
Noname manuscript No.
(will be inserted by the editor)

Kernel-based methods for combining information of
several frame surveys

Sánchez-Borrego, I. · Arcos, A. · Rueda,
M.

Received: date / Accepted: date

Abstract A sample selected from a single sampling frame may not represent
adequatly the entire population. Multiple frame surveys are becoming increas-
ingly used and popular among statistical agencies and private organizations,
in particular in situations where several sampling frames may provide better
coverage or can reduce sampling costs for estimating population quantities
of interest. Auxiliary information available at the population level is often
categorical in nature, so that incorporating categorical and continuous infor-
mation can improve the efficiency of the method of estimation. Nonparametric
regression methods represent a widely used and flexible estimation approach
in the survey context. We propose a kernel regression estimator for dual frame
surveys that can handle both continuous and categorical data. This methodol-
ogy is extended to multiple frame surveys. We derive theoretical properties of
the proposed methods and numerical experiments indicate that the proposed
estimator perform well in practical settings under different scenarios.

Keywords Kernel regression, nonparametric regression, dual frame survey,
multiple frame survey, model-assisted estimation
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1 Introduction

In classic finite population sampling a basic hypothesis is the availability of
a unique and complete list of units forming the target population to be used
as a sampling frame. In practice frames that can be used for selecting the
samples are generally incomplete or out of date. In some cases a set of two or
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more lists is available for survey purposes. Multiple frame surveys have gained
much attention and became largely used by statistical agencies and private
organizations to decrease sampling costs or to reduce frame undercoverage
errors that could occur with the use of only a single sampling frame.

Dual frame estimators were originally introduced by Hartley (1962). Fuller
and Burmeister (1972) extended Hartley’s dual-frame estimator of popula-
tion by considering information about the maximum likelihood estimator of
the overlap domain population size. Bankier (1986) and Kalton and Ander-
son (1986) proposed the Single Frame Estimator which treats the dual frame
design as a single frame design. Raking ratio or regression estimation can be
used to adjust the Single Frame Estimator (Skinner 1991). Skinner and Rao
(1986) extended the pseudo maximum likelihood estimator to achieve inter-
nal and design-based consistency under complex designs. Rao and Wu (2010)
used pseudo empirical likelihood method to include the auxiliary information
into the estimation process. Ranalli et al. (2016) used calibration techniques
to derive estimators in the dual frame context. The package Frames2 (Arcos
et al. 2015) includes the main estimators in dual frame surveys and also pro-
vides interval confidence estimation. Mecatti (2007) proposed a multiplicity
estimator for multiple frame surveys, that is insensitive to missclasification.
An unified approach for combining information from multiple surveys, by us-
ing zero functions as predictors in regression, is given in Singh and Mecatti
(2011).

Nonparametric regression methods have been used extensively for estimat-
ing the regression function in a wide range of fields. They allow the model to
be correctly specified for much larger classes of functions, and have a great
potential for application to a wide range of problems. The monograph of Fan
and Gijbels (1996) and the chapter in Breidt and Opsomer (2009) explore
some application areas for local polynomial regression. Kernel-based methods
are well known for their good properties and for their adaptation to different
settings.

These methods have been recently introduced into the finite population
sampling setting. Kuo (1988) proposed a model-based estimator of the distri-
bution function, Breidt and Opsomer (2000) introduced a model-assisted esti-
mator by incorporating the sampling design to the local linear kernel smoother.
Breidt and Opsomer (2000) studied theoretical properties of the local polyno-
mial estimator, showing that it is design consistent and asymptotically design
unbiased under some regularity conditions. Nonparametric model calibration
has been introduced in Montanari and Ranalli (2005) and used to estimate
totals and means also for environmental populations. More recently, Rueda
and Sánchez-Borrego (2009) proposed a nonparametric estimator of the total
under the model based approach. A review of nonparametric methods in sur-
vey sampling is given in Breidt and Opsomer (2009). This work proposes a
nonparametric regression approach to inference for multiple-frame surveys. We
establish a unified framework for point estimation of finite population param-
eters, and show that inferences on the parameters of interest makes effective
use of the auxiliary population information.
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In this article, we investigate theoretical and empirical properties of non-
parametric point estimators for the population total when the sample is se-
lected from more than one frame. Multiple frame surveys have been first intro-
duced by Hartley, essentially focused on dual frame case. In order to follow the
same methodology as the classic works of multiple frames (Lohr 2009, 2011;
Rao and Wu 2010; Metcalf and Scott 2009; etc.) we will start with the case of
two frames to later generalize to the case of tree or more frames. Specifically,
after introducing the proposed method for dual frame surveys in the second
section, we study the asymptotic design-properties of the proposed estimator
in the third section. The fourth section considers the problem of selection of
the optimal weight. An extension of the nonparametric methodology to mul-
tiple frames is proposed in section five and a simulation study is included in
section six. Section 7 contains concluding remarks.

2 Nonparametric inference for dual frame surveys

We will use the notation considered in Rao and Wu (2010). Let U denote a
finite population with N units, U = {1, . . . , j, . . . , N} and let A and B be
two sampling-frames, both can be incomplete, but it is assumed that together
cover the entire finite population. Let A be the set of population units in frame
A and B the set of population units in frame B. The population of interest, U ,
may be divided into three mutually exclusive domains, a = A ∩ B, b = A ∩ B
and ab = A ∩ B = ba, where the bar symbol denotes complement of a set.

Let N , NA, NB , Na, Nb, Nab, Nba be the number of population units in
U , A, B, a, b, ab, ba, respectively.

Let y be a variable of interest in the population, yj its relative value for the
unit j, for j = 1, . . . , N and xj = (x1j , . . . , xpj) the corresponding values of
a vector x containing q categorical and p continuous auxiliary variables, with
q+p = k. Let xd represent the sub-vector of q categorical variables and xc the
remaining sub-vector of p continuous ones. We use xct for the t-th component
of xc and xdt for the t-th component of xd, respectively. Our goal is to estimate

the finite population total Y =
∑N
j=1 yj of the variable of interest y. We can

write

Y = Ya + ηYab + (1− η)Yba + Yb, (1)

where Ya =
∑
j∈a yj , Yab =

∑
j∈ab yj , Yba =

∑
j∈ba yj , Yb =

∑
j∈b yj and η is

a fixed constant in (0, 1).

Two probability samples sA and sB are drawn independently from frame
A and frame B of sizes nA and nB , respectively, using the sampling designs dA
and dB . Each sampling design dA and dB , induces first-order inclusion proba-
bilities πAj and πBj , respectively, and second-order inclusion probabilities πAij

and πBij . The sampling weights are given by wAj = 1/πAj and wBj = 1/πBj .
The sample sA can be post-stratified as sA = sa ∪ sab, where sa = sA ∩ a and
sab = sA∩(ab). Similarly, sB = sb∪sba, where sb = sB∩b and sba = sB∩(ba).
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We consider a general nonparametric regression model:

yj = m(xj) + ej , j = 1, . . . , N, (2)

where m(·) is the unknown regression function and the ej , j = 1, . . . , N are
independent and identically distributed with EM (ej) = 0 and V arM (ej) = σ2

for j = 1, . . . , N .
We denote EM and V arM as the expectation and variance operators un-

der the model and EdA, EdB , VdA and VdB as the expectation and variance
operators for sampling designs dA and dB respectively.

The product kernel for the categorical regressors xdt , t = 1, . . . , q is defined
as

Kd
ij =

q∏
t=1

lλ(xdti − xdtj), (3)

being lλ a variation of Aitchison-Aitken’s kernel function (Aitchison and Aitken
1976), defined as

lλ(xdti − xdtj) =

{
1 if xdti = xdtj
λ if xdti 6= xdtj ,

, (4)

where λ is the smoothing parameter. The parameter λ satisfies 0 ≤ λ ≤ 1,
with λ = 0 corresponding to an indicator function and λ = 1 giving equal
weights to all values of its argument. For simplicity of notation, we consider a
single λ for all variables xdt .

For the continuous variables, we use K to denote a symmetric, univariate
density function. The product kernel for the mixed data case is defined as

Kij =

[
q∏
t=1

lλ(xdti − xdtj)

][
p∏
t=1

1

hp
K

(
xcti − xctj

h

)]
, (5)

being h the smoothing parameter. For simplicity of presentation, we consider
a single h for every variable xct , but it can be clearly expanded to a separate
ht for each.

We propose to estimate mj = m(xj), the regression function m at the
location xj , by a design-weighted version of a Nadaraya-Watson (Nadaraya
1964; Watson 1964) type kernel estimator. The estimator m̂j is defined as a
piecewise function at each domain.

For units j in a, we define

m̂A
j =

∑
i∈sA KijyiwAi∑

i∈sA KijwAi
+ δ/N2

A

, (6)

for small appropriate δ > 0. This small order adjustment was also used by
Breidt and Opsomer (2000). It ensures the estimator is well-defined for every
sample sA. Without such an adjustment, the estimator may not be defined
for some samples. Its effect on the estimator can be made arbitrarily small by
choosing δ accordingly.
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For domain b we define m̂B
j similarly by switching A and B

and for the overlap

m̂ab
j = ηm̂A

j + (1− η)m̂B
j , (7)

for j ∈ ab .
We propose the following model-assisted dual frame estimator

ŷdnp =
∑
j∈a

m̂A
j +

∑
j∈b

m̂B
j +

∑
j∈ab

m̂ab
j

+
∑
j∈sa

(yj − m̂A
j )wAj

+
∑
j∈sb

(yj − m̂B
j )wBj

+ η
∑
j∈sab

(yj − m̂A
j )wAj + (1− η)

∑
j∈sba

(yj − m̂B
j )wBj .

Selection of the η-coefficients will be addressed in Section 4. This estimator
can be shown to be a particular case of the GMHT estimator (Mecatti and
Singh 2014).

3 Properties of the estimator

Theorem 1:
Under assumptions (A1), (A2) and (A4)-(A7) in Breidt and Opsomer

(2000) for frames A and B, λ satisfying 0 ≤ λ ≤ 1, ŷdnp is asymptotically
design unbiased.
Proof: See Appendix
Theorem 2:

Under assumptions (A1)-(A7) in Breidt and Opsomer (2000) for frames A
and B, λ satisfying 0 ≤ λ ≤ 1, the asymptotic variance of the estimator ŷdnp is
given by

AV
(
ŷdnp
)

=
∑
k,j∈A

(yj −mj)(yk −mk)
(
wAk

wAjπAkj
− 1
)
ηAk

ηAj

+
∑
k,j∈B

(yj −mj)(yk −mk)
(
wBk

wBjπBkj
− 1
)
ηBk

ηBj ,

and the estimator of the variance

V̂
(
ŷdnp
)

=
∑

k,j∈sA

(yk − m̂A
k )(yj − m̂A

j )
(
wAk

wAjπAkj
− 1
)
ηAk

ηAj

πAkj

(8)

+
∑

k,j∈sB

(yk − m̂B
k )(yj − m̂B

j )
(
wBk

wBjπBkj
− 1
)
ηBk

ηBj

πBkj

,
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is asymptotically design unbiased where

ηAj =

{
1 if j ∈ a
η if j ∈ ab (9)

ηBj
=

{
1 if j ∈ b

1− η if j ∈ ba (10)

Proof: See Appendix.

4 Selection of the optimal weight

Selection of parameter η is an important issue in dual frame estimators, be-
cause the efficiency of the estimator relies on this value (Lohr 2009). The
η-coefficients are a multiplicity adjustment α-coefficients (Mecatti and Singh
2014) that makes estimator ŷdnp a particular case of the Mecatti’s unified esti-
mator.

Skinner and Rao (1996) suggested choosing

ηSR =
NaNBV (N̂B

ab)

NaNBV (N̂B
ab) +NbNAV (N̂A

ab)
,

or alternatively

ηSR2 =
V (N̂B

ab)

V (N̂B
ab) + V (N̂A

ab)
,

being V (N̂A
ab) and V (N̂B

ab) the variances of the sizes of domain ab based on
samples sA and sB respectively. This value for η does not depend on the y’s,
thus the resulting estimator use the same weights for the response variable
but in practice, Na, Nb, and variances V (N̂A

ab) and V (N̂B
ab) are unknown and

must be estimated from the data. Thus the use of this value for the weight,
leads to internal inconsistency.

Brick et al. (2006) used η = 1/2 in their study of a dual-frame survey in
which frame A was a landline telephone frame and frame B was a cell-phone
frame. For this purpose, the value of η = 1/2 is frequently recommended

(Mecatti 2007). Other simple choice for η is NB/nB

NA/nA+NB/nB
proposed by Kalton

and Anderson (1986) for simple random sampling. These values for η do not
depend on the particular y variable being analyzed so that these choices satisfy
the requirement of using the same weights for all analyses (Metcalf and Scott
2009).

Hartley (1974) proposed choosing η to minimize the variance of the esti-
mator. Similarly we can derive the optimal value of η for the nonparametric
estimator by minimizing AV

(
ŷdnp
)

respect to η. The optimal asymptotic value
is given by

η̂opt =
2V4 + V2 − V1

2V3 + 2V4
, (11)
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with

V1 =
∑

k∈a;j∈ab

(yj −mj)(yk −mk)
(
wAk

wAj
πAkj

− 1
)

+
∑

k∈ab;j∈a

(yj −mj)(yk −mk)
(
wAk

wAj
πAkj

− 1
)
,

with V2 analogously defined by switching domain a and frame A for domain b
and frame B respectively.

V3 =
∑

k∈ab;j∈ab

(yj −mj)(yk −mk)
(
wAk

wAj
πAkj

− 1
)
, (12)

being V4 similarly defined as V3 but switching frame A for frame B. Neverthe-
less, since V1, V2, V3 and V4 are unknown population quantities, they can be
estimated by their sample estimates,

V̂1 = 2
∑

k∈sa;j∈sab

(yj − m̂A
j )(yk − m̂A

k )
(
wAk

wAjπAkj
− 1
)

πAkj

,

and

V̂3 =
∑

k∈sab;j∈sab

(yj − m̂A
j )(yk − m̂A

k )
(
wAk

wAj
πAkj

− 1
)

πAkj

, (13)

with V̂2 and V̂4 defined as V̂1 and V̂3 respectively, with the aboved-mentioned
changes.

5 Extension to multiple frames

In recent years, a number of works that focuses on the estimation in cases
with three or more sampling frames has arisen. Iachan and Dennis (1993)
used a three frame survey to reach the homeless population of Washington
D.C. metropolitan area. The Canadian Community Health Survey conducted
by Statistics Canada (2003) is based on a area frame, a list frame and a
RDD frame. Lohr and Rao (2006) formulated the multiple frame extension
of some of the estimators originally proposed for the dual frame case, as the
one proposed by Hartley (1962), Hartley (1974), or by Fuller and Burmeister
(1972). Although the optimal version of these estimators is asymptotically
efficient, it is not internally consistent since a different set of weights is used
for each response variable. Moreover, it is often unstable in small or moderate
samples with more than two frames because the optimal estimated parameters
involved in the computation of the estimators are functions of large estimated
covariances matrices. Lohr and Rao (2006) also followed the so-called single
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frame approach used by Kalton and Anderson (1986) to propose a single frame
estimator in a multiple frame context. Mecatti (2007) used a new approach
based on the multiplicity of each unit (i.e. in the number of frames the unit
is included in) to propose an estimator which is easy to compute. Multiplicity
is also used by Rao and Wu (2010) to provide an extension of the pseudo
empirical likelihood estimator to the case of more than two frames. In 2011,
Singh and Mecatti (2011) suggested a class of multiplicity estimators that
encompasses all the multiple frames estimators available in the literature by
suitably specifying a set of parameters. Recently Rueda et al. (2018) propose
statistical techniques for handling ordinal data coming from a multiple frame
survey. In this section we propose a nonparametric estimator for the case of
more than two frames.

Let U be a finite population composed of N units labeled from 1 to N , U =
{1, ..., j, ..., N} and let A1, . . . , Aq, . . . , AQ be a collection of Q ≥ 2 overlapping
frames of sizes N1, . . . , Nq, . . . , NQ, all of them can be incomplete but it is
assumed that they cover the entire target population U .

Our goal is to estimate the total population Y , which can be written as

Y =

Q∑
q=1

∑
j∈Uq

yj
muj

(14)

where muj indicates the number of frames unit j belongs to, i.e. the multi-
plicity of j.

Let sq be a sample drawn from frame Aq under a particular sampling
design, independently for q = 1, . . . , Q and let πj(q) and πjk(q) be the first and
second order inclusion probabilities under this sampling design, respectively.
Let dj(q) = 1/πj(q) be the sampling weight for units in frame Aq. Let nq be
the size of sample sq and that s = ∪qsq.

Mecatti (2007) considered a single frame approach and proposed the fol-
lowing estimator

ŷM =
∑
j∈s

yjdj(q)
M , (15)

with dj(q)
M = dj(q)/muj . The previous estimator, often called single frame

multiplicity estimator, only requires the knowledge of the multiplicity of each
unit, i.e. the number of frames the unit is included, no matter which these
frames are.

In Singh and Mecatti (2011) a generalized multiplicity-adjusted methodol-
ogy for multiple frame estimation is given. Let αj(q) be a general multiplicity-
adjustment coefficient for every unit j in a given frame Uq with

∑
q αj(q) = 1.

A class of design-unbiased estimators is given as Generalized Multiplicity ad-
justed Horvitz-Thompson (GMHT) class of MF estimators:

ŷGMHT =
∑
j∈s

yjdj(q)αj(q), (16)
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where the coefficient αj(q) ensures that yj is counted once even if unit j is
duplicated in more than one frame.

The GMHT class has the potential of encompassing the range of multiple
estimators available in the literature. The simple multiplicity-adjusted esti-
mator as given in (15) is the simplest GMHT estimator with the basic choice
αj(q) = 1/muj . The Hartley estimator and the Kalton and Anderson estima-
tor are also GMHT estimators, obtained by making different choices for the
multiplicity-adjustment α-coefficient in (16) (Singh and Mecatti 2011; Mecatti
and Singh 2014). Estimator ŷdnp can also be shown to be a particular case of
estimator (16) in Mecatti and Singh (2014).

For simplicity we consider Mecatti’s approach for proposing a nonparamet-
ric regression estimator for a collection of Q ≥ 2 overlapping frames.

For each unit j in the population we can estimate the values mj in a
different form by noting which frame it belongs to. For units j in Uq, we
propose to estimate mj by

m̂q
j =

∑
i∈sq Kijyidi(q)∑

i∈sq Kijdi(q) + δ/N2
q

, (17)

Thus, we propose the multiplicity model-assisted nonparametric estimator
as:

ŷMnp =

Q∑
q=1

∑
j∈Uq

m̂q
j

muj
+

Q∑
q=1

∑
j∈sq

(yj − m̂q
j)
dj(q)

muj
(18)

The estimator (18) depends on the values of the tuning parameters h and
λ. We consider allowing their values to be selected by minimizing the multiple-
frame cross-validation criterion, defined as

CVMnp(h, λ) =

Q∑
q=1

1

nq

∑
i,j∈sq

πij(q)− πi(q)πj(q)
πij(q)

yi − m̂−i
πi(q)

yj − m̂−j
πj(q)

1

mui

1

muj
,

where for each j ∈ sq, m̂−j is the estimator m̂j when the observation (xj , yj),
j ∈ sq is left out.

Although for simplicity of notation, a single λ is introduced for all xdt and a
single h is defined for all xct , this design-based criterion can also select separate
multivariate tuning parameters λt and ht for each explanatory variable.
Theorem 3:

Under assumptions (A1), (A2) and (A4)-(A7) in Breidt and Opsomer
(2000) for frames A1, ..., AQ and λ satisfying 0 ≤ λ ≤ 1, ŷMnp is asymp-
totically design unbiased.
Theorem 4:

Under assumptions (A1)-(A7) in Breidt and Opsomer (2000) for frames
A1, ..., AQ and λ satisfying 0 ≤ λ ≤ 1, the asymptotic variance of the estimator
ŷMnp is given by
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AV (ŷMnp) =

Q∑
q=1

∑
j,k∈Uq

(yj −mj)(yk −mk)(dj(q)dk(q)πkj(q)− 1)
1

mukmuj
.

(19)

6 Simulation study

In this section, simulations experiments are carried out to illustrate the per-
formance of the multiplicity nonparametric-regression proposed method for a
three frame population under different scenarios. We consider a simulated pop-
ulation with size N = 3500. Units are randomly assigned to three frames A, B
and C according to two different scenarios. In the first scenario (sc1) units are
assigned to domains depending on the values taken by a binomial random vari-
able gj ∼ B(6, 0.3). In particular, if gj = 0 then j ∈ a, if gj = 1 then j ∈ b, if
gj = 2 then j ∈ c and for the overlap domains j ∈ ab, ac, bc, abc if gj = 3, 4, 5, 6,
respectively. The resulting sizes of the three frames are NA=1257, NB=1733
and NC=1374 and the overlap domain sizes are Nab=621, Nbc=33, Nac=206
and Nabc=2. The second scenario (sc2) considers assigning units to domains
according to a binomial random variable gj ∼ B(6, 0.4), with probability taken
as 0.4 to ensure the overlap domain abc has a few more units. If gj = 0 then
j ∈ a, if gj = 1 then j ∈ b, if gj = 2 then j ∈ c and as before, j ∈ ab, ac, bc, abc
if gj = 3, 4, 5, 6, respectively. The resulting frame sizes in the second scenario
are given by NA=1648, NB=1756 and NC=1704 and the overlap domain sizes
are Nab=968, Nbc=121, Nac=479 and Nabc=20. Units in frame B are ran-
domly assigned to five strata as follows: NB

h =(329, 445, 446, 251, 262) for sc1
and NB

h =(446, 361, 256, 426, 267) for sc2.
We consider in this simulation study the inclusion of categorical variables

in both the underlying population model and in the model-assisted estimator.
Let xd be a binary covariate with P [xd = 1] = 0.25 (used in Sánchez-Borrego
et al. 2014). The variable of interest y is generated as a normal distribution
yj ∼ N(5000, 500), for j = 1, . . . , 3500. xc is generated from the values of y as
xcj = (yj − ej)/0.5 with ej ∼ N(500, 500), for j = 1, . . . , N . The correlation
coefficient with the variable of interest is ρ = 0.7 and the population is denoted
by LINEAR. The simulations were also performed for different xc and different
values of ρ, but the results were similar and hence are not reported here.
The BUMP population is generated by using the mean function m1(x) =
1+2(x−0.5)2+exp(−200(x−0.5)2)+xd and the CYC population is generated
by using the mean function m2(x) = 2+2sin(2πx)+xd, with x ∼ U(0.03, 0.93).
The errors are generated as independent standard normally random variables
and σ = 0.5. These two regression functions were also used in Breidt and
Opsomer (2000).

Samples from frames A and C are selected using simple random sam-
pling without replacement and stratified simple random sampling for frame
B. Samples sizes are nA = 105, nC = 120 for the two scenarios and nhB =
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(16, 22, 22, 13, 13) for the first one and nhB = (22, 18, 13, 21, 13) for the second
one.

The proposed method is evaluated in the estimation of the population
total. We have applied the above-mentioned multiple-frame cross-validation
(CV) criterion for selecting the tuning parameters h and λ. It chooses pairs
of h and λ among the set of 15 possible values: h = 0.1, 0.15, 0.2, 0.3, 0.4 for
the continuous variable and λ = 0, 0.15, 0.3 for the categorical variable. As the
fixed bandwidth λ = 1 does not take into account the categorical covariate,
we have considered small values of λ so that the inclusion of the categorical
covariate can improve the efficiency of the proposed estimator. The proposed
estimator is computed using the Epanechnikov kernel function (Epanechnikov
1969) for the continuous variable and the Aitchison-Aitken kernel (Aitchison
and Aitken 1976) for the categorical variables. For comparison purposes, we
also compute Kalton-Anderson (KA, Kalton and Anderson 1976), multiplicity
(M, Mecatti 2007) and composite multiplicity (CM, Singh and Mecatti 2011)
estimators. We also include in this comparison an extension to three frames
of the calibration estimator (CA) given in Ranalli et al. (2016).

We investigated the percent relative bias

rb% = EMC(Ŷ − Y )/Y ∗ 100,

and the percent relative mean squared error

rmse% = EMC [(Ŷ − Y )2]/Y 2 ∗ 100

for each estimator Ŷ . Simulation results are based on B = 1000 samples and
EMC denotes the average of Monte Carlo replications.

Table 1 reports results for each scenario. The most efficient estimator in
each scenario is denoted in bold.

Table 1 Percent relative bias (rb) and the relative mean squared error (rmse) for com-
pared estimators in the three-frames scenarios. Bandwidths h and λ selected by minimiz-
ing the multiple-frame cross-validation criterion. Scenario 1 (sc1): Domain size Na=428,
Nb=1077, Nc=1133, Nab=621, Nbc=33, Nac=206, Nabc=2 ; Samples sizes: nA= 105, nB=
86 and nC= 120. Scenario 2 (sc2): Domain size Na=181, Nb=647, Nc=1084, Nab=968,
Nbc=121,Nac=479, Nabc=20; Samples sizes: nA= 105, nB= 87 and nC= 120

Mecatti KA CM CAL MN
rb rmse rb rmse rb rmse rb rmse rb rmse

LINEAR sc1 -0.043 0.004 -0.040 0.004 -0.040 0.004 -0.033 0.002 0.032 0.002
sc2 0.034 0.003 0.018 0.004 0.017 0.004 0.020 0.002 0.005 0.002

BUMP sc1 0.389 0.096 0.281 0.100 0.276 0.100 0.172 0.016 -0.603 0.013
sc2 -0.428 0.103 -0.664 0.113 -0.674 0.113 -0.029 0.015 -0.560 0.008

CYC sc1 -0.307 0.193 -0.047 0.202 -0.036 0.202 0.055 0.055 0.009 0.003
sc2 0.507 0.181 0.854 0.199 0.86 0.200 0.008 0.052 0.032 0.003

We use the survey cross validation method (5) for selecting the bandwidth
parameters. The simulations were also performed for different fixed-bandwidth
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values, but the results were qualitatively similar and hence are not reported
here. The purely-based nonparametric regression estimator is more sensitive to
the selection of the bandwith parameter than the design-based nonparametric
regression method. Nevertheless, an automated bandwidth selection method
is relevant to balance the bias and the variance of the estimates. The survey
cross validation criterion we have used seems to work well selecting tuning
parameters h and λ and the proposed estimator performs well in all scenarios
considered. The use of auxiliary information obviously plays an important role
in the estimation process and that clearly translates into the relative bias and
efficiency values in table 1. In particular, both the proposed estimator and
CA performs better than the other ones that do not take into account the
auxiliary information. The proposed estimator is expected to be the preferred
estimator, since it does not place any restriction on the relationship between
the auxiliary variables and the study variable. The proposed method is close
to unbiasedness, as relative biases are less than 1% and it seems to make a
better use of the auxiliary information than the CA estimator, as the best
results in efficiency for all populations are achieved by the proposed one.

7 Conclusions

In this article, we have presented new estimators to estimate the total of a
variable when data are obtained from several frames using nonparametric re-
gression. We have introduced a way to combine estimates from the different
frames and considered different estimators based on different level of informa-
tion.

The first proposed estimator ŷdnp is based on the same dual frame method-
ology as in Lohr (2009, 2011), or in Rao and Wu (2010), but it needs full
frame level information: the identification of frame membership for every sam-
pled unit and the knowledge of inclusion probability for every frame in which
the unit belongs to. It can extended to more than 2 frames, but as noted
in Singh and Mecatti (2014), for a collection of Q ≥ 2 frames available, we
have 2Q−1 disjoint domains, which may make this extension a laborious and
arduous task.

The second proposed estimator ŷMnp, is based on the idea of multiplicity
due to Mecatti (2007), is applicable if basic frame level information is available
for all sampled units. This information pertain to the selection probability
from the sampled frame and the number of frames from which the unit could
have been selected but without the frame identification. This approach allows
extending to multiple frame in an natural and straightforward way.

Our simulation study shows that the estimator ŷMnp works well in every
scenario and outperforms any other estimator considered, including those that
take auxiliary information into account, like the calibration estimator.

We have used the multiplicity estimator due to Mecatti (2007) as a basis for
its simplicity, but the estimator ŷMnp can be extended by using the generalized
multiplicity-adjusted methodology introduced by Singh and Mecatti (2011)
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in a simple way, changing the weights 1/muj by αj(q). The GMHT class
has the potential of encompassing the range of MF estimators includes all
the known design-unbiased multiple frames estimators and therefore, multiple
nonparametric regression estimators can be defined.

8 Appendix

8.1 A.1 Proof of Theorem 1.

We write

ŷdnp =
∑
j∈a

m̂A
j +

∑
j∈sa

(yj − m̂A
j )wAj

+
∑
j∈b

m̂B
j

+
∑
j∈sb

(yj − m̂B
j )wBj

+ η

∑
j∈ab

m̂A
j +

∑
j∈sab

(yj − m̂A
j )wAj


+ (1− η)

∑
j∈ba

m̂B
j +

∑
j∈sba

(yj − m̂B
j )wBj

 . (20)

Let ŷanp denote the terms
∑
j∈a m̂

A
j +

∑
j∈sa(yj − m̂A

j )wAj
. Similarly, ŷbnp,

ŷabnp and ŷbanp denote the corresponding terms on expansion (20).
We write (

ŷdnp − Y
)

=
(
ŷanp − Ya

)
+
(
ŷbnp − Yb

)
+ η

(
ŷabnp − Yab

)
+ (1− η)

(
ŷbanp − Yba

)
. (21)

Under (A1), (A2) and (A4)-(A7), λ satisfying 0 ≤ λ ≤ 1 and taking expec-
tations, Theorem 1 in Breidt and Opsomer (2000) holds for

(
ŷanp − Ya

)
and

the same applies to terms
(
ŷbnp − Yb

)
,
(
ŷabnp − Yab

)
and

(
ŷbanp − Yba

)
. Then, the

result follows.

8.2 A.2 Proof of Theorem 2.

We write(
ŷdnp − Y

)
=
∑
j∈a

(yj − m̂A
j )(wAj

IjsA − 1) +
∑
j∈ab

(yj − m̂A
j )(wAj

IjsA − 1)η

+
∑
j∈b

(yj − m̂B
j )(wBj

IjsB − 1) +
∑
j∈ba

(yj − m̂B
j )(wBj

IjsB − 1)(1− η),

where IjsA = 1 if j ∈ sA and IjsA = 0 otherwise, and IjsB = 1 if j ∈ sB
and IjsB = 0.

The design variance is given by
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Vd(ŷ
d
np) = EdA(

∑
j∈a

(yj − m̂A
j )(wAj

IjsA − 1) +
∑
j∈ab

(yj − m̂A
j )(wAj

IjsA − 1)η)2

+ EdB(
∑
j∈b

(yj − m̂B
j )(wBj

IjsB − 1) +
∑
j∈ba

(yj − m̂B
j )(wBj

IjsB − 1)(1− η))2

= EdA(
∑
j∈A

(yj − m̂A
j )(wAj

IjsA − 1)ηAj
)2 + EdB(

∑
j∈B

(yj − m̂B
j )(wBj

IjsB − 1)(ηBj
))2,

because the sampling designs dA and dB are independent. Let

cA =
∑
j∈A(yj −mj)(wAjIjsA − 1)ηAj , cB =

∑
j∈B

(yj −mj)(wBjIjsB − 1)ηBj ,

tA =
∑
j∈A(mj − m̂A

j )(wAj
IjsA − 1)ηAj

and tB =
∑
j∈B

(mj − m̂B
j )(wBj

IjsB − 1)ηBj
.

Then

EdA

∑
j∈A

(yk − m̂A
k )(wAjIjsA − 1)ηAj

2

= EdA(cA + tA)2 =

EdA(c2A) + EdA(t2A) + 2EdA(tAcA) = EdA(c2A) + o(1), (22)

because of lemma 5 in Breidt and Opsomer (2000), EdA(t2A) = o(1), so that
EdA(tAcA) ≤ (EdA(t2A)EdA(c2A))1/2 = o(1).

Similarly EdB(tBcB) = EdB(c2B) + o(1).
We have thus that the asymptotic variance of the estimator is given by

AVd(ŷ
d
np) = EdA(c2A) + EdB(c2B).

By using the properties of the Horvitz-Thompson estimator (Horvitz and
Thompson 1952) we can deduce

EdA(c2A) =
∑
k,j∈A

(yk −mk)(yj −mj)

 ∑
sA3k,j

wAk
wAj

(pd(sA)− 1)ηAk
ηAj


=
∑
k,j∈A

(yk −mk)(yj −mj)(wAk
wAjπAkj

− 1)ηAk
ηAj . (23)

Using Theorem 3 of Breidt and Opsomer (2000) for the sampling design
dA, we obtain that an unbiased estimator of this variance is given by

∑
k,j∈sA

(yk − m̂A
k )(yj − m̂A

j )
(
wAk

wAjπAkj
− 1
)
ηAk

ηAj

πAkj

.

A similar expression can be derived for EdB(c2B) and then, the result fol-
lows.
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8.3 A.3 Proof of Theorem 3 and 4.

Proofs of Theorems 3 and 4 are similar to proofs of Theorems 1 and 2; the
value of ηAj

and ηBj
in frames A and B is now assumed by the factors 1

muj

for each frame.
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