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An improved class of estimators in RR
surveys

M. Rueda B. Cobo A. Arcos

This work proposes a general class of estimators for the population total of a sensitive variable using auxiliary information.
Under a general randomized response model, the optimal estimator in this class is derived. Design based properties of
proposed estimators are obtained. A simulation study reflects the potential gains from the use of the proposed estimators
instead of the customary estimators. Copyright (© 2009 John Wiley & Sons, Ltd.

Keywords: Auxiliary information; Randomized Response Technique; Horvitz-Thompson estimator

1. Introduction

Linear estimation parameters in a population is done through surveys. An example is the number of voters to a particular party
in an election poll.

In many surveys it becomes necessary to probe into areas considered sensitive and potentially embarrassing. The validity
of self-reports of sensitive attitudes and behaviors suffers from the tendency of individuals to distort their responses towards
their perception of what is socially acceptable. As a consequence, studies self-report measures consistently underestimate the
prevalence of undesirable attitudes or behaviors and overestimate the prevalence of desirable attitudes or behaviors. In an attempt
to reduce this bias, [41] developed the randomized response technique (RRT). His idea spawned a vast volume of literature, see,
for instance [5], [9], [16], [10], [34].

[22] and [21] have extended Warners model to the case where the responses to the sensitive question are quantitative rather
than a simple yes or no. The respondent selects, by means of a randomization device, one of the two questions: one being
the sensitive question, the other being unrelated. There are several difficulties that arise when using this unrelated question
method ([37]). These difficulties are no longer present in the scrambled randomized response method introduced by [17]. In
Eichhorn and Hayre model each respondent scrambles their response y by multiplying it by a random variable S and then reveals
only the scrambled result z = yS to the interviewer, thus, the scrambled randomized response model maintains the privacy of
the respondents.[32] discussed the use of scrambled responses based on both multiplicative and additive model which involve
the respondent adding and multiplying the answer to the sensitive question by two random number. [8] proposed a method
that generalizes the Eichhorn and Hayre model which introducing a design parameter controlled by the researcher and used for
randomizing the responses. Other important RR models are proposed by [18], [16] and by [20].

Most research into RRT techniques deals exclusively with the interest variable and does not make explicit use of auxiliary
variables in the construction of estimators. Examples of these auxiliary variables in election polls could be sex, age, educational
level or taxes. [14] pointed out that in sampling practice direct techniques for collecting information about non-sensitive
characteristics make massive use of auxiliary variables to improve sampling design and to achieve higher precision in population
parameter estimates. Nevertheless, very few procedures have been suggested to improve randomization technique performance
using supplementary information. Regression estimators for scrambled variables are defined in [35], [15], [29] and [38]. [40]
introduced the calibration of scrambled responses and find the conditional bias and variance of the proposed estimator. [36]
proposed an empirical log-likelihood estimator for estimating the population mean of a sensitive variable in the presence of an
auxiliary variable. [16] discussed the use of auxiliary information to estimate the population mean of a sensitive variable when
data are perturbed by means of three scrambled response devices, namely the additive, the multiplicative and the mixed model.
[25] proposed exponential-type estimators using one and two auxiliary variables.

From a mathematical point of view, a process of seeking an optimal estimator in a class of estimators for the total of sensitive
characteristic arises; under a general model for the scrambling response and in presence of additional information.
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In this paper we suggest a class of estimators for a finite population total when the population totals of the auxiliary variables
are known. In Section 2, we introduce the problem of estimating the total of the target population when there are scrambled
variables. In section 3, we propose a general class of estimators for the population total. Proposed estimators are based upon
auxiliary variables and assume that observations on the variable of interest are obtained using a Randomized Response Technique.
We present particular estimators of the proposed class of estimators and we derive the asymptotic properties of these estimators.
Using a real population, the proposed estimators are evaluated empirically in Section 4, and they are compared to alternative
estimators. Finally, some conclusions are drawn.

2. Estimation of the population total in RRT

Consider a finite population U, consisting of N different individuals. Let y;, i = 1, ..., N be the value of the sensitive aspect under
study for the ith population element. Our aim is to estimate the finite population total Y = Z,’ily,- of the variable of interest
y or the population mean Y = 1/N Z,’ily,-.

Assume that a sample s of individuals is chosen according to a non informative sampling design  p with first order inclusion
probabilities m; = > ; p(s).i € U and second order inclusion probabilities 7 = Zsau p(s),i,j € U . Let us assume that the
operators E4 and Vy denote expectation and variance with respect to the sampling design (see [7]), and that the first and second
order inclusion probabilities are positive.

If the value y; is known exactly by observing the i-th individual, then the standard Horvitz and Thompson (HT) estimator of
the total Y can be used:

> Yi
Y = —
25
IES
with variance: )
Vit (Y) = 5 ZZ(?WTJ — ;) (;’I - ;ﬁ)
i# jeEU
which can be unbiasedly estimated as

~ ~ 1 T — Tij Vi Yi 2
Vir (V) = EZZT (;, - 7TJ)
i# jEs

Let y be the variable under study, a sensitive variable which can not be observed directly. In order to consider a wide variety
of RR procedures, we consider the unified approach given by [5]. The interviews of individuals in the sample s are conducted
in accordance with a RR model. Since y; is not directly available from the respondent, y; is estimated through the randomized
response obtained from the ith respondent. Suppose that the ith respondent has to conduct a RR trial independently and z; is the
randomized response (or scrambled response) for the trial. For each i € s the RR induces a revised randomized response r; such
as Er(ri) = yi and Vr(ri) = ¢; where the operators Er and Vi denote expectation and variance with respect to randomization
procedure RR.

As usual in the design-based approach to RR techniques, it is assumed that the sampling design and the randomization
stage are independent of each other (see, e.g., [7]), and that the randomization stage is performed on each selected individual
independently. In this general set-up, the Horvitz-Thompson type estimator for the population total of the sensitive characteristic
y given by

vin=S 14
i€s i

is an unbiased estimator since:
~ ri
E(Y(r) = Es(Er(Y_ D)) =Y
i€s !

The variance of Y (r) can be obtained from

2
. _ - N |1 Yi Y di| i
V(7 (1) = ValER(V (7)) + Ve(Ea(7 (1) = {2 S mm ) (L L) + T 8| v 8
i# jEU ieu ieu
being V7 the variance of the HT estimator based on the y/s. An estimator of V(Y (r)) is given by
V() = lzzm n_n 2+Z@
2 i£ jes Tij T ics i .
This estimator is an unbiased estimator of V(Y (r)) if ¢; is an RR-unbiased for ¢;.
Copyright (© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1-13
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3. Estimators in the presence of auxiliary information

3.1. A general class of estimators for the total

The proposed estimators consider k auxiliary variables xi, ..., xk, for which the population totals Xi, ..., Xk, are known. We
assume that the values of auxiliary variables can be observed directly in the sample. Our goal is to estimate the population
parameter Y by using observations of the variables r, x1,..., Xk in the sample s, and the known population values Xi, ..., Xk

associated with the auxiliary variables. We note by >?h the Horvitz-Thompson estimator of the total X, (h=1, ..., k).
Motivated by [39], we suggest the class of estimators of Y

v = (G (), ur, .. u)}, =

where G(-) is a function of up = )?h/Xh, continuous in a closed convex sub-space, P C R¥*! containing the point (Y, 1,...,1) =
(Y, 1), and such that

(A1) G, 1))=Y
(A2) G4(Y,1) =1 where G4(Y, 1) denoting the first partial derivative of G(-) with respect to Y (r), and
(A3) The first and second order partial derivatives of G(-) exist and are also continuous and bounded in P.

Now we studies some asymptotic design-based properties of \7;’). We consider the asymptotic framework of [23], in which
the finite population U and the sampling design p are embedded into a sequence of such populations and designs indexed by N,
{Un, pn}, with N — co. We assume that Ny — oo and ny — oo, ny/Ny — f € (0, 1), as N — oo. Subscript N may be dropped
for ease of notation, although all limiting processes are understood under the above cited conditions. Stochastic order — O,(+) is
with respect to the aforementioned sequence of designs.

Theorem 1

Any estimator into the class (1) is asymptotically unbiased for Y.

Proof

By expanding G about the point (Y, 1) in a first order Taylor series, it is found that

k
YO =G 1)+ (Y(n) = Y)G(Y, 1) + > Ghlvay(un — 1) + Op(n 1) (2)

h=1

where G}, denotes the first order partial derivative with respect to  up,.
By taking expectations on both sides in (2) we obtain

k !

R X R .

EIl= Y + EV(N] =Y + 3 E(Xn = Xh)%.
n

h=1

We have E[Y(r)] = E4Er(Y(r)) =Y, E[Xn] = E4(Xp) = Xp. Thus E[Y”] =Y +O(n™?) so the bias is of order n~".
Theorem 2 An approximation of the bias of the proposed class of estimators is given by:

~ o~ . -
~ Cov(Xn, Xt) 1S V(K)o

Bl =S =2t g LSV
[ ! ] h<t XhXt I7t|(Y,1) + 2 ; XI% hh|(Y.1)

A k o~ o~
1V (Y(r)) 1 Cov(Xp, Y(r))
+=——Goolvy) + 5 E —

5Ty X; Gonlev.ny

h=1

where G, denote the second order partial derivative with respect to wuj, and u:, Ggj, is the second order partial derivative with
respect to Y and up, and Gg is second order partial derivative respect to Y.

Proof.

By expanding G about the point (Y, 1) in a second order Taylor series,

k
Y =Y 4+ (V) =Y)+ > Gl (un — D+

h=1

k
1
> _(un = 1) (e = DGhelovy + 5 D _(n = 1)*Giplovy+

h<t h=1

k
1 ~ 1 - -
5 2 (un = DY (1) = ¥)Gonlovay + (Y (r) = ¥)*Glolvay + Op(n™?)

h=1
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Taking expectations in the above second degree approximation we obtain the approximate bias (of order O(n’2)) of the
proposed estimator.
Note that, under a general sampling design, the variances and covariances in Theorem 2, can be computed as:

V(Xp) = = ZZ(’TFWJ w,J)(X’“ X’”)2

i# jeu i
and

2
Cov()?h,)?t)— ZZ(W,WJ Tij) (ﬁ— ) ,

i# jeU

V(Y (r)) is given in section 2. Then, we only need to obtain the Cov()?h, ?(r)). For this, using the covariance theorem, we have:

Cov(Xn Y(r)) = Ea(covr(Xn, Y (r)) + cova(Er(Xn), Er(Y(r))) =

2
E4(0) + covy (X/7 Z y,> ZZ(W,WJ i) (ﬁ - ) .

i€s i# jeu

Note 1. In deriving the expected value of \79(') we assumed that the contribution of terms involving powers higher that
the second is negligible. One can retain the terms up to and including degree third and four and proceed to obtain a better
approximation to the expected value of ?g(’). Unless n is small, the contribution of the third and fourth degree terms to the
relative bias can be considered to be negligible. For appreciable large 1, say 30 or larger, the approximation to O(n™!) may be
considered as adequate (see [4].)

Theorem 3 The asymptotic variance of any estimator into the class (1) verifies:

AV (Y > v(Y(r) - o =700,

where ¥ = (ane) (kwky With apn = V(Xp), ane = Cov(Xp, X¢) and 0 = (Cov (X1, V(r)), ..., Cov(Xx, V().
Proof.
By squaring both sides in expression (2), taking expectations and neglecting higher order terms we obtain the following
approximation
X 2
V) = VD = YP = E [Y(N+ D Gilon(un—1) =Y | . 3)
h=1

On differentiating (3) and equating to zero, we obtain the optimum values of the parameters as
(Gilvay -+ Gklovn) = D'b,
where D = (dpt), b = (b1, ..., bx)" and

Y2Cov(Xp, Xt) A YCov (X Y(r))
EEEEvIEvI— h= "+ -

d =
n XpXt ’ X

On substituting the optimum values into (3) we obtain the minimum first order approximation for the variance

Alen(Y(r)) = V(Y(r)) -0 Z o= V(Y(f))(l Y(r) Xl ..... X )’
where R?(r)x R is the multiple correlation coefficient. This proofs the Theorem 3.
Note2. The above expression emphasizes the role of the auxiliary variables in improving the accuracy of the estimates.
(1- Ri(r)x .___)?k) denotes the reduction in the variance due to the use of auxiliary variables. We observe that the multiple

correlation coefficient increases with the number of secondary variables and with the number of auxiliary parameters, hence the
variance of proposed estimators is a monotone decreasing function of the number of secondary variables.
Note 3. In practice the value of Ry(r)x _____ % is unknown, and this fact is even more complicated in this case as y, being
sensitive, makes difficult making some guess on the value of the AVni,. If we consider the generalized randomised response
procedure given in [3] the revised values are given by r, = 22
coefficient RY(r)X _____ %, can be obtained from the correspondent correlation coefficient using the scrambled responses  z;.

The proposed class of estimator can be used to obtain an optimal difference type estimator using the idea proposed in [26]

and [27]. Specifically, let us now consider a choice within the class G of the type

k
G(Y(r).ur....ue) =Y(r)+ Y dn(un — 1)Xn,

h=1

Copyright (© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1-13
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which yields to the difference estimator
k

?gD = ?(r)+zdl7(xh_5<\h) (4)
h=1

The optimum dj, values are: (di, ..., dk)’ = ="' and
V(Yep) = V(Y(r) — o' o = AViin(Y").

It is interesting to note that the Iower bound of the asymptotic variance of Y(') is the variance of the difference estimator YgD
with the optimum dp values. Thus, YgD is, asymptotically, an optimal estimator into the class in the sense that it has a lower
asymptotic variance, but is not unique. Any other estimator which attains the minimum variance bound is optimum as well,
thus to theAfirst order of approximation, i.e., up to terms O(nl), these estimators will be equivalent to the optimal difference

estimator Yyp. For dp, with h=1, ..., k, known, this estimator has the advantage of providing exact results for the unbiasedness
and the variance of the estimator of the total.
The optimum values dp, with h=1,..., k, depend on population values, which are generally unknown in practice, hence the

optimal difference estimator Yyp cannot be used in general. Population values can be estimated by using sample values or using
some replication methods.
After replacing ¥ and o by their estimators ¥ and &, we obtain the difference type estimator

Voa = V(r) + (@ - é) S (5)
where © = (X1, ..., X¢) and © = (X1, ..., X))

3.2. Application to simple random sampling

Some asymptotic properties under simple random sampling are derived in this section.
Theorem 4

Assuming simple random sampling, the estimators \A/g(r), \7913 and \A/gd are asymptotically unbiased and normally distributed.

Proof.

The asymptotic unbiasedness of YgD and Y( ") is easily derived from its linear expression (6), and using the fact that Y (r) and
Xh with h=1,..., k are unbiased of their respective parameters. Similarly, since Y(r) and Xh are asymptotically normal, the
estimators Y( ) and YD are also asymptotically normal.

Results derived from [30] can be used to show that Ygd has asymptotically the same distribution than

Yoo = V(1) + (0~ é)'z 1

Following [30] the proposed difference estimator can be expressed as Ygd = Tn(Z 1), _whereas YgD can be expressed as
YgD = T,(Z710), where Tn(Z 13) is a function of the data and uses the estimator Tl5 = (d1 dk,) which is also a function
of the data, consistently estimating the vector parameter ¥ ~lo.

Let v be a k dimensional vector of variables. By replacing the estimator Y15 into Tn(-) by v, which is denoted by T,(7y),

the limiting mean of T,(y) can be obtained when the actual parameter value is ¥ ~!o, i.e.,

w(y) = Jim Es—14[Ta(1)] =

where Y is the limiting value of Y as N — occo. Therefore

Ou() _ [ ou() ou(7) —©.....0
0y ly=x-1¢ Y1 ly=x-1¢"" """ vk ly=x=-1¢ )] 77 '

Assuming this condition, [30] showed that the limiting distribution of Tn(f’lc?) is the same than the distribution of To(X o),
and hence the estimator Yyq is asymptotically unbiased and has the same asymptotic variance than = Ygp. This completes the
proof.

3.3. Application to stratified sampling

Stratified sampling designs form an interesting and useful subclass of sampling designs. To define a stratified sampling design,
on divide the population U of size N into L non overlapping subpopulations or strata U,, having N, units of U. In each stratum
U we select a sample s; by using a sampling design p; independently of one another. For example, we consider that p; is a simple
random sampling without replacement of n; size.

Let yi; be the value of the study variable y, and r; the value of the randomized response for the Jth population element of
stratum /. If the values of auxiliary variables xp are known for each population unit xuj; , in a similar way as [12] we can considered

Math. Meth. Appl. Sci. 2009, 00 1-13 Copyright © 2009 John Wiley & Sons, Ltd.
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a general class of estimators in each stratum. The minimum asymptotic variance  AVimim = V(Yi(r)) — /£, 710, is achieved by
the difference estimator in stratum /:

K
Yoo1 = Vi(r) + Z At (Xnt — Xnr)

h=1

- . o x -1 - %
where  Yi(r) = N3 e, e Xn= Dicy Xnite Xoo = NiYieq W dw=Xo L= (ant)(kxky with  apn =V (X)), ane =

Cov(Xp, Xer) and o) = (Cov (X, Yi(r)), ..., Cov (Xur, Vi(r)))".
Thus, the separate estimator:

L
~e ~
Ygp = g YD1
=1

can be used for estimating the total Y. The properties of this estimator can be easily obtained by using the independence of
sampling en each stratum. For example, an expression for the variance is given by:

L
V(Ye) = Y _VVi(r) — o1 o,

I=1

The above formulae are based on the assumption that n; is large V/. This, however, is not always true in practice. To get over
this difficulty we suggest a general class of combined estimators given by:

Vi = {G(Yse(r), un, ..., uk)}, (6)

where G(-) is a function of up = )?,,st/Xh, being o _ > Xy and Yor(r) = Z,\A/,(r).
In a similar way of section 3.1, the asymptotic variance of any estimator into the class verifies

L
AV (Y50) 2 V(Y _ Vi) — 04Tse  ose
I=1
where Zst = (am)(kxk) with dhh = V(Z, )?/,/), aht = COV(Z, )?/,/, ZI )?z/) and
O'stZ(COV(Z,Xu,Z,Y/(I’)) ..... COV(Z,XH,Z,Y/(I‘)))’.

An asymptotically optimal estimator is given by the combined difference estimator:
~ ~ ~ \/ _
chD = Yst(r) + (e - est) PP 10—5!‘

being @st = (Xlst ..... stt)’-
The optimum sample allocation for the separate and for the combined difference estimators under a linear cost function can
be obtained minimizing in n; the above expressions given for its variances.

3.4. Other estimators in the class

For direct questioning many different estimators based on information of auxiliary variables have been proposed following different
approaches. Some of them can be extended to our case of RR questioning. To the first order of approximation, some of these

are equivalent to the difference estimator Yyp while others are less efficient. For space saving purpose, we do not show the
plethora of estimator based on the information about parameters of auxiliary variables (see [13] for more examples of estimators
in the class) .

Some example of estimators which attain the minimum variance bound of the class:

e The exponentation estimator (based on the idea of [1]), which is given by
k a
~ . Xp\
v =v(n]] (%) . (7)
h=1 h
e The exponentiation-difference estimator (based on the idea of [24]) given by

K a k
Tex v Xh ’ X,
v =vin]] (XTI> + > bu(Xn = Xn). ©
h=1

h=1 h

Some example of estimator which are not optimum in the class.

Copyright (© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1-13
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e The exponential ratio type estimator (based on the idea of [6])

~

Xh
VPR =¥ (r) exp (9)
hH X Xh

e The generalized regression-cum-exponential estimator (based on the idea of [25])

?gregcex — (Wof/(f) + ; Wh(Xh — )?h))eXp(M) (10)

4. Simulation study

We have tested the real performance of the proposed estimators through simulation studies. The free statistical software R ([33])
was used to perform this simulation study. The library RRTCS of R ([11]) was used and, where necessary, we have developed
new R-code implementing the proposed estimators.

For this purpose, we consider two studies with real and simulated populations.

The first simulation has been performed using two simulated populations used previously by [25]. The populations of size
N=1000 are generated from a multivariate normal distribution ( y, x1, x2) with the same vector of means (5,5,5) and with
different covariance matrices. The correlations in population 1 are  pyx, = 0.6844426 and pyx, = 0.6458839, and the correlations
in population 2 are pyx, = 0.8659185 and pyx, = 0.8279276.

We calculate the mean estimation of de variable of interest, dividing the proposed estimators above-named by population size.

For all populations, randomized response data were generated by using three different randomized response models. In recent
years many models of randomized response have been proposed; we have included in the simulations these three models because
there are some kind of kernel of RR procedures families:

e Eichhorn and Hayre model: In Eichhorn and Hayre model ([17]) each sample respondent is to report  zj = S % y; where S'is a
random sample from a population with known mean 6 and known variance «2. In this model Er(z) =6, r; = z/6, ¢ = /6>

e Eriksson model: In Eriksson RR technique ([18]) it is assumed that the variable under study y can take any value in the
known interval (a, b). M values Q1(= a), Q2, ..., Qu(= b) are chosen in the interval ( a, b). The vector Q@ = (Q1, ..., Qm)
covers the range ( a, b) and the value of M depends on the length of the interval. The respondent is supposed to report
either the true value y; with probability c or the Q; value with probability qi(q; > 0,3;q; =1 — c) as his/her RR response.
In this case Egr(z) = cx*yi+ Z. qQj, Er(z?) = cxy? + Z qQ;. ri=(z1—Y;qQ))/c. ¢i=axy?+B*y +~ and

- +Bri+ -2 > 4@ (ZqQ
¢I_ ar; 1_5;: Y where o = 1=¢ B— quJQj and = J 9 g ¥

e Bar-Lev, Bobovitch and Boukal model: Thls model considered in ([8]) is a special case of Eriksson model. Here each of
the sampled respondents is requested to rotate a spinner unobserved by the interviewer, and if the spinner stops in the
shaded area, then the respondent is asked to disclose the true value y;, otherwise, the respondent is asked to scramble
their response y by multiplying it by a random variable S with known distribution. So in this method =z = y; with probability

p1, zi = S * y; with probability 1 — p1 and r; = m.

The parameters for these models are:

e Eichhorn and Hayre S ~ F(20, 20)
e Eriksson @ = (36656.0,40200.5,43698.0),c =0.7,q1 = q> = g3 =0.1
e Bar-Lev, Bobovitch and Boukai S ~ exp(1),p =0.6

For comparison purposes, the Horvitz Thompson estimator, \A/(r), the difference estimator, ?gd, the exponentiation estimator,
?gexp, and the exponential ratio type estimator, ?gepr, are computed.

In this context, simple random samples with different sizes ( n = 30, 50, 100, 200, 300) have been drawn. We have tested the
performance of these estimators with respect to the criteria: relative bias and mean square error through simulation studies.

R = A1) Z'”—/ Y :MSE = (1/T) * Z? V)2

where }2/ is a given estimator and Y the population mean and T is the number of replicates, in our case 1000.
Table 1 and Table 2 present the RB and MSE statistics for population 1 and population 2 for some sample sizes. The value
NAV indicates the number of auxiliary variables used in the estimation process.
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The main conclusions derived in this study are:

- The relative absolute bias of the estimators are all within a reasonable range for the different sample sizes considered.

- More efficient estimators values are obtained if the correlations between the auxiliary variables and the principal are high.

- The values of relative bias and mean square error decrease as the sampling size increase, for all estimators and all RR
techniques.

- The superiority of estimators based on auxiliary information is clear: the suggested estimators belonging to the class \79“)
are always more efficient than the Horvitz-Thompson estimator, whatever the adopted scrambling procedure.

- The values of relative bias and mean square error are very similar between ?gd and \7;’”’. The difference in bias and MSE
between these estimators is smaller as the sample size increases. This is expectable because the two estimator are asymptotically
equivalents.

- Difference estimator ?gd or exponentiation estimator \/;gex" are the most efficient estimator for using one or two auxiliary
variables.

- The suggested estimators \A/gd, and \A/ge"" with two auxiliary variables perform better than the estimator with one auxiliary
variable, as expected.

The second simulation study was carried out with a natural population called FAM1500 (see [19], [31]). The study considers
this population of 1500 families living in an Andalusian province to investigate their income tax return. In these simulations
we use as auxiliary variable, food expenses. The total for this variable is known. The sample is drawn by stratified sampling by
house ownership. We select T = 1000 stratified samples of different samples sizes n = 30,50, 100, 200, 300 with proportional
allocation.

Table 3 shows the RB and MSE statistics for the FAM1500 population.
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Results of this simulation are in accordance with those obtained in the previous study: for all randomized response models
used, there is a decrease in the relative bias and the mean square error if we compared the Horvitz-Thompson estimator with
others estimators which use auxiliary information. The gain in efficiency is relevant for the Eriksson model. The values of relative
bias and mean square error for all models are very similar between \A/gd and }A’gex”. Nevertheless, the proposed estimators \A/gd and
\7;’”’ dominate the other, for any choice of the sample size and the randomized technique.

5. Conclusions

Privacy protection is a crucial objective for both data collection and statistical analyses in the study of sensitive variables as
tax evasion, sexual behaviours, reckless driving, indiscriminate gambling, abortion, etc. Randomized response methods can be
beneficially employed for collecting and analysing information about sensitive topics. Many studies have assessed the validity of
RR methods showing that they can produce more reliable answers than other conventional data collection methods but RRT
estimates are affected by higher sampling variance than direct questioning estimates. The loss of efficiency represents the cost
to pay for obtaining more reliable information by reducing response bias. Consequently, achieving efficient estimates which are
comparable with those under direct questioning may require considerable larger sample with an obvious increasing of the survey
cost. A way to reduce the sampling variance of RRT estimators is the use of auxiliary information.

This paper makes an attempt to provide a general form of estimation of a total of a sensitive variable using auxiliary information
of supplementary variables. This situation is very common in the sampling practice. A lot of estimators were proposed to deal
with the problem of estimating a total of a non sensitive variable when supplementary information is available. Nevertheless, in
spite of different ideas followed to construct the estimators, most of them show the same efficiency. The unawareness of this
aspect caused a proliferation of several types of estimators. This situation could be extended to the case of sensitive variables.

A class of estimators of a finite population total under a general randomized response model has been defined when the
sample is obtained under a general sampling design. Estimators belonging to this class have been proven to be asymptotically
design unbiased and their asymptotic variances has been obtained. We provide also the expression of an optimal estimator in
the class, the difference estimator, that is the estimator that attains the asymptotic minimum variance bound. This estimator is
studied for some elementary sampling design as simple random sampling and stratified sampling. We introduce other estimators
in this class, some of them have asymptotically the same variance as the optimal difference estimator.

We have conducted a simulation study to check the performance of the proposed estimators. The results obtained from the
simulation study support the theoretical background and show that, given a set of auxiliary variables, the method performs well
under different scenarios in both natural and artificial populations.

In short, this paper generalizes some existing results about the use of auxiliary information in RRT ([29]) and want to contribute
stopping the tentative to spread in the RRT literature new estimators by extending non-optimum estimators conceived for direct
questioning surveys.
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