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Summary

Surveys usually include questions where individuals must select one in a series of
possible options that can be sorted. On the other hand, multiple frame surveys are
becoming a widely used method to decrease bias due to undercoverage of the target
population. In this work, we propose statistical techniques for handling ordinal data
coming from a multiple frame survey using complex sampling designs and auxiliary
information. Our aim is to estimate proportions when the variable of interest has or-
dinal outcomes. Two estimators are constructed following model assisted generalized
regression and model calibration techniques. Theoretical properties are investigated
for these estimators. Simulation studies with different sampling procedures are consid-
ered to evaluate the performance of the proposed estimators in finite size samples. An
application to a real survey on opinions towards immigration is also included.

Keywords: complex surveys, generalized regression estimation, model assisted inference,
model calibration, multiple frames.

1 Introduction

Dual frame surveys were first introduced by Hartley (1962) as a device for reducing data

collection costs without affecting the accuracy of the results with respect to single frame

surveys. In general, multiple frame surveys are useful when no single frame covers the whole

target population but the union of several (possibly overlapping) available frames does, or

when information about a subpopulation of particular interest is obtained only from an
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incomplete frame. Independent samples are then selected from each frame, possibly using

different sampling designs. Adjustments have to be used at the estimation stage to deal with

overlapping and possible unit replication. Multiple frame sampling theory has experienced

a noticeable development and several estimators for the total of a quantitative variable have

been proposed. In a dual frame context, other than Hartley (1962), classical proposals are

in Lund (1968), Fuller & Burmeister (1972), Bankier (1986), Kalton & Anderson (1986) and

Skinner (1991). Skinner & Rao (1996) and Rao & Wu (2010) applied likelihood methods to

compute estimators that perform well in complex designs. More recently, Ranalli et al. (2016)

have used calibration techniques to derive estimators in the dual frame context that make

use of auxiliary information. Most of these estimators are implemented in the R package

Frames2 (Arcos et al., 2015).

In recent years, a number of works that focus on estimation issues in surveys that use three

or more sampling frames has also arisen. Lohr & Rao (2006) extended some of the estimators

proposed so far to the multiple frame setting. Mecatti (2007) used a new approach based on

the multiplicity of each unit (i.e. in the number of frames the unit is included in) to propose

an estimator which is effective and easy to compute. Multiplicity is also used by Rao & Wu

(2010) to provide an extension of the pseudo empirical likelihood estimator to the case of

more than two frames. In 2011, Singh & Mecatti (2011) suggested a class of multiplicity

estimators that encompasses all the multiple frames estimators available in the literature by

suitably specifying a set of parameters.

Surveys in general usually include questions in which the respondents have to indicate

their opinion or their degree of agreement with a statement by selecting one of a list of given

options. This is the case, particularly, in surveys focused on health, marketing and public
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opinion topics. In most situations, the Likert scale is used to scale the possible responses

or these are such that they can be ordered according to an intrinsic characteristic of the

responses themselves (e.g., from the worst to the best opinion). The main aim is to estimate

the proportion of individuals selecting each option. In addition, it is also of interest to esti-

mate the proportion of individuals below (or above) a certain option. This type of variables

is also common when using multiple frame surveys and, therefore, estimation techniques

should be adjusted to account for the ordinal nature of such variable of interest. In fact,

in these situations, classical multiple frame estimators may be used, but the final estimates

they provide may suffer from lack of coherence or internal consistency, in the sense that the

sum over the estimates of the proportion of each option may not be equal to one.

The aim of this paper is to propose new estimation techniques for the proportions of

variables with ordinal outcomes when data come from multiple frames. In particular, we

propose to work within a model assisted framework to finite population inference and make

use of auxiliary information to increase the precision of the final estimates. In order to take

into account the ordinal nature of the variable of interest, we will use Ordinal Logistic Mod-

els (OLMs) to describe the relationship between the variable of interest and the auxiliary

variables. This class of models allows to model all the categories of the response variable at

the same time and, therefore, provides estimators that are internally consistent, as described

above, by definition. In particular, we will introduce estimators based on the model assisted

generalized regression estimation approach of Särndal et al. (1992) and on the model cal-

ibration approach of Wu & Sitter (2001). Although OLMs have been extensively used in

sociological, medical and educational applications, their use for finite population parameter

estimation from survey sampling is very sparse.
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Molina et al. (2015) also develop estimators for proportions of categorical variables that

use auxiliary information. Differently from the approach proposed here, they focus on a dual

frame survey context and on categorical variables whose categories can not be ordered. In

particular, they propose model assisted estimators that use multinomial logistic regression

models. Extending this approach to handle multiple frames is cumbersome. In addition, it

may not be adequate because ordinal variables are better modeled using OLMs that account

for the intrinsic ordered nature of the response variable.

This article is organized as follows: Section 2 introduces notation and reviews existing ap-

proaches for estimation from multiple frame surveys. In Section 3, we illustrate our proposal

and discuss the alternative estimators introduced. Asymptotic properties of the proposed es-

timators are studied in Section 4. The performance of the estimators for finite size samples is

investigated through a series of simulation experiments in Section 5. We apply the proposed

estimators to a real data set on a dual frame survey on the perception of immigration in a

region of Spain in Section 6. Finally, some concluding remarks are provided in Section 7.

2 Notation and estimation for multiple frame ordinal

data

We will employ the notation used in Lohr & Rao (2006) and in Mecatti (2007). Let U be

a finite population composed of N units labeled from 1 to N , U = {1, ..., k, ..., N} and let

A1, . . . , Aq, . . . , AQ be a collection of Q ≥ 2 overlapping frames of sizes N1, . . . , Nq, . . . , NQ,

respectively. All of them can be incomplete but it is assumed that overall they cover the

entire target population U . With Q frames, there are up to 2Q− 1 distinct domains. Let the

index sets K be the subsets of the range of the frame index q = 1, . . . , Q. For every index

set K ⊆ {1, . . . , q, . . . , Q} a domain is defined as the set DK = (∩q∈KAq)
⋂

(∩q /∈KAcq), where
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c denotes the complement of a set. That is, DK is the subset of units that are covered by all

the frames Aq, q ∈ K, and by these frames only.

Assume that we collect data from respondents who provide a single choice from a list

of ordered alternatives. We code these alternatives as 1, 2, . . . ,m, with 1 < 2 < · · · < m.

Therefore, consider an ordinal m-valued survey variable y and we denote by yk the value

observed for the k-th individual of the population. The objective is to estimate the frequency

distribution of y in the population U . To estimate this frequency distribution, we define a

set of indicators zi (i = 1, . . . ,m) such that for each unit k ∈ U , zki = 1 if yk = i and zki = 0

otherwise. Our problem thus, is to estimate the population proportion for each i, that is

Pi =
1

N

∑
k∈U

zki, i = 1, 2, . . . ,m. (1)

These proportions can be rewritten as follows

Pi =
1

N

Q∑
q=1

∑
k∈Aq

zki
mk

, i = 1, 2, . . . ,m, (2)

where mk denotes the number of frames unit k belongs to, i.e. the multiplicity of the k-th

unit. Multiplicities mk are needed in (2) to weight values zki, so each value zki is shared by

the mk frames to which unit k belongs to. Otherwise, those units belonging to more than one

frame would count more than once in the overall sum. This approach is equivalent to pooling

together the Q frames into a single frame that keeps all duplicated units and replaces zki by

zki/mk.

Let sq be a sample drawn from frame Aq under a particular sampling design, indepen-

dently for q = 1, . . . , Q and let πk(q), and πkl(q) be the first and second order inclusion

probabilities under this sampling design, respectively. Let dk(q) = 1/πk(q) be the sampling

weight for unit k in frame Aq. Let nq be the size of sample sq. We assume that duplicated
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units (i.e. sq ∩ sq′ , q 6= q′) cannot be identified and that this event has a negligible chance

to occur. Then we let s =
⋃
sq.

Usually, population level information about auxiliary variables is available in surveys. Let

xq = (xq1, xq2, . . . , xqpq)
′ be a set of pq auxiliary variables observed in the q-th frame, so that

the vector xqk = (xq1k, xq2k, . . . , xqpqk)
′ includes the values taken by the variable xq on unit

k in frame Aq. That is, we consider the case of complete auxiliary information. In addition,

we consider the more general case in which auxiliary variables may differ in each frame, i.e.

xq 6= xr, for q, r = 1, . . . , Q, q 6= r. For the sample selected from frame Aq, the values of the

variables {yk,xqk} are observed. Equivalently, {zk1, . . . , zki, . . . , zkm,xqk} are known.

Lohr & Rao (2006) formulated the multiple frame extension of some of the estimators

originally proposed for the dual frame setting, as those proposed by Hartley (1962, 1974) and

by Fuller & Burmeister (1972). Although the optimal version of each of these estimators is

unbiased and asymptotically efficient, it is not internally consistent when applied to estimate

Pi, i = 1, . . . ,m, since a different set of weights is used for each dummy variable zi. Moreover,

the multiple frame extension of the Fuller & Burmeister (1972) estimator is often unstable

in small to moderate samples, because it requires the estimation of large variance-covariance

matrices of estimators.

Lohr & Rao (2006) also followed the single frame approach in Kalton & Anderson (1986)

to propose a design unbiased estimator in a multiple frame context. In particular, when

applied to the issue of estimating Pi, this could be written as

P̂KAi =
1

N

∑
k∈s

dKAk zki (3)

with dKAk = (1/π+
k ), where π+

k =
∑

q:k∈Aq
πk(q). In order to compute this estimator, it

is necessary to know not only the number of frames each unit belongs to, but also the

6



specific frames the unit is included in, together with the inclusion probability. This can be

an important drawback in multiple frame surveys, particularly if misclassification issues are

present.

Mecatti (2007) also considered a single frame approach and proposed the multiplicity

adjusted estimator, that can be written here as

P̂Mi =
1

N

Q∑
q=1

∑
k∈sq

dMk (q)zki, (4)

with dMk (q) = dk(q)/mk. This estimator is design unbiased and only requires the knowledge

of the multiplicity of each unit, i.e. the number of frames the unit belongs to, no matter

which these frames are. Therefore, estimator (4) requires much less information than the

estimator in equation (3) but it may be unstable when some units have very small inclusion

probabilities. Singh & Mecatti (2011) propose to combine these two estimators. In particular,

such composite multiplicity estimator can be written as

P̂CMi =
1

N

Q∑
q=1

∑
k∈sq

dCMk (q)zki, (5)

where

dCMk (q) = λkd
M
k (q) + (1− λk)dKAk

with λk ∈ (0, 1). The value of λk is obtained minimizing the variance of dCMk (q) (see Singh

and Mecatti, 2001, Appendix A) and is given as a least square type solution by:

λk =

∑
q:k∈Aq

(1− π+
k /πk(q)mk)πk(q)(1− πk(q))∑

q:k∈Aq

(
1− (π+

k )2

πk(q)2m
2
k
− 2π+

k

πk(q)mk

)
πk(q)(1− πk(q))

.

Calibration is a well-known technique to exploit auxiliary information in estimation.

Ranalli et al. (2016) propose different calibration estimators for the dual frame case, which

can be extended to the multiple frame context. A calibration estimator in the case of more
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than two sampling frames can be defined as

P̂CALi =
1

N

Q∑
q=1

∑
k∈sq

dCALk (q)zki, (6)

where dCALk (q) are such that they minimize
∑Q

q=1

∑
k∈sq G

(
dCALk (q), dMk (q)

)
subject to

Q∑
q=1

∑
k∈sq

dCALk (q)δk(Aq) = Nq, q = 1, ..., Q, (7)

Q∑
q=1

∑
k∈sq

dCALk (q)δk(Aq)xqk = txq, q = 1, ..., Q. (8)

Here G(·, ·) is a particular distance function (see Deville & Särndal, 1992, for examples and

properties of such functions), δk(Aq) is the indicator variable that takes value 1 if unit k is

in frame Aq and zero otherwise, and txq are the population totals of xq, q = 1, . . . , Q. Note

that weights dCALk (q) do not need extra adjustments for multiplicity for two main reasons.

First, basic weights dMk (q) already include the multiplicity adjustment. Therefore, resulting

weights dCALk (q) should be near to those starting weights that already take into account the

multiplicity. Note that, indeed, also other multiplicity adjusted weights as dKAk or dCMk (q)

could be used as starting weights. Second, and most important, benchmark constraints in

(7) and in (8) include all available information coming from the sample on frame Aq, for

q = 1, . . . , Q. That is, the indicator variable δk(Aq) takes value 1 for all units belonging to

frame Aq, irrespective of the frame they were originally selected from. Therefore, multiplicity

is accounted for automatically by the constraints. Note that internal consistency is granted

by this type of calibration, because the set of weights dCALk (q) is the same for all dummy

variables zi, for i = 1, . . . ,m.

It is well-known that calibration, although apparently completely model free, implicitly

assumes that a linear regression model well describes the relationship between the variable

of interest and the auxiliary variables (see e.g. discussion on this in Wu & Sitter, 2001,
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and in Montanari & Ranalli, 2005). In this case the variable of interest is binary, zi, for

i = 1, . . . ,m, and this assumption doesn’t seem to be adequate. More in general, all the

estimators reviewed in this section were originally formulated for estimating parameters

(usually a total or a mean) of a quantitative variable. They can be used also for estimating

proportions of an ordinal variable although final estimates may likely be unacceptable, in

the sense that they can take values outside the interval [0, 1] and they may not add up

to one, particularly when different sets of weights are used. Moreover, they are not taking

into account the extra information we have from the order among categories. In the following

section, we formulate some proposals for estimating proportions of ordinal response variables

that address these issues.

3 Proposed estimators

As stated before, we work within the model assisted framework and wish to use ordinal lo-

gistic models (OLMs) that are more appropriate for the problem at hand. As it is customary

in the model assisted approach to inference (see e.g. Wu & Sitter, 2001, when working with

nonlinear and generalized linear models), we first assume that an OLM well describes the

relationship between the variable of interest and the auxiliary variables. Then, we obtain

parameter estimates for the OLM from sample data using design weighted maximum likeli-

hood techniques, and corresponding predictions for non-sampled units. Finally, we use such

predictions in estimators that are inspired by the model assisted generalized regression esti-

mators of Särndal et al. (1992) and of Lehtonen & Veijanen (1998), and in model calibration

estimators inspired by those in Wu & Sitter (2001). The proposed estimators are all adjusted

for the multiplicity issue that is distinctive of the multiple frame survey framework.
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Within OLMs, the most widely used model is the cumulative ordinal logistic model,

which assumes a linear model for the logit of cumulative probabilities for the categories of

y. See Agresti (2007) for a good introduction to OLMs. Note that, since we consider the

most general case, where auxiliary information differs by frame, then we specify a different

OLM in each frame. So, in frame Aq, we assume that the relationship between the variable

of interest y and the auxiliary variables is well described by the following model, ξq,

logit(P (yk ≤ i)) = log
P (yk ≤ i)

P (yk > i)
= αqi + x′qkβ

q
i , i = 1, ...,m− 1, q = 1, . . . , Q, (9)

where αqi is a scalar and βqi = (βq1i, . . . , β
q
pqi

)′ is a vector of parameters. This expression can

be rewritten as

P (yk ≤ i) =
exp(αqi + x′qkβ

q
i )

1 + exp(αqi + x′qkβ
q
i )
, i = 1, ...,m− 1, q = 1, . . . , Q. (10)

This implies that the (model) expectation of the binary variable zi is modeled as a function

of the auxiliary variables, in fact

Eξq(zki|xqk) = P (yk = i|xqk) = µqi (xqk),

where

µqi (xqk) =


exp(αqi + x′qkβ

q
i )

1 + exp(αqi + x′qkβ
q
i )
, i = 1

exp(αqi + x′qkβ
q
i )

1 + exp(αqi + x′qkβ
q
i )
−

exp(αqi−1 + x′qkβ
q
i−1)

1 + exp(αqi−1 + x′qkβ
q
i−1)

, i = 2, ...,m

. (11)

Here Eξq denotes the expected value with respect to the model in frame Aq.

In proportional odds models, it is assumed that the effects of the predictors are the same

across categories. This implies that βqi = βq, i.e. parameters associated to auxiliary variables

are common to all the categories considered. This assumption can be tested on sample data.
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Then, model (11) can be simplified to

µqi (xqk) =


exp(αqi + x′qkβ

q)

1 + exp(αqi + x′qkβ
q)
, i = 1

exp(αqi + x′qkβ
q)

1 + exp(αqi + x′qkβ
q)
−

exp(αqi−1 + x′qkβ
q)

1 + exp(αqi−1 + x′qkβ
q)
, i = 2, ...,m

. (12)

Population parameters αqi and βq involved in model ξq are unknown and must be esti-

mated using sample information. Different procedures, as weighted least squares (Goldberger,

1964) or weighted maximum likelihood (Binder, 1983), can be used to this end. Under the lat-

ter, we can obtain the maximum likelihood estimates for the parameter θq = (αq1, . . . , α
q
m,β

q)

by maximizing the following function

`(θq) =
∑

i=1,...,m

∑
k∈sq

dMk (q)zki log µqi (xqk,θ
q), (13)

and we denote it by θ̂q = (α̂q1, . . . , α̂
q
m, β̂

q
). Under general conditions, the design weighted

log-likelihood estimator is design consistent for θq (Binder, 1983; Nordberg, 1989; Wu &

Sitter, 2001). It is important to note that, since different auxiliary information is considered

in each frame, we need to adjust Q different models, each one based on the set of auxiliary

variables of the specific frame.

Using these maximum likelihood estimates, we can define a prediction for probabilities

for each category and each unit as follows:

pqki = µ̂qi (xqk) =


exp(α̂qi + x′qkβ̂

q
)

1 + exp(α̂qi + x′qkβ̂
q
)
, i = 1

exp(α̂qi + x′qkβ̂
q
)

1 + exp(αqi + x′qkβ̂
q
)
−

exp(α̂qi−1 + x′qkβ̂
q
)

1 + exp(α̂qi−1 + x′qkβ̂
q
)
, i = 2, ...,m

. (14)

These estimated probabilities can be used to define the following model assisted estimator:

P̂MAi =
1

N

 Q∑
q=1

∑
k∈sq

zkid
M
k (q) +

Q∑
q=1

∑
k∈Aq

pqki
mk

−
∑
k∈sq

pqkid
M
k (q)

 , i = 1, ...,m. (15)

To formulate this estimator we have adapted the approach used by Lehtonen & Veijanen

(1998) to estimate class frequencies of a variable with multinomial outcomes in a single frame
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context to the case of an ordinal response variable in a multiple frame setup. Estimated

probabilities in the sum over the population are weighted by multiplicities mk to avoid

overestimation issues. For this same reason, weights dMk (q) are used in the sample sums. The

way in which probabilities are obtained ensures that the estimator is internally consistent in

the sense that its categories add up to one, that is
∑m

i=1 P̂MAi = 1.

An Hajek-type estimator can also be constructed by replacing N in (15) by an estimate,

e.g. by N̂ =
∑Q

q=1

∑
k∈sq d

M
k (q). This is a special case of ratio estimator, and it can be more

efficient than Horvitz-Thompson type estimators because the sample size in overlapping

domains is not fixed.

Treating probabilities pqki as auxiliary variables, we can include them in the estimation

process through a model calibration approach (Wu & Sitter, 2001). The resulting model

calibration estimator can be written as

P̂MCi =
1

N

Q∑
q=1

∑
k∈sq

dMC
k (q)zki, i = 1, ...,m, (16)

where weights dMC
k (q) are chosen so that they minimize

∑Q
q=1

∑
k∈sq G

(
dMC
k (q), dMk (q)

)
,

subject to
Q∑
q=1

∑
k∈sq

dMC
k (q)δk(Aq) = Nq, q = 1, ..., Q

Q∑
q=1

∑
k∈sq

dMC
k (q)pqkiδk(Aq) =

Q∑
q=1

∑
k∈Aq

pqkiδk(Aq), q = 1, ..., Q, i = 1, ...,m. (17)

Note that
∑Q

q=1

∑
k∈Aq

pqkiδk(Aq) =
∑

k∈Aq
pqki in (17), and this is in line with the reason-

ing we had used in P̂CALi in (6). Then, similarly to P̂CALi, the proposed model calibration

estimator eliminates overestimation issues by several means. First, we consider dMk (q) (which

are already weighted by mk) as the starting weights for the calibration. More importantly,
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using the indicator variables δk(Aq), the calibration constraints ensure adjustment of the

multiplicity issues by benchmarking all information on units from frame Aq included in the

sample, irrespective of the frame they were originally selected from. Therefore, again, multi-

plicity is accounted for automatically by the constraints. Differently from P̂CALi, constraints

(17) do not implicitly assume a linear model between the auxiliary variables and the re-

sponse indicators, but properly account for the ordinal nature of the response variable using

predictions from the OLM.

Note that to compute the proposed estimators we need to estimate the probabilities pqki

for each individual in each frame. This implies the knowledge of the auxiliary information

for each of these individuals. Although this assumption can be quite restrictive, it can be

relaxed in many situations. For example, when qualitative variables (as the gender or the

professional status of the individual) or quantitative categorized variables (as the age of the

individual, grouped in classes) are used as auxiliary information in a survey, we only need

to know the frequency of each possible combination of the values of these auxiliary variables

in each frame to compute the proposed estimators. This information can usually be found

in the databases of statistical agencies.

4 Properties of the proposed estimators

In this section we describe the main properties of the proposed estimators. We adapt the

asymptotic framework of Isaki & Fuller (1982) to a multiple frame context. Such framework

has been also used in a dual frame context by Rao & Wu (2010) and by Ranalli et al. (2016).

In particular, the finite population U and the sampling designs p1(·), p2(·), ..., pQ(·) are em-

bedded into a sequence of such populations and designs indexed by N , {UN , p1N (·), p2N (·), ...,

13



pQN
(·)}, with N → ∞. We will assume, thus, that N1N , N2N , ..., NQN

tend to infinity and

that n1N , n2N , ..., nQN
also tend to infinity when N → ∞. Furthermore, we will assume

nqN/nN → cq ∈ (0, 1), q = 1, . . . , Q, where nN =
∑Q

q=1 nqN as N →∞. All limiting processes

are understood as N → ∞, so we drop subscript N for ease of notation. Stochastic orders

Op(·) and op(·) are with respect to the aforementioned sequences of designs. We first discuss

the theoretical properties of P̂MCi and then move to those of P̂MAi, because the latter can

be seen as a particular case of the former.

Let θ̃
q

be the solution to the census level likelihood, that is

`U(θq) =
∑

i=1,...,m

∑
k∈Aq

zki log µqi (xqk,θ
q), (18)

and p̃qki = µqi (xqk, θ̃
q
) for i = 1, ...,m and q = 1, ..., Q. In addition, let

ωk = (δk(A1), . . . , δk(AQ), δk(A1)p
1
k1, . . . , δk(AQ)pQk1, . . . , δk(A1)p

1
km, . . . , δk(AQ)pQkm)′

be the Q+Q×m vector of all auxiliary variables used in the benchmarking constraints for

P̂MCi, and let

ω̃k = (δk(A1), . . . , δk(AQ), δk(A1)p̃
1
k1, . . . , δk(AQ)p̃Qk1, . . . , δk(A1)p̃

1
km, . . . , δk(AQ)p̃Qkm)′

be its population level counterpart. In order to prove our results, we make a set of technical

assumptions reported in Appendix A.1.

Theorem 4.1. Under assumptions A1–A3, estimator P̂MCi is design
√
nN -consistent for Pi

in the sense that

P̂MCi − Pi = Op(n
−1/2
N ),

and has the following asymptotic distribution

P̂MCi − Pi√
V∞(P̂MCi)

→L N(0, 1),
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where

V∞(P̂MCi) = V

 1

N

Q∑
q=1

∑
k∈sq

dMk (q)eki

 =
1

N2

Q∑
q=1

V

∑
k∈sq

dk(q)
eki
mk

 (19)

with population level residuals eki = zki − ω̃′kγ̃i and

γ̃i =

(∑
k∈U

ω̃kω̃
′
k

)−1∑
k∈U

ω̃kzki. (20)

In addition, under assumptions A1–A5, V∞(P̂MCi) can be consistently estimated by

v(P̂MCi) =
1

N2

Q∑
q=1

v

∑
k∈sq

dk(q)
êki
mk

 ,

where v(·) is the Horvitz-Thompson variance estimator of V (·) with êki = zki − ω′kγ̂i and

γ̂i =

 Q∑
q=1

∑
k∈sq

dMk (q)ωkω
′
k

−1 Q∑
q=1

∑
k∈sq

dMk (q)ωkzki. (21)

Proof. See Appendix A.2

Estimator P̂MAi can be seen as a particular case of estimator P̂MCi. This is a common

finding when comparing model assisted generalized regression type estimators with model

calibration estimators (see e.g. Wu & Sitter, 2001; Montanari & Ranalli, 2005). In fact,

P̂MAi uses only one auxiliary variable given by pqki, for q = 1, . . . , Q and is equivalent to

P̂MCi as in equation (23) if we use pqki as auxiliary variable with benchmark constraint given

by
∑

q

∑
Aq
pqki/mk, and set γ̂ = 1. Therefore, we can summarize properties of P̂MAi in the

following Theorem. The proof is immediate and is omitted.

Theorem 4.2. Under assumptions A2–A3, estimator P̂MAi is design
√
nN -consistent for Pi

in the sense that

P̂MAi − Pi = Op(n
−1/2
N ),
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and has the following asymptotic distribution

P̂MAi − Pi√
V∞(P̂MAi)

→L N(0, 1),

where

V∞(P̂MAi) = V

 1

N

Q∑
q=1

∑
k∈sq

dMk (q)eqki

 =
1

N2

Q∑
q=1

V

∑
k∈sq

dk(q)
eqki
mk

 (22)

with population level residuals eqki = zki − p̃qki.

In addition, under assumptions A2–A5, V∞(P̂MAi) can be consistently estimated by

v(P̂MAi) =
1

N2

Q∑
q=1

v

∑
k∈sq

dk(q)
êqki
mk

 ,

where v(·) is the Horvitz-Thompson variance estimator of V (·) with êqki = zki − pqki.

5 Monte Carlo Simulation Experiments

We now present the results of some Monte Carlo experiments carried out to empirically

compare the performance of the proposed estimators with respect to the customary estima-

tors discussed in Section 2. To carry out the simulation study we have used the freeware

statistical program R.

We have considered a three frame setting, frames A1, A2 and A3, where three normal

variables have been simulated: a first one following a N (30, 3), which is categorized con-

sidering 4 ordered levels to create the ordinal response variable, y, (for simplicity, we have

coded the levels as 1, 2, 3 and 4, considering 1 < 2 < 3 < 4) and another two which play the

role of auxiliary variables: x1 and x2. These two auxiliary variables are generated controlling

their correlation with the response variable (taking advantage of the fact that response vari-

able has been generated from a continuous variable). In this first scenario, the correlation

between the continuous variable behind the response y and the auxiliary variables x1 and
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x2 has been set at 0.85. We have generated N = 10000 observations for each of the three

variables involved in the study. Population proportions for the levels of the ordinal response

variable are: 0.1, 0.2, 0.3 and 0.4, respectively.

Domain sizes were defined beforehand and then each unit was randomly assigned to one

of the domains. As a result, three overlapping frames of sizes N1 = 5500, N2 = 6000 and

N3 = 5000 were obtained. Three samples of sizes n1 = 360, n2 = 464 and n3 = 728 were

independently drawn, one from each frame, considering Midzuno sampling designs in frames

A1 and A3 and a simple random sampling design in frame A2. Sample from frame A1 was

drawn with probabilities proportional to a normally distributed variable with mean 1000 and

standard deviation 250. On the other hand, sample from frame A3 was drawn considering

inclusion probabilities proportional to another normally distributed variables with mean 5000

and standard deviation 500. These two normal variables are such that the correlation between

each of them and the continuous variable behind the response y is 0.9. In this scenario,

the ordinal model-assisted estimator (PMA) and the ordinal model-calibrated estimator

(PMC) were computed. For comparison purposes, we also compute Kalton-Anderson (KA),

multiplicity (M), composite multiplicity (CM) and calibration (CAL) estimators. For the

estimators using auxiliary information (CAL, PMA and PMC) we have considered different

sets of variables: x1 in frame A1, x2 in frame A2 and both x1 and x2 in frame A3.

For each estimator, we compute the percent relative bias RB% = EMC(P̂ − P )/P ∗

100 and the percent relative mean squared error RMSE% = EMC [(P̂ − P )2]/P 2 ∗ 100 for

each category of the variable y based on 10000 simulation runs. We have used RMSE% to

calculate percent relative efficiency gain with respect to multiplicity estimator. This percent

relative efficiency gain for a generic estimator P̂ is defined as RMSE%M/RMSE%P̂ ∗ 100,
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where RMSE%M is the percent relative mean squared error for the multiplicity estimator

(results are presented in Table 1).

Table 1: % Relative bias (in italics) and % relative efficiency, with respect to multiplicity estimator
for each estimator. Corresponding equation in parentheses. ρY X1 = 0.85, ρY X2 = 0.85

1 2 3 4 min max mean

M (4) 0.00 0.01 0.07 -0.05 0.00 0.07 0.03
100.00 100.00 100.00 100.00 100.00 100.00 100.00

KA (3) 0.01 0.01 0.07 -0.06 0.01 0.07 0.04
103.54 104.02 104.44 103.73 103.54 104.44 103.93

CM (5) 0.02 0.02 0.06 -0.05 0.01 0.08 0.03
103.61 104.39 104.16 104.38 103.61 104.38 104.13

CAL (6) -0.34 0.05 0.22 -0.11 0.05 0.34 0.18
129.76 115.42 99.66 171.85 99.66 171.85 129.17

PMA (15) 0.68 -0.26 -0.23 0.13 0.13 0.68 0.32
181.01 135.62 124.38 212.51 124.38 212.51 163.38

PMC (16) -0.11 -0.02 0.06 -0.01 0.01 0.11 0.05
174.40 133.01 123.63 192.83 123.63 192.83 155.96

From results of Table 1 we can conclude that bias for all the estimators considered is

negligible. Equally, we can observe that estimators using auxiliary variables perform better

than the estimators that do not use any extra information. The proposed ordinal estimators

work better than the classical calibration estimator, which assume an underlying linear

model. Whatever the proposed estimator, we can see that the largest mean efficiency gain

with respect to multiplicity estimator is achieved in category 4, which is the category with

the largest population proportion. The PMA estimator shows a slightly better performance

than the PMC estimator in terms of efficiency gain.

To determine the effect of varying association between the main variable and auxiliary

variables, we are going to consider new scenarios with different correlation levels between the
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continuous variable behind the response y and x1 and x2. In the first scenario, correlation

between the continuous variable behind the response y and x1 has been decreased with re-

spect to the initial situation to 0.65 and correlation between the continuous variable behind

the response y and x2 has been set to 0.5. In the second scenario, correlation levels between

the continuous variable behind the response y and x1 and between the continuous variable

behind the response y and x2 are set to 0.4 and 0.7, respectively. We have run 10000 repli-

cations keeping the same sample sizes for the three frames. Relative bias is not significant

in any case and so only relative efficiency with respect to multiplicity estimator is displayed

in Table 2.

Table 2: % Relative efficiency with respect to multiplicity estimator of compared estimators con-
sidering different association levels between y and x1 and x2

1 2 3 4 min max mean

ρY X1 = 0.65, ρY X2 = 0.5.

PMA 121.19 110.37 105.25 131.59 105.25 131.59 117.10
PMC 121.46 108.71 103.85 130.76 103.85 130.76 116.19

ρY X1 = 0.4, ρY X2 = 0.7.

PMA 122.04 110.64 106.17 131.30 106.17 131.30 117.53
PMC 121.62 109.19 104.71 131.57 104.71 131.57 116.77

We observe that the proposed estimators have a gain in efficiency in comparison to the

customary multiplicity estimator when the association between the auxiliary variables and

the main variable is also moderated. If correlation decreases, then the improvement of course

of using the model is less important. As in the previous scenario, gain in efficiency for category

4 is quite relevant compared with the 3 remaining categories.

We have also computed confidence intervals considering two different approaches for es-

timating the variance of the proposed estimators: the jackknife procedure described in Rao
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& Wu (2010) and the analytic expression for the estimators of the variances formulated in

Section 4. Table 3 shows the length reduction of 95% confidence intervals with respect to

the multiplicity estimator and the empirical coverage probability over 10000 simulation runs

in each category of the main variable. We can see that the proposed estimators consider-

ably reduce the length of the confidence intervals obtained, with respect to the multiplicity

estimator irrespective of the method used for variance estimation. More importantly, the

empirical coverage is always very close to the nominal level.

Table 3: % length reduction with respect to multiplicity estimator (in italics) and empirical coverage
of 95% confidence intervals for the estimators using the jackknife method and the analytic expression
for the variance estimation.

Jackknife

1 2 3 4 mean
PMA 25.82 13.46 10.66 31.09 20.26

96.08 96.20 96.64 96.20 96.28
PMC 22.88 12.29 9.69 26.19 17.76

94.97 96.08 96.20 95.53 95.69

Analytic

1 2 3 4 mean
PMA 26.51 13.53 10.15 30.85 20.26

95.48 96.09 97.17 96.31 96.26
PMC 26.51 13.44 10.06 30.77 20.19

94.68 96.60 96.44 95.39 95.78

6 Application to real data

In this Section we report on the results of application of the proposed estimators to real

data from an opinion survey. In particular, data come from a survey on opinions of the

Andalusian population towards immigration conducted in 2013 by an Andalusian research

institute focusing on social studies. In this survey, the institute conducting the survey decided
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to carry out telephone interviews with adults using two sampling frames: one of landlines

(frame A1) and another one of cell phones (frame A2). Overall, n = 1853 telephone interviews

were performed.

At the time of data collection, frame sizes were known (extracted from ICT-H 2012, Sur-

vey on the Equipment and Use of Information and Communication Technologies in House-

holds, INE, National Statistical Institute, Spain). Landline frame was stratified by provinces

in the region of Andalusia and then a stratified sample of size n1 = 1468 was drawn. In the

cell phone frame a simple random sample of size n2 = 385 was selected by using random

digit dialing.

We have considered the response to the question “In relation to the number of immigrants

currently living in Andalusia, do you think there are too many, a reasonable number or too

few?” as main variable of interest. As auxiliary information we have used the age (categorized

into 4 age classes) of interviewed people in each frame. We have tested for the proportional

odds assumption in the data: the p-values associated to the test are 0.1492 and 0.0725 in

frame A and in frame B, respectively. Population data for auxiliary variables is reported in

Table 4.

Together with the proposed estimators, we have calculated some additional estimators for

comparison purposes as the multiplicity (M), Kalton-Anderson (KA), composite multiplicity

(CM) and calibration (CAL) estimators. For CAL estimator we have used also the age of

the individuals as auxiliary variable.

Table 5 shows point estimation for the considered estimators for the main variable. We

have used the jackknife procedure described in Rao & Wu (2010) as well as the analytic

expression for the estimator of the variance to compute a 95 % confidence interval. Results
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Table 4: Population data for variable age

Both Landline Cell

18 - 29 908,901 0 303,644
30 - 44 1,383,419 21,932 587,522
45 - 59 1,204,816 98,747 277,534
> 60 842,523 522,582 199,296

of lower bound, upper bound and length of confidence intervals for each method of variance

estimation are also included in the table.

In both cases, average length of confidence intervals of all proposed estimators is smaller

than average lengths of confidence intervals of classical estimators. This fact can be seen

in Table 6 that shows the reduction of the length of the proposed estimator respect to the

multiplicity estimator.

7 Conclusions

In this paper we have introduced a flexible way of using auxiliary information when esti-

mating proportions for an ordinal variable using a multiple frame survey. We have worked

within the model-assisted framework for finite population inference and proposed estimators

using both the generalized regression and the calibration approach. In both cases, we have

relaxed the assumption of a linear regression model and considered ordinal regression mod-

els. Weighted likelihood methods have been employed to obtain design consistent parameter

estimates. The properties of the proposed estimators have been investigated theoretically

and via simulation studies.

The performance of the proposed ordinal estimators is good under a variety of sampling

designs. Our main findings show that it is important to include auxiliary information into

the estimation process to increase efficiency. Of course, the gain in efficiency depends on
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the strength of the relationship of the auxiliary variables with the variable of interest. In

addition, it is also important to account for the ordinal nature of the variable of interest

and, therefore, employ suitable assisting models. In fact, the proposed estimators outperform

classical calibration methods that, implicitly, employ a linear regression model. In this regard,

a methodology that is often used to incorporate auxiliary information in sample surveys is

post-stratification; it should be noted that it is just a particular case of calibration and,

therefore, we have shown that it is possible to use auxiliary information in a more efficient

way when the variable of interest is ordinal. This has been highlighted also in the application

to real data from a dual frame survey on attitudes towards immigration: the calibration

estimator in this case is essentially an adaptation of post-stratification to multiple frame

surveys. The proposed estimators provide all a sensible reduction on the length on the

confidence intervals for the estimated proportions compared to all other estimators.
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Table 5: Point and 95% confidence level estimation of percentages using Jackknife and An-
alytic variance estimation.

In relation to the number of immigrants currently living

in Andalusia, do you think there are . . . ?

Jackknife Analytic

Estimator prop lb ub len lb ub len

...too many

M 45.26 41.93 48.58 6.65 41.09 49.41 8.31
KA 44.92 41.84 48.00 6.17 41.43 48.41 6.97
CM 44.95 41.86 48.05 6.19 41.68 48.23 6.55
CAL 44.68 40.83 48.54 7.71 40.24 49.13 8.89
PMA 45.11 42.10 48.11 6.00 41.93 48.29 6.36
PMC 44.65 41.71 47.59 5.88 41.67 47.57 5.90

...a reasonable number

M 48.36 45.03 51.67 6.64 44.29 52.41 8.12
KA 48.64 45.56 51.72 6.16 45.18 52.10 6.91
CM 48.61 45.52 51.69 6.17 45.45 51.76 6.31
CAL 49.26 44.78 53.73 8.95 44.83 53.69 8.86
PMA 48.69 45.69 51.70 6.00 45.58 51.80 6.22
PMC 49.27 46.21 52.32 6.11 46.23 52.38 6.14

...too few

M 6.39 4.68 8.09 3.41 4.63 8.13 3.49
KA 6.43 4.83 8.03 3.20 4.80 8.05 3.24
CM 6.43 4.82 8.03 3.21 4.88 7.97 3.09
CAL 6.04 4.25 7.84 3.59 3.86 8.23 4.37
PMA 6.18 4.68 7.69 3.00 4.65 7.71 3.06
PMC 6.07 4.67 7.48 2.81 4.56 7.56 3.00
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Table 6: Relative length reduction in % of the 95% confidence intervals of the proposed
estimators with respect to the multiplicity estimator.

In relation to the number of immigrants

currently living in Andalusia,

do you think there are...?

Estimator Jackknife Analytic

...too many

PMA 9.66 23.46
PMC 11.65 29.00

...a reasonable number

PMA 9.56 23.39
PMC 8.01 24.38

...too few

PMA 11.87 12.32
PMC 17.49 14.04
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A Appendix - Assumptions and proof of Theorem 4.1.

A.1 Assumptions

A1. γi = limN→∞ γ̃i exists and γ̂i = γ̃i + op(1), for i = 1, . . . ,m, where γ̃i and γ̂i are given

in (20) and (21), respectively.

A2. The limiting design covariance matrix of the normalized, multiplicity adjusted Horvitz-

Thompson estimators,

Σq =

[
Σq
zz Σq

zω̃

Σq′
zω̃ Σq

ω̃ω̃

]
= lim

N→∞

nN
N2

[∑∑
Aq

∆kl(q)zkizli
∑∑

Aq
∆kl(q)zkiω̃

′
l∑∑

Aq
∆kl(q)ω̃kzli

∑∑
Aq

∆kl(q)ω̃kω̃
′
l

]

is positive defined, with ∆kl(q) = (πkl(q)− πk(q)πl(q))/πk(q)πl(q)mkml, for q = 1, . . . , Q.

A3. The normalized multiplicity adjusted Horvitz-Thompson estimators satisfy a central limit

theorem:
√
nN
N

[ ∑
q

∑
k∈sq d

M
k (q)zki − Pi∑

q

∑
k∈sq d

M
k (q)ω̃k −

∑
q

∑
k∈Aq

ω̃k

]
→L N

(
0,
∑
q

Σq

)
.

A4. N−1
[∑

q

∑
k∈sq d

M
k (q)(ωk − ω̃k)−

∑
q

∑
k∈Aq

(ωk − ω̃k)
]

= op(n
−1/2
N ).

A5. The estimated covariance matrix for the Horvitz-Thompson estimators

Σ̂
q

=

[∑∑
sq
πkl(q)

−1∆kl(q)zkizli
∑∑

sq
πkl(q)

−1∆kl(q)zkiω̃
′
l∑∑

sq
πkl(q)

−1∆kl(q)ω̃kzli
∑∑

sq
πkl(q)

−1∆kl(q)ω̃kω̃
′
l

]

is design consistent in the following sense:

nN
N2

Σ̂
q
−Σq = op(1),

for q = 1, . . . , Q.
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These assumptions are similar to those used in Breidt, Claeskens and Opsomer (2005)

and in Ranalli et al. (2016). Assumption A1 ensures that the sample fit γ̂i and the population

fit γ̃i share a common limit. This assumption, together with Assumption A4, depend on the

distribution of the auxiliary variables xq, of the function µ(·) and parameter estimates of θq.

Wu & Sitter (2001) provide conditions for the case of generalized linear models. Assumptions

A2 and A3 are satisfied for commonly used fixed sample size designs in reasonably finite

populations. Assumption A5 is satisfied by many common designs. However, it would not

hold for systematic sampling or one-per-stratum designs.

A.2 Proof of Theorem 4.1.

Without loss of generality, we consider the chi-squared distance measure G(w; d) = (w −

d)2/d2. It can be easily shown that in this case P̂MCi can be written as follows

P̂MCi =
1

N

 Q∑
q=1

∑
k∈sq

dMk (q)zki +

Q∑
q=1

∑
k∈Aq

ωk −
∑
k∈sq

dMk (q)ωk

′ γ̂i
 . (23)

Now,

P̂MCi − Pi = P̃MCi − Pi +
1

N

Q∑
q=1

∑
k∈Aq

ωk −
∑
k∈sq

dMk (q)ωk

′ (γ̂i − γ̃i) +

+
1

N

Q∑
q=1

∑
k∈Aq

(ωk − ω̃k)−
∑
k∈sq

dMk (q)(ωk − ω̃k)

′ γ̃i
= P̃MCi − Pi +Op(n

−1/2
N )op(1) + op(n

−1/2
N )Op(1),

where

P̃MCi =
1

N

Q∑
q=1

∑
k∈sq

dMk (q)zki +
1

N

Q∑
q=1

∑
k∈Aq

ω̃k −
∑
k∈sq

dMk (q)ω̃k

′ γ̃i. (24)

Therefore the asymptotic distribution of P̂MCi is the same as that of P̃MCi, whose variance

is V∞(P̂MCi).
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To prove consistency of the variance estimator, note that

v

∑
k∈sq

dk(q)
êki
mk

 =
∑∑

sq

πkl(q)
−1∆kl(q)êkiêli

=
∑∑

sq

πkl(q)
−1∆kl(q)ekieli +

+ (γ̃i − γ̂i)′
∑∑

sq

πkl(q)
−1∆kl(q)ωkω

′
l(γ̃i − γ̂i) +

+ γ̃i
′
∑∑

sq

πkl(q)
−1∆kl(q)(ω̃k − ωk)(ω̃l − ωl)′ γ̃i.

Therefore, v
(∑

k∈sq dk(q)
êki
mk

)
= v

(∑
k∈sq dk(q)

eki
mk

)
+ N2op(n

−1
N ) by Assumptions A1-A5,

and v
(∑

k∈sq dk(q)
eki
mk

)
= V

(∑
k∈sq dk(q)

eki
mk

)
+ N2op(n

−1
N ) by Assumption A5, and the

result is proven.
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