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M. Rueda B. Cobo A. Arcos

This work proposes a general class of estimators for the population total of a sensitive variable using auxiliary information.

Under a general randomized response model, the optimal estimator in this class is derived. Design based properties of

proposed estimators are obtained. A simulation study re
ects the potential gains from the use of the proposed estimators

instead of the customary estimators. Copyright c
 2009 John Wiley & Sons, Ltd.
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1. Introduction

Linear estimation parameters in a population is done through surveys. An example is the number of voters to a particular party

in an election poll.

In many surveys it becomes necessary to probe into areas considered sensitive and potentially embarrassing. The validity

of self-reports of sensitive attitudes and behaviors su�ers from the tendency of individuals to distort their responses towards

their perception of what is socially acceptable. As a consequence, studies self-report measures consistently underestimate the

prevalence of undesirable attitudes or behaviors and overestimate the prevalence of desirable attitudes or behaviors. In an attempt

to reduce this bias, [41] developed the randomized response technique (RRT). His idea spawned a vast volume of literature, see,

for instance [5], [9], [16], [10], [34].

[22] and [21] have extended Warners model to the case where the responses to the sensitive question are quantitative rather

than a simple yes or no. The respondent selects, by means of a randomization device, one of the two questions: one being

the sensitive question, the other being unrelated. There are several di�culties that arise when using this unrelated question

method ([37]). These di�culties are no longer present in the scrambled randomized response method introduced by [17]. In

Eichhorn and Hayre model each respondent scrambles their response y by multiplying it by a random variable S and then reveals

only the scrambled result z = yS to the interviewer, thus, the scrambled randomized response model maintains the privacy of

the respondents.[32] discussed the use of scrambled responses based on both multiplicative and additive model which involve

the respondent adding and multiplying the answer to the sensitive question by two random number. [8] proposed a method

that generalizes the Eichhorn and Hayre model which introducing a design parameter controlled by the researcher and used for

randomizing the responses. Other important RR models are proposed by [18], [16] and by [20].

Most research into RRT techniques deals exclusively with the interest variable and does not make explicit use of auxiliary

variables in the construction of estimators. Examples of these auxiliary variables in election polls could be sex, age, educational

level or taxes. [14] pointed out that in sampling practice direct techniques for collecting information about non-sensitive

characteristics make massive use of auxiliary variables to improve sampling design and to achieve higher precision in population

parameter estimates. Nevertheless, very few procedures have been suggested to improve randomization technique performance

using supplementary information. Regression estimators for scrambled variables are de�ned in [35], [15], [29] and [38]. [40]

introduced the calibration of scrambled responses and �nd the conditional bias and variance of the proposed estimator. [36]

proposed an empirical log-likelihood estimator for estimating the population mean of a sensitive variable in the presence of an

auxiliary variable. [16] discussed the use of auxiliary information to estimate the population mean of a sensitive variable when

data are perturbed by means of three scrambled response devices, namely the additive, the multiplicative and the mixed model.

[25] proposed exponential-type estimators using one and two auxiliary variables.

From a mathematical point of view, a process of seeking an optimal estimator in a class of estimators for the total of sensitive

characteristic arises; under a general model for the scrambling response and in presence of additional information.
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In this paper we suggest a class of estimators for a �nite population total when the population totals of the auxiliary variables

are known. In Section 2, we introduce the problem of estimating the total of the target population when there are scrambled

variables. In section 3, we propose a general class of estimators for the population total. Proposed estimators are based upon

auxiliary variables and assume that observations on the variable of interest are obtained using a Randomized Response Technique.

We present particular estimators of the proposed class of estimators and we derive the asymptotic properties of these estimators.

Using a real population, the proposed estimators are evaluated empirically in Section 4, and they are compared to alternative

estimators. Finally, some conclusions are drawn.

2. Estimation of the population total in RRT

Consider a �nite population U, consisting of N di�erent individuals. Let yi , i = 1; :::; N be the value of the sensitive aspect under

study for the ith population element. Our aim is to estimate the �nite population total Y =
∑N

i=1 yi of the variable of interest

y or the population mean �Y = 1=N
∑N

i=1 yi .

Assume that a sample s of individuals is chosen according to a non informative sampling design p with �rst order inclusion

probabilities �i =
∑

s3i p(s); i 2 U and second order inclusion probabilities �i j =
∑

s3i ;j p(s); i ; j 2 U . Let us assume that the

operators Ed and Vd denote expectation and variance with respect to the sampling design (see [7]), and that the �rst and second

order inclusion probabilities are positive.

If the value yi is known exactly by observing the i-th individual, then the standard Horvitz and Thompson (HT) estimator of

the total Y can be used:

Ŷ =
∑
i2s

yi

�i

with variance:

VHT (Ŷ ) =
1

2

∑
i 6=

∑
j2U

(�i�j � �i j)

(
yi

�i

�
yj

�j

)2

;

which can be unbiasedly estimated as

V̂HT (Ŷ ) =
1

2

∑
i 6=

∑
j2s

�i�j � �i j

�i j

(
yi

�i

�
yj

�j

)2

:

Let y be the variable under study, a sensitive variable which can not be observed directly. In order to consider a wide variety

of RR procedures, we consider the uni�ed approach given by [5]. The interviews of individuals in the sample s are conducted

in accordance with a RR model. Since yi is not directly available from the respondent, yi is estimated through the randomized

response obtained from the ith respondent. Suppose that the ith respondent has to conduct a RR trial independently and zi is the

randomized response (or scrambled response) for the trial. For each i 2 s the RR induces a revised randomized response ri such

as ER(ri) = yi and VR(ri) = �i where the operators ER and VR denote expectation and variance with respect to randomization

procedure RR.

As usual in the design-based approach to RR techniques, it is assumed that the sampling design and the randomization

stage are independent of each other (see, e.g., [7]), and that the randomization stage is performed on each selected individual

independently. In this general set-up, the Horvitz-Thompson type estimator for the population total of the sensitive characteristic

y given by

Ŷ (r ) =
∑
i2s

ri

�i

is an unbiased estimator since:

E(Ŷ (r )) = Ed(ER(
∑
i2s

ri

�i

)) = Y

The variance of Ŷ (r ) can be obtained from

V (Ŷ (r )) = Vd(ER(Ŷ (r )) + VR(Ed(Ŷ (r ))) =

[
1

2

∑
i 6=

∑
j2U

(�i�j � �i j)

(
yi

�i

�
yj

�j

)2

+
∑
i2U

�i

�i

]
= VHT +

∑
i2U

�i

�i

being VHT the variance of the HT estimator based on the y 0i s. An estimator of V (Ŷ (r )) is given by

V̂ (Ŷ (r )) =

[
1

2

∑
i 6=

∑
j2s

�i�j � �i j

�i j

(
ri

�i

�
rj

�j

)2

+
∑
i2s

�̂i

�i

]
:

This estimator is an unbiased estimator of V (Ŷ (r )) if �̂i is an RR-unbiased for �i .

2 Copyright c
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3. Estimators in the presence of auxiliary information

3.1. A general class of estimators for the total

The proposed estimators consider k auxiliary variables x1; : : : ; xk , for which the population totals X1; : : : ; Xk , are known. We

assume that the values of auxiliary variables can be observed directly in the sample. Our goal is to estimate the population

parameter Y by using observations of the variables r; x1; : : : ; xk in the sample s , and the known population values X1; : : : ; Xk

associated with the auxiliary variables. We note by X̂h the Horvitz-Thompson estimator of the total Xh (h = 1; :::; k ).

Motivated by [39], we suggest the class of estimators of Y

Ŷ
(r)
g = fG(Ŷ (r ); u1; :::; uk)g; (1)

where G(�) is a function of uh = X̂h=Xh, continuous in a closed convex sub-space, P � R
k+1, containing the point ( Y; 1; :::; 1) =

(Y; 1), and such that

(A1) G(Y; 1) = Y

(A2) G 0
0(Y; 1) = 1 where G 0

0(Y; 1) denoting the �rst partial derivative of G(�) with respect to Ŷ (r ), and

(A3) The �rst and second order partial derivatives of G(�) exist and are also continuous and bounded in P .

Now we studies some asymptotic design-based properties of Ŷ
(r)
g . We consider the asymptotic framework of [23], in which

the �nite population U and the sampling design p are embedded into a sequence of such populations and designs indexed by N ,

fUN ; pNg, with N !1. We assume that NN !1 and nN !1, nN=NN ! f 2 (0; 1), as N !1. Subscript N may be dropped

for ease of notation, although all limiting processes are understood under the above cited conditions. Stochastic order Op(�) is

with respect to the aforementioned sequence of designs.

Theorem 1

Any estimator into the class (1) is asymptotically unbiased for Y .

Proof

By expanding G about the point ( Y; 1) in a �rst order Taylor series, it is found that

Ŷ
(r)
g = G(Y; 1) + (Ŷ (r ) � Y )G

0
0(Y; 1) +

k∑
h=1

G
0
hj(Y;1)(uh � 1) + Op(n

�1
) (2)

where G 0
h denotes the �rst order partial derivative with respect to uh.

By taking expectations on both sides in (2) we obtain

E[Ŷ
(r)
g ] ' Y + E[Ŷ (r )] � Y +

k∑
h=1

E(X̂h � Xh)
G 0
hj(Y;1)

Xh

:

We have E[Ŷ (r )] = EdER(Ŷ (r )) = Y , E[X̂h] = Ed(X̂h) = Xh. Thus E[Ŷ
(r)
g ] = Y + O(n�1) so the bias is of order n�1.

Theorem 2 An approximation of the bias of the proposed class of estimators is given by:

B[Ŷ
(r)
g ] =

∑
h<t

Cov (X̂h; X̂t)

XhXt

G
00
ht j(Y;1) +

1

2

k∑
h=1

V (X̂h)

X2
h

G
00
hhj(Y;1)

+
1

2

V (Ŷ (r ))

Y
G
00
00j(Y;1) +

1

2

k∑
h=1

Cov (X̂h; Ŷ (r ))

Xh

G
00
0hj(Y;1)

where G 00
ht denote the second order partial derivative with respect to uh and ut , G

00
0h is the second order partial derivative with

respect to Y and uh, and G 00
00 is second order partial derivative respect to Y .

Proof.

By expanding G about the point ( Y; 1) in a second order Taylor series,

Ŷ
(r)
g = Y + (Ŷ (r ) � Y ) +

k∑
h=1

G
0
hj(Y;1)(uh � 1)+

∑
h<t

(uh � 1)(ut � 1)G
00
ht j(Y;1) +

1

2

k∑
h=1

(uh � 1)
2
G
00
hhj(Y;1)+

1

2

k∑
h=1

(uh � 1)(Ŷ (r ) � Y )G
00
0hj(Y;1) +

1

2
(Ŷ (r ) � Y )

2
G
00
00j(Y;1) + Op(n

�2
)
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Taking expectations in the above second degree approximation we obtain the approximate bias (of order O(n�2)) of the

proposed estimator.

Note that, under a general sampling design, the variances and covariances in Theorem 2, can be computed as:

V (X̂h) =
1

2

∑
i 6=

∑
j2U

(�i�j � �i j)

(
xhi

�i

�
xhj

�j

)2

and

Cov (X̂h; X̂t) =
1

2

∑
i 6=

∑
j2U

(�i�j � �i j)

(
xhi

�i

�
xtj

�j

)2

;

V (Ŷ (r )) is given in section 2. Then, we only need to obtain the Cov (X̂h; Ŷ (r )). For this, using the covariance theorem, we have:

Cov (X̂h; Ŷ (r )) = Ed(covR(X̂h; Ŷ (r )) + covd(ER(X̂h); ER(Ŷ (r ))) =

Ed(0) + covd

(
X̂h;

∑
i2s

yi

�i

)
=

1

2

∑
i 6=

∑
j2U

(�i�j � �i j)

(
xhi

�i

�
yj

�j

)2

:

Note 1. In deriving the expected value of Ŷ
(r)
g we assumed that the contribution of terms involving powers higher that

the second is negligible. One can retain the terms up to and including degree third and four and proceed to obtain a better

approximation to the expected value of Ŷ
(r)
g . Unless n is small, the contribution of the third and fourth degree terms to the

relative bias can be considered to be negligible. For appreciable large n, say 30 or larger, the approximation to O(n�1) may be

considered as adequate (see [4].)

Theorem 3 The asymptotic variance of any estimator into the class (1) veri�es:

AV (Ŷ
(r)
g ) � V (Ŷ (r )) � �

0
�
�1
�;

where � = (aht)(k�k) with ahh = V (X̂h), aht = Cov (X̂h; X̂t) and � = (Cov (X̂1; Ŷ (r )); : : : ; Cov (X̂k ; Ŷ (r )))
0.

Proof.

By squaring both sides in expression (2), taking expectations and neglecting higher order terms we obtain the following

approximation

V (Ŷ
(r)
g ) = E[Ŷ

(r)
g � Y ]

2
' E

[
Ŷ (r ) +

k∑
h=1

G
0
hj(Y;1)(uh � 1) � Y

]2
: (3)

On di�erentiating (3) and equating to zero, we obtain the optimum values of the parameters as

(G
0
1j(Y;1); : : : ; G

0
k j(Y;1))

0
= D

�1
b;

where D = (dht), b = (b1; :::; bk)
0 and

dht =
Y 2Cov (X̂h; X̂t)

XhXt

; bh =
Y Cov (X̂h; Ŷ (r ))

Xh

:

On substituting the optimum values into (3) we obtain the minimum �rst order approximation for the variance

AVmin(Ŷ
(r)
g ) = V (Ŷ (r )) � �

0
�
�1
� = V (Ŷ (r ))(1 � R

2

Ŷ (r);X̂1;:::;X̂k
);

where R2

Ŷ (r);X̂1;:::;X̂k
is the multiple correlation coe�cient. This proofs the Theorem 3.

Note2. The above expression emphasizes the role of the auxiliary variables in improving the accuracy of the estimates.

(1 � R2

Ŷ (r);X̂1;:::;X̂k
) denotes the reduction in the variance due to the use of auxiliary variables. We observe that the multiple

correlation coe�cient increases with the number of secondary variables and with the number of auxiliary parameters, hence the

variance of proposed estimators is a monotone decreasing function of the number of secondary variables.

Note 3. In practice the value of R2

Ŷ (r);X̂1;:::;X̂k
is unknown, and this fact is even more complicated in this case as y , being

sensitive, makes di�cult making some guess on the value of the AVmin. If we consider the generalized randomised response

procedure given in [3] the revised values are given by ri =
zi�a

b
being a and b constants, thus an idea of the multiple correlation

coe�cient R2

Ŷ (r);X̂1;:::;X̂k
can be obtained from the correspondent correlation coe�cient using the scrambled responses zi .

The proposed class of estimator can be used to obtain an optimal di�erence type estimator using the idea proposed in [26]

and [27]. Speci�cally, let us now consider a choice within the class G of the type

G(Ŷ (r ); u1; : : : ; uk) = Ŷ (r ) +

k∑
h=1

dh(uh � 1)Xh;

4 Copyright c
 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1{13
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which yields to the di�erence estimator

ŶgD = Ŷ (r ) +

k∑
h=1

dh(Xh � X̂h) (4)

The optimum dh values are: (d1; :::; dk)
0 = ��1� and

V (ŶgD) = V (Ŷ (r )) � �
0
�
�1
� = AVmin(Ŷ

(r)
g ):

It is interesting to note that the lower bound of the asymptotic variance of Ŷ
(r)
g is the variance of the di�erence estimator ŶgD

with the optimum dh values. Thus, ŶgD is, asymptotically, an optimal estimator into the class in the sense that it has a lower

asymptotic variance, but is not unique. Any other estimator which attains the minimum variance bound is optimum as well,

thus to the �rst order of approximation, i.e., up to terms O(n1), these estimators will be equivalent to the optimal di�erence

estimator ŶgD. For dh, with h = 1; : : : ; k , known, this estimator has the advantage of providing exact results for the unbiasedness

and the variance of the estimator of the total.

The optimum values dh, with h = 1; : : : ; k , depend on population values, which are generally unknown in practice, hence the

optimal di�erence estimator ŶgD cannot be used in general. Population values can be estimated by using sample values or using

some replication methods.

After replacing � and � by their estimators �̂ and �̂, we obtain the di�erence type estimator

Ŷgd = Ŷ (r ) +
(
� � �̂

)0
�̂
�1
�̂; (5)

where �̂ = (X̂1; : : : ; X̂k)
0 and � = (X1; : : : ; Xk)

0.

3.2. Application to simple random sampling

Some asymptotic properties under simple random sampling are derived in this section.

Theorem 4

Assuming simple random sampling, the estimators Ŷ
(r)
g , ŶgD and Ŷgd are asymptotically unbiased and normally distributed.

Proof.

The asymptotic unbiasedness of ŶgD and Ŷ
(r)
g is easily derived from its linear expression (6), and using the fact that Ŷ (r ) and

X̂h, with h = 1; : : : ; k , are unbiased of their respective parameters. Similarly, since Ŷ (r ) and X̂h are asymptotically normal, the

estimators Ŷ
(r)
g and ŶgD are also asymptotically normal.

Results derived from [30] can be used to show that Ŷgd has asymptotically the same distribution than

ŶgD = Ŷ (r ) +
(
� � �̂

)0
�
�1
�:

Following [30], the proposed di�erence estimator can be expressed as Ŷgd = Tn(�̂
�1�̂), whereas ŶgD can be expressed as

ŶgD = Tn(�
�1�), where Tn(�̂

�1�̂) is a function of the data and uses the estimator �̂�1�̂ = (d̂1; :::; d̂kl)
0, which is also a function

of the data, consistently estimating the vector parameter � �1�.

Let 
 be a k dimensional vector of variables. By replacing the estimator �̂�1�̂ into Tn(�) by 
, which is denoted by Tn(
),

the limiting mean of Tn(
) can be obtained when the actual parameter value is � �1�, i.e.,

�(
) = lim
n!+1

E��1�[Tn(
)] = ~Y

where ~Y is the limiting value of Y as N !1. Therefore

@�(
)

@


∣∣∣

=��1�

=

(
@�(
)

@
1

∣∣∣

=��1�

; : : : ;
@�(
)

@
k

∣∣∣

=��1�

)
= (0; : : : ; 0):

Assuming this condition, [30] showed that the limiting distribution of Tn(�̂
�1�̂) is the same than the distribution of Tn(�

�1�),

and hence the estimator Ŷgd is asymptotically unbiased and has the same asymptotic variance than ŶgD. This completes the

proof.

3.3. Application to strati�ed sampling

Strati�ed sampling designs form an interesting and useful subclass of sampling designs. To de�ne a strati�ed sampling design,

on divide the population U of size N into L non overlapping subpopulations or strata Ul , having Nl units of U. In each stratum

Ul we select a sample sl by using a sampling design pl independently of one another. For example, we consider that pl is a simple

random sampling without replacement of nl size.

Let yi l be the value of the study variable y , and ri l the value of the randomized response for the ith population element of

stratum l . If the values of auxiliary variables xh are known for each population unit xhi l , in a similar way as [12] we can considered
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a general class of estimators in each stratum. The minimum asymptotic variance AVminl = V (Ŷl(r )) � �0l�l
�1�l is achieved by

the di�erence estimator in stratum l :

ŶgDl = Ŷl(r ) +

k∑
h=1

dhl(Xhl � X̂hl)

where Ŷl(r ) = Nl

∑
i2sl

ri l
nl
, Xhl =

∑
i2Ul

xhi l , X̂hl = Nl

∑
i2sl

xhi l

nl
, dhl = �l

�1�l �l = (aht)(k�k) with ahh = V (X̂hl), aht =

Cov (X̂hl ; X̂tl) and �l = (Cov (X̂1l ; Ŷl(r )); : : : ; Cov (X̂kl ; Ŷl(r )))
0.

Thus, the separate estimator:

Ŷ
st
gD =

L∑
l=1

ŶgDl

can be used for estimating the total Y . The properties of this estimator can be easily obtained by using the independence of

sampling en each stratum. For example, an expression for the variance is given by:

V (Ŷ
s
gD) =

L∑
l=1

V (Ŷl(r )) � �
0
l�l

�1
�l :

The above formulae are based on the assumption that nl is large 8l . This, however, is not always true in practice. To get over

this di�culty we suggest a general class of combined estimators given by:

Ŷ
(r)
gc = fG(Ŷst(r ); u1; :::; uk)g; (6)

where G(�) is a function of uh = X̂hst=Xh, being X̂hst =
∑

l X̂hl and Ŷst(r ) =
∑

l Ŷl(r ).

In a similar way of section 3.1, the asymptotic variance of any estimator into the class veri�es

AV (Ŷ
(r)
gc ) � V (

L∑
l=1

Ŷl(r )) � �
0
st�st

�1
�st

where � st = (aht)(k�k) with ahh = V (
∑

l X̂hl), aht = Cov (
∑

l X̂hl ;
∑

l X̂tl) and

�st = (Cov (
∑

l X̂1l ;
∑

l Ŷl(r )); : : : ; Cov (
∑

l X̂kl ;
∑

l Ŷl(r )))
0.

An asymptotically optimal estimator is given by the combined di�erence estimator:

ŶgcD = Ŷst(r ) +
(
� � �̂st

)0
�st

�1
�st

being �̂st = (X̂1st ; : : : ; X̂kst)
0.

The optimum sample allocation for the separate and for the combined di�erence estimators under a linear cost function can

be obtained minimizing in nl the above expressions given for its variances.

3.4. Other estimators in the class

For direct questioning many di�erent estimators based on information of auxiliary variables have been proposed following di�erent

approaches. Some of them can be extended to our case of RR questioning. To the �rst order of approximation, some of these

are equivalent to the di�erence estimator ŶgD while others are less e�cient. For space saving purpose, we do not show the

plethora of estimator based on the information about parameters of auxiliary variables (see [13] for more examples of estimators

in the class) .

Some example of estimators which attain the minimum variance bound of the class:

� The exponentation estimator (based on the idea of [1]), which is given by

Ŷ
exp
g = Ŷ (r )

k∏
h=1

(
Xh

X̂h

)�h

: (7)

� The exponentiation-di�erence estimator (based on the idea of [24]) given by

Ŷ
expD
g = Ŷ (r )

k∏
h=1

(
Xh

X̂h

)�h

+

k∑
h=1

bh(Xh � X̂h): (8)

Some example of estimator which are not optimum in the class.

6 Copyright c
 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1{13
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� The exponential ratio type estimator (based on the idea of [6])

Ŷ
expR
g = Ŷ (r )

k∏
h=1

exp
Xh � X̂h

Xh + X̂h

(9)

� The generalized regression-cum-exponential estimator (based on the idea of [25])

Ŷ
regcex
g = (w0Ŷ (r ) +

∑
h

wh(Xh � X̂h))exp(

∑
h(Xh � X̂h)∑
h(Xh + X̂h)

) (10)

4. Simulation study

We have tested the real performance of the proposed estimators through simulation studies. The free statistical software R ([33])

was used to perform this simulation study. The library RRTCS of R ([11]) was used and, where necessary, we have developed

new R-code implementing the proposed estimators.

For this purpose, we consider two studies with real and simulated populations.

The �rst simulation has been performed using two simulated populations used previously by [25]. The populations of size

N=1000 are generated from a multivariate normal distribution ( y ; x1; x2) with the same vector of means (5 ; 5; 5) and with

di�erent covariance matrices. The correlations in population 1 are �yx1 = 0:6844426 and �yx2 = 0:6458839, and the correlations

in population 2 are �yx1 = 0:8659185 and �yx2 = 0:8279276.

We calculate the mean estimation of de variable of interest, dividing the proposed estimators above-named by population size.

For all populations, randomized response data were generated by using three di�erent randomized response models. In recent

years many models of randomized response have been proposed; we have included in the simulations these three models because

there are some kind of kernel of RR procedures families:

� Eichhorn and Hayre model: In Eichhorn and Hayre model ([17]) each sample respondent is to report zi = S � yi where S is a

random sample from a population with known mean � and known variance 
2. In this model ER(zi) = �; ri = zi=�; � = 
=�2

� Eriksson model: In Eriksson RR technique ([18]) it is assumed that the variable under study y can take any value in the

known interval ( a; b). M values Q1(= a); Q2; :::; QM(= b) are chosen in the interval ( a; b). The vector Q = (Q1; :::; QM)

covers the range ( a; b) and the value of M depends on the length of the interval. The respondent is supposed to report

either the true value yi with probability c or the Qj value with probability qj(qj > 0;
∑

j qj = 1 � c) as his/her RR response.

In this case ER(zi) = c � yi +
∑

j qjQj , ER(z
2
i ) = c � y 2i +

∑
j qjQ

2
j , ri = (zi �

∑
j qjQj)=c , �i = � � y 2i + � � yi + 
 and

�̂i =
�r2

i
+�ri+


1+�
where � = 1�c

c
, � =

�2
∑

j qjQj

c
and 
 =

∑
j qjQ

2

j
�(

∑
j qjQj )

2

c2

� Bar-Lev, Bobovitch and Boukai model: This model considered in ([8]) is a special case of Eriksson model. Here each of

the sampled respondents is requested to rotate a spinner unobserved by the interviewer, and if the spinner stops in the

shaded area, then the respondent is asked to disclose the true value yi , otherwise, the respondent is asked to scramble

their response y by multiplying it by a random variable S with known distribution. So in this method zi = yi with probability

p1, zi = S � yi with probability 1 � p1 and ri =
zi

p1+(1�p1)�E(S)
.

The parameters for these models are:

� Eichhorn and Hayre S � F (20; 20)

� Eriksson Q = (36656 :0; 40200:5; 43698:0); c = 0:7; q1 = q2 = q3 = 0:1

� Bar-Lev, Bobovitch and Boukai S � exp(1); p = 0:6

For comparison purposes, the Horvitz Thompson estimator, Ŷ (r ), the di�erence estimator, Ŷgd , the exponentiation estimator,

Ŷ exp
g , and the exponential ratio type estimator, Ŷ expR

g , are computed.

In this context, simple random samples with di�erent sizes ( n = 30; 50; 100; 200; 300) have been drawn. We have tested the

performance of these estimators with respect to the criteria: relative bias and mean square error through simulation studies.

RB =
(1=T ) �

∑T

i=1 j
�̂Y � �Y j

�Y
;MSE = (1=T ) �

T∑
i=1

( �̂Y � �Y )
2

where �̂Y is a given estimator and �Y the population mean and T is the number of replicates, in our case 1000.

Table 1 and Table 2 present the RB and MSE statistics for population 1 and population 2 for some sample sizes. The value

NAV indicates the number of auxiliary variables used in the estimation process.

Math. Meth. Appl. Sci. 2009, 00 1{13 Copyright c
 2009 John Wiley & Sons, Ltd. 7
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The main conclusions derived in this study are:

- The relative absolute bias of the estimators are all within a reasonable range for the di�erent sample sizes considered.

- More e�cient estimators values are obtained if the correlations between the auxiliary variables and the principal are high.

- The values of relative bias and mean square error decrease as the sampling size increase, for all estimators and all RR

techniques.

- The superiority of estimators based on auxiliary information is clear: the suggested estimators belonging to the class Ŷ
(r)
g

are always more e�cient than the Horvitz-Thompson estimator, whatever the adopted scrambling procedure.

- The values of relative bias and mean square error are very similar between Ŷgd and Ŷ exp
g . The di�erence in bias and MSE

between these estimators is smaller as the sample size increases. This is expectable because the two estimator are asymptotically

equivalents.

- Di�erence estimator Ŷgd or exponentiation estimator Ŷ exp
g are the most e�cient estimator for using one or two auxiliary

variables.

- The suggested estimators Ŷgd , and Ŷ exp
g with two auxiliary variables perform better than the estimator with one auxiliary

variable, as expected.

The second simulation study was carried out with a natural population called FAM1500 (see [19], [31]). The study considers

this population of 1500 families living in an Andalusian province to investigate their income tax return. In these simulations

we use as auxiliary variable, food expenses. The total for this variable is known. The sample is drawn by strati�ed sampling by

house ownership. We select T = 1000 strati�ed samples of di�erent samples sizes n = 30; 50; 100; 200; 300 with proportional

allocation.

Table 3 shows the RB and MSE statistics for the FAM1500 population.

10 Copyright c
 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1{13
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Results of this simulation are in accordance with those obtained in the previous study: for all randomized response models

used, there is a decrease in the relative bias and the mean square error if we compared the Horvitz-Thompson estimator with

others estimators which use auxiliary information. The gain in e�ciency is relevant for the Eriksson model. The values of relative

bias and mean square error for all models are very similar between Ŷgd and Ŷ exp
g . Nevertheless, the proposed estimators Ŷgd and

Ŷ exp
g dominate the other, for any choice of the sample size and the randomized technique.

5. Conclusions

Privacy protection is a crucial objective for both data collection and statistical analyses in the study of sensitive variables as

tax evasion, sexual behaviours, reckless driving, indiscriminate gambling, abortion, etc. Randomized response methods can be

bene�cially employed for collecting and analysing information about sensitive topics. Many studies have assessed the validity of

RR methods showing that they can produce more reliable answers than other conventional data collection methods but RRT

estimates are a�ected by higher sampling variance than direct questioning estimates. The loss of e�ciency represents the cost

to pay for obtaining more reliable information by reducing response bias. Consequently, achieving e�cient estimates which are

comparable with those under direct questioning may require considerable larger sample with an obvious increasing of the survey

cost. A way to reduce the sampling variance of RRT estimators is the use of auxiliary information.

This paper makes an attempt to provide a general form of estimation of a total of a sensitive variable using auxiliary information

of supplementary variables. This situation is very common in the sampling practice. A lot of estimators were proposed to deal

with the problem of estimating a total of a non sensitive variable when supplementary information is available. Nevertheless, in

spite of di�erent ideas followed to construct the estimators, most of them show the same e�ciency. The unawareness of this

aspect caused a proliferation of several types of estimators. This situation could be extended to the case of sensitive variables.

A class of estimators of a �nite population total under a general randomized response model has been de�ned when the

sample is obtained under a general sampling design. Estimators belonging to this class have been proven to be asymptotically

design unbiased and their asymptotic variances has been obtained. We provide also the expression of an optimal estimator in

the class, the di�erence estimator, that is the estimator that attains the asymptotic minimum variance bound. This estimator is

studied for some elementary sampling design as simple random sampling and strati�ed sampling. We introduce other estimators

in this class, some of them have asymptotically the same variance as the optimal di�erence estimator.

We have conducted a simulation study to check the performance of the proposed estimators. The results obtained from the

simulation study support the theoretical background and show that, given a set of auxiliary variables, the method performs well

under di�erent scenarios in both natural and arti�cial populations.

In short, this paper generalizes some existing results about the use of auxiliary information in RRT ([29]) and want to contribute

stopping the tentative to spread in the RRT literature new estimators by extending non-optimum estimators conceived for direct

questioning surveys.

Acknowledgement

This study was partially supported by Ministerio de Educaci�on y Ciencia (grant MTM2015-63609-R and FPU grant program,

Spain) and by Consejer��a de Econom��a, Innovaci�on, Ciencia y Empleo (grant SEJ2954, Junta de Andaluc��a).

References

1. Abu-Dayyeh WA, Ahmed MS, Ahmed RA, Muttlak HA. Some estimators of �nite population mean using auxiliary information. Applied

Mathematics and Computation 2003; 139: 287{298.

2. Al-Omari AI, Bouza CN, Herrera C. Imputation methods of missing data for estimating the population mean using simple random

sampling with known correlation coe�cient. Quality and Quantity 2013; 47: 353{365.

3. Arcos A, Rueda M, Singh S. Generalized approach to randomized response for quantitative variables. Quality and Quantity 2015; 49:

1239{1256.

4. Ayachit GR. 1953 Some aspects of large-scale sample surveys with particular reference to the ratio method of estimation . M.Sc.

Thesis, Bombay University, Bombay.

5. Arnab R. Optional randomized response techniques for complex survey designs. Biom. J. 2004; 46(1): 114{124.

6. Bahl S, Tuteja RK. Ratio and product type exponential estimator. Information and Optimization Sciences 1991; XII(I): 159{163

7. Barabesi L, Diana G, Perri PF. Design-based distribution function estimation for stigmatized populations Metrika 2013; 76: 919{935.

8. Bar-Lev SK, Bobovitch E, Boukai B. A note on randomized response models for quantitative data. Metrika 2004; 60: 255{260.

9. Bouza CN, Herrera C, Mitra PG. A review of randomized responses procedures: the qualitative variable case. Investigaci�on Oper. 2010;

31(3): 240{247.

10. Chaudhuri A, Mukherjee R. 1988. Randomized response. Theory and techniques. Statistics: Textbooks and Monographs, 85 New York:

Marcel Dekker, Inc. xvi, 162 p.

11. Cobo B, Rueda M, Arcos A. 2015. RRTCS: Randomized Response Techniques for Complex Surveys . R package version 1.0.

12 Copyright c
 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1{13

Prepared using mmaauth.cls

Page 12 of 13

John Wiley & Sons

Mathematical Methods in the Applied Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

M. Rueda B. Cobo A. Arcos

Mathematical
Methods in the
Applied Sciences

12. Dalabebara M, Sahoo LN. A class of estimators in strati�ed sampling with two auxiliary variables. Jour. Inti. Soc. Ag. Statistics 1997;

50(2): 144{149.

13. Diana G, Perri PF. Estimation of �nite population mean using multi-auxiliary information. Metron 2007; LXV(I): 99{112.

14. Diana G, Perri PF. New scrambled response models for estimating the mean of a sensitive quantitative character. J. Appl. Stat. 2010;

37: 1875{1890.

15. Diana G, Perri PF. A class of estimators for quantitative sensitive data. Statistical Papers 2011; 52(3): 633{650.

16. Diana G, Perri PF. A calibration-based approach to sensitive data: a simulation study. Journal of Applied Statistics 2012; 39(1): 53{65.

17. Eichhorn BH, Hayre LS. Scrambled randomized response methods for obtaining sensitive quantitative data. Journal of Statistical

Planning and Inference 1983; 7: 306{316.

18. Eriksson SA. A new model for randomized response. International Statistical Review 1973; 41: 40{43.

19. Fernandez FR, Mayor JA. 1994 Muestreo en Poblaciones Finitas: Curso Basico. PPU, Barcelona.

20. Gjestvang CR, Singh S. A new randomized response model. J. Royal Statist. Soc Ser. B 2006; 68: 523{530

21. Greenberg BG, Abul-Ela AL, Simmons WR, Horvitz DG. The unrelated question RR model: Theoretical framework. J. Amer. Statist.

Assoc. 1969; 64: 520{539.

22. Horvitz DG, Shah BV, Simmons WR. 1967. The unrelated question RR model. In: Proc. Social Statist. Sec. ASA, 65{72.

23. Isaki CT, Fuller WA. Survey design under the regression superpopulation model. Journal of the American Statistical Association 1982;

77(377): 89{96.

24. Kadilar C, Cingi H. A new estimator using two auxiliary variables. Applied Mathematics and Computation 2005; 162: 901{908.

25. Koyuncu N, Gupta S, Sousa R. Exponential-Type Estimators of the Mean of a Sensitive Variable in the Presence of Nonsensitive

Auxiliary Information. Communications in Statistics - Simulation and Computation 2014; 43 (7): 1583{1594.

26. Montanari GE. Post-sampling E�cient QR-prediction in Large-sample Surveys. International Statistical Review 1987; 55: 191{202.

27. Montanari GE. On regression estimation of �nite population means. Survey Methodology 1998; 24,1: 69{77.

28. Odumade O, Singh S. An Alternative to the Bar-Lev, Bobovitch and Boukai Randomized Response Model. Sociological Methods &

Research 2010; 39: 206{21

29. Perri PF, Diana G. Scrambled response models based on auxiliary variables. In: Advances in Theoretical and Applied Statistics, Torelli,

Nicola; Pesarin, Fortunato; Bar-Hen, Avner (Eds.), 2013; 281-291, Spriger-Verlag, Berlin.

30. Randles RH. On the asymptotic normality of statistics with estimated parameters. The Annals of Statistics 1982; 10: 462{474.

31. Rueda M., Arcos, A. On estimating the median from survey data using multiple auxiliary information. Metrika 2001; 54 (1): 59{76.

32. Saha A. A simple randomized response technique in complex surveys. Metron 2007; LXV: 59{66.

33. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria,

2015, URL: https://www.R-project.org/.

34. Santiago A, Bouza CN, Sautto JM, Al-Omari AI. Randomized Response Procedure for the Estimation of the Population Ratio using

Ranked Set Sampling. Journal of Mathematics and Statistics 2016; 12 (2). DOI: 10.3844/jmssp.2016.107.114.

35. Singh S, Joarder AH, King ML. Regression analysis using scrambled responses. Aust. J. Stat. 1996; 38: 201{211.

36. Singh S, Kim JM. A pseudo-empirical log-likelihood estimator using scrambled responses. Statist. Probab. Lett. 2011; 81: 345{351.

37. Singh S, Sedory S, Arnab R. Estimation of Finite Population Variance Using Scrambled Responses in the Presence of Auxiliary

Information. Communications in Statistics - Simulation and Computation 2015; 44(4): 1050{1065.

38. Singh , Tracy DS. Ridge regression using scrambled responses. Metron 1999; LVII: 147{157.

39. Srivastava SK, Jhajj HS. A class of estimators of the population mean in survey sampling using auxiliary information. Biometrika 1981;

68: 341{343.

40. Tracy D, Singh S. Calibration estimators in randomized response survey. Metron 1999; LVII: 47{68.

41. Warner SL. Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical

Association 1965; 60(309): 63{69.

Math. Meth. Appl. Sci. 2009, 00 1{13 Copyright c
 2009 John Wiley & Sons, Ltd. 13
Prepared using mmaauth.cls

Page 13 of 13

John Wiley & Sons

Mathematical Methods in the Applied Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


