensional space that appears.
Otherwise, shift invariance or numerator-denominator consistency would be spoiled, as we
have seen. If E is either the ε tensor or an external tensor, then we can substitute at any
moment one metric by the other one,

E...µ...g
µν = E...µ...ḡ

µν (2.2.11)

since the metrics appearing here will never contract two internal momenta, as long as GnDI
are not employed. We can also use ḡ in DRed, with the properties in 2.2.9 and 2.2.5,
supplemented with

ḡ ν
µ g̃νρ = ḡµρ (DRed) (2.2.12)

Actually, this is the key to the consistent formulation of DRed in [13]. In section 2.4 we will
comment on the structure of the spaces with these different metrics.

The example we have examined may look quite contrived, but identities of this kind are
often used to simplify expressions in the presence of completely antisymmetric tensors εµ1...µn .
This object can be defined formally by its rank and its antisymmetric character. Note that
the definition is dimension-specific: even if we do not assign values to the indices, ε is only

4ḡ and g here play the same role as ḡ and g, respectively, in DReg, except for the fact that in the latter
method gµµ = d.
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defined with n indices. The relations∑
π∈Sn+1

sign(π)εµπ(1)...µπ(n)g
µπ(n)ν = 0 (2.2.13)

and
εµ1...µnεν1...νn = Det(µ1 . . . µn; ν1 . . . νn) (2.2.14)

are GnDI. They can lead to inconsistencies when used inside [.]R. For instance, 2.2.13 in
n = 2 implies

0
?
= [(εµνgρα − εµρgνα + ενρgµα)Iµα]R

= iπενρ (2.2.15)

where we have used 2.1.5. One might be tempted to avoid some ambiguities by defining
the left-hand side of 2.2.14 by its right-hand side, and in this way eliminate products of
two ε tensors until one at most remains in a given factor. This definition is ill-defined. For
instance, in a product εµ1ν1εµ2ν2εµ3ν3εµ4ν4 , it is possible to apply 2.2.14 to three different pairs
of pairs of ε tensors. The result with each choice is formally different and can give rise to
different index contractions. Hence, when multiplied by a divergent integral, the result after
renormalization may depend on how the four ε tensors have been paired. This is analogous
to the DRed inconsistency pointed out in [10]. On the other hand, no inconsistencies arise
in any of the methods from GnDI such as 2.2.13 or 2.2.14 when the metric ḡ is used instead
of g.

2.3 Dirac algebra

The Dirac matrices γµ transform as vectors under Lorentz transformations. In dimensional
methods, they cannot have explicit n-dimensional form, since the Lorentz indices do not take
explicit integer values. They are defined as a formal representation of the Clifford algebra:

{γµ, γν} = 2gµν1 (DReg) (2.3.1)

{γµ, γν} = 2g̃µν1 (DRed) (2.3.2)

Trace identities follow in each case from these definitions, the ciclicity of the trace (which
we assume throughout the thesis) and the value of the trace of the identity, which in both
methods can be taken to be Tr1 = n. Because of the projection rule 2.2.5, even if the Dirac
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algebra looks n-dimensional in DRed, this can be effectively changed by contractions with
the integration momenta. In fact, the relation /k/k = k2 is necessary to preserve numerator-
denominator consistency. Implicit methods also treat Lorentz tensors in a formal way, as we
have seen, so the Dirac matrices are naturally defined by

{γµ, γν} = 2gµν1 (implicit) (2.3.3)

where of course g here is (formally) n-dimensional.

The formal treatment of the Dirac algebra in all of these methods suffers from a funda-
mental problem when n is odd. This can be checked most easily in DReg [42]. First, 2.3.1
and the cyclicity of the trace imply

dTr(γµ) = Tr(γµγαγα) = Tr(γαγµγα) = 2Tr(γµ)− Tr(γµγαγα) = (2− d)Tr(γµ) (2.3.4)

Hence, unless d = 1, Tr(γµ) = 0. Similar manipulations for a product of an odd number m
of Dirac matrices lead to

(d−m)Tr(γµ1 . . . γµm) = 0 (2.3.5)

Therefore, Tr(γµ1 . . . γµm) = 0 unless d = m. Analytical continuation in d then requires all
these products to vanish identically for all d. But this is incompatible with the fact that
the product of n Dirac matrices in n fixed odd dimensions is proportional to the ε tensor,
a property that should be recovered after renormalization. To solve this problem, one must
break the d-dimensional Lorentz covariance of the Dirac algebra changing g by ḡ in 2.3.1,
as proposed in [42]. This is consistent with 2.2.4 but compromises numerator-denominator
consistency. On the other hand, even if the definition 2.3.2 is employed in DRed, the problem
reappears when the indices in the initial trace are contracted with integration momenta, due
to the projection rule 2.2.5.

Presented in this way, the inconsistency in odd dimensions looks like a specific problem
of the analytical continuation in d. However, it turns out that implicit methods also treat
the Dirac algebra inconsistently when the dimension n is odd. Let us show it for the case
n = 3, for definiteness. In three dimensions,5

Tr(γµγνγρ) = 2εµνρ (2.3.6)
5Lorentz covariance guarantees that this trace is proportional to the ε tensor. The numerical factor

can be determined by agreement with the usual algebraic result, for instance using the Pauli matrices as a
representation of the 3-dimensional Dirac algebra.
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Then, from 2.3.2 and the cyclicity of the trace,

Tr(γµγνγργσγτ ) = −Tr(γνγµγργσγτ ) + 2gµνTr(γργσγτ )

= Tr(γµγνγργσγτ ) + 2 (gµνTr(γργσγτ )− gµρTr(γνγσγτ ) + gµσTr(γνγργτ )

− gµτTr(γνγργσ))

= Tr(γµγνγργσγτ ) + 4 (gµνερστ − gµρενστ + gµσενρτ − gµτενρσ) (2.3.7)

which in view of 2.2.13 looks fine at first sight. However, as we have seen in the previous
section the combination of ε tensors and deltas in the last line needs not vanish inside [.]R

when two of the indices are contracted with the integration momenta of a divergent integral.
Therefore, the result of the calculations can be ambiguous.

From now on, we will assume that the dimension n is even, unless otherwise indicated.
One of the most important limitations of not being able to employ GnDI is the absence of
a finite complete set in Dirac space. In ordinary n-dimensional space, the antisymmetric
products

[µ1 . . . µm] =
1

m!

∑
π∈Sm

sign(π)γµπ(1) · · · γµπ(m)
, m = 1, . . . , n (2.3.8)

together with the identity 1, form a linearly independent complete set of the space of 2n/2×
2n/2 complex matrices.6 In the formal n-dimensional space, the Dirac matrices cannot be
understood as matrices of any specific dimension, so completeness must be defined also in
a formal way. As shown in [43], many useful relations can be proven using only formal
manipulations. The matrices [µ1 . . . µm] are orthogonal with respect to the trace bilinear
form. Then, a string of Dirac gamma matrices

Sα1...αm = γα1 . . . γαm (2.3.9)

can always be written as

Sα1...αm = aα1...αm
0 1 + aα1...αm

µ [µ] + · · ·+ aα1...αm
µ1...µm

[µ1 . . . µm] (2.3.10)

with (n-independent) coefficients given by

aα1...αm
µ1...µk

=
1

nm!
Tr (Sα1...αm [µk . . . µ1]) (2.3.11)

6We are discussing the case of even n. For odd n, the set {[µ1 . . . µm],m = 1, . . . (n− 1)/2} is a complete
set of 2(n−1)/2 × 2(n−1)/2 matrices.
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Therefore, B = {1, [µ1], [µ1µ2], . . . } is a countable Hamel basis of the formal Dirac space,
defined as the set of arbitrary linear combinations of strings of the form 2.3.9 (including the
case with m = 0, S = 1). The main difference with a genuine n-dimensional space is that
the objects [µ1 . . . µm] do not vanish for m > n, so the space is infinite-dimensional. For
instance, in formal n-dimensional space we have

Sµνρ = gµνγρ − gµργν + gνργµ + [µνρ] (2.3.12)

which is valid for any even n, including n = 2. Using the mentioned GnDI, in n = 2 we could
instead simplify this expression to

Sµνρ = gµνγρ − gµργν + gνργµ (2.3.13)

But as stressed already many times, such simplifications are dangerous before renormaliza-
tion.

The standard Fierz identities in n dimensions can be derived using the completeness of
{1, [µ1], . . . , [µ1 . . . µn]}. Similarly, in the formal n-dimensional space one can derive Fierz
identities from the completeness of B. However, the Fierz reorderings in this case involve
in general an infinite number of terms, just as in DReg [44], which makes them less useful.
Moreover, the invariance under supersymmetry transformations of the action of supersym-
metric theories relies on genuine n dimensional Fierz identities (and also on an anticommuting
γ5). In fact, as shown in [11, 12, 13], the supersymmetry Ward identities are violated when
relevant GnDI are not fulfilled.

In even dimensions, Weyl spinors can be defined from Dirac spinors by chiral projectors
constructed with γ5.7 Several definitions of γ5 are in principle possible in the methods we
are considering. First, it can be defined formally by the basic property

{γAC
5 , γµ} = 0 (2.3.14)

where the label AC has been introduced to distinguish this definition from the one we favor
below. This simple definition is consistent, as has been proven in [13] by explicit construc-
tion. Unfortunately, in all the methods we consider, it is incompatible with the correct
n-dimensional value of odd-parity traces. This fact is well known in DReg [4, 5]. In n = 2,

7We call this object γ5 for any integer dimension n. Because in this thesis we never write Lorentz indices
with explicit integer values, no confusion with γµ should arise.
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for example, after renormalization we would like to recover the standard value

Tr(γ5γµγν) = −2εµν (2.3.15)

On the other hand, using 2.3.14 and the DReg rules in Tr(γAC
5 γµγνγργ

ρ), it follows that

d(d− 2)Tr(γAC
5 γµγν) = 0 (2.3.16)

which shows that Tr(γAC
5 γµγν) vanishes identically and 2.3.15 cannot be recovered in the

limit d → 2. DRed faces the same situation when the free indices in the initial trace are
contracted with integration momenta, due to the projection rule 2.2.5 [5]. Once again, this
issue appears as well in implicit methods. Indeed, 2.3.14 and 2.3.15 imply

Tr(γAC
5 γµγνγργσ) = Tr(γAC

5 γµγνγργσ)− 2ενρgµσ + 2εµρgνσ − 2εµνgρσ (2.3.17)

Again, in spite of GnDI 2.2.13 and as shown in 2.2.15, −ενρgµρ + εµρgνσ − εµνgρσ can be
nonzero inside [.]R, which then leads to a contradiction.8 In the same way it can be shown
that Tr(γAC

5 γµ1 . . . γµn) = 0 for any even n. This is certainly not what one would want in
an n-dimensional method and it shows that the definition 2.3.14 does not provide a correct
regularization of arbitrary diagrams in a chiral theory. Note that other traces with one
γAC

5 matrix also vanish, since they must be antisymmetric and there is no Lorentz-covariant
completely antisymmetric tensor of rank m 6= n. This can be proven more explicitly by
relating them to Tr(γAC

5 γµ1 . . . γµn), and can be extended to traces with an odd number of
γAC

5 matrices if (γAC
5 )2 = −1, a property which is required to form chiral projectors.

This problem of γAC
5 reappears in a more subtle form in open fermion lines. To see this,

assume for a moment that γAC
5 belongs to the formal Dirac space, as defined above. Then,

using the completeness of B, we would find

γAC
5 =

1

n
Tr(γAC

5 )1 +
1

2n
Tr(γAC

5 [νµ])[µν] +
1

24n
Tr(γAC

5 [σρνµ])[µνρσ] + . . .

= 0 (2.3.18)

Therefore, if γAC
5 is to be nontrivial, it cannot belong to the formal Dirac space.9 But then,

the eventual projection into the standard Dirac space of genuine n-dimensional space, which
8This argument in even dimensions is almost identical to the one above in odd dimensions. Taking into

account that the usual candidate for γ5 is proportional to the identity in odd dimensions, we see that the
origin of the inconsistencies is essentially the same in odd and even dimensions.

9This is apparent in the explicit construction of [13].
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is a subset of the former, will annihilate it. So, to recover standard Dirac strings with γ5

matrices, one needs to replace by hand γAC
5 by γ5 after renormalization. It does not seem

obvious to us that this ad hoc replacement in multiloop amplitudes will respect unitarity.

An alternative definition of γ5 is to generalize its explicit definition in genuine n dimen-
sions in terms of the Dirac matrices:

γ5 =
1

n!
εµ1...µnγµ1 · · · γµn (2.3.19)

This is akin to the original tHV definition in DReg [3] and is the definition we will use in the
following, unless otherwise indicated. Note that, even if we are not restricting the indices
to have n different values, this object is n-dimensional in the sense that it contains n Dirac
matrices. Furthermore, in view of 2.2.11, we can write 2.3.19 in the alternative form

γ5 =
1

n!
εµ1...µn γ̄µ1 · · · γ̄µn (2.3.20)

where γ̄µ = ḡ ν
µ γν . Like any other explicit definition, 2.3.19 does not introduce any consis-

tency issues by itself. The non-trivial question is which familiar properties of the γ5 can
be proven without using dangerous GnDI. The most important of these properties is the
anticommutation with the Dirac matrices, but from the discussion above it is clear that this
property cannot hold for the definition 2.3.19 in any of the methods we are discussing.10

Indeed, for n = 2, for instance, 2.3.19 and 2.3.2 give

Tr(γ5γµγνγργσ) + Tr(γµγ5γνγργσ) = −4 (gµνερσ − gµρενσ + gµσενρ) (2.3.21)

This expression vanishes when it accompanies finite integrals. However, using 2.2.15 we get

[(Tr(γ5γµγνγργσ) + Tr(γµγ5γνγργσ)) Iµσ]R = 4iπερν (2.3.22)

In the same vein, let us point out that some of the explicit trace expressions of odd-
parity products of Dirac matrices in the literature have been simplified with the help of
the GnDI 2.2.13. To avoid inconsistencies, only the complete expressions derived from 2.3.19
and 2.3.2 or 2.3.3 should be used before renormalization. The nonvanishing anticommutator

10The fact that γ5 does not anticommute with the Dirac matrices has already been observed in FDR [20]
and CIReg [45, 46].

20



{γ5, γµ} can be written in a simple form using ḡ. First, observe that in n = 2,

0 = (γµγνγρ)(ε
µν ḡρα − εµρḡνα + ενρḡµα)

= −εµρ(γµγργ̄α + γ̄αγργµ)

= {γ5, γ̄α} (2.3.23)

From this, similarly to DReg, we find

{γ5, γα} = 2γ5γ̂α (2.3.24)

where we have introduced the evanescent metric ĝ = g− ḡ, which has trace ĝµµ = 0, to write
the evanescent matrix γ̂µ = ĝ ν

µ γν = γµ − γ̄µ, and used the fact that this matrix commutes
with γ5. Indeed, in n = 2,

[γ5, γ̂α] = [γ5, γβ](gβα − ḡβα)

=
1

2
εµν [γµγν , γβ](gβα − ḡβα)

= −2εβµγµ(gβα − ḡβα)

= 0 (2.3.25)

due to 2.2.11. The proof of 2.3.24 can be generalized to arbitrary even n. Let us also note
in passing the useful relations

{γ̄µ, γ̄ν} = {γ̄µ, γν} = 2ḡµν

{γ̂µ, γ̂ν} = {γ̂µ, γν} = 2ĝµν

{γ̄µ, γ̂ν} = 0 (2.3.26)

which follow from the definitions of the involved objects. Similarly, ḡ can be used to show
that γ2

5 = −1 in any even n. In n = 2, for example,

γ5γ5 =
1

4
εµνερσγµγνγργσ

=
1

4
(ḡµρḡνσ − ḡµσḡνρ)γµγνγργσ

= −1 (2.3.27)

In the second line we have used the GnDI 2.2.14, involving only the ε tensors. In the last
one, 2.3.2 and 2.2.9.
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2.4 A consistent procedure in implicit fixed-dimension
methods

In even dimension n, the inconsistencies of DRed can be avoided simply by forbidding the
use of GnDI before renormalization, as proposed in [11, 12]. That is, the n-dimensional space
to be used in a consistent version of DRed is not the genuine n-dimensional space (GnS),
but a quasi-n-dimensional space (QnS). Similarly to the case of quasi-d-dimensional space
(QdS) in DReg [47], QnS can be defined explicitly as an infinite-dimensional vector space
endowed with a metric g̃, which satisfies g̃µµ = n [13]. The relation with QdS is given by
the direct-sum structure QnS=QdS ⊕ QεS. Dirac matrices in the three spaces have been
explicitly constructed in [13], following [47].

We propose here to define implicit methods in the same QnS. In this case, there is no
need to embed QdS in it, so the setup is simpler. Moreover, the metric can be called g

without confusion, in agreement with our notation thus far. Forbidding GnDI is actually not
sufficient in fixed dimension, since the discrimination of Lorentz tensors is not automatic.
As anticipated above, we need to specify some normal form of the expressions to uniquely
identify the different tensor structures.11 Following [4], we propose to simplify arbitrary
Feynman diagrams with the following algorithm, which leads to a unique normal form:

(i) All γ5 are substituted by their tHV definition 2.3.19.

(ii) All Dirac matrices are removed from denominators.

(iii) Dirac traces are computed using TrAB = TrBA, 2.3.2 and Tr1 = n.

(iv) Products of Dirac gammas are decomposed into sums of antisymmetric combinations
as in 2.3.10 and 2.3.11.

(v) All possible contractions are performed, using g ν
µ V...ν... → V...µ... for arbitrary tensors V .

(vi) gµµ is replaced by n.

As we work in QnS from the start, GnDI cannot be applied. Indeed, if GnDI were allowed,
the resulting expression would not have unique form, which could eventually translate into
different renormalized results. There are however exceptions to this prohibition, which are
discussed below. After performing the algebraic manipulations in steps (i–vi), the diagram

11As a matter of fact, some standard form is also required in the dimensional methods to display explicitly
all the d dependence and thus be able to apply MS or MS without ambiguities.
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will be a sum of terms that contain ε tensors, metrics with free indices, antisymmetric arrays
of gamma functions, external momenta, possible background tensors and a tensor (multi-
dimensional) integral T . In this way, the different integrals T that appear in a given diagram
are determined. They are then to be renormalized as prescribed in the different methods.
After this, there is no harm in using GnDI. In particular, they can and should be used
after subtraction to simplify the final results. Note in particular that, because the final
antisymmetric combinations of Dirac matrices [α1 . . . αm] are not touched by renormalization,
only the combinations with m ≤ n need to be included in the decomposition of step (iv).

Sometimes selected GnDI can be used to simplify expressions from the very beginning, as
long as one is sure that they will not change the contractions of indices in the loop integrals
T . One simple example in n = 2 is using εµνεµν = 2. More generally, we can simplify
the calculations significantly using the metric ḡ, defined above. The rules it obeys, 2.2.9,
can be understood as the consequence of the structure QnS = GnS ⊕ X, with g, ḡ and
ĝ = g − ḡ the metrics in QnS, GnS and the extra space X, respectively. Remember that
the defining property of ḡ in implicit methods is that it commutes with renormalization. In
expressions related to loop integrals, such as 2.1.3, or in the traces of Dirac matrices, it is still
the ordinary metric g of QnS that appears, to comply with shift invariance and numerator-
denominator consistency. The idea here is to allow for GnDI that involve only ḡ, the ε tensor
and external momenta or fields. Then, ḡ can appear as the result of these GnDI. Using such
GnDI spoils the uniqueness of the normal form. However, the resulting expressions have the
same renormalized value, thanks to 2.2.10. As a straightforward illustration in n = 2,

[εµνεν
ρIµρ]

R = εµνεν
ρ [Iµρ]

R

= 2gµρ [Iµρ]
R

= [2ḡµρIµρ]
R (2.4.1)

In a next section we give simple examples that illustrate how the calculations can be simplified
with the help of ḡ and related objects.

The same simplifications are valid also in the consistent version of DRed [13] with a
tHV γ5. The only difference is that in this method four different spaces are used, related by
QnS=QdS ⊕ QεS and QdS=GnS ⊕ Q(−ε)S. Then, we can identify the extra space in fixed
dimension with X = Q(−ε)S ⊕ QεS. The relations between the metrics in 2.2.5 and 2.2.9
are those implied by this hierarchical structure, with g̃, g and ḡ the metrics in QnS, QdS and
GnS, respectively.

We have already pointed out that GnDI can be safely used after tensor identification.
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Indeed, after that step, g behaves as ḡ. This is specially relevant to FDR, as in this method
some useful shortcuts exist to identify tensors from the very start. As a salient example, in
one-loop diagrams with fermion lines that do not have indices contracted with the ones in
other fermion lines, it is easy to see that the correct µ2 shifts can be obtained by shifting
the integration momenta as 1//k → 1/(/k ± µ), with opposite signs for /k separated by an
even number of γ matrices and equal signs for those separated by an odd number of γ
matrices. For this, it is important that terms with odd powers of µ do not contribute after
the limit µ→ 0. We can easily generalize this rule to spinor chains that contain γ5 matrices:
because, according to its definition 2.3.19, γ5 contains an even number of γ matrices in even
dimension, the γ5 matrices should just be ignored in the determination of the signs. This
approach allows, for instance, to use an anticommuting γ5 before evaluating Dirac traces.
The results are unique and agree with the ones obtained from the normal form or with the ḡ
formalism. When one Lorentz index is contracted between different fermion lines, a similar,
more complicated rule can be found which gives the right µ2 [48]. Modifications may also be
necessary in diagrams that contain both Dirac traces and derivative interactions. To the best
of our knowledge, no general prescription exists to treat any diagram in this way. A very
similar idea is used in FDF. In this dimensional method, the necessary µ2 are obtained from
the extra-dimensional components of integration momenta and a set of selection rules for
the extra-dimensional space (see also [49]). Then, GnDI are valid and γ5 anticommutes with
the Dirac matrices. Comparing with the situation in FDR, it seems that in order to comply
with the quantum action principle the method will require some refinements for multiloop
calculations.

The consistent procedure for implicit methods in QnS can in principle be applied to
multi-loop calculations. Let us sketch how the renormalization of a Feynman diagram could
proceed. First, the diagram is expressed in its normal form, following the steps above.
Allowed GnDI involving ḡ can be optionally used. Then, each tensor integral I is treated
with Bogoliubov’s recursive R-operation [37, 38] (or equivalently its solution, Zimmermann’s
Forest Formula [39]), in order to guarantee locality and unitarity of the renormalized theory.
To do this, a subtraction operator, which selects the singular part of a primitively divergent
(sub)graph Γ of I, can be defined without any explicit regularization as T Γ = Γ−R(Γ) [40].
Here, R(Γ) is Γ with its (overall) divergence subtracted. Then, T is applied according to
Bogoliubov’s formula.

This systematic method has been used in differential renormalization [40] and in CIReg [34],
but only in non-derivative scalar theories, which have a simple tensor structure. In more com-
plicated theories, it is essential to treat tensor integrals consistently. To do this, in calculating
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R(Γ) for a tensor Γ ⊂ I, the Lorentz indices in Γ that are contracted with indices in I\Γ
should be treated as uncontracted free indices. This is a necessary condition to preserve in-
variance under shifts of the integration momenta in Γ that are proportional to the integration
momenta in I\Γ. We will not try to prove here that it is also a sufficient condition for shift
invariance of the final renormalized multi-loop integrals. This issue has been addressed in
particular examples in CIReg [50] and FDR [51]. We believe that the so-called extra-extra
integrals that are introduced in FDR to impose sub-integration consistency are equivalent to
the contribution of (sums of) forests with the tensor rule above. They are also related to
the DRed contributions of ε scalars associated to virtual vector bosons, which renormalize
independently.

Finally, we should stress that, even if implicit methods as treated in this section are
consistent and preserve shift invariance and numerator-denominator consistency, some par-
ticular Ward identities based on GnDI may be broken. This is the origin of chiral anomalies
and of the breakdown of supersymmetry. Also vectorial Ward identities associated to gauge
invariance can be broken in the presence of the tHV γ5, giving rise to spurious anomalies
that must be eliminated with additional finite counterterms. We will give an example of this
in the next section. In this regard, these methods are not better or worse than DReg.

2.5 FDR. An implicit method

In this section we will explain one of the implicit methods we mentioned before in order to
put into practice in the next section all the rules we have discussed. To this purpose we
have chosen FDR (Four-Dimensional Regularization/Renormalization). As a good implicit
method, it does not need an UV regulator that forces the subsequent insertion of countert-
erms, and that is why the “R” in FDR stands for Regularization and Renormalization at
the same time, because both are performed at once. This approach modifies directly the
integrand with the help of partial fraction decomposition, and an “extra mass” that acts as
a renormalization scale at the end of the calculation as well as becoming massless theories
IR-safe. It also deals with algebra and integrals in fixed dimension n which allows the full
use of numerical tools. As we said before, in spite of its name, it can be used in whatever
dimension we want. Furthermore, the FDR integral is shift and gauge-invariant. So, all these
mentioned properties make it a worthy method to be studied. The rules explained here are
extracted from [20, 23].
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2.5.1 Basic rules

One of its two bases is the introducing of something like a fictitious mass called µ, which will
be taken to zero after evaluating the integral. This mass is inserted following the so-called
global prescription. It means that all squared loop momenta made by Feynman rules have to
be shifted as q2 → q2 − µ2 even in the numerator. To simplify the notation, we define

q̄2 ≡ q2 − µ2 (2.5.1)

D̄ ≡ (q + p)2 −m2 − µ2 (2.5.2)

The other base of the method is the partial fraction decomposition. And it is as simple
as follows

1

D̄
=

1

q̄2
+
m2 − p2 − 2q · p

q̄2D̄
(2.5.3)

This trick can be repeated as many times as it is necessary because on the right hand side,
the old denominator appears. Every time, the degree of divergence of the new terms are
reduced and purely divergent fractions without any scale in the denominators are isolated.
The rule is to stop expanding a term with scale when it is convergent. Obviously, we have
to keep in mind the numerator to find out whether a term is convergent or not making use
of power-counting. One important thing is that, as we see in (2.5.3), the denominators of
divergent isolated fractions have to be powers of q̄2 and not q2. When all these divergent
fractions are found, they are removed of the integration. This way the divergences vanish
and the integral becomes finite.

Let us see these properties with two simply examples: one-loop photon and fermion
self-energy diagrams in massless QED (fig. 2.5.1 and 2.5.2).

Figure 2.5.1: One-loop photon self-energy in massless QED.

According to QED Feynman rules fig. 2.5.1 can be written as

Πµν = ie2

∫
d4q

(2π)4

Tr
[
γµ/qγν

(
/q + /p

)]
q2 (q + p)2 (2.5.4)
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Power-counting, we have a quadratrically divergent integral so there is a difference of two
powers of loop momentum between numerator and denominator.12 So we expand the denom-
inator as we have learnt.

1

D̄
=

1

q̄2
− p2 + 2q · p

q̄2D̄
=

1

q̄2
− p2 + 2q · p

q̄4
+

(p2 + 2q · p)2

q̄4D̄
=

=
1

q̄2
− p2 + 2q · p

q̄4
+

4 (q · p)2

q̄6
+
p2 (p2 + 4q · p)

q̄4D̄
− 4 (q · p)2 (p2 + 2q · p)

q̄6D̄
(2.5.5)

where in this case D̄ ≡ (q + p)2 − µ2. We had to expand D̄ three times to find the desired
finite parts (last two in eq. 2.5.5). Before perform the integral, we cannot forget to implement
global prescription also in the numerator. As we have fermions, we have to perform the trace
to find q2 and then add it the “mass”.13

Now, we have our FDR integral ready to be evaluated.

Πµν = ie2 lim
µ→0

∫
d4q

(2π)4

(
Tr
[
γµ/qγν

(
/q + /p

)]
+ 4µ2gµν

) [p2 (p2 + 4q · p)
q̄6D̄

− 4 (q · p)2 (p2 + 2q · p)
q̄8D̄

]
(2.5.6)

The term proportional to µ2 in the numerator is called extra-integral. This is integrated along
with the same denominator expansion as the original numerator because it must be considered
as a loop momentum when power-counting. If we carry out the method as we did, first the
denominator expansion and then the numerator shift, there will be not hesitation about this,
but we have to be careful if we effectuate it reversed. Instead of using the finite parts of
(2.5.5), we can also use the infinite ones and subtract them to the original denominator.
Sometimes this integral is easier than the previous one, especially when performing extra-
integrals because they always go to zero along with the original denominator. So we can
write an alternative version of Πµν as follows

Πµν = ie2 lim
µ→0

∫
d4q

(2π)4

(
Tr
[
γµ/qγν

(
/q + /p

)]
+ 4µ2gµν

) [ 1

q̄2D̄
− 1

q̄4
+
p2 + 2q · p

q̄6
− 4 (q · p)2

q̄8

]
(2.5.7)

Although this variant looks simpler, we recall that now every term (except for the extra-
12In fact, there is also a linearly divergent term, but in this example we can consider the whole integral

quadractically divergent thanks to parity. Since every new arisen piece of the expansion is alternatively even
or odd, a certain part of the numerator always can go together with a expansion which belongs to a degree
of divergence incremented by one. Nevertheless, there is no other advantage than compactness.

13In spite of we have learnt that we can shift loop momenta with ±µ within the trace, the safest process
to avoid inconsistencies is to find q2, and then shift.
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integral) is divergent. So we will have to use Dimensional Regularization to evaluate the
integral, but renormalization will be not necessary because all the poles will vanish automat-
ically thanks to the denominator expansion. Hence we have two possibilities to compute the
physical amplitude and we will choose one of them depending on the situation: one purely
four-dimensional (2.5.6), and one where Dimensional Regularization appears but only at its
first stage and concerning only to integrals and not to Dirac algebra (2.5.7). Of course, both
lead to the same result (2.5.8).

Πµν =
α

3π

[
5

3
− log

(
p2

µ2

)] (
pµpν − p2gµν

)
(2.5.8)

As we said before, the fictitious mass µ disappears from the result besides logarithms where
acts as a renormalization scale.

Let us show the procedure again but with another example (fig. 2.5.2).

Figure 2.5.2: One-loop fermion self-energy in massless QED.

According to fig. 2.5.2 and QED Feynman rules:

Σ = −ie2

∫
d4q

(2π)4

γµ
(
/q + /p

)
γµ

q2 (q + p)2 (2.5.9)

Now we have a linear divergence14, so

1

D̄
=

1

q̄2
− p2 + 2q · p

q̄2D̄
=

1

q̄2
− 2q · p

q̄4
− p2

q̄2D̄
+

2q · p (p2 + 2q · p)
q̄4D̄

(2.5.10)

This graph has no possibilities of creating a squared loop momentum in the numerator, thus
no more shifts need to be done. Therefore we have already reached the final outcome.

Σ = ie2 lim
µ→0

∫
d4q

(2π)4

[
γµ
(
/q + /p

)
γµ
] [ p2

q̄4D̄
− 2q · p (p2 + 2q · p)

q̄6D̄

]
(2.5.11)

14Likewise, we can consider the whole integral linearly divergent because of parity.
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Also, just like the other diagram, we can write the result using the infinities instead of the
finite denominators.

Σ = −ie2 lim
µ→0

∫
d4q

(2π)4

[
γµ
(
/q + /p

)
γµ
] [ 1

q̄2D̄
− 1

q̄4
+

2q · p
q̄6

]
(2.5.12)

As it is expected, both lead to the same result with µ only working as a renormalization
scale.

Σ = − α

4π
/p

[
2− log

(
p2

µ2

)]
(2.5.13)

2.5.2 Multi-loop rules

As we have seen with these examples, computing a diagram using FDR is so easy, because
its rules are very simple. Nevertheless, when we move to two-loops and beyond things get
harder. Fraction decomposition now has to take into account overall divergence as well as
subdivergences, which complicates the expansion. Furthermore, in the numerator, besides
squared loop momenta also their products need to be shifted according to global prescription.
Moreover, a subprescription appears to ensure subintegration consistency, i.e. renormalizing
the subdiagram and then inserting it back to the diagram and renormalizing again must
lead to the same result as renormalizing the whole diagram at once. This subprescription
consists, in addition to global prescription, in shifting subdivergent loop momenta only in the
subdiagram and in the whole diagram as if the others were external and then subtracting the
later to the former. Then this new part proportional to µ2 must be integrated and taken its
corresponding limit µ → 0, before continuing with the remaining integrals. The important
point here is whether there is or not index contraction between the subdiagram and the outer
part. If there is some index contraction this part will give some contribution, if not it will
vanish. This new kind of integral is called extra-extra integral, because it is very similar to
extra-integrals but with the new norm of integrating and taking its limit beforehand. So the
numerator of a two-loop diagram must be modified as follows

N (q1, q2)→ N
(
q2

1 → q̄2
1, q

2
2 → q̄2

2, q1 · q2 → q1 · q2

)
+

2∑
i=1

[
N̂i
(
q2
i → q̄2

i

)
−N i

(
q2
i → q̄2

i

)]
(2.5.14)

where a bar symbolizes the normal shifting and a hat that those µ have to be taken to zero
before performing the external integral. Obviously, the sum only concerns to subdivergent
subdiagrams.

Let us review all these new rules with a two-loop example (fig. 2.5.3). Using QED
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Feynman rules:

Figure 2.5.3: Two-loop fermion self-energy in massless QED.

Σ = e4

∫
d4q1

(2π)4

∫
d4q2

(2π)4

γµ
(
/q1

+ /p
)
γνTr

[
γµ/q2

γν/q12

]
q4

1D1q2
2q

2
12

(2.5.15)

where q12 ≡ q1 + q2 and D1 ≡ (q1 + p)2. As we see in the graph, there are one subdivergence
when q2 grows and q1 remains finite, and an overall divergence when both momenta get
large.15 We begin expanding the denominator source of the subdivergence.

1

q̄2
12

=
1

q̄2
2

− q2
1 + 2q1 · q2

q̄2
2 q̄

2
12

=
1

q̄2
2

− q2
1 + 2q1 · q2

q̄4
2

+
(q2

1 + 2q1 · q2)
2

q̄4
2 q̄

2
12

=

=
1

q̄2
2

− q2
1 + 2q1 · q2

q̄4
2

+
4 (q1 · q2)2

q̄6
2

+
q2

1 (q2
1 + 4q1 · q2)

q̄4
2 q̄

2
12

− 4 (q1 · q2)2 (q2
1 + 2q1 · q2)

q̄6
2 q̄

2
12

(2.5.16)

And then we continue with the denominator with external momenta. We cannot expand q12

in favour of q1 or q2 when isolating the global divergence because both momenta get large. If
there would be a term like D2 or D12, we have had to expand them too, but we only have a
D1 so this is the only term we must decompose in order to set apart the overall divergence.

1

D̄1

=
1

q̄2
1

− p2 + 2q1 · p
q̄2

1D̄1

=
1

q̄2
1

− 2q1 · p
q̄4

1

− p2

q̄2
1D̄1

+
2q1 · p (p2 + 2q1 · p)

q̄4
1D̄1

(2.5.17)

Before implementing global prescription, we have to contract all indices in the numerator
and then we will be able to shift all squared momenta and their products. Let the numerator
be

N = γµ
(
/q1

+ /p
)
γνTr

[
γµ/q2

γν/q12

]
=

= 4
[
/q2

(
/q1

+ /p
)
/q12

+ /q12

(
/q1

+ /p
)
/q2

+ 2q2 · q12

(
/q1

+ /p
)]

=

15Again, when we power-count searching for the overall divergence as well as for the subdivergence, we
notice two different powers. Since the difference is one, we can consider the whole numerator having the same
order because of parity.
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= 8
[
q12 · (q1 + p) /q2

+ q2 · (q1 + p) /q12

]
(2.5.18)

Once indices have been contracted, we can now shift squared momenta and their products
as follows

q2
i → q̄2

i = q2
i − µ2 (2.5.19)

qi · qj =
1

2

(
q2
ij − q2

i − q2
j

)
→ 1

2

(
q̄2
ij − q̄2

i − q̄2
j

)
= qi · qj +

µ2

2
(2.5.20)

So the numerator becomes
N = N + 4µ2

/q1
(2.5.21)

The last step is finding the subprescription we mentioned before. To do that, we must
shift the subdiagram numerator without contracting its indices with the external ones and
considering q1 an external momentum.

N ⊃ N2 = Tr
[
γµ/q2

γν/q12

]
(2.5.22)

N 2 = N2 + 4µ2gµν (2.5.23)

And now we must shift the same loop momentum but after contracting all indices in the whole
numerator. As there are not any q2 in the numerator after contraction, there is nothing to
subtract. We remember that this extra-extra integral has to be evaluated and µ taken to
zero, before joining to the external part. Then, the result must be treated as a one-loop
integral again. That is ∫

d4q2
4µ2gµν
q2

2q
2
12

FDR
===⇒

FDR
===⇒ lim

µ→0

∫
d4q2

(
4µ2gµν

) [ 1

q̄2
2 q̄

2
12

− 1

q̄4
2

+
q2

1 + 2q1 · q2

q̄6
2

− 4 (q1 · q2)2

q̄8
2

]
= −2

3
iπ2q2

1gµν

(2.5.24)
Now, we introduce this result in the left over integral and repeat the process.

∫
d4q1

γµ
(
/q1

+ /p
)
γν
(
−2

3
iπ2q2

1gµν
)

q4
1D1

FDR
===⇒

FDR
===⇒ lim

µ→0

∫
d4q1

[
4

3
iπ2
(
/q1

+ /p
)] [ 1

q̄2
1D̄1

− 1

q̄4
1

+
2q1 · p
q̄6

1

]
(2.5.25)

So
EEI = − α2

24π2/p

[
2− log

(
p2

µ2

)]
(2.5.26)
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And finally, we get the renormalized integrand of the two-loop fermion self-energy.

Σ = e4 lim
µ→0

∫
d4q1

(2π)4

∫
d4q2

(2π)4

{
γµ
(
/q1

+ /p
)
γνTr

[
γµ/q2

γν/q12

]
+ 4µ2

/q1

}
×

×
[

1

q̄4
1D̄1

− 1

q̄6
1

+
2q1 · p
q̄8

1

][
1

q̄2
2 q̄

2
12

− 1

q̄4
2

+
q2

1 + 2q1 · q2

q̄6
2

− 4 (q1 · q2)2

q̄8
2

]
+ EEI (2.5.27)

We can now confirm what we said before: the procedure becomes more complicated
depending on the number of subdivergences. However, we are now ready for using the
method under whatever circumstances.

Beyond one loop many kinds of µ could appear. A µ generated by a certain squared
momentum or another are different when power-counting because we remember they have
to be considered to possess the same loop momentum power as their generators. If we first
split the distinct pieces of the numerator and link them with their respective denominators
expansion, and only then perform the shifting, we will not have any problem with µ. However,
we can use subindices to remember where they come if necessary. Also we can place for
example a hat on a µ that has to be integrated before to remember its nature. But if all is
well organized, any distinction will be necessary.

2.6 Chiral calculations

We will present simple off-shell calculations for non-exceptional momenta, such that no in-
frared divergences can arise.

2.6.1 Vector and axial currents in two dimensions

Let us consider a free massless Dirac fermion in space of dimension n = 2, with Lagrangian

L = ψ̄i/∂ψ (2.6.1)

This Lagrangian is invariant under global vector (V) and axial (A) transformations. The
corresponding, classically conserved Noether currents are

jµ = ψ̄γµψ (2.6.2)

j5
µ = ψ̄γµγ5ψ (2.6.3)
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respectively.16 We want to calculate the correlation functions of two of these currents. The
three distinct possibilities are Πµν(p) = 〈jµ(p)jν(−p)〉, Π5

µν(p) = 〈jµ(p)j5
ν(−p)〉 and Π55

µν(p) =

〈j5
µ(p)j5

ν(−p)〉. The classical Ward identities are

pµΠµν(p) = pνΠµν(p) = 0 (2.6.4)

pµΠ5
µν(p) = 0 (2.6.5)

pνΠ5
µν(p) = 0 (2.6.6)

pµΠ55
µν(p) = pνΠ55

µν(p) = 0 (2.6.7)

A useful GnDI in n = 2 is γµγ5 = εµ
αγα. This can be proven, for instance, using the

complete set in GnS Dirac space. The correlation functions can be calculated exactly at one
loop. Before doing it, we can anticipate the form of the correlators. In fact, the previous
GnDI implies j5

µ = εµαjα, so the three correlators are algebraically related:

Π5
µν(p) = εµ

αΠµα (2.6.8)

Π55
µν(p) = gµνΠ

α
α − Πνµ (2.6.9)

In the second of these equations we have also used the GnDI 2.2.14 for n = 2. From this, we
can easily conclude that the Ward identities (2.6.4–2.6.7) cannot be satisfied simultaneously.
Indeed, dimensional analysis and the fact that the longitudinal piece is finite imply

Πµν(p) = X

(
pµpν
p2
− agµν

)
(2.6.10)

where both X and a are numbers. X is fixed by the result of a finite integral, while a is
regularization dependent and can be modified with a local finite counterterm. In order to
fulfill 2.6.4, we need a = 1. Then, we see that 2.6.5 is also satisfied but 2.6.6 and 2.6.7 are
not. Instead, we have the anomalous identities

pνΠ5
µν(p) = Xεµνp

ν (2.6.11)

pµΠ55
µν(p) = −Xpν (2.6.12)

It should be noted that all the GnDI we have employed involve external tensors only.
Therefore, we expect that these results hold in consistent regularization and renormaliza-
tion schemes that respect 2.6.4, including the method proposed in a previous section.

16Because this current will always be an external operator in our calculations, nothing would change should
we write instead j5µ = −ψ̄γ5γµψ or the average of these two definitions.
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Let us now check this by explicit computation. We will use FDR for definiteness and
because it allows us to compare with the rule that allows to identify the tensor integrals a
priori, before computing the trace. We have checked that all the results are identical in CDR
and CIReg and also in consistent DRed and FDF. Because no gαα arises from the Dirac
matrices, the results in DReg are identical as well in these examples. The only contributing
diagram to the VV correlator gives

Πµν(p) = −
[∫

d2k

4π2
Tr
(
γµ

1

/k − /p
γν

1

/k

)]R
(2.6.13)

Performing the trace, we find

Πµν(p) = − [4Bµν(p)− 2gµνB
α
α(p)]R (2.6.14)

where
Bαβ(p) =

∫
d2k

4π2

(k − p)αkβ
(k − p)2k2

(2.6.15)

Note that 2.6.14 is written in normal form. In FDR, we have

[Bαβ(p)]R =

[∫
d2k

4π2

(k − p)αkβ
[(k − p)2 − µ2][k2 − µ2]

]S
= − i

4π

{
gαβ

(
1− 1

2
log

p2

µ2

)
− pαpβ

p2

}
, (2.6.16)

whereas

[Bα
α(p)(p)]R =

[∫
d2k

4π2

(k − p)αkα − µ2

[(k − p)2 − µ2][k2 − µ2]

]S
= gαβ [Bαβ(p)]R +

i

4π

=
i

4π
log

p2

µ2
(2.6.17)

The extra local term in the second equality comes, just as in 2.1.10, from the oversubtracted
integral proportional to µ2, which is added to the numerator in the first line, according to
the global prescription. Combining everything, we find

Πµν(p) = − i
π

(
pµpν
p2
− gµν

)
(2.6.18)
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which agrees with 2.6.10 with X = −i/π and a = 1. As expected in a method that respects
shift invariance and numerator-denominator consistency, the vector Ward identity 2.6.4 is
satisfied. The very same result is recovered if we directly write

Πµν(p) = −
[∫

d2k

4π2
Tr
(
γµ

1

/k − /p+ µ
γν

1

/k + µ

)]S
(2.6.19)

as the same µ2 term appears after the trace is evaluated.

Let us next compute the VA correlator:

Π5
µν(p) = −

[∫
d2k

4π2
Tr
(
γµ

1

/k − /p
γνγ5

1

/k

)]R
= −

[
Tr (γµγαγνγ5γβ)Bαβ

]R (2.6.20)

To evaluate the trace without ambiguities, we simply use the definition of γ5 2.3.19. Then,
refraining from using 2.2.13, we have

Tr (γµγαγνγ5γβ) = 2 (−εβνgαµ + εµνgαβ − εανgβµ + εβαgµν − εµαgβν − εβµgαν) (2.6.21)

from which the normal form is readily obtained. Note that only the second term on the
right-hand side of 2.6.21 gives rise to Bαα, with contracted indices. Using 2.6.16 and 2.6.17,
we get

Π5
µν(p) = − i

π
ενα

(
pµpα
p2
− gµα

)
(2.6.22)

which agrees with 2.6.8. The vector Ward identity 2.6.5 and the anomalous axial one 2.6.11,
with X = −i/π, follow. Observe that a different result, with the anomaly in the µ index,
would have been obtained had we anticommuted the γ5 with 1//k. In fact, we can directly
evaluate the left-hand side of 2.6.11:

pνΠ5
µν(p) = −

[∫
d2k

4π2
Tr
(
γµ

1

/k − /p
(/p− /k + /k)γ5

1

/k

)]R
= 0− 2

[∫
d2k

4π2
Tr
(
γµ

1

/k − /p
/̂kγ5

1

/k

)]R
(2.6.23)

where the non-vanishing, evanescent term comes from the anticommutator {/k, γ5}, see 2.3.24.
Using the relation

/̂k/k = k2 − k̄2 = µ2 (2.6.24)
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an extra integral appears which gives the result 2.6.11.

Again, the same result can be obtained writing

Π5
µν(p) = −

[∫
d2k

4π2
Tr
(
γµ

1

/k − /p+ µ
γνγ5

1

/k + µ

)]S
(2.6.25)

As explained in the previous section, the presence of γ5 should be obviated in assigning the
relative signs of the µ shifts. After writing 2.6.25, GnDI are allowed, and in particular we
can anticommute γ5 with the Dirac matrices. The origin of the anomaly can then be tracked
to the extra integral arising from

{γ5, /k − µ} = −2µγ5 (2.6.26)

which is closely related to 2.3.24.

Finally, let us calculate the AA correlator,

Π55
µν(p) = −

[∫
d2k

4π2
Tr
(
γµγ5

1

/k − /p
γνγ5

1

/k

)]R
= −

[
Tr (γµγ5γαγνγ5γβ)Bαβ

]R (2.6.27)

First note that if we used γAC
5 , we would immediately find Π55

µν = −Πµν , at odds with 2.6.9.
But in our method we should not anticommute before the µ shift. The consistent result is
obtained by using the definition 2.3.19 for the two γ5. Then we need to evaluate a trace
with eight Dirac matrices, contract with Bαβ and use 2.6.16 and 2.6.17. The computation is
not difficult and gives the expected result, 2.6.9. A faster procedure is to make use of 2.3.24
and γ2

5 = −1 to write

Tr
(
γµγ5(/k − /p)γνγ5/k

)
= −Tr

(
γµ(/k − /p)γν/k + 2γµ/̂kγν/k

)
. (2.6.28)

From this and 2.6.24 we easily obtain

Π55
µν(p) = −Πµν + 4gµν

[∫
d2k

4π2

µ2

(k2 − µ2)2

]S
= −Πµν +

i

π
gµν

=
i

π

pµpα
p2

(2.6.29)

36



Once again, the same extra integral and therefore the same result are obtained by shifting
the denominators with the prescribed signs,

Π55
µν(p) = −

[∫
d2k

4π2
Tr
(
γµγ5

1

/k − /p+ µ
γνγ5

1

/k + µ

)]S
(2.6.30)

After this shift, which automatically performs the correct tensor identification, all the stan-
dard properties of γ5 can be safely employed to simplify the calculation. Note that the very
same procedure is followed in FDF.

The situation in n = 4 is completely analogous, except for the fact that in that case
the VA correlator studied here vanishes and the axial anomaly manifests itself in the familiar
triangular diagrams. These have been calculated in DReg [3], consistent DRed [52], CDR [17,
53], FDR [20], CIReg [45] and FDF [54]. These calculations show that, as long as no GnDI
is used before tensor identification, the vector Ward identities are automatically preserved
and the anomaly is localized in the axial current.

2.6.2 Axial vertex Ward identity in four dimensions

As an example with an open fermion chain, we consider the correlation function Γ5
µ(p1, p2) =

〈j5
µ(p1 + p2)ψ̄(−p1)ψ(−p2)〉1PI (with the Legendre transform applied only to the elementary

fields) in four-dimensional17 massless QED, that is,

L = −1

4
FµνFµν −

1

2
(∂µAν)2 + ψ̄i /Dψ (2.6.31)

with Dµ = ∂µ + ieAµ. As manifest in 4, we work in the ’t Hooft-Feynman gauge. There is
no anomaly associated to this correlator, i.e. the theory can be renormalized in such a way
that the Ward identity

(p1 + p2)µΓ5
µ(p1, p2) = e (γ5Σ(p1)− Σ(p2)γ5) (2.6.32)

is satisfied, with Σ(p) = 〈ψ̄(p)ψ(−p)〉1PI. However, it is known that this identity is not
satisfied in DReg with the tHV definition of γ5 [3]. The reason is that the GnDI /pγ5 = (/k +

/p)γ5−γ5/k, which is needed in the combinatorial proof, does not hold for a non-anticommuting
γ5. The Ward identity can be recovered by adding a finite gauge-invariant counterterm. This
is a necessity if the axial symmetry is gauged.

17The corresponding diagrams in n = 2 are finite by power counting and have no ambiguities.

37



It is clear that the Ward identity 2.6.32 will also be violated in the consistent versions
of DRed and implicit methods that employ the γ5 definition in 2.3.19. Let us check this
explicitly by one-loop calculations. Again, we use FDR for definiteness, but exactly the same
results are found in CDR, CIReg and also in consistent DRed and FDF in MS. The results
in DReg are quantitatively different in this case. Σ and Γµ in the following are understood
to be the one-loop contributions to the corresponding correlation functions.

The fermion self-energy is given at one loop by

Σ(p) = −ie2

∫
d4k

(2π)4
γα

1

/k
γα

1

(k − p)2
(2.6.33)

It has no potential ambiguity of the kind we are discussing. The result in FDR is easily found
to be

Σ(p) = − e2

(4π)2 /p

(
2− log

p2

µ2

)
(2.6.34)

Let us now compute the axial vertex Γ5
µ, which at one loop is given by

Γ5
µ(p1, p2) = −ie3

[∫
d4k

(2π)4
γα

1

/k − /p2

γµγ5
1

/k + /p1

γα
1

k2

]R
= −ie3 [Sαβµ5gαCβκ(p1, p2)]R (2.6.35)

with
Cαβ(p1, p2) =

∫
d4k

(2π)4

(k − p2)α(k + p1)β
k2(k − p2)2(k + p1)2

(2.6.36)

Substituting γ5 by its definition 2.3.19,

Sαβµ5κα =
1

4!
ενρστSαβµνρστκα (2.6.37)

Next decompose Sαβµνρστgα as in 2.3.10. Since the index α is contracted, there are contribu-
tions proportional to [µ1 . . . µm] withm = 1, 3, 5, 7. As pointed out before, these combinations
can be factored out of [.]R, so the ones with m = 5, 7 can be directly set to zero, as in four
genuine dimensions. Then, we contract indices with the resulting metrics and use the CIReg
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results

[Cαβ(p1, p2)]R =
i

(4π)2

{gαβ
4

[
3− p2

2ξ0,1 − p2
1ξ1,0 − log

(p1 + p2)2

µ2

]
+ [(ξ0,2 − ξ0,1) (p1)α(p1)β − ξ1,1(p1)α(p2)β + (p1 
 p2, ξm,n 
 ξn,m)]

− (p1)β(p2)α (ξ0,0 − ξ0,1 − ξ1,0)
}

(2.6.38)

[Cα
α(p1, p2)]R =

i

(4π)2

[
2− (p1 + p2)2

2
ξ0,0 −

1

2
log

p2
2

µ2
− 1

2
log

p2
1

µ2

]
(2.6.39)

which in this massless case (and also in the massive case in the mass-independent version of
CIReg) exactly coincide with the FDR ones. The functions ξn,m ≡ ξn,m(p2, p1) are defined in
the appendix. Importantly, the last integral includes the shift k2 → k2−µ2 in the numerator.
The final result is

Γ5
µ(p1, p2) =

e3

(4π)2

[
γµγ5

[
3− (p1 + p2)2ξ0,0 + p2

2ξ0,1 + p2
1ξ1,0 − log

p2
1

µ2
− log

p2
2

µ2

+ log
(p1 + p2)2

µ2
)
]

+ 2
{
/p2γ5

[
pµ1(2ξ1,1 − ξ0,1 − ξ1,0 − ξ0,0) + 2pµ2(ξ0,1 − ξ0,2)

]
+ (p1 
 p2, ξm,n 
 ξn,m)

}
− 2 (ξ0,0 + ξ0,1 + ξ1,0) εgµαβp

α
2p

β
1γ

g

]
(2.6.40)

An equivalent procedure that simplifies the Dirac algebra is to anticommute the γ5 to the
right, using 2.3.24. This leads to

Γ5
µ(p1, p2) = −ie3

[
(2ḡρκ − gρκ)SαβµραC

βκ(p1, p2)
]R (2.6.41)

Decomposing Sαβµρα and using the rules 2.2.9 and 2.2.10, we find again 2.6.40. Even more
easily, the same result can be found fixing the µ terms from the very beginning with the same
rule used above,

Γ5
µ(p1, p2) = −ie3

[∫
d4k

(2π)4
γα

1

/k − /p2
+ µ

γµγ5
1

/k + /p1
+ µ

γα
1

k2

]S
(2.6.42)

After this, γ5 can be safely anticommuted with the Dirac matrices (and commuted with µ).
Let us note again that this same prescription is used in FDF, so the result will be identical
in that method. Even if the last procedure looks simpler, it should be noted that it is less
universal than the other ones, as we have pointed out in the previous section.

The result 2.6.40 does not satisfy the Ward identity 2.6.32. Instead, using the relations
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in the appendix we find

(p1 + p2)µΓµ(p1, p2) = e (γ5Σ(p1)− Σ(p2)γ5) + 2
e3

(4π)2
(/p1

+ /p2
)γ5 (2.6.43)

To isolate the origin of the extra local term, we can compute the left-hand side of 2.6.43
directly. For instance, using the expression in 2.6.42,

(p1+p2)µΓµ(p1, p2)

= −ie3

[∫
d4k

(2π)4
γα

1

/k − /p2
+ µ

(/p1
+ /k + µ+ /p2

− /k − µ)γ5
1

/k + /p1
+ µ

γα
1

k2

]S

= e (γ5Σ(p1)− Σ(p2)γ5)− ie3

[∫
d4k

(2π)4
γα

1

/k − /p2
+ µ

(2µγ5)
1

/k + /p1
+ µ

γα
1

k2

]S
(2.6.44)

It can be checked that the extra integral above gives the extra local term on the right-hand
side of 2.6.43. The axial symmetry can be restored by canceling this term with a finite
counterterm proportional to ψ̄ /Bγ5ψ, where Bµ is a source coupled to j5

µ.

Our results are consistent with the ones in [54], where Γµ is calculated for massive on-
shell fermions in FDH with a tHV γ5 and FDF, which give the same result, and in FDH
with γAC

5 , which differs by a local term. In the context of dimensional methods, it has been
observed that identity 2.6.32 and similar Ward identities can be preserved by moving all γ5

to one end of open fermion lines before regularization and renormalization [55]. The reason is
that, by doing this, the γ5 does not interfere with the necessary identity in the combinatorial
proof. This is not quite the same as using γAC

5 , as the γ5 matrices are not allowed to be
anticommuted to an arbitrary position. This trick works equally well in implicit methods
and it has actually been advocated in FDR [20]. Observe, nevertheless, that this procedure
goes beyond the basic idea in these methods of substituting the bare expressions, in the
form obtained from the Feynman rules, by their renormalized value. A previous non-trivial
manipulation is performed. Then, one needs to check that this does not interfere with
unitarity or with the quantum action principle in multiloop calculations.
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Chapter 3

Forest renormalization in FDR

In this chapter, we will define Forest Formula which systematizes the implementation of
any renormalization method as well as ensures locality. Later, we will apply it to FDR in
an attempt to improve its order by order definition, and see the different assumptions and
conditions we can choose to implement that method, leading us to several renormalization
schemes all based on FDR. Finally, we will introduce Renormalization Group Equation as a
useful tool to analyze the different versions of FDR.

3.1 Forest Formula definition

The renormalization procedure as we know today, i.e. the recursive process we do to eliminate
divergences from inside to outside of the diagrams, was first developed by Bogoliubov and
Parasiuk in 1957 [37], with corrections due to Hepp in 1966 [38]. The idea was very simple.
If we have a Feynman diagram Γ, we obtain its renormalized value R (Γ) as

R (Γ) = Γ + S (Γ) (3.1.1)

where S (Γ) is the subtraction part (the sum of all counterterms).

Suppose a one-particle-irreducible diagram (1PI) without subdivergences, so the only
possible divergence is the overall one. This means all integration momenta get huge at the
same time. As it does not have subdivergences, its renormalized value is simply

R (Γ) = Γ− T Γ (3.1.2)
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This T is an operator which extracts the divergence of the diagram regardless of the renor-
malization scheme we chose. For example, if we want to use Dimensional Regularization, T
expands Γ around d = n and keeps the pole part. But if we like Pauli-Villars regularization,
T will manage to put the extra mass in the photon propagators and then subtract them to
the original diagram. And of course, if the diagram is finite T Γ = 0.

In a general situation, the diagram under consideration may have subdivergences, i.e.
there is at least one subdiagram inside that its loop momenta get large while the external
momenta remain finite. And perhaps that subdiagram has also subdivergences, etc. As every
subdivergence of a diagram is the global divergence of a subdiagram, the only thing we have
to do to renormalize a diagram with subdivergences is to apply (3.1.2) recursively from inside
to outside.

To do this we defineR (Γ) as Γ with its subdivergences subtracted, thus the only possible
divergence in the diagram is the overall one. So its renormalization is given by

R (Γ) = R (Γ)− T R (Γ) (3.1.3)

where
R (Γ) = Γ−

∑
γ(Γ

T R (γ) (3.1.4)

As we said before, this procedure is recursive. The diagram with renormalized subdivergences
is the diagram itself subtracting the infinite parts of all its subdiagrams (γ ( Γ), but only if
they don’t have any more subdivergences, and that is why R (γ) has a bar on it. If they had
any divergent subdiagram, we would extract them before doing the same process. Of course
if γ does not diverge T R (γ) = 0.

The operator T satisfies the next trivial properties:

T (T γ) = T γ (3.1.5)

γ1 ∩ γ2 = ∅⇐⇒ T (γ1 ∪ γ2) = (T γ1) (T γ2) (3.1.6)

The first one means the infinite part of a infinite part is itself as it should be, and the
second one denotes that if two diagrams are disconnected, then the operator works on them
separately.

In 1969, Zimmermann [39] solved this recursion creating the so called Forest Formula. It
tells us how to renormalize a diagram using forests. A forest f of a given diagram Γ, is a set of
divergent 1PI subdiagrams so that they are non-overlapping, i.e. they can be either disjoint
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(γi ∩ γj = ∅) or nested (γi ( γj, γi ) γj). The forests that do not contain the full diagram
are called normal forests, and they are responsible for subtracting the subdivergences. In
order to remove the overall divergence too, we add the full diagram to all normal forests.
These are named full forests. And the set of all forests of a diagram Γ is called F (Γ). Once
clarified all the concepts we can finally introduce the Forest Formula.

R (Γ) =
∑

f∈F (Γ)

∏
γ∈f

(−Tγ) Γ (3.1.7)

where−TγΓ means the replacement γ → −T γ inside Γ, and T is the same operator we defined
beforehand. We can see that (3.1.7) is simply going over all forests and then replacing the
divergent 1PI subdiagrams inside each forest. To work properly, we obviously need a forest
which contains the empty set, that is a forest with no replacements that will result in the
diagram Γ itself.

Now we are ready to see an example in order to practice the identifying of forests.
Consider a three-loop self-energy diagram in a φ3 theory in d = 6 dimensions (fig. 3.1.1).

Figure 3.1.1: Three-loop self-energy diagram in φ3 theory.

In fig. 3.1.2, we depict every forest separately with a dashed box surrounding its subdi-
agrams γi. Each box means that its inside is affected by T .
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R (Γ) =

{
−

− −

+ −

+ +

}

−
{

Previous
8 diagrams

}
Figure 3.1.2: Renormalization of fig. 3.1.1.

As we see in fig. 3.1.2, this diagram needs eight normal forests and eight full forests to
be renormalized. Since in eq. (3.1.7) there is a minus sign, we see in fig. 3.1.2 that a forest
with an even number of boxes is preceded by a plus sign and by a minus sign if it has an
odd number of boxes. The rules to identifying all necessary forests are so easy. As we said
before, we have to search for divergent 1PI subdiagrams and box them so that they do not
overlap each other. To know whether a subdiagram is divergent or not, we need to calculate
the degree of divergence g (γ) according to power-counting. Once we have recognized all the
normal forests without forgetting the original diagram itself, we box all of them to get the
full forests.

One could wonder why a box surrounding just the central loop is not considered as a
valid forest, and that is because that subgraph is finite. Usually, the rule is not to include
convergent subdiagrams in any forest, nevertheless, if we use a renormalization method that
also subtracts some quantity to finite diagrams, they will have to be added to forests.
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3.1.1 Forest Formula at work

Once we have learnt how to choose the corresponding forests within a diagram, now we are
going to show how T implements the renormalization method we want. To do that we will
use again the one-loop photon and fermion self-energy diagrams in massless QED (fig. 2.5.1
and 2.5.2) as examples.

In the first place, we will study the vacuum polarization. Since it is a one-loop diagram,
we only have one normal forest (the diagram itself) and one full forest (the diagram in a
box) (fig. 3.1.3). Moreover, concerning the divergences, the only possibility is an overall
divergence. So

R (Πµν) = Πµν − T Πµν (3.1.8)

R (Πµν) = −

Figure 3.1.3: Renormalization of the photon self-energy diagram at one loop.

To compute T Πµν , we first have to decide what renormalization method we are going to
use. To prove the flexibility of Forest Formula, we will show several ones. Some will require
to do the integral and some will work at the integrand level, but the role of T will always be
the same.

For example, in Dimensional Regularization with minimal subtraction, after performing
the integral in d dimensions and expanding the result around d = 4, T will pick the part
proportional to 1/ε. So, if evaluating (2.5.4) in d dimensions, the result is

Πµν =
α

3π

[
1

ε
+

5

3
− log

(
p2

µ2

)] (
pµpν − p2gµν

)
(3.1.9)

then
T Πµν =

α

3πε

(
pµpν − p2gµν

)
(3.1.10)

and thus
R (Πµν) =

α

3π

[
5

3
− log

(
p2

µ2

)] (
pµpν − p2gµν

)
(3.1.11)

As an example of a method that does not demand to do the integral before T can act,
we have the BPHZ method. This belong to the class of implicit methods because it does
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not use any regulator to renormalize the diagram and subtractions are applied directly to
the integrand. In this approach, T takes the external momenta series of the propagators and
then keeps the terms with the same and less momenta power than the degree of divergence.
Making use of power-counting, we see (2.5.4) has a quadratic divergence, so we have to Taylor
expand the denominator up to order two (3.1.12).

f (p) = f (0) + ∂µf (p)

∣∣∣∣∣
p=0

pµ +
1

2
∂µ∂νf (p)

∣∣∣∣∣
p=0

pµpν +O
(
p3
)

(3.1.12)

Now, T keeps those terms instead of the original denominator.

T Πµν = ie2

∫
d4q

(2π)4Tr
[
γµ/qγν

(
/q + /p

)] [ 1

q4
− 2q · p+ p2

q6
+

4 (q · p)2

q8

]
(3.1.13)

R (Πµν) = ie2

∫
d4q

(2π)4Tr
[
γµ/qγν

(
/q + /p

)] [ 1

q2 (q + p)2 −
1

q4
+

2q · p+ p2

q6
− 4 (q · p)2

q8

]
(3.1.14)

Finally, we have a completely finite integral that we can perform in four dimensions. In fact,
this method needs fermions to be massive in order to renormalize the diagram properly. If
we put the masses in the propagators and in the trace, evaluate the integral and then take
the limit of zero mass, we will get the same result as in (3.1.11).

R (Σ) = −
Figure 3.1.4: Renormalization of the fermion self-energy diagram at one loop.

Secondly, let us examine the fermion self-energy. This graph is also one-loop, hence it
has only a normal and a full forest (fig. 3.1.4) to remove the overall divergence. Therefore
its renormalized value is just

R (Σ) = Σ− T Σ (3.1.15)

Here, there will be a slight difference between Dimensional Regularization and Dimen-
sional Reduction, though T Σ will remain the same, if we use minimal subtraction. Evaluating
(2.5.9):

Σ (DReg) = − α

4π
/p

[
1

ε
+ 1− log

(
p2

µ2

)]
(3.1.16)
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Σ (DRed) = − α

4π
/p

[
1

ε
+ 2− log

(
p2

µ2

)]
(3.1.17)

so
T Σ = − α

4πε
/p (3.1.18)

and then
R (Σ) (DReg) = − α

4π
/p

[
1− log

(
p2

µ2

)]
(3.1.19)

R (Σ) (DRed) = − α

4π
/p

[
2− log

(
p2

µ2

)]
(3.1.20)

Another method we can easily implement in this diagram is Pauli-Villars. In this case,
T will make the photon massive. Hence if

Σ = −ie2

∫
d4q

(2π)4

γµ
(
/q + /p

)
γµ

q2 (q + p)2 (3.1.21)

then

T Σ = −ie2

∫
d4q

(2π)4

γµ
(
/q + /p

)
γµ

(q2 − Λ2) (q + p)2 (3.1.22)

and

Σ− T Σ = ie2

∫
d4q

(2π)4

Λ2γµ
(
/q + /p

)
γµ

q2 (q2 − Λ2) (q + p)2 =

= − α

4π
/p

[
Λ2

p2
+

(p2 − Λ2)
2

p4
log

(
−p

2 − Λ2

Λ2

)
− log

(
− p

2

Λ2

)]
(3.1.23)

If we take the limit Λ→∞, we will recover the physical massless photon. In fact, Λ is still
infinite, so an implicit subtraction of log (µ2/Λ2) is assumed, where µ is the renormalization
constant.

R (Σ) = − α

4π
/p

[
3

2
− log

(
p2

µ2

)]
(3.1.24)

As we see, this graph has multiple results depending on the renormalization scheme we
choose, though the logarithmic behaviour remains unchanged which is the relevant aspect.

The main question here is why we would use Forest Formula with our chosen renormal-
ization method instead of employing the method itself as we have been doing so far. The
answer is that with a good definition of T , Forest Formula automates the search for subdi-
vergences and their renormalization, and ensures a correct structure of local counterterms
providing T is local. In fact, once T is defined and forests are identified, Forest Formula will
tell us step by step how to renormalize a diagram regardless of its size or its number of loops.
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This makes it very powerful and attractive. In the next section, we will choose an implicit
method to be improved by all these properties we are discussing in order to show the power
of Forest Formula more explicitly.

3.2 FDR systematization

In section 2.5, we introduced FDR (Four-Dimensional Regularization/Renormalization) as
an implicit method which modifies directly the integrand. Next, we are going to apply what
we have learnt about Forest Formula to this method. FDR has so many rules and operations
that makes its implementation not trivial. Thus we need some definitions to achieve it.

Every diagram, whatever its size is, is made up of a numerator and a denominator. So
consider a general one-loop diagram in any fixed dimension where q is the loop momentum

Γ =

∫
dnqN (q) D (q) (3.2.1)

In spite of one of the advantages of using Forest Formula is that it automates the renormal-
ization procedure, we have to shift the squared loop momenta in the denominator by hand
before applying Forest Formula. That is

D
(
q2
)
→ D

(
q̄2
)

(3.2.2)

Henceforth we will omit this step and assume every graph is prepared for Forest Formula
performing this shift and placing the limit µ→ 0 before its expression.

Our goal now is to define a good T acting on the integrand so that it can properly lead
us to FDR method as we know, and can reproduce all its results. Nevertheless, this election
is not trivial. Let us review all definitions and configurations we have considered and their
peculiarities and consequences, and also their comparison with the original FDR.

3.2.1 Minimal operator

As we said before, we can always consider that a diagram is formed by a numerator and
denominator. So knowing FDR rules1, the first T definition which comes to mind could be

T (ND) = [N + X (N )]V (D) (3.2.3)
1See section 2.5.
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where we have defined other two linear operators acting on numerator and denominator sep-
arately. V (D) expands the denominator using fraction decomposition and picks the vacuum
part, and X (N ) shifts the numerator and picks the extra part proportional to µ2. The first
thing we must wonder is if eq. (3.1.5) holds for this operator. So let us verify it.

T (T (ND)) = [N + X (N )]V (D) + [X (N ) + X (X (N ))]V (V (D)) (3.2.4)

By definition, picking up the vacua of the denominator, it is clear that

V (V (D)) = V (D) (3.2.5)

so to recover the T idempotence relation, the only possibility is

X (X (N )) = −X (N ) (3.2.6)

what suggests that µ2 must be treated as a loop momentum concerning to X (N ).

Since a one-loop diagram has one normal forest (the diagram itself) and one full forest,
according to eq. (3.1.7) we get

R (ND) = N [D − V (D)]−X (N )V (D) (3.2.7)

And obviously, if we perform the integral and take the limit, we get to the final result.

R (Γ) = lim
µ→0

∫
dnq {N [D − V (D)]−X (N )V (D)} (3.2.8)

It is important to recall that a numerator may have several parts with different powers of
loop momentum. In this case, every piece needs a different denominator decomposition, so
in the final result an implicit sum over all of them is assumed. Sometimes, especially when
the difference between parts is one power, they can be joined under the same vacua because
parity takes the misplaced fragment to zero.

As we have not made use of any explicit example to get to eq. (3.2.8), it will be valid
for whatever one-loop diagram. Actually, it still works for any diagram in any theory, the
only condition is not to have subdivergences.

Let us put this expression in context with fig. 2.5.1 and 2.5.2 again. Using eq. (3.2.8)
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they are respectively

R (Πµν) = ie2 lim
µ→0

∫
d4q

(2π)4

{
Tr
[
γµ/qγν

(
/q + /p

)] [ 1

q̄2D̄
− 1

q̄4
+
p2 + 2q · p

q̄6
− 4 (q · p)2

q̄8

]

−4µ2gµν

[
1

q̄2D̄
− 1

q̄4
+
p2 + 2q · p

q̄6
− 4 (q · p)2

q̄8

]}
(3.2.9)

R (Σ) = −ie2 lim
µ→0

∫
d4q

(2π)4

[
γµ
(
/q + /p

)
γµ
] [ 1

q̄2D̄
− 1

q̄4
+

2q · p
q̄6

]
(3.2.10)

If we compare the results above with (2.5.7) and (2.5.12) (expressions we got using pure
FDR), we see that photon self-energy is slightly different. This difference is exactly

lim
µ→0

∫
dnqX (N ) D

Πµν−−→ 4igµν lim
µ→0

∫
d4q

µ2

q̄2D̄
= 0 (3.2.11)

In fact, this term on the left hand side will always be null for any diagram with only global
divergence due to its structure. Furthermore, whatever term proportional to µ2 integrated
along with the original denominator of an any-loop diagram will always be zero after taking
the limit. Actually, this fact was part of the motivation for the definition of the operator T .
In addition, thanks to that, equations (2.5.7) and (3.2.9) lead to the same result we showed
in (2.5.8). Obviously, fermion self-energy shares the same integrand expression because no µ
can arise in its numerator. So we have verified that at least for a one-loop case, the chosen
T reproduces the FDR result despite of some differences between renormalized integrands.

The evident question now is whether this correspondence also follows beyond one-loop or
not. So let us work out two-loop formal expressions. Consider a φ3 theory in six dimensions
but only to be able to depict some graphs and better understand how the method works,
though the final expressions will be valid for any two-loop diagram. In fig. 3.2.1, we see the
three possible self-energy diagrams for a φ3 theory. Figures 3.2.1a and 3.2.1b are equivalent,
so we will choose the first for the study. They have one subdivergence while the other have
two. To start the analysis, first we must depict the forests as we have learnt previously. We
will start with the case of one subdivergence.
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(a) (b) (c)

Figure 3.2.1: Two-loop self-energy diagrams in φ3.

R (Γ1) =
(a)

−
(b)

−
(c)

+
(d)

Figure 3.2.2: Necessary forests for the renormalization of fig. 3.2.1a.

Before writing down the expressions of each diagram, we must add two new rules to our
method in order to generalize it properly beyond one loop. The reason for the first one is
just practical. It simply consists in calling all loop momenta as qi, such that operators V
and X or even T can carry a subindex or subindices according to all loop momenta inside
a box.2 This is very important not to forget what diagram part they are acting on once all
forests are summed. This way, in a two-loop diagram for instance, Vij is identified with the
global vacuum, and Vi with subvacua. Likewise, we associate Xij to global prescription, and
somehow Xi to subprescription.

The second rule lies in that parts proportional to µ generated by a particular box have
to be integrated and then that µ taken to zero, before joining them to the outside of the box.
This rule is motivated, indeed, by the subprescription we mentioned when explaining FDR
original method. In principle, Forest Formula does not suggest anything about it. Thus, we
introduce it in order to reproduce FDR as much as possible.

2We remember that a box symbolizes that its inside is affected by the replacement γ → T γ, so that T
cannot see anything outside the box.
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So now, let us write the expressions for the forests in fig. 3.2.2. We will consider that
this graph have q1 and q2 as loop momenta, where the later will be the loop momentum of the
subdiagram. Moreover, we will suppose a general numerator and denominator because the
aim of this section does not need to write them explicitly, so that pictures are only a guide.
We will work just with the integrands always keeping in mind Γ =

∫
d6q1

∫
d6q2Γ (q1, q2).

Hence using eq. (3.2.3), we obtain
Γ

(a)

1 = ND (3.2.12)

Γ
(b)

1 = [N + X2 (N )]V2 (D) (3.2.13)

Γ
(c)

1 = [N + X12 (N )]V12 (D) (3.2.14)

Γ
(d)

1 = [N + X12 (N )]V12 (V2 (D)) + T12 (X2 (N )V2 (D)) (3.2.15)

If we sum and reorganize them a bit

R
(
Γ1

)
= N [D − V2 (D)− V12 (D − V2 (D))]−X12 (N )V12 (D − V2 (D))−R12 (X2 (N )V2 (D))

(3.2.16)
where we have used the linearity of the operators, and we have respected the fact that
a µ generated by an inner box must be integrated before continuing with other external
operations. And that is why we simply placed a T to the part with already a µ and did not
write explicitly V and X . This expression is completely valid for any two-loop diagram with
one subdivergence (changing subindices conveniently).

Here again, we can expect several differences with the example we studied with FDR in
section 2.5 (fig. 2.5.3). If we examine eq. (3.2.16), we see the numerator along with a finite
denominator exactly as in eq. (2.5.27). However, the remainder is not the same. Concerning
to global prescription, X12 (N ) should also go with the complete finite denominator as in the
original FDR result. Nevertheless, one can wonder if as well as in the one-loop case, the
missing piece goes to zero so that both expressions lead to the same outcome. In fact, it
happens at least in the diagram we are comparing with.

lim
µ→0

∫
dnqi

∫
dnqjXij (N ) [D − Vj (D)]

Σ−→ −4 lim
µ→0

∫
d4q1

∫
d4q2

µ2/q1

q̄4
1D̄1q̄4

2

= 0 (3.2.17)

Unfortunately, this is just a coincidence and we cannot ensure it follows for whatever two-loop
diagram. Actually, it does not. For example, in fig. 4.2.5 (a diagram we will study later),
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this piece is divergent and non-local.

lim
µ→0

∫
dnqi

∫
dnqjXij (N ) [D − Vj (D)]

Π̂
(a)
µν−−→ α2

288π2

[
1

ε
+

8

3
− log

(
− p

2

µ2

)] (
pµpν − p2gµν

)
(3.2.18)

This term is divergent, so it is evident that it is necessary to properly renormalize the diagram,
since original FDR contains it and lead to a finite result. Moreover, despite of its appearance
of a non-local counterterm, it is essential to compensate the non-locality introduced when
shifting just the denominators.

On the other hand, we have the term R12 (X2 (N )V2 (D)). It is almost the extra-extra
integral that appears in the original FDR method, except for the needed subtraction which
does not arise here. Again, the diagram of fig. 2.5.3, is not affected by this fact since its
subtraction is null. Nevertheless, we will find a serious problem related to this point in other
diagrams that we will study later.

Therefore, besides the lucky diagram of fig. 2.5.3, it is clear that the suggested operator
T does not reproduce FDR. Actually, we have shown that it does not renormalize diagrams
neither, since one of the missing pieces contains a pole.

3.2.2 Next to minimal operator

Once studied the previous T , we should propose a new one that solves at least the problem
with the divergences we found with the former T , but not too different because some of the
arisen structures were correct. A good election could be

T (ND) = NV (D) + X (N ) [V (D)−D ] (3.2.19)

It is seemingly non-local but, as we said in the previous section, it compensates the non-
locality introduced by shifting the denominators. Again, we must test this T definition using
eq. (3.1.5).

T (T (ND)) = NV (V (D)) + X (N ) [V (V (D))− V (D)] +

+X (N )V (V (D)−D) + X (X (N )) [V (V (D)−D)− (V (D)−D)] (3.2.20)

T (T (ND)) = [N + 2X (N ) + X (X (N ))]V (V (D))

−2 [X (N ) + X (X (N ))]V (D) + X (X (N )) D (3.2.21)
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and if
V (V (D)) = V (D) (3.2.22)

then
T (T (ND)) = NV (D)−X (X (N )) [V (D)−D ] (3.2.23)

and finally we find the same idempotence relation for X (N ) as before.

X (X (N )) = −X (N ) (3.2.24)

So using this T definition, for a one-loop diagram we have

R (Γ) = lim
µ→0

∫
dnq [N + X (N )] [D − V (D)] (3.2.25)

making final result more compact. Now, it exactly shares the same structure as eq. (2.5.7).
Although we saw that for a one-loop diagram, the term that we have inserted now is null, it
will be very important beyond one loop.

So let us write again the explicit expressions of the forests depicted in fig. 3.2.2 but
using the current T .

Γ
(a)

1 = ND (3.2.26)

Γ
(b)

1 = NV2 (D) + X2 (N ) [V2 (D)−D ] (3.2.27)

Γ
(c)

1 = NV12 (D) + X12 (N ) [V12 (D)−D ] (3.2.28)

Γ
(d)

1 = NV12 (V2 (D)) +X12 (N ) [V12 (V2 (D))− V2 (D)] +T12 (X2 (N ) [V2 (D)−D ]) (3.2.29)

and summing them all

R
(
Γ1

)
= [N + X12 (N )] [D − V2 (D)− V12 (D − V2 (D))] +R12 (X2 (N ) [D − V2 (D)])

(3.2.30)
As in the one-loop case, we have got a more compact and absolutely factorized expression,
formed by the numerator shifted by global prescription along with the completely finite
denominator. Then, out of the main structure, we find the same term than beforehand, since
the new piece is always null. In spite of we have already shown that it does not lead to the
same expression as FDR, we will continue studying this operator and leave that discussion
to later sections, since the difference is finite. Furthermore, eq. (3.2.30) is such intuitive
that no operator nor forests will be needed to remember it, and we can even directly foresee
what would be the renormalized expression of a three-loop diagram (or more) with nested
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subdivergences, i.e. where forests only can have nested boxes because of the topology we
have used to reach to the result. Obviously, if some forest with more than one box at the
same level existed, the configuration of the renormalized value would change, and all the
process would be necessary. So for a three-loop diagram with just nested subdivergences, we
can directly predict that

R (ND) = [N + Xijk (N )] [D − Vi (D)− Vij (D − Vi (D))− Vijk (D − Vi (D)− Vij (D − Vi (D)))] +

+Rijk (Xij (N ) [D − Vi (D)− Vij (D − Vi (D))]) +Rijk (Rij (Xi (N ) [D − Vi (D)])) (3.2.31)

where i, j, k are the loop momenta subindices from inside to outside respectively. Therefore,
the formal renormalized expression of any-loop diagram which fulfils these features can be
deduced this way.

Next, the turn is for the two-loop self-energy diagram with two subdivergences in φ3 (fig.
3.2.1c). In order to make easier the formal expression deduction, we will depict and write
the corresponding forests. So seeing fig. 3.2.3, supposing q1 is related to left loop and q2 to
right loop, and obviously using eq. (3.2.19)

R (Γ2) =
(a)

−
(b)

−
(c)

−
(d)

+
(e)

+
(f)

Figure 3.2.3: Necessary forests for the renormalization of fig. 3.2.1c.

Γ
(a)

2 = ND (3.2.32)

Γ
(b)

2 = NV1 (D) + X1 (N ) [V1 (D)−D ] (3.2.33)

Γ
(c)

2 = NV2 (D) + X2 (N ) [V2 (D)−D ] (3.2.34)
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Γ
(d)

2 = NV12 (D) + X12 (N ) [V12 (D)−D ] (3.2.35)

Γ
(e)

2 = NV12 (V1 (D)) +X12 (N ) [V12 (V1 (D))− V1 (D)] +T12 (X2 (N ) [V1 (D)−D ]) (3.2.36)

Γ
(f)

2 = NV12 (V2 (D))+X12 (N ) [V12 (V2 (D))− V2 (D)]+T12 (X2 (N ) [V2 (D)−D ]) (3.2.37)

And finally

R
(
Γ2

)
= [N + X12 (N )] [D − V1 (D)− V2 (D)− V12 (D − V1 (D)− V2 (D))] +

+R12 (X1 (N ) [D − V1 (D)]) +R12 (X2 (N ) [D − V2 (D)]) (3.2.38)

As we see again, we obtained a very simple and predictable structure: the shifted numerator
together with the finite denominator, and this nearly extra-extra for each subdivergence.
So with this equation, we can expect the formal expression of whatever any-loop diagram
whose subdivergences are arranged into two groups, i.e. its forests can have only two sets
of nested subdivergences, due to the topology of the diagram we have utilized to deduce the
formal expression. Actually, studying both equations (3.2.30 and 3.2.38), we could predict
any situation. But if we want to ensure the result, depicting forests, applying T and summing
them all is the safest procedure.3

Henceforth, we will use this operator definition since it leads to a finite result. However,
in the following sections, we will try several assumptions and configurations that could change
the final result beyond one loop.

3.2.3 Simplest configuration

Although the previous definition of T leads to a finite expression and the main structure
is exactly the same as the expected by FDR, the so-called extra-extra integrals are a bit
different, so FDR has not been entirely reproduced. In principle, the deviation is always finite
by definition and even for some diagrams vanishes. A constant difference in renormalization
is not a real problem, since it is an usual thing that occurs when working with several
renormalization schemes. In this way, it could be considered that FDR has been successfully
systematized. The problem is that a logarithmic dependence can arise due to our extra-extra
piece configuration. It would make the difference between original FDR and our deduction
non-local what would change the diagram behaviour.

3We remember that in all formal expressions we wrote, a sum over all parts with different degree of
divergence is assumed.
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Making an attempt to avoid this, we could, for example, remove the rule that distin-
guishes between µ generated by inner or outer boxes. This means that all µ should be taken
to zero after all integrals have been performed. Therefore, there is no reason to place a T
before X2 (N ) when acting with a big box on a small one. Now, explicit V and X should be
use instead. So using the same T as before, this respectively transforms equations (3.2.30)
and (3.2.38) into

R
(
Γ1

)
= [N + X12 (N ) + X2 (N ) + X12 (X2 (N ))] [D − V2 (D)− V12 (D − V2 (D))]

(3.2.39)
R
(
Γ2

)
= [N + X12 (N )] [D − V1 (D)− V2 (D)− V12 (D − V1 (D)− V2 (D))] +

+ [X1 (N ) + X12 (X1 (N ))] [D − V1 (D)− V12 (D − V1 (D))] +

+ [X2 (N ) + X12 (X2 (N ))] [D − V2 (D)− V12 (D − V2 (D))] (3.2.40)

Beforehand, when we were distinguishing between µ, it was impossible that a X could
act on an existing µ because it must have been taken to zero before any outer operator could
act on it. So, every time a X acted on a numerator, no µ could exist. Nevertheless, now this
rule has been removed what means that the way X acts on µ needs to be define. The answer
is in eq. (3.2.24) which has not been necessary until now. This idempotence relation suggests
that µ should be treated as a loop momentum just like in the power-counting procedure.

X
(
µ2
)

= −µ2 (3.2.41)

In any case, idempotence relation allows us to simplify equations (3.2.39) and (3.2.40).

R
(
Γ1

)
= [N + X12 (N )] [D − V2 (D)− V12 (D − V2 (D))] (3.2.42)

R
(
Γ2

)
= [N + X12 (N )] [D − V1 (D)− V2 (D)− V12 (D − V1 (D)− V2 (D))] (3.2.43)

leaving just the main structure and deleting any track of extra-extra integrals. We already
know that these equations lead to a finite renormalization but some diagrams may require
the missing extra-extra parts in order to keep unchanged its logarithmic behaviour.

3.2.4 Complete configuration

Studying the way extra-extra integrals are introduced in FDR, we realize that it cannot be ex-
actly replicated by Forest Formula if we continue with the same assumptions. In eq. (2.5.14)
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we learnt that extra-extra integrals are made by a µ-part generated by the subdiagram nu-
merator without any index contraction with the external part, minus a µ-part also generated
by the subdiagram loop momentum but after contracting all numerator indices. In addition,
both µ-parts have to be integrated and taken to zero before performing the outer integral.
Both conditions cannot be achieved by Forest Formula at once, since the only box which can
obtain information of the external part of the diagram is the big one, but, by definition, its µ
has to be taken to zero after all integrals have been performed. Moreover, Forest Formula is
so strict, its operator T always has to act the same way on whatever diagram or subdiagram,
so we cannot expect that bigger boxes behave differently to smaller ones. Therefore, it is
clear, that it will be impossible to get the missing part to be subtracted. Unless, we give
Forest Formula the needed information.

Let us consider that before giving the diagram to Forest Formula, besides shifting the
denominator we perform the global prescription in the numerator. Thus the diagram without
boxes will be

ND → [N + X12 (N )] D (3.2.44)

Furthermore, we need the same last T but restoring the rule that keeps µ hierarchy, i.e. the
same conditions as in subsection (3.2.2). And now if we repeat all the process for a one
subdivergence we get

R
(
Γ1

)
= [N + 2X12 (N ) + X2 (N ) + X2 (X12 (N )) + X12 (X12 (N )) +

+X12 (X2 (N )) + X12 (X2 (X12 (N )))] [D − V2 (D)− V12 (D − V2 (D))] (3.2.45)

where all numerator pieces have been put together for compactness and convenience, but
always keeping in mind that a µ generated by X2 has to be taken to zero before any other
operator can act on it. Using again the idempotence relation, it is clear that

X12 (X12 (N )) = −X12 (N ) (3.2.46)

Now we wonder what the value of X2 (X12 (N )) is, and precisely it is just the piece we were
looking for. Consider the next numerator

N1 = q2
1 + q2

2 (3.2.47)

Applying X2

X2 (N1) = −µ2
2 (3.2.48)
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and now X12

X12 (N1) = −µ2
1 − µ2

2 (3.2.49)

and last
X2 (X12 (N1)) = µ2

2 (3.2.50)

The result is just −X2 (N ) but obtained with information of all diagram. In this case

X2 (N1) + X2 (X12 (N1)) = 0 (3.2.51)

just as we need in the diagrams where there is no index contraction between subdiagram and
the outer part. Now consider the following numerator

N2 = γµ/q1
γν
[
2q2µq2ν − q2

2gµν
]

(3.2.52)

where the part inside brackets belongs to the subdiagram. Now there are external indices
contracted with inner ones. Let us compute the interesting X expressions.

X2 (N2) = −2µ2
2/q1

(3.2.53)

Before applying X12 we have to contract all indices.

N2 = 2/q2/q1/q2
+ 2q2

2/q1
= 4q1 · q2/q2

(3.2.54)

Now we can continue.
X12 (N2) = 2µ2

/q2
(3.2.55)

X2 (X12 (N2)) = 0 (3.2.56)

since there is no µ2 generated by a q2
2 in X12 (N2). So in this case

X2 (N2) + X2 (X12 (N2)) = −2µ2
2/q1

(3.2.57)

We see that now Forest Formula can distinguish among diagrams with and without index
contraction between the subdiagrams and the external part. Thus reordering eq. (3.2.45)

R
(
Γ1

)
= [N + X12 (N )] [D − V2 (D)− V12 (D − V2 (D))] +

+R12 ([X2 (N ) + X2 (X12 (N ))] [D − V2 (D)]) (3.2.58)
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and analogously

R
(
Γ2

)
= [N + X12 (N )] [D − V1 (D)− V2 (D)− V12 (D − V1 (D)− V2 (D))] +

+R12 ([X1 (N ) + X1 (X12 (N ))] [D − V1 (D)]) +R12 ([X2 (N ) + X2 (X12 (N ))] [D − V2 (D)])

(3.2.59)
So the exactly FDR procedure has been replicated. This is not necessary the correct way, we
are just testing the method.

3.2.5 Subintegration

Analyzing the original extra-extra integrals in FDR, we realize that they were introduced as a
trick to get a subintegration consistency. Manipulating the whole numerator, evaluating the
overlapped integrals and taking µ to zero after that, spoils the subintegration consistency
for some diagrams. That is, this process does not give the same result as computing the
subdiagram renormalized value, then inserting it to the outer part and renormalizing again.
So, extra-extra integrals were introduced to get a complete equivalence between the two ways.

Let us put this fact in context with fig. 3.2.1a again. If we renormalize the subdiagram
first we have

R (Γ1) = lim
µ→0

∫
dnq1R

(
lim
µ→0

∫
dnq2 [N + X2 (N )] [D − V2 (D)]

)
(3.2.60)

but if we perform the integrals and limits at the end

R (Γ1) = lim
µ→0

∫
dnq1

∫
dnq2 [N + X12 (N )] [D − V2 (D)− V12 (D − V2 (D))] (3.2.61)

The first difference is clear, the term

lim
µ→0

∫
dnq1R

(
lim
µ→0

∫
dnq2X2 (N ) [D − V2 (D)]

)
(3.2.62)

does not appear in the second equation, so it is reasonable that it must be added to (3.2.61)
in order to recover the subintegration consistency. Precisely, it is exactly the same piece that
FDR adds and the one we found in eq. (3.2.30) with Forest Formula. If we first renormalize
the subdiagram, then X12 cannot find any q2

2 because they have already been integrated out.
So all µ found by X12 in eq. (3.2.61) must be added to (3.2.60). And now both ways of
renormalizing are equivalent. As we will use only one of them at once, we will have to add
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one part and subtract the other, accordingly. That is why an extra-extra integral is made by
a sum and a subtraction.

Once better understood the nature of extra-extra integrals, we can affirm that Forest
Formula with the second T we defined (eq. 3.2.19) leads to the same result by two ways.
The first consists in renormalizing the subdiagram first but without shifting the numerator
before giving it to Forest Formula, while the second lies in preparing the numerator with
global prescription and then using Forest Formula as usual.

3.3 Renormalization Group Equation

As we have shown in the previous sections, we have found several renormalizations that
lead to a finite result. However, distinct logarithmic behaviour is expected making their
differences non-local. This means that maybe some renormalization could be wrong. In this
way, Renormalization Group Equation (RGE) could help us to discard some of them.

A particular renormalization scheme is a reordering of the perturbative expansion and a
change in the scheme is compensated by changes in the parameters of the theory. All these
changes can be parametrized by the energy scale or renormalization constant µ. Consider
that the relation between an unrenormalized correlator and a renormalized one in a particular
renormalization scheme is

ΓR = Z (R) Γ (3.3.1)

As the unrenormalized one cannot depend on µ

d
dµ

Γ = 0 (3.3.2)

so
d
dµ
[
Z−1 (R) ΓR

]
= 0 (3.3.3)

If we perform the total derivative, i.e. differentiating all parameters in QED (Quantum
Electrodynamics) with respect to µ, we find that whatever renormalized correlation function
in QED must fulfil the next relation [58].[
µ
∂

∂µ
+ β (α, ξ)

∂

∂α
+ γm (α, ξ)m

∂

∂m
+ βξ (α, ξ)

∂

∂ξ
− nAγA (α, ξ)− nfγf (α, ξ)

]
Γ

(nA,nf)
R = 0

(3.3.4)
where µ is the renormalization constant or energy scale, α the coupling constant, ξ the gauge,
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m the mass, nA and nf the number of external photon and fermion fields respectively in the

renormalized correlator Γ
(nA,nf)
R , β′s the beta function which represents the dependence of

the coupling constant or gauge on energy scale, and γ′s the anomalous dimensions. This
relation is the so-called RGE what we mentioned above and it was discovered by Callan and
Symanzik [59, 60, 61].

Thanks to that relation, if we compute some two-loop diagrams in QED, we can use
RGE to analyze the several FDR renormalizations that we have found with Forest Formula.
Moreover, in QED, the following well-known relation holds and it will be useful to our
analysis.

β = 2αγA (3.3.5)

That is, in Spinorial QED as well as in Scalar QED, the beta function is two times the
anomalous dimension of the photon field to all orders in α. Furthermore, if we expand the β
function with respect the constant coupling α

β (α) = β(2)α2 + β(3)α3 + . . . (3.3.6)

the first two coefficients of the β function are scheme-independent in Spinorial QED as well
as in Scalar QED. Such values can be useful to our work. In Spinorial QED [62] we have

β(2) =
2

3π
(3.3.7)

β(3) =
1

2π2
(3.3.8)

and in Scalar QED [63]

β(2) =
1

6π
(3.3.9)

β(3) =
1

2π2
(3.3.10)
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Chapter 4

QED Calculations

In this section, we are going to compare among some procedures we talked about in the
last section. To do this, we will compute some two-loop examples. All of them will be in
the framework of QED (Quantum Electrodynamics) with massless fermions, but off-shell to
avoid infrared divergences, and in the ’t Hooft-Feynman gauge (ξ = 1). We will begin with
vacuum polarization diagrams in usual Spinorial QED and Scalar QED (where fermions are
swapped by scalars) followed by fermion self-energy.

LQED = −1

4
FµνFµν −

1

2ξ
(∂µAµ)2 + ψ̄

(
i /D
)
ψ (4.0.1)

LSQED = −1

4
FµνFµν −

1

2ξ
(∂µAµ)2 + |Dµφ|2 (4.0.2)

While evaluating the mentioned diagrams, we will always follow the same process. We
will first compute the main structure of the formal expressions we found as in equations
(3.2.42) and (3.2.43). Then it will be the turn of the controversial extra-extra integrals. We
will compute them using equations (3.2.30) and (3.2.38); and (3.2.58) and (3.2.59) to see the
difference. To clarify, we will call these different methods as R(1), R(2) and R(3) respectively.
That is

R(1)
(
Γ1

)
= [N + X12 (N )] [D − V2 (D)− V12 (D − V2 (D))] (4.0.3)

R(2)
(
Γ1

)
= [N + X12 (N )] [D − V2 (D)− V12 (D − V2 (D))] +R12 (X2 (N ) [D − V2 (D)])

(4.0.4)
R(3)

(
Γ1

)
= [N + X12 (N )] [D − V2 (D)− V12 (D − V2 (D))] +

+R12 ([X2 (N ) + X2 (X12 (N ))] [D − V2 (D)]) (4.0.5)
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Moreover, to facilitate the comparison, we define

∆1R
(
Γ1

)
≡ R(2)

(
Γ1

)
−R(1)

(
Γ1

)
≡ R12 (X2 (N ) [D − V2 (D)]) (4.0.6)

∆2R
(
Γ1

)
≡ R(3)

(
Γ1

)
−R(1)

(
Γ1

)
≡ R12 ([X2 (N ) + X2 (X12 (N ))] [D − V2 (D)]) (4.0.7)

∆3R
(
Γ1

)
≡ R(2)

(
Γ1

)
−R(3)

(
Γ1

)
≡ −R12 ([X2 (X12 (N ))] [D − V2 (D)]) (4.0.8)

and also the corresponding expressions for the case with two subdivergences.

The procedure to get the main structure consists, as we know, in shifting the numerator
by global prescription, and then finding the corresponding vacua by using fraction decom-
position and power-counting. Only then, we can evaluate the integrals and take the limit
µ → 0. To get extra-extra integrals, we shift and fraction decompose only the subdiagram,
evaluate its integral and take its µ to zero. Next the remaining one-loop integral must be
renormalize as usual.

All Feynman rules and needed integrals as well as other useful relations will be in the
appendices.

4.1 Vacuum polarization

We will start this example section with the study of vacuum polarization. The Lagrangian
interaction part that leads to the diagrams we want to study is

LQED ⊃ −eψ̄ /Aψ (4.1.1)

where e is the fermion electric charge, that we will replace for the fine structure constant,
the usual coupling constant in QED.

α = 4πe2 (4.1.2)

4.1.1 One loop

For the completeness of this section, we will begin with the one-loop graph (fig. 4.1.1).
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Figure 4.1.1: One-loop photon self-energy in QED.

According to QED Feynman rules

Πµν = ie2

∫
d4q

(2π)4

Tr
[
γµ/qγν

(
/q + /p

)]
q2 (q + p)2 (4.1.3)

Power-counting, we can put all numerator together with

V (D) =
1

q̄4

[
1− p2 + 2q · p

q̄2
+

4 (q · p)2

q̄4

]
(4.1.4)

Now, we must extract the extra part from the numerator. Performing the trace we easily
find

X (N ) = 4µ2gµν (4.1.5)

So the final expression is

R (Πµν) = ie2 lim
µ→0

∫
d4q

(2π)4

(
Tr
[
γµ/qγν

(
/q + /p

)]
+ 4µ2gµν

) [ 1

q̄2D̄
− 1

q̄4
+
p2 + 2q · p

q̄6
− 4 (q · p)2

q̄8

]
(4.1.6)

The last step now is evaluating the integral.

R (Πµν) =
α

3π

[
5

3
− log

(
p2

µ2

)] (
pµpν − p2gµν

)
(4.1.7)

4.1.2 Two loops

When we move to two loops, there are three possible diagrams as we see in fig. 4.1.2, however
two first are equivalent so we can just study one of them and double the result.
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(a) (b) (c)

Figure 4.1.2: Two-loop photon self-energy diagrams in QED.

4.1.2.1 Π
(a+b)
µν

Figure 4.1.3: Momenta description of fig. 4.1.2a.

As we said before, figures 4.1.2a and 4.1.2b are equivalent. So, for example, fig. 4.1.2a has
been chosen to be studied. Reading fig. 4.1.3 and using QED Feynman rules we have

Π(a+b)
µν = 2e4

∫
d4q1

(2π)4

∫
d4q2

(2π)4

Tr
[
γµ/q1

γλ/q12
γλ/q1

γν

(
/q1

+ /p
)]

q4
1D1q2

2q
2
12

(4.1.8)

where we recall q12 ≡ q1 + q2 and D1 ≡ (q1 + p)2.

This diagram has one subdivergence and it shares topology with 3.2.1a, so their depicted
forests will be the same. Therefore, our task now is to find the explicit expressions of all nec-
essary pieces, in order to renormalize the graph. Obviously, the numerator and denominator
are

Nµν = 2Tr
[
γµ/q1

γλ/q12
γλ/q1

γν

(
/q1

+ /p
)]

(4.1.9)

D =
1

q̄4
1D̄1q̄2

2 q̄
2
12

(4.1.10)

Power-counting, we notice that the difference between degrees of divergence among parts re-
lated to subdivergence as well as to overall divergence is one. So we can compact all numerator
under the same vacua and subvacua. Therefore, making use of fraction decomposition we
easily get

V2 (D) =
1

q̄4
1D̄1q̄4

2

[
1− 2q1 · q2

q̄2
2

]
(4.1.11)
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V12 (D) =
1

q̄6
1 q̄

2
2 q̄

2
12

[
1− p2 + 2q1 · p

q̄2
1

+
4 (q1 · p)2

q̄4
1

]
(4.1.12)

V12 (V2 (D)) =
1

q̄6
1 q̄

4
2

[
1− p2 + 2q1 · p

q̄2
1

+
4 (q1 · p)2

q̄4
1

][
1− 2q1 · q2

q̄2
2

]
(4.1.13)

And now, we can shift the numerator to find extra-extra parts. As q2
2 cannot be made up in

the numerator, we directly have
X2 (N ) = 0 (4.1.14)

X2 (X12 (N )) = 0 (4.1.15)

Thus all renormalizations will concur.

R(1)
(
Π(a+b)
µν

)
= − α2

36π2

{[
33.43− 17 log

(
p2

µ2

)
+ 3 log2

(
p2

µ2

)]
pµpν+

+

[
−45.62 + 20 log

(
p2

µ2

)
− 3 log2

(
p2

µ2

)]
p2gµν

}
(4.1.16)

∆1R
(
Π(a+b)
µν

)
= ∆2R

(
Π(a+b)
µν

)
= ∆3R

(
Π(a+b)
µν

)
= 0 (4.1.17)

4.1.2.2 Π
(c)
µν

Figure 4.1.4: Momenta description of fig. 4.1.2c.

Let us evaluate the third graph. Reading fig. 4.1.4 and using QED Feynman rules we have

Π(c)
µν = e4

∫
d4q1

(2π)4

∫
d4q2

(2π)4

Tr
[
γµ/q1

γλ/q2
γν

(
/q2

+ /p
)
γλ
(
/q1

+ /p
)]

q2
1D1q2

2D2q2
12

(4.1.18)

where this time q12 ≡ q1 − q2 and Di ≡ (qi + p)2.
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This graph has two coupled subdivergences thus its computing will be harder. So now
let us find the pieces. Concerning subdivergences, we can put all numerator together.

V1 (D) =
1

q̄6
1 q̄

2
2D̄2

(4.1.19)

V2 (D) =
1

q̄2
1D̄1q̄6

2

(4.1.20)

However, regarding overall divergence, the piece with two external momenta in the trace
must be separated because the difference between its degree of divergence and the leader
is two. Indeed, we can split the numerator into three pieces but we will split into two for
compactness.

N (1)
µν = Tr

[
γµ/q1

γλ/q2
γν

{
/q2
γλ
(
/q1

+ /p
)

+ /pγ
λ
/q1

}]
(4.1.21)

N (2)
µν = Tr

[
γµ/q1

γλ/q2
γν/pγ

λ
/p
]

(4.1.22)

So their corresponding vacua are

V(1)
12 (D) =

1

q̄4
1 q̄

4
2 q̄

2
12

[
1− p2 + 2q1·p

q̄2
1

− p2 + 2q2·p
q̄2

2

+
4 (q1·p)

2

q̄4
1

+
4 (q2·p)

2

q̄4
2

+
4 (q1·p) (q2·p)

q̄2
1 q̄

2
2

]
(4.1.23)

V(2)
12 (D) =

1

q̄4
1 q̄

4
2 q̄

2
12

(4.1.24)

V(1)
12 (V1 (D)) =

1

q̄6
1 q̄

4
2

[
1− p2 + 2q2·p

q̄2
2

+
4 (q2·p)

2

q̄4
2

]
(4.1.25)

V(2)
12 (V1 (D)) =

1

q̄6
1

1

q̄4
2

(4.1.26)

V(1)
12 (V2 (D)) =

1

q̄4
1 q̄

6
2

[
1− p2 + 2q1·p

q̄2
1

+
4 (q1·p)

2

q̄4
1

]
(4.1.27)

V(2)
12 (V2 (D)) =

1

q̄4
1

1

q̄6
2

(4.1.28)

And last step is to extract extra-extra parts from the numerator.

X1 (Nµν) = −2µ2Tr
[
γµ/q2

γν

(
/q2

+ /p
)]

(4.1.29)

X2 (Nµν) = −2µ2Tr
[
γµ/q1

γν

(
/q1

+ /p
)]

(4.1.30)
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It is easy to show that

X1 (X12 (Nµν)) = 2µ2Tr
[
γµ/q2

γν

(
/q2

+ /p
)]

(4.1.31)

X2 (X12 (Nµν)) = 2µ2Tr
[
γµ/q1

γν

(
/q1

+ /p
)]

(4.1.32)

due to the lack of index contraction between subdiagrams and outside. Thus this time, first
and third renormalizations will have no differences.

R(1)
(
Π(c)
µν

)
=

α2

36π2

{[
25.25− 26 log

(
p2

µ2

)
+ 3 log2

(
p2

µ2

)]
pµpν+

+

[
−37.44 + 29 log

(
p2

µ2

)
− 3 log2

(
p2

µ2

)]
p2gµν

}
(4.1.33)

R(2)
(
Π(c)
µν

)
=

α2

36π2

{[
15.25− 20 log

(
p2

µ2

)
+ 3 log2

(
p2

µ2

)]
pµpν+

+

[
−27.44 + 23 log

(
p2

µ2

)
− 3 log2

(
p2

µ2

)]
p2gµν

}
(4.1.34)

∆1R
(
Π(c)
µν

)
= ∆3R

(
Π(c)
µν

)
= − α2

18π2

[
5− 3 log

(
p2

µ2

)] (
pµpν − p2gµν

)
(4.1.35)

∆2R
(
Π(c)
µν

)
= 0 (4.1.36)

4.1.2.3 Sum

We cannot forget that photon must be transverse in its propagation, so the sum of all diagrams
should accomplish Ward Identities. Thus let us sum them all.

R(1) (Πµν) = − α2

12π2

[
2.73 + 3 log

(
p2

µ2

)] (
pµpν − p2gµν

)
(4.1.37)

R(2) (Πµν) = − α2

12π2

[
6.06 + log

(
p2

µ2

)] (
pµpν − p2gµν

)
(4.1.38)

∆1R (Πµν) = ∆3R (Πµν) = − α2

18π2

[
5− 3 log

(
p2

µ2

)] (
pµpν − p2gµν

)
(4.1.39)

∆2R (Πµν) = 0 (4.1.40)
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Besides squared logarithm has vanished, as expected

pµR (Πµν) = pνR (Πµν) = 0 (4.1.41)

4.1.3 RGE analysis

Gauge invariance and finiteness are a very good test that renormalization has been successful.
However, our results have distinct logarithmic behaviour as expected, i.e. their difference are
non-local. So, as we advanced in a previous section, perhaps the Renormalization Group
Equation (3.3.4) give us some useful information.[

2µ2 ∂

∂µ2
+ β (α, ξ)

∂

∂α
+ βξ (α, ξ)

∂

∂ξ
− 2γA (α, ξ)

]
Πµν = 0 (4.1.42)

where the derivative with respect to the energy scale has been put in a more convenient form,
mass has been removed because of the massless nature of our work, and nA = 2 since we have
computed two-point functions. Before starting the analysis we should know the behaviour of
every component in terms of α, given that different α orders cannot mix.

β (α) = β(2)α2 + β(3)α3 + . . . (4.1.43)

βξ (α) = β
(1)
ξ α + β

(2)
ξ α2 + . . . (4.1.44)

γA (α) = γ
(1)
A α + γ

(2)
A α2 + . . . (4.1.45)

Πµν =
(
pµpν − p2gµν

) [
Π(0) + αΠ(1) + α2Π(2) + . . .

]
+ pµpνΠ

(0)
long (4.1.46)

since the photon propagator is not completely transverse due to the gauge parameter ξ. We
summarize here for convenience all needed vacuum polarization results before inserting them
to RGE. The order zero parts are extracted from the photon propagator inverse.

Π(0) = 1 (4.1.47)

Π
(0)
long = −1

ξ
(4.1.48)

Π(1) = − 1

3π
log

(
p2

µ2

)
+ C (4.1.49)

Π
(2)
1 = − 1

4π2
log

(
p2

µ2

)
+ C1 (4.1.50)
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Π
(2)
2 = − 1

12π2
log

(
p2

µ2

)
+ C2 (4.1.51)

where, in principle, we have two possibilities for Π(2) as we know.

If we insert the longitudinal part into (4.1.42), we get the simply relation to all orders

βξ = −2γA (4.1.52)

and also due to eq. (3.3.5)
β = −βξα (4.1.53)

To study the transverse part, we have to go order by order in α. We do not find any
contribution in O (α0), thus we start for O (α).

2µ2 ∂

∂µ2
Π(1) − 2γ

(1)
A Π(0) = 0 (4.1.54)

γ
(1)
A = µ2 ∂

∂µ2
Π(1) (4.1.55)

so
γ

(1)
A =

1

3π
(4.1.56)

In QED, the first two coefficients of the beta function are scheme-independent, so we can use
their known values to compare with our results. So using eq. (3.3.5) and the known first beta
function coefficient (3.3.7), we can conclude that the result (4.1.56) agrees with the known
values. This means that FDR has successfully renormalize the one-loop graph.

Now, we continue with O (α2), the interesting one.

2µ2 ∂

∂µ2
Π(2) + β(2)Π(1) − 2γ

(1)
A Π(1) − 2γ

(2)
A Π(0) = 0 (4.1.57)

Thanks to eq. (4.1.42), we can simplify as follows.

γ
(2)
A = µ2 ∂

∂µ2
Π(2) (4.1.58)

As γ(2)
A does not have any logarithmic dependence, it means that Π(2) cannot contain any

squared logarithm (or beyond). Although we have found squared logarithms in our compu-
tations, they cancelled out when we summed them all as we can see in (4.1.50) and (4.1.51).
Using again (3.3.5) and the known value for the second beta function coefficient (3.3.8), we
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deduce that any good renormalization of the two-loop vacuum polarization in Spinorial QED,
must fulfil

µ2 ∂

∂µ2
Π(2) =

1

4π2
(4.1.59)

so the renormalization scheme R(2) is discarded. Unfortunately, we cannot distinguish from
R(1) and R(3), since they concord in this calculation.

4.2 Scalar vacuum polarization

Now it is the turn for vacuum polarization but in Scalar QED, i.e. replacing fermions with
scalars. The interaction Lagrangian we need is

LSQED ⊃ −ig [φ∗ (∂µφ)− (∂µφ)∗ φ]Aµ + g2AµAµ |φ|2 (4.2.1)

where g is the coupling constant of the scalars and photon fields, that no necessarily has to
agree with the fermion electric charge that we used in Spinorial QED. Nevertheless, we will
replace it for a “fine structure constant” a hat will be placed on it to distinguish it from usual
QED.

α̂ = 4πg2 (4.2.2)

This time we notice that besides a triple vertex, a quadruple one has arisen, which will cause
the emergence of more diagrams than in usual QED.

To avoid confusion between Scalar and usual Spinorial QED, we will place a hat over
the scalar symbol.

4.2.1 One loop

We will start with the one-loop case. This one-loop self-energy is composed of two graphs:
one with the same topology as usual QED (fig. 4.2.1a) and one with a quadruple vertex (fig.
4.2.1b).
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(a) (b)

Figure 4.2.1: One-loop photon self-energy graphs in Scalar QED.

Figure 4.2.2: Momenta description of fig. 4.2.1a.

Let us begin computing fig. 4.2.2. According to Scalar QED Feynman rules

Π̂(a)
µν = −ig2

∫
d4q

(2π)4

(2q + p)µ (2q + p)ν

q2 (q + p)2 (4.2.3)

Power-counting, we find several degrees of divergence in the numerator, so we have to split
it up. It will be enough to distinguish between two parts always thanks to parity.

N (1)
µν = 4qµqν + 2 (qµpν + pµqν) (4.2.4)

N (2)
µν = pµpν (4.2.5)

and their corresponding vacua are respectively

V(1) (D) =
1

q̄4

[
1− p2 + 2q · p

q̄2
+

4 (q · p)2

q̄4

]
(4.2.6)

V(2) (D) =
1

q̄4
(4.2.7)

As there is no q2 in the numerator, we can write the final expression.

R
(

Π̂(a)
µν

)
= −ig2 lim

µ→0

∫
d4q

(2π)4 {[4qµqν + 2 (qµpν + pµqν)]×
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×

[
1

q̄2D̄
− 1

q̄4
+
p2 + 2q · p

q̄6
− 4 (q · p)2

q̄8

]
+ pµpν

[
1

q̄2D̄
− 1

q̄4

]}
(4.2.8)

The remaining task now is evaluating the integral.

R
(

Π̂(a)
µν

)
=

α̂

12π

[
8

3
− log

(
p2

µ2

)] (
pµpν − p2gµν

)
(4.2.9)

Figure 4.2.3: Momenta description of fig. 4.2.1b.

Now the turn is for fig.4.2.3. Using Feynman rules

Π̂(b)
µν = 2ig2gµν

∫
d4q

(2π)4

1

q2
(4.2.10)

This is a scaleless and purely divergent integral. So

R
(

Π̂(b)
µν

)
= 0 (4.2.11)

Therefore, renormalized value of the one-loop photon self-energy is directly the result of
fig. 4.2.2, since the another one does not contribute.

R
(

Π̂µν

)
=

α̂

12π

[
8

3
− log

(
p2

µ2

)] (
pµpν − p2gµν

)
(4.2.12)

We can see that it is transverse as expected, i.e. it is gauge invariant and respects Ward
Identities.

pµR
(

Π̂µν

)
= pνR

(
Π̂µν

)
= 0 (4.2.13)

4.2.2 Two loops

In the two-loop case, the appearance of a quadruple vertex produces a total of twelve diagrams
(fig. 4.2.4). Indeed, there is no need to study them all because some are equivalent as we
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will see.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.2.4: Two-loop photon self-energy diagrams in Scalar QED.

4.2.2.1 Π̂
(a+b)
µν

Figure 4.2.5: Momenta description of fig. 4.2.4a.

Let us begin with the diagrams which shares topology with usual QED. Figures 4.2.4a and
4.2.4b are equivalent, so we will study the first one for example and double the result. So
now using Scalar QED Feynman rules and reading fig. 4.2.5

Π̂(a+b)
µν = −2g4

∫
d4q1

(2π)4

∫
d4q2

(2π)4

(2q1 + p)µ (2q1 + p)ν (2q1 + q2)2

q4
1D1q2

2q
2
12

(4.2.14)
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where q12 ≡ q1 + q2 and D1 ≡ (q1 + p)2.

This diagram has only one subdivergence. When searching for subvacua as well as global
vacua, we have to split the numerator into pieces. The ones with one or two q2 can go with

V(1)
2 (D) =

1

q̄4
1D̄1q̄4

2

[
1− q2

1 + 2q1 · q2

q̄2
2

+
4 (q1 · q2)2

q̄4
2

]
(4.2.15)

while the one with no q2 must be integrated with

V(2)
2 (D) =

1

q̄4
1D̄1q̄4

2

(4.2.16)

Parts with four or three loop momenta go with

V(1)
12 (D) =

1

q̄6
1 q̄

2
2 q̄

2
12

[
1− p2 + 2q1 · p

q̄2
1

+
4 (q1 · p)2

q̄4
1

]
(4.2.17)

V(1)
12

(
V(1)

2 (D)
)

=
1

q̄6
1 q̄

4
2

[
1− p2 + 2q1 · p

q̄2
1

+
4 (q1 · p)2

q̄4
1

][
1− q2

1 + 2q1 · q2

q̄2
2

+
4 (q1 · q2)2

q̄4
2

]
(4.2.18)

V(1)
12

(
V(2)

2 (D)
)

=
1

q̄6
1 q̄

4
2

[
1− p2 + 2q1 · p

q̄2
1

+
4 (q1 · p)2

q̄4
1

]
(4.2.19)

and parts with two loop momenta must go with

V(2)
12 (D) =

1

q̄6
1 q̄

2
2 q̄

2
12

(4.2.20)

V(2)
12

(
V(1)

2 (D)
)

=
1

q̄6
1 q̄

4
2

[
1− q2

1 + 2q1 · q2

q̄2
2

+
4 (q1 · q2)2

q̄4
2

]
(4.2.21)

V(2)
12

(
V(2)

2 (D)
)

=
1

q̄6
1 q̄

4
2

(4.2.22)

Finally, subdiagram extra part is so easy to extract.

X2 (Nµν) = 2µ2 (2q1 + p)µ (2q1 + p)ν (4.2.23)

and since subdiagram has not indices

X2 (X12 (Nµν)) = −2µ2 (2q1 + p)µ (2q1 + p)ν (4.2.24)
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so the first and third renormalizations will agree. Now let us compute them.

R(1)
(

Π̂(a+b)
µν

)
=

α̂2

72π2

{[
44.24− 20 log

(
p2

µ2

)
+ 3 log2

(
p2

µ2

)]
pµpν+

+

[
−56.43 + 23 log

(
p2

µ2

)
− 3 log2

(
p2

µ2

)]
p2gµν

}
(4.2.25)

R(2)
(

Π̂(a+b)
µν

)
=

α̂2

144π2

{[
91.15− 41 log

(
p2

µ2

)
+ 6 log2

(
p2

µ2

)]
pµpν+

+

[
−115.52 + 47 log

(
p2

µ2

)
− 6 log2

(
p2

µ2

)]
p2gµν

}
(4.2.26)

∆1R
(

Π̂(a+b)
µν

)
= ∆3R

(
Π̂(a+b)
µν

)
=

α̂2

432π2

[
8− 3 log

(
p2

µ2

)] (
pµpν − p2gµν

)
(4.2.27)

∆2R
(

Π̂(a+b)
µν

)
= 0 (4.2.28)

4.2.2.2 Π̂
(c)
µν

Figure 4.2.6: Momenta description of fig. 4.2.4c.

Next, the remaining diagram which shares topology with usual Spinorial QED: the one with
two coupled subdivergences. Using Scalar QED Feynman rules and reading fig. 4.2.6

Π̂(c)
µν = −g4

∫
d4q1

(2π)4

∫
d4q2

(2π)4

(2q1 + p)µ (2q2 + p)ν (q1 + q2) · (q1 + q2 + 2p)

q2
1D1q2

2D2q2
12

(4.2.29)

where in this occasion q12 ≡ q1 − q2 and Di ≡ (qi + p)2.

The pieces in the numerator with three q2
1 or q2

2 must be integrated with

V1 (D) =
1

q̄6
1 q̄

2
2D̄2

[
1 +

2q1 · (q2 − p)
q̄2

1

]
(4.2.30)
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V2 (D) =
1

q̄2
1D̄1q̄6

2

[
1 +

2q2 · (q1 − p)
q̄2

2

]
(4.2.31)

respectively, and the remaining do not have any subdivergence. And regarding overall diver-
gence, parts with four or three loop momenta go with the following vacua and the remaining
are globally finite.

V12 (D) =
1

q̄4
1 q̄

4
2 q̄

2
12

[
1− p2 + 2q1 · p

q̄2
1

− p2 + 2q2 · p
q̄2

2

+
4 (q1 · p)2

q̄4
1

+
4 (q2 · p)2

q̄4
2

+
4 (q1 · p) (q2 · p)

q̄2
1 q̄

2
2

]
(4.2.32)

V12 (V1 (D)) =
1

q̄6
1 q̄

4
2

[
1 +

2q1 · (q2 − p)
q̄2

1

][
1− p2 + 2q2 · p

q̄2
2

+
4 (q2 · p)2

q̄4
2

]
(4.2.33)

V12 (V2 (D)) =
1

q̄4
1 q̄

6
2

[
1 +

2q2 · (q1 − p)
q̄2

2

][
1− p2 + 2q1 · p

q̄2
1

+
4 (q1 · p)2

q̄4
1

]
(4.2.34)

To finish, we extract from the subdiagrams the extra parts.

X1 (Nµν) = µ2 (2q1 + p)µ (2q2 + p)ν (4.2.35)

X2 (Nµν) = µ2 (2q1 + p)µ (2q2 + p)ν (4.2.36)

and again, due to the lack of index contraction

X1 (X12 (Nµν)) = µ2 (2q1 + p)µ (2q2 + p)ν (4.2.37)

X2 (X12 (Nµν)) = µ2 (2q1 + p)µ (2q2 + p)ν (4.2.38)

thus the first and third renormalizations will coincide.

R(1)
(

Π̂(c)
µν

)
=

α̂2

432π2

{[
148.72− 87 log

(
p2

µ2

)
+ 9 log2

(
p2

µ2

)]
pµpν+

+

[
−294.97 + 123 log

(
p2

µ2

)
− 9 log2

(
p2

µ2

)]
p2gµν

}
(4.2.39)

R(2)
(

Π̂(c)
µν

)
=

α̂2

144π2

{[
46.91− 28 log

(
p2

µ2

)
+ 3 log2

(
p2

µ2

)]
pµpν+
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+

[
−95.66 + 40 log

(
p2

µ2

)
− 3 log2

(
p2

µ2

)]
p2gµν

}
(4.2.40)

∆1R
(

Π̂(c)
µν

)
= ∆3R

(
Π̂(c)
µν

)
= − α̂2

432π2

[
8− 3 log

(
p2

µ2

)] (
pµpν − p2gµν

)
(4.2.41)

∆2R
(

Π̂(c)
µν

)
= 0 (4.2.42)

4.2.2.3 Π̂
(d+e+f+g)
µν

Figure 4.2.7: Momenta description of fig. 4.2.4d.

This graph is the first one with no equivalence in Spinorial QED due to the emergence of a
quadruple vertex. Here, we find an equivalence among four diagrams, all of them with one
subdivergence. That is, fig. 4.2.4d and 4.2.4f are completely equivalent, and fig. 4.2.4e and
4.2.4g too. And to relate each couple an exchange of Lorentz indices must be performed. So
we can choose for example the first one and by using Scalar QED Feynman rules on fig. 4.2.7
we have

Π̂(d+e+f+g)
µν = 4g4 (gµλgνρ + gµρgνλ)

∫
d4q1

(2π)4

∫
d4q2

(2π)4

(2q1 + q2)λ (2q1 + p)ρ

q2
1D1q2

2q
2
12

(4.2.43)

where q12 ≡ q1 + q2 and D1 ≡ (q1 + p)2.

In this diagram is not necessary to split the numerator while searching for the subvacua
as well as global vacua. Therefore the only needed expressions are

V2 (D) =
1

q̄2
1D̄1q̄4

2

[
1− 2q1 · q2

q̄2
2

]
(4.2.44)

V12 (D) =
1

q̄4
1 q̄

2
2 q̄

2
12

[
1− p2 + 2q1 · p

q̄2
1

+
4 (q1 · p)2

q̄4
1

]
(4.2.45)
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V12 (V2 (D)) =
1

q̄4
1 q̄

4
2

[
1− 2q1 · q2

q̄2
2

][
1− p2 + 2q1 · p

q̄2
1

+
4 (q1 · p)2

q̄4
1

]
(4.2.46)

As there are not any squared loop momenta in the numerator, any extra or extra-extra
part can be generated.

X12 (Nµν) = 0 (4.2.47)

X2 (Nµν) = 0 (4.2.48)

X2 (X12 (Nµν)) = 0 (4.2.49)

so inevitably the three renormalizations will concur.

R(1)
(

Π̂(d+e+f+g)
µν

)
= − α̂2

48π2

{[
7.68− 11 log

(
p2

µ2

)
+ 3 log2

(
p2

µ2

)]
pµpν+

+

[
−56.43 + 23 log

(
p2

µ2

)
− 3 log2

(
p2

µ2

)]
p2gµν

}
(4.2.50)

∆1R
(

Π̂(d+e+f+g)
µν

)
= ∆2R

(
Π̂(d+e+f+g)
µν

)
= ∆3R

(
Π̂(d+e+f+g)
µν

)
= 0 (4.2.51)

4.2.2.4 Π̂
(h)
µν

Figure 4.2.8: Momenta description of fig. 4.2.4h.

Using Scalar QED Feynman rules on fig. 4.2.8 we have

Π̂(h)
µν = −4g4gµν

∫
d4q1

(2π)4

∫
d4q2

(2π)4

1

D1q2
2q

2
12

(4.2.52)

where q12 ≡ q1 + q2 and D1 ≡ (q1 + p)2.

In principle, as we see in fig. 4.2.8 as well as in eq. (4.2.52), this graph seems to have two
subdivergences. However, the subvacuum corresponding to q1 is completely divergent with
no possibility of being expanded again when searching for overall divergence. Therefore, it
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has to be subtracted entirely and the final result will be as if the graph had one subdivergence
instead of two.

V2 (D) =
1

D̄1q̄4
2

(4.2.53)

V12 (D) =
1

q̄2
1 q̄

2
2 q̄

2
12

[
1− p2 + 2q1 · p

q̄2
1

+
4 (q1 · p)2

q̄4
1

]
(4.2.54)

V12 (V2 (D)) =
1

q̄2
1 q̄

4
2

[
1− p2 + 2q1 · p

q̄2
1

+
4 (q1 · p)2

q̄4
1

]
(4.2.55)

There are not any squared loop momenta in the numerator so

X12 (N µν) = 0 (4.2.56)

X2 (N µν) = 0 (4.2.57)

X2 (X12 (N µν)) = 0 (4.2.58)

and again the three renormalizations will be identical.

R(1)
(

Π̂(h)
µν

)
= − α̂2

8π2

[
4.06 + log

(
p2

µ2

)]
p2gµν (4.2.59)

∆1R
(

Π̂(h)
µν

)
= ∆2R

(
Π̂(h)
µν

)
= ∆3R

(
Π̂(h)
µν

)
= 0 (4.2.60)

4.2.2.5 Π̂
(i+j)
µν

Figure 4.2.9: Momenta description of fig. 4.2.4i.
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Figures 4.2.4i and 4.2.4j are equivalent so we will choose for example the first and double the
result. Using Scalar QED Feynman rules on fig. 4.2.9 we have

Π̂(i+j)
µν = 16g4

∫
d4q1

(2π)4

∫
d4q2

(2π)4

(2q1 + p)µ (2q1 + p)ν
q4

1D1q2
2

(4.2.61)

where D1 ≡ (q1 + p)2.

As we see, this graph has one subdivergence. If we write the subvacuum

V2 (D) =
1

q̄4
1D̄1q̄2

2

(4.2.62)

we realize that it is equal to the original denominator, so

V2 (D) = D =⇒ V12 (V2 (D)) = V12 (D) (4.2.63)

Therefore, according to formal expressions given by Forest Formula, this graph vanishes in
all schemes.

R(1)
(

Π̂(i+j)
µν

)
= R(2)

(
Π̂(i+j)
µν

)
= R(3)

(
Π̂(i+j)
µν

)
= 0 (4.2.64)

We could have also noticed that this integral is disconnected because of the non-existence
of q̄2

12 in the denominator, and have treated them separately. This way, we quickly see that
the q2 integral must be subtracted itself because it is purely divergent.

4.2.2.6 Π̂
(k)
µν

Figure 4.2.10: Momenta description of fig. 4.2.4k.

Using Scalar QED Feynman rules on fig. 4.2.10 we have

Π̂(k)
µν = −16g4gµν

∫
d4q1

(2π)4

∫
d4q2

(2π)4

1

q̄4
1 q̄

2
2

(4.2.65)

This diagram has only µ as scale, so the result will be proportional to it. And after
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taking the limit µ→ 0 we will inevitably find that

R(1)
(

Π̂(k)
µν

)
= R(2)

(
Π̂(k)
µν

)
= R(3)

(
Π̂(k)
µν

)
= 0 (4.2.66)

which has sense because the integral is purely divergent.

4.2.2.7 Π̂
(l)
µν

Figure 4.2.11: Momenta description of fig. 4.2.4l.

Using Scalar QED Feynman rules on fig. 4.2.11 we have

Π̂(l)
µν = 2g4gµν

∫
d4q1

(2π)4

∫
d4q2

(2π)4

(2q1 + q2)2

q̄4
1 q̄

2
2 q̄

2
12

(4.2.67)

Again, this diagram has only µ as scale, so

R(1)
(

Π̂(l)
µν

)
= R(2)

(
Π̂(l)
µν

)
= R(3)

(
Π̂(l)
µν

)
= 0 (4.2.68)

4.2.2.8 Sum

In the end, despite of beginning with twelve diagrams, only seven topologies needed to be
studied of which just four gave real contribution. And summing them all we get

R(1)
(

Π̂µν

)
=

α̂2

4π2

[
3.19− log

(
p2

µ2

)] (
pµpν − p2gµν

)
(4.2.69)

∆1R (Πµν) = ∆2R (Πµν) = ∆3R (Πµν) = 0 (4.2.70)

Curiously, notwithstanding that graphs of figures 4.2.4a, 4.2.4b and 4.2.4c have differences
among renormalizations, the sum of them does not. We can easily verify it, noticing that eq.
(4.2.27) and (4.2.41) are opposite.
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And of course, transversality and gauge invariance have been recovered, so Ward Iden-
tities are fulfilled.

pµR
(

Π̂µν

)
= pνR

(
Π̂µν

)
= 0 (4.2.71)

4.2.3 RGE analysis

In this case, RGE analysis will not give more information about renormalizations because
they all agree. Nevertheless, it is convenient to perform the study to see if it is consistent
with the result we got. So using (3.3.4)[

2µ2 ∂

∂µ2
+ β (α, ξ)

∂

∂α
+ βξ (α, ξ)

∂

∂ξ
− 2γA (α, ξ)

]
Πµν = 0 (4.2.72)

Obviously, all α expansions we did in spinorial case hold. So we directly summarize here the
diagrams results.

Π(0) = 1 (4.2.73)

Π
(0)
longitudinal = −1

ξ
(4.2.74)

Π(1) = − 1

12π
log

(
p2

µ2

)
+ C (4.2.75)

Π(2) = − 1

4π2
log

(
p2

µ2

)
+ C ′ (4.2.76)

where, this time, we only have one Π(2).

If we insert the longitudinal part into (4.2.72), we get the same relations as beforehand.

βξ = −2γA (4.2.77)

β = −βξα (4.2.78)

The relation for O (α) is also the same.

2µ2 ∂

∂µ2
Π(1) − 2γ

(1)
A Π(0) = 0 (4.2.79)

γ
(1)
A = µ2 ∂

∂µ2
Π(1) (4.2.80)
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though this time we find a different value

γ
(1)
A =

1

12π
(4.2.81)

In Scalar QED, the eq. (3.3.5) still holds and also the two first beta function coefficients are
scheme-independent. So using the known value for the first coefficient (3.3.9), we can say
that the result (4.2.81) agrees with the known values. This means that FDR has successfully
renormalize the one-loop graph.

We continue with O (α2).

2µ2 ∂

∂µ2
Π(2) + β(2)Π(1) − 2γ

(1)
A Π(1) − 2γ

(2)
A Π(0) = 0 (4.2.82)

And again, thanks to eq. (4.2.72), we also get the same relation as in Spinorial QED.

γ
(2)
A = µ2 ∂

∂µ2
Π(2) (4.2.83)

Thus in Scalar QED Π(2) cannot contain any squared logarithm (or beyond) as well as in
Spinorial QED. This fact also agrees with our result. Using again (3.3.5) and the known
value of the second beta function coefficient which actually coincides with the spinorial one
(3.3.10), we find that the same relation as beforehand must hold.

µ2 ∂

∂µ2
Π(2) =

1

4π2
(4.2.84)

so all renormalizations scheme we have performed agree with this result. Therefore, as we
said before, this analysis does not give us new information but at least we found that all
renormalizations are consistent.

4.3 Fermion self-energy

We end this chapter with the study of fermion self-energy in Spinorial QED. Again, the
interaction Lagrangian part that we are interested in is

LQED ⊃ −eψ̄ /Aψ (4.3.1)

where we will replace e for the fine structure constant α.
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4.3.1 One loop

We will begin evaluating the one-loop fermion self-energy (fig. 4.3.1), though we have already
worked with it previously.

Figure 4.3.1: One-loop fermion self-energy in QED.

However, this time we will compute this graph in a general gauge for discussion purposes.
According to Feynman rules

Σ = −ie2

∫
d4q

(2π)4

[
γµ
(
/q + /p

)
γµ

q2 (q + p)2 + (ξ − 1)
/q
(
/q + /p

)
/q

q4 (q + p)2

]
(4.3.2)

The part in the ’t Hooft-Feynman gauge (ξ = 1) and the new one must be respectively
integrated with

V(1) (D) =
1

q̄4

[
1− 2q · p

q̄6

]
(4.3.3)

V(2) (D) =
1

q̄6

[
1− 2q · p

q̄8

]
(4.3.4)

And performing the shift in the numerator, we get to the final expression.

R (Σ) = −ie2 lim
µ→0

∫
d4q

(2π)4

{[
γµ
(
/q + /p

)
γµ
] [ 1

q̄2D̄
− 1

q̄4
+

2q · p
q̄6

]
+

+ (ξ − 1)
[
/q
(
/q + /p

)
/q − µ2

(
/q − /p

)] [ 1

q̄4D̄
− 1

q̄6
+

2q · p
q̄8

]}
(4.3.5)

and performing the integral

R (Σ) = − α

4π
/p

[
1 + ξ − ξ log

(
p2

µ2

)]
(4.3.6)

where if ξ = 1, we recover the result we have computed beforehand.
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4.3.2 Two loops

We find three different two-loop fermion self-energy as we see in fig. 4.3.2.

(a) (b) (c)

Figure 4.3.2: Two-loop fermion self-energy diagrams in QED.

4.3.2.1 Σ(a)

Figure 4.3.3: Momenta description of fig. 4.3.2a.

We will begin with fig. 4.3.3 which we used to explain FDR procedure when we have a
two-loop graph. This time we will make use of Forest Formula to see or not the emergence
of the same terms. Reading fig. 4.3.3 and using QED Feynman rules we have

Σ(a) = e4

∫
d4q1

(2π)4

∫
d4q2

(2π)4

γµ
(
/q1

+ /p
)
γνTr

[
γµ/q2

γν/q12

]
q4

1D1q2
2q

2
12

(4.3.7)

where q12 ≡ q1 + q2 and D1 ≡ (q1 + p)2.

First of all, we notice that it has one subdivergence, so we will use one subdivergence
formal expressions. Thus now we only have to find out all pieces.

N = γµ
(
/q1

+ /p
)
γνTr

[
γµ/q2

γν/q12

]
(4.3.8)

D =
1

q̄4
1D̄1q̄2

2 q̄
2
12

(4.3.9)

Once we have identified numerator and denominator, we can figure out all vacua by fraction
decomposing and power-counting. All parts can be together because of parity and in order
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to get the most compactness.

V2 (D) =
1

q̄4
1D̄1q̄4

2

[
1− q2

1 + 2q1 · q2

q̄2
2

+
4 (q1 · q2)2

q̄4
2

]
(4.3.10)

V12 (D) =
1

q̄6
1 q̄

2
2 q̄

2
12

[
1− 2q1 · p

q̄2
1

]
(4.3.11)

V12 (V2 (D)) =
1

q̄6
1 q̄

4
2

[
1− 2q1 · p

q̄2
1

][
1− q2

1 + 2q1·q2

q̄2
2

+
4 (q1·q2)2

q̄4
2

]
(4.3.12)

In fact, since N and X12 (N ) always appear together as a sum, usually it will be no necessary
to know the exact form of X12 (N ) when renormalizing a particular diagram. Just placing a
bar over squared loop momenta in N as in eq. (2.5.19) and (2.5.20) is enough. Moreover,
this facilitates cancellations between numerator and denominator. Once having all pieces,
we can perform the integrals making use of the appendix.

Now it is the turn of extra-extra parts. Shifting only q2
2 without index contraction we

have
X2 (N ) = −8µ2

(
/q1

+ /p
)

(4.3.13)

and it has to be integrated along with the already obtained V2 (D). The process have been
shown in section 2.5. It is important to recall that after generating µ, we can contract all
indices without any problem. Now, we contract all indices to see the numerator appearance.

N = 8
[
q12 · (q1 + p) /q2

+ q2 · (q1 + p) /q12

]
(4.3.14)

As there is no q2
2 in the numerator after contraction

X2 (X12 (N )) = 0 (4.3.15)

thus R(2)
(
Σ(a)

)
and R(3)

(
Σ(a)

)
will agree. So the final results are

R(1)
(
Σ(a)

)
=

α2

6π2/p

[
2.80− log

(
p2

µ2

)]
(4.3.16)

R(2)
(
Σ(a)

)
=

α2

8π2/p

[
3.06− log

(
p2

µ2

)]
(4.3.17)

∆1R
(
Σ(a)

)
= ∆2R

(
Σ(a)

)
= − α2

24π2/p

[
2− log

(
p2

µ2

)]
(4.3.18)
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∆3R
(
Σ(a)

)
= 0 (4.3.19)

4.3.2.2 Σ(b)

Figure 4.3.4: Momenta description of fig. 4.3.2b.

We follow now with fig. 4.3.4. Let us write its expression by QED Feynman rules.

Σ(b) = −e4

∫
d4q1

(2π)4

∫
d4q2

(2π)4

γµ

(
/q1

+ /p
)
γν

(
/q12

+ /p
)
γν
(
/q1

+ /p
)
γµ

q2
1D

2
1q

2
2D12

(4.3.20)

where q12 ≡ q1 + q2, D1 ≡ (q1 + p)2 and D12 ≡ (q12 + p)2.

This diagram has also one subdivergence so we will use the corresponding expressions.
Now we must search for vacua. In spite of numerator several parts, we can put it all under
the same subvacuum.

V2 (D) =
1

q̄2
1D̄

2
1 q̄

4
2

[
1− 2 (q1 + p) · q2

q̄2
2

]
(4.3.21)

Nevertheless, we have to split the numerator when finding global vacua. Parts with three and
two loop momenta can go with the following infinities. The remaining are already globally
finite.

V12 (D) =
1

q̄6
1 q̄

2
2 q̄

2
12

[
1− 4q1 · p

q̄2
1

− 2q12 · p
q̄2

12

]
(4.3.22)

V12 (V2 (D)) =
1

q̄6
1 q̄

4
2

[
1− 4q1 · p

q̄2
1

] [
1− 2 (q1 + p) · q2

q̄2
2

]
(4.3.23)

And reading the numerator, we realize there is no possibility to make a q2
2 so

X2 (N ) = 0 (4.3.24)

and therefore
X2 (X12 (N )) = 0 (4.3.25)
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thus all renormalizations will be the same.

R(1)
(
Σ(b)

)
=

α2

32π2/p

[
8.28− 5 log

(
p2

µ2

)
+ log2

(
p2

µ2

)]
(4.3.26)

∆1R
(
Σ(b)

)
= ∆2R

(
Σ(b)

)
= ∆3R

(
Σ(b)

)
= 0 (4.3.27)

4.3.2.3 Σ(c)

Figure 4.3.5: Momenta description of fig. 4.3.2c.

And finally, the last graph which takes part in the two-loop fermion self-energy (fig. 4.3.5).
So by Feynman rules we have

Σ(c) = −e4

∫
d4q1

(2π)4

∫
d4q2

(2π)4

γµ

(
/q2

+ /p
)
γν

(
/q12

+ /p
)
γµ
(
/q1

+ /p
)
γν

q2
1D1q2

2D2D12

(4.3.28)

where q12 ≡ q1 + q2, Di ≡ (qi + p)2 and D12 ≡ (q12 + p)2.

This diagram is more complicated than former ones because it has two subdivergences.
Concerning to them, only numerator parts with two q1 or two q2 need to be regulated with

V1 (D) =
1

q̄6
1 q̄

2
2D̄2

(4.3.29)

V2 (D) =
1

q̄2
1 q̄

6
2D̄1

(4.3.30)

respectively. The other parts are not subdivergent. Likewise, only parts with three or two
loop momenta must be integrated under

V12 (D) =
1

q̄4
1 q̄

4
2 q̄

2
12

[
1− 2q1 · p

q̄2
1

− 2q2 · p
q̄2

2

− 2q12 · p
q̄2

12

]
(4.3.31)

V12 (V1 (D)) =
1

q̄6
1 q̄

4
2

[
1− 2q2 · p

q̄2
2

]
(4.3.32)
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V12 (V2 (D)) =
1

q̄4
1 q̄

6
2

[
1− 2q1·p

q̄2
1

]
(4.3.33)

because the remaining are globally finite.

Finally, the turn for extra-extra integrals. We easily find

X1 (N ) = −4µ2
(
/q2

+ /p
)

(4.3.34)

X2 (N ) = −4µ2
(
/q1

+ /p
)

(4.3.35)

Now, contracting all indices in the numerator

N = 8 (q1 + p) · (q2 + p)
(
/q12

+ /p
)

(4.3.36)

Since we cannot generate1 any µ2 from a q2
1 or q2

2

X1 (X12 (N )) = 0 (4.3.37)

X2 (X12 (N )) = 0 (4.3.38)

so the second and third renormalization will coincide. Let us compute them and their differ-
ences.

R(1)
(
Σ(c)

)
= − α2

16π2/p

[
8.28− 5 log

(
p2

µ2

)
+ log2

(
p2

µ2

)]
(4.3.39)

R(2)
(
Σ(c)

)
= − α2

16π2/p

[
4.28− 3 log

(
p2

µ2

)
+ log2

(
p2

µ2

)]
(4.3.40)

∆1R
(
Σ(c)

)
= ∆2R

(
Σ(c)

)
=

α2

8π2/p

[
2− log

(
p2

µ2

)]
(4.3.41)

∆3R
(
Σ(c)

)
= 0 (4.3.42)

4.3.2.4 Sum

Once computed all diagrams we can sum them to get the renormalized value of the two-loop
fermion self-energy, and the differences between renormalizations.

R(1) (Σ) =
α2

96π2/p

[
19.91− log

(
p2

µ2

)
− 3 log2

(
p2

µ2

)]
(4.3.43)

1µ2 can be extracted from q1 · q2 but this only concerns to X12 (N ).
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R(2) (Σ) =
α2

32π2/p

[
11.97− 3 log

(
p2

µ2

)
− log2

(
p2

µ2

)]
(4.3.44)

∆1R (Σ) = ∆2R (Σ) =
α2

12π2/p

[
2− log

(
p2

µ2

)]
(4.3.45)

∆3R (Σ) = 0 (4.3.46)

As we can deduce, there is no distinction between third and second renormalization since
Xi (Xij (N )) vanishes for all diagrams. Concerning to first renormalization, we see that its
logarithmic behaviour is different to the other ones (except for the squared one).

4.3.3 RGE analysis

Let us write RGE for fermion self-energy, in order to try to discard some of the renormaliza-
tion schemes. [

2µ2 ∂

∂µ2
+ β (α, ξ)

∂

∂α
+ βξ (α, ξ)

∂

∂ξ
− 2γf (α, ξ)

]
Σ = 0 (4.3.47)

where this time, γf appears instead of γA, as this graph has two external fermions. We
already know all functions dependence on α, but let us remember the results for Σ.

Σ = −/p
[
Σ(0) + αΣ(1) + α2Σ(2) + . . .

]
(4.3.48)

Σ(0) = 1 (4.3.49)

Σ(1) =
1

4π

[
1 + ξ − ξ log

(
p2

µ2

)]
(4.3.50)

Σ
(2)
1 =

1

32π2

[
1

3
log

(
p2

µ2

)
+ log2

(
p2

µ2

)]
+ C1 (4.3.51)

Σ
(2)
2 =

1

32π2

[
3 log

(
p2

µ2

)
+ log2

(
p2

µ2

)]
+ C2 (4.3.52)

Now, we can understand why we computed the one-loop self-energy in a general gauge. As
the two-loop ones are in the ’t Hooft-Feynman gauge, after differentiating with respect to ξ,
we must set it to ξ = 1.

For O (α) we find

2µ2 ∂

∂µ2
Σ(1) − 2γ

(1)
f Σ(0) = 0 (4.3.53)

γ
(1)
f = µ2 ∂

∂µ2
Σ(1) (4.3.54)
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and for ξ = 1

γ
(1)
f =

1

4π
(4.3.55)

Unfortunately, γf is not related to β or to another function as γA, and also it is scheme-
dependant, so we cannot ensure whether this value is correct or not.

Let us write the O (α2).

2µ2 ∂

∂µ2
Σ(2) + β(2)Σ(1) + β

(1)
ξ

∂

∂ξ
Σ(1) − 2γ

(1)
f Σ(1) − 2γ

(2)
f Σ(0) = 0 (4.3.56)

In this equation there are terms proportional to a logarithm and terms which are not. Thanks
to that, we can find two different relations from the equation above.[

− 1

8π2
− 1

4π
β(2) − 1

4π
β

(1)
ξ +

1

2π
γ

(1)
f

]
log

(
p2

µ2

)
= 0 (4.3.57)

Using eq. (4.1.53) we find again

γ
(1)
f =

1

4π
(4.3.58)

This could mean that the one-loop self-energy and the squared logarithm coefficient of the
two-loop self-energy are consistent with a well-done renormalization. Nevertheless, this co-
efficient coincides in all renormalizations we have made and one-loop does not make any
distinction neither, so we cannot discard any one yet. Now, we write the O (α2) constant
part.

− 1

48π2
+

1

2π
β(2) +

1

4π
β

(1)
ξ −

1

π
γ

(1)
f − 2γ

(2)
f = 0 (4.3.59)

− 3

16π2
+

1

2π
β(2) +

1

4π
β

(1)
ξ −

1

π
γ

(1)
f − 2γ

(2)
f = 0 (4.3.60)

where we have used Σ
(2)
1 and Σ

(2)
2 respectively. Substituting the values we have

γ
(2)
f = − 5

96π2
(4.3.61)

γ
(2)
f = − 13

96π2
(4.3.62)

In contrast to the case of vacuum polarization, here we cannot conclude anything. We
already knew that γ(2)

f is scheme-dependant so in principle the logarithm coefficient depends
on scheme too. One clear prove is that while calculating γ(2)

f , we had to use the constant
value of Σ(1) which we explicitly showed in section (3.1.1) that depends on scheme.

Therefore, thanks to vacuum polarization we were able to discard R(2), but after fermion
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self-energy analysis we cannot still distinguish between R(1) and R(3).

94



Chapter 5

Conclusions

In the last decade, there has been a renewed interest in alternative methods to perform
perturbative calculations in quantum field theory (see [1] for a recent review). This has been
motivated by the increasing complexity of the computations required to match the sensitivity
of present and future experiments and by the development of new techniques for on-shell
scattering amplitudes, based on unitarity and analyticity. The most efficient methods are
either variations of dimensional regularization or implicit methods in fixed dimension, which
act directly on the bare integrals, often at the integrand level, and do not need to keep track
of counterterms. Besides other possible advantages, the latter could be expected to handle
more easily chiral theories, such as the Standard Model, since the concept of chirality is
dimension specific. In this thesis we have examined this issue in implicit fixed-dimension
methods such as CDR, CIReg and FDR. We have shown that, somewhat counterintuitively,
the difficulties one has to address in these methods are very similar to the ones in dimensional
methods. They can be dealt with in a similar manner.

The origin of these difficulties is the fact that contraction of Lorentz indices does not
commute with renormalization in these implicit methods. We have observed that this is
actually required to preserve both shift invariance and numerator-denominator consistency,
which are the crucial ingredients in the perturbative proof of the quantum action principle.
The latter leads to Ward identities of local and global symmetries in the renormalized theory.
But it turns out that this non-commutation property is incompatible with certain identities,
specific to the ordinary n-dimensional space in which a given theory is defined. Hence, a
naïve usage of these identities may lead to inconsistencies. The situation is similar to the
one in dimensional methods. And a way out is also to simply avoid using these identities
before renormalization. This statement can be made more formal by defining the theory in an
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infinite dimensional space QnS, which only shares a few features with the real n-dimensional
space.

Working in QnS is necessary for consistency, but it brings about some complications
in theories with fermions. First, it turns out that the standard Dirac algebra cannot be
preserved in odd dimensions. Second, there is no finite complete set in Dirac space and
hence the standard Fierz identities do not hold. One consequence of this is that these
methods break supersymmetry. And third, we have argued that it is impossible to define a
unique γ5 matrix that anticommutes with the Dirac matrices and reduces to the standard γ5

after renormalization (or in finite expressions). We have then proposed to use the standard
explicit definition with the antisymmetric ε tensor in terms of the Dirac matrices. This is
similar to the ’t Hooft-Veltman definition in dimensional regularization and has the same
consequences. Axial anomalies are reproduced, but in addition some spurious anomalies
emerge, which should be removed a posteriori by local counterterms, added by hand. This
is equivalent to the direct use of an anticommuting γ5, when allowed [6].

In the implicit methods, it is also necessary to discriminate between different tensor
structures. To avoid ambiguities in this discrimination, we have proposed a systematic renor-
malization procedure, in which the expressions to be renormalized are first put in a certain
normal form, using only relations valid in QnS. We have also suggested some simplifications
that make use of the decomposition QnS=GnS⊕X, where GnS is the genuine n-dimensional
space. The advantage of introducing this direct-sum structure is that it allows to use standard
identities in GnS at some steps of the calculations.

In the context of chiral theories, we have also reconsidered shortcuts that exist at one loop
and in simple higher-loop diagrams in FDR, which allow to discriminate the tensor structures
from the very beginning and obtain the same results in a more direct way. A generalization
of these shortcuts to arbitrary diagrams would allow to reduce the computational cost of
heavy calculations. We think that the ideas in FDF can be helpful in this regard.

In addition, we have treated chiral theories in a formalism with Dirac spinors and chiral
projectors. It would be interesting to see how our findings are translated to calculations with
Weyl spinors and in superspace [56].

On the other hand, concerning the systematization of FDR, we have seen that distinct
Forest Formula operator definitions and configurations lead to different FDR schemes. We
have focused on three of them, which give a finite result. The discrepancies among them are
non-local in some amplitudes, which suggest that some of these schemes might be inconsistent.
In order to test them, we have computed two-loop calculations in massless QED and in
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massless Scalar QED. In Spinorial QED we have found that for the vacuum polarization the
first and third schemes agree, while for the fermion self-energy, the second and third one do.
For the vacuum polarization in Scalar QED all schemes agree after summing all graphs, even
if they do not for individual graphs. The Ward identities of gauge invariance hold in all cases.
We have shown that the renormalised amplitudes obey the Renormalization Group Equation.
We found agreement with the known values of the photon anomalous dimension, except in
the case of the second scheme for Spinorial QED. This shows that the single logarithm in this
scheme is not compatible with multiplicative renormalization. For the fermion self-energy
the anomalous dimension at two loops is scheme-dependent, and it can be adjusted in such
a way that all three schemes respect the Renormalization Group Equation.

Therefore, we have been able to discard scheme two, while scheme one and three re-
spect gauge invariance and the Renormalization Group. Nevertheless, only the third scheme
reproduce the results of the standard FDR subprescription. The logarithmic discrepancies
seem to indicate that the discarded divergences cannot be absorbed into local counterterms
in the first scheme. Therefore, we favour the third scheme, which reproduces the standard
FDR results. Even if we have shown why this is the case, it remains to justify its validity in
a more rigorous way and to extend it to all orders.

Finally, we observe that we have discarded the simplest operator definition because it
did not give finite results at two loops. However, this conclusion is dependent on the order
of limits and should be checked more carefully.
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Appendix A

Lagrangians. Feynman rules

In this appendix we review the lagrangians and their derived Feynman rules of Spinorial and
Scalar QED.

A.1 Spinorial QED

The Spinorial QED Lagrangian is

LQED = −1

4
FµνFµν −

1

2ξ
(∂µAµ)2 + ψ̄

(
i /D −m

)
ψ (A.1.1)

where
Dµ = ∂µ + ieAµ (A.1.2)

so
LQED = −1

4
FµνFµν −

1

2ξ
(∂µAµ)2 + ψ̄

(
i/∂ −m

)
ψ − eψ̄ /Aψ (A.1.3)

where now the interaction among fields appears explicit.
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(a) Fermion propagator.

(b) Photon propagator.

(c) Fermion-Photon ver-
tex.

Figure A.1.1: Spinorial QED Feynman rules.

In fig. A.1.1 we see the Feynman rules generated by the Lagrangian (A.1.3). However,
in this thesis we have always worked with massless fermions (m = 0) and in the ’t Hooft-
Feynman gauge (ξ = 1).1 The symbol e represents the coupling constant between fermion
and photon fields, i.e. the electron charge. After computing a diagram, we have replaced it
with the fine structure constant.

α = 4πe2 (A.1.4)

Moreover, to clarify, we have evaluated fermion and photon self-energy respectively as −iΣ
and iΠµν .

A.2 Scalar QED

We present the Scalar QED Lagrangian with a complex scalar field.

LSQED = −1

4
FµνFµν −

1

2ξ
(∂µAµ)2 + |Dµφ|2 −m2 |φ|2 (A.2.1)

1Except for one-loop fermion self-energy where we worked in a general gauge as required by Renormal-
ization Group.
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where a term like λ |φ|4 has been no necessary for our purposes. If we introduce the covariant
derivative, we explicitly see the fields interaction.

LSQED = −1

4
FµνFµν−

1

2ξ
(∂µAµ)2+|∂µφ|2−m2 |φ|2−ig [φ∗ (∂µφ)− (∂µφ

∗)φ]Aµ+g2AµAµ |φ|2

(A.2.2)
Here, we see new kind of vertices. First, there is one triple vertex but made up of derivatives,
which means the appearance of momenta and their directions in Feynman rules. On the
other hand, there is a quadruple vertex which will lead to new graph topologies.

In fig. A.2.1 we see Scalar QED Feynman rules. Nevertheless, our work is massless
(m = 0), in the ’t Hooft-Feynman gauge (ξ = 1), and due to nature of our studied diagrams,
only the first triple vertex has arisen. And after all, we replace g for an other “fine structure
constant” that we will distinguish it placing a hat as well as in iΠ̂µν .

α̂ = 4πg2 (A.2.3)
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(a) Scalar propagator.

(b) Photon propagator.

(c) Triple Scalar-Photon vertex 1. (d) Triple Scalar-Photon vertex 2.

(e) Triple Scalar-Photon vertex 3. (f) Triple Scalar-Photon vertex 4.

(g) Quadruple Scalar-Photon vertex.

Figure A.2.1: Scalar QED Feynman rules.
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Appendix B

FDR Integrals

Here we explain the procedure we have followed to compute FDR integrals and useful rela-
tions.

B.1 Dirac Algebra

Although a FDR Integral can be also understood as a difference of two d-dimensional ones,
whatever way we choose, Dirac algebra can always be performed in the target fixed dimension
(n). Since if one ε hits 1/ε in one side, it will also hit the same in the other side and the finite
parts they could produce will vanish. Here we present several useful relations.

{γµ, γν} = 2gµν (B.1.1)

where gµν is the Minkowski metric diag (+,−,−,−).

γµγµ = n (B.1.2)

γµγνγµ = − (n− 2) γν (B.1.3)

γµγνγλγµ = 4gνλ + (n− 4) γνγλ (B.1.4)

γµγνγλγργµ = −2γργλγν − (n− 4) γνγλγρ (B.1.5)

γµγνγλ + γλγνγµ = 2 (gνλγµ − gµλγν + gµνγλ) (B.1.6)

102



B.2 One-loop integrals

We write now some help and shortcuts to evaluate one-loop integrals. If we choose the way
where a FDR integral is expressed as some d-dimensional ones, it is important to perform
tensor reduction and integrals in d dimensions.

When the denominator has a dependence on external momentum, usual Passarino-
Veltman relations could be useful.

Aµ =
qµ

D (q, p)
= Cqµ (B.2.1)

C =
1

p2
pµAµ (B.2.2)

Bµν =
qµqν

D (q, p)
= C1p

µpν + C2p
2gµν (B.2.3)

C1 = − 1

(d− 1) p2

(
gµν − d

pµpν
p2

)
Bµν (B.2.4)

C2 =
1

(d− 1) p2

(
gµν −

pµpν
p2

)
Bµν (B.2.5)

If the integrals are vacua ones, the following symmetric integration relations will help.

qµqν → 1

d
q2gµν (B.2.6)

qµqνqλqρ → 1

d (d+ 2)
q4
(
gµνgλρ + gµλgνρ + gµρgνλ

)
(B.2.7)

Then, we use Feynman parameters to convert denominator into one term.

1∏n
i=1A

αi
i

=
Γ (
∑n

i=1 αi)∏n
i=1 Γ (αi)

[
n∏
i=1

∫ 1

0

dxi

] ∏n
i=1 x

αi−1
i

[
∑n

i=1 xiAi]
∑n
i=1 αi

δ

(
1−

n∑
i=1

xi

)
(B.2.8)

where Γ (x) is the gamma function, and δ (x) the Dirac delta. Now the integral can be
performed using the following equation.∫

ddq
(q2)

α

(q2 −M2)β
= (−1)α−β iπ

d/2 Γ (α + d/2) Γ (β − α− d/2)

Γ (d/2) Γ (β)

(
M2
)d/2+α−β (B.2.9)

If there is no loop momentum in the numerator, the following master integrals without the
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necessity of Feynman parameters could be useful.∫
ddq

1

(q2)α
[
(q + p)2]β = id+1π

d/2 Γ (α + β − d/2) Γ (d/2− α) Γ (d/2− β)

Γ (α) Γ (β) Γ (d− α− β)

(
p2
)d/2−α−β (B.2.10)

∫
ddq

1

(q2 −m2
1)
α

(q2 −m2
2)
β

=

= (−1)−(α+β) iπ
d/2 Γ (α + β − d/2)

Γ (α + β)
2F1

(
α, α + β − d/2;α + β; 1− m2

2

m2
1

)
(B.2.11)

where 2F1 (a, b; c; z) is the Gauss hypergeometric function.

The last step now is to evaluate Feynman parameters integrals if they exist, sum all
pieces and take the limit d→ n by d = n+ ε→ n if necessary. And finally take µ→ 0, since
we are evaluating a FDR integral.

B.3 Two-loop integrals

Two-loop integrals are far more complicated than one-loop ones. First, we have to distinguish
between real two-loop integrals, where a term (q1 + q2)α appears in the denominator making
the integrals coupled; and disconnected two-loop integrals which can be separately evaluated
by previous one-loop techniques, or in particular cases the following master integral can help.∫

ddq1

∫
ddq2

1

(q2
1 −m2

1)
α1 (q2

2 −m2
2)
α2

=

= (−1)1−α1−α2 πd
Γ (α1 − d/2) Γ (α2 − d/2)

Γ (α1) Γ (α2)

(
m2

1

)d/2−α1
(
m2

2

)d/2−α2 (B.3.1)

B.3.1 Integrals with external momentum

Regarding real two-loop integrals, first we must write them in a standard form in order to
use a big set of master integrals that we will show next. The first step is to use Feynman
parameters to combine all propagators with the same loop momentum (q1, q2 or q12 ≡ q1 +q2)
in such a way that finally we get

Iµν =

∫
ddq1

∫
ddq2

fµν (q1, q2)

(q2
1 −m2

1)
α1 (q2

2 −m2
2)
α1
[
(q12 + p)2 −m2

3

]α3
(B.3.2)
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obviously, with Feynman parameters implicit dependence. Fortunately, only tensor reduction
with two Lorentz indices within a non-vacuum integral has been necessary in this thesis. And
it can be done as follows. First, we make the following replacement.

qµi = qµi⊥ +
qi · p
p2

pµ (B.3.3)

and then
qµi⊥f (q1 · p, q2 · p)→ 0 (B.3.4)

qµi f (q1 · p, q2 · p)→
pµ

p2
qi · pf (q1 · p, q2 · p) (B.3.5)

qµi⊥q
ν
i⊥f (q1 · p, q2 · p)→

1

d− 1

(
gµν − pµpν

p2

)[
q2
i −

(qi · p)2

p2

]
f (q1 · p, q2 · p) (B.3.6)

qµ1⊥q
ν
2⊥f (q1 · p, q2 · p)→

1

d− 1

(
gµν − pµpν

p2

)[
q1 · q2 −

(q1 · p) (q2 · p)
p2

]
f (q1 · p, q2 · p)

(B.3.7)
After all these substitutions, reordering, making cancellations between numerator and de-
nominator when it is possible and performing Wick rotation, we should have several integrals
in the following form.

Pabα1α2α3
≡
∫

ddq1

∫
ddq2

(q1 · p)a (q2 · p)b

(q2
1 +m2

1)
α1 (q2

2 +m2
2)
α2
[
(q12 + p)2 +m2

3

]α3
(B.3.8)

where αi ≥ 1, and a, b ≥ 0. We can increase any αi by differentiating with respect the
corresponding mass. For example

Pabα1+1α2α3
= − 1

α1

∂

∂m2
1

Pabα1α2α3
(B.3.9)

This is the more useful relation concerning to our work, but we can obtain others by differ-
entiating with respect external momentum to increase a or b.

Pa+1b
α1+1α2α3

=
1

2α1

[
2p2 ∂

∂p2
− (a+ b)

]
Pabα1α2α3

+
ap2

2α1

Pa−1b
α1α2α3

(B.3.10)

Pab+1
α1α2+1α3

=
1

2α2

[
2p2 ∂

∂p2
− (a+ b)

]
Pabα1α2α3

+
bp2

2α2

Pab−1
α1α2α3

(B.3.11)[
2p2 ∂

∂p2
− (a+ b)

]
Pabα1α2α3

= −2α3

[
p2Pabα1α2α3+1 + Pa+1b

α1α2α3+1 + Pab+1
α1α2α3+1

]
(B.3.12)

105



taking into a count that a P with a = −1 or b = −1 vanishes. We will get all needed integrals
from Pab211 because they have simpler integral representations than Pab111. To get these we will
have to use the next relation.

Pabα1α2α3
= − 2

2d− 2 (α1 + α2 + α3) + a+ b

{
α1m

2
1Pabα1+1α2α3

+ α2m
2
2Pabα1α2+1α3

+

+α3m
3
3Pabα1α2α3+1 −

1

2

[
2p2 ∂

∂p2
− (a+ b)

]
Pabα1α2α3

}
(B.3.13)

Now we present several Pabα1α2α3
built by other functions that we will introduce later. A

complete list can be consulted in [67], since here we only show the necessary ones to evaluate
our diagrams.

P00
211 = H1 (B.3.14)

P10
211 = −H2 − p2H1 (B.3.15)

P01
211 = −H3 (B.3.16)

P20
211 = H4 +

p2

d

{[
(d− 1) p2 −m2

1

]
H1 + 2 (d− 1)H2 + P00

111

}
(B.3.17)

P11
211 = H5 + p2H3 +

p2

2d

{(
m2

1 +m2
2 −m3

3 + p2
)
H1+

+2H2 − P00
111 + T2

(
m2

1

) [
T1

(
m2

2

)
− T1

(
m3

3

)]}
(B.3.18)

P02
211 = H6 +

p2

d

[
−m2

2H1 + T2

(
m2

1

)
T1

(
m2

3

)]
(B.3.19)

P00
111 = − 1

d− 3

[(
m2

1 + p2
)
H1 +H2+

+m2
2H1 (m1 � m2) +m3

3H1 (m1 → m3,m2 → m1,m3 → m2)
]

(B.3.20)

where Ti are the Euclidean one-loop tadpole integrals.

T1

(
m2
)

= −π2+ε/2
(
m2
)ε/2

Γ
(
−ε

2

) 2m2

2 + ε
(B.3.21)

T2

(
m2
)

= π2+ε/2
(
m2
)ε/2

Γ
(
−ε

2

)
(B.3.22)

Next, we show Hi with d = 4 + ε.

H1 = π4

[
2

ε2
− 1

ε
+

2

ε
log

(
m2

1

µ2

)
− 1

2
+
π2

12
− log

(
m2

1

µ2

)
+ log2

(
m2

1

µ2

)
+ h1

]
(B.3.23)

106



H2 = π4p2

[
− 2

ε2
+

1

2ε
− 2

ε
log

(
m2

1

µ2

)
+

13

8
− π2

12
+

1

2
log

(
m2

1

µ2

)
− log2

(
m2

1

µ2

)
− h2

]
(B.3.24)

H3 = π4p2

[
1

ε2
− 1

4ε
+

1

ε
log

(
m2

1

µ2

)
− 13

16
+
π2

24
− 1

4
log

(
m2

1

µ2

)
+

1

2
log2

(
m2

1

µ2

)
+ h3

]
(B.3.25)

H4 = π4p4

[
3

2ε2
+

3

2ε
log

(
m2

1

µ2

)
− 175

96
+
π2

16
+

3

4
log2

(
m2

1

µ2

)
+

3

4
h4

]
(B.3.26)

H5 = π4p4

[
− 3

4ε2
− 3

4ε
log

(
m2

1

µ2

)
+

175

192
− π2

32
− 3

8
log2

(
m2

1

µ2

)
− 3

4
h5

]
(B.3.27)

H6 = π4p4

[
1

2ε2
− 1

24ε
+

1

2ε
log

(
m2

1

µ2

)
− 19

32
+
π2

48
− 1

24
log

(
m2

1

µ2

)
+

1

4
log2

(
m2

1

µ2

)
+

3

4
h6

]
(B.3.28)

where every time a logarithm appears, γE + log π has been omitted. Now a new set of finite
functions hi have arisen.

h1

(
m1,m2,m3; p2

)
=

∫ 1

0

dzg (z) (B.3.29)

h2

(
m1,m2,m3; p2

)
=

∫ 1

0

dz [g (z) + f1 (z)] (B.3.30)

h3

(
m1,m2,m3; p2

)
=

∫ 1

0

dz [g (z) + f1 (z)] (1− z) (B.3.31)

h4

(
m1,m2,m3; p2

)
=

∫ 1

0

dz [g (z) + f1 (z) + f2 (z)] (B.3.32)

h5

(
m1,m2,m3; p2

)
=

∫ 1

0

dz [g (z) + f1 (z) + f2 (z)] (1− z) (B.3.33)

h6

(
m1,m2,m3; p2

)
=

∫ 1

0

dz [g (z) + f1 (z) + f2 (z)] (1− z)2 (B.3.34)

And these functions are built by the following ones.

g
(
m1,m2,m3; p2; z

)
= Li2

(
1

1− y1

)
+ Li2

(
1

1− y2

)
+ y1 log

(
y1

y1 − 1

)
+ y2 log

(
y2

y2 − 1

)
(B.3.35)

f1

(
m1,m2,m3; p2; z

)
=

1

2

[
−1− λ2

κ2
+ y2

1 log

(
y1

y1 − 1

)
+ y2

2 log

(
y2

y2 − 1

)]
(B.3.36)

f2

(
m1,m2,m3; p2; z

)
=

1

3

[
− 2

κ2
− 1− λ2

κ2
−
(

1− λ2

κ2

)2

+ y3
1 log

(
y1

y1 − 1

)
+ y3

2 log

(
y2

y2 − 1

)]
(B.3.37)
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where Li2 is the dilogarithm defined by

Li2 (x) = −
∫ x

0

dt
1

t
log (1− t) (B.3.38)

and

y1,2 =
1 + κ2 − λ2 ±

√
∆

2κ2
(B.3.39)

∆ =
(
1 + κ2 − λ2

)2
+ 4κ2λ2 − 4iκ2η (B.3.40)

λ2 =
c1z + c2 (1− z)

z (1− z)
(B.3.41)

c1 =
m2

2

m2
1

(B.3.42)

c2 =
m2

3

m2
1

(B.3.43)

κ2 =
p2

m2
1

(B.3.44)

η → 0 (B.3.45)

Some of these integrals may have to be integrated numerically along with Feynman parame-
ters. And, obviously, the last step is to take the limit µ→ 0.

B.3.2 Vacua integrals

If there is no external momentum in the denominator, the previous procedure simplifies.
First, we can use symmetric integration to perform tensor reduction.

qµi q
ν
j →

1

d
qi · qjgµν (B.3.46)

qµi q
ν
i q

λ
i q

ρ
j →

1

d (d+ 2)
q2
i (qi · qj)

(
gµνgλρ + gµλgνρ + gµρgνλ

)
(B.3.47)

qµi q
ν
i q

λ
j q

ρ
j →

1

3d (d+ 2)

[
q2
i q

2
j

(
5gµνgλρ − gµλgνρ − gµρgνλ

)
−2 (qi · qj)2 (gµνgλρ − 2gµλgνρ − 2gµρgνλ

)]
(B.3.48)

After performing that, no loop momenta can be in the numerator, masses can only be µ, and
also p = 0, thus only P00

α1α2α3
will contribute, no logarithms of masses can appear, and now
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g (z) can be integrated analytically [68]. As only h1 is necessary, an analytically integration
of fi (z) is not needed.

h1 (m1,m2,m3; 0) = 1− 1

2
log c1 log c2 −

c1 + c2 − 1√
∆̃

[
Li2
(
−u2

v1

)
+ Li2

(
−v2

u1

)
+

+
1

4
log2

(
u2

v1

)
+

1

4
log2

(
v2

u1

)
+

1

4
log2

(
u1

v1

)
− 1

4
log

(
u2

v2

)
+
π2

6

]
(B.3.49)

where
u1,2 =

1

2

(
1 + c2 − c1 ±

√
∆̃
)

(B.3.50)

v1,2 =
1

2

(
1− c2 + c1 ±

√
∆̃
)

(B.3.51)

∆̃ = 1− 2 (c1 + c2) + (c1 − c2)2 (B.3.52)

We know that in vacua integrals m1 = m2 = m3 = µ so all above expressions can simplify
even more. Nevertheless, derivatives of h1 with respect to mi are required to get some
P00
α1α2α3

, so it is important that all different masses appear symbolically. And of course, after
reordering all expressions, the limit µ→ 0 has to be taken.
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Appendix C

Three-point functions

In this appendix, we collect the finite three-points functions used in the evaluation of the
axial vertex in four dimensions. We define the functions ξnm ≡ ξnm(p2, p1) as

ξnm(p2, p1) =

∫ 1

0

dz

∫ 1−z

0

dy
znym

Q(y, z)
(.0.1)

with
Q(y, z) = [µ2 − p2

2y(1− y)− p2
1z(1− z)− 2(p2 · p1)yz] (.0.2)

and notice that these functions have the property ξnm(p2, p1) = ξmn(p1, p2). Using integration
by parts [57], the relations below follow

p2
1ξ11 − (p2 · p1)ξ02 =

1

2

[
−1

2
log

(p1 + p2)2

µ2
+

1

2
log

p2
2

µ2
+ p2

1ξ01

]
(.0.3)

p2
2ξ11 − (p2 · p1)ξ20 =

1

2

[
−1

2
log

(p1 + p2)2

µ2
+

1

2
log

p2
1

µ2
+ p2

2ξ10

]
(.0.4)

p2
1ξ10 − (p2 · p1)ξ01 =

1

2

[
− log

(p1 + p2)2

µ2
+ log

p2
2

µ2
+ p2

1ξ00

]
(.0.5)

p2
2ξ01 − (p2 · p1)ξ10 =

1

2

[
− log

(p1 + p2)2

µ2
+ log

p2
1

µ2
+ p2

2ξ00

]
(.0.6)

p2
1ξ20 − (p2 · p1)ξ11 =

1

4

[
−1 + p2

2ξ01 + 3p2
1ξ10

]
(.0.7)

p2
2ξ02 − (p2 · p1)ξ11 =

1

4

[
−1 + p2

1ξ10 + 3p2
2ξ01

]
(.0.8)
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