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Advances in estimation by the item sum technique using
auxiliary information in complex surveys

Abstract

To collect sensitive data, survey statisticians have designed many strategies to reduce

nonresponse rates and social desirability response bias. In recent years, the item count

technique (ICT) has gained considerable popularity and credibility as an alternative mode

of indirect questioning survey, and several variants of this technique have been proposed as

new needs and challenges arise. The item sum technique (IST), which was introduced by

Chaudhuri and Christofides (2013) and Trappmann et al. (2014), is one such variant, used

to estimate the mean of a sensitive quantitative variable. In this approach, sampled units are

asked to respond to a two-list of items containing a sensitive question related to the study

variable and various innocuous, nonsensitive, questions. To the best of our knowledge,

very few theoretical and applied papers have addressed the IST. In this article, therefore,

we present certain methodological advances as a contribution to appraising the use of the

IST in real-world surveys. In particular, we employ a generic sampling design to examine

the problem of how to improve the estimates of the sensitive mean when auxiliary infor-

mation on the population under study is available and is used at the design and estimation

stages. A Horvitz-Thompson type estimator and a calibration type estimator are proposed

and their efficiency is evaluated by means of an extensive simulation study. Using simula-

tion experiments, we show that estimates obtained by the IST are nearly equivalent to those

obtained using “true data” and that in general they outperform the estimates provided by a

competitive randomized response method. Moreover, the variance estimation may be con-

sidered satisfactory. These results open up new perspectives for academics, researchers and

survey practitioners, and could justify the use of the IST as a valid alternative to traditional

direct questioning survey modes.

Keywords - auxiliary information; calibration estimator, domain estimator, item count tech-

nique, Horvitz-Thompson estimator, randomized response, sensitive characteristic
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1 Introduction

In many fields of applied research, and particularly in sociological, economic, demographic,

ecological and medical studies, the investigator very often has to gather information concern-

ing highly personal, sensitive, stigmatizing and perhaps incriminating issues such as abortion,

drug addiction, HIV/AIDS infection status, duration of suffering from a disease, sexual be-

haviour, domestic violence, racial prejudice or noncompliance with laws and regulations. In

these situations, collecting data by means of survey modes based on direct questioning (DQ)

methods of interview is likely to encounter two serious problems: (i) participants in the survey

may deliberately release untruthful or misleading answers, or (ii) participants may refuse to

respond (“unit nonresponse” or “item nonresponse”) due to the social stigma or because they

feel threatened by such inquiries and fear that their personal information may be released to

third parties for purposes other than those of the survey. Misleading information and refusal to

answer are nonsampling errors that are difficult to deal with and can seriously flaw the validity

of final analyses. To reduce this problem, the level of cooperation obtained from the respondent

must be increased. Since the decision to cooperate, in terms of providing complete and honest

answers, depends on how interviewees perceive their privacy will be protected, survey modes

which ensure full anonymity go some way to increasing the probability of cooperation and, con-

sequently, that of obtaining more reliable information on sensitive topics. In this respect, survey

statisticians and practitioners have developed many different strategies to ensure interviewees’

anonymity and to reduce the incidence of evasive answers and underreporting of social taboos

when direct questions are posed on sensitive issues. One possibility is to limit the influence

of the interviewer, by providing self-administered questionnaires, enabling computer-assisted

self-interviews or by conducting online surveys. Alternatively, the randomized response (RR)

theory (RRT), conceived by Warner (1965), may be employed. In its original version, this non-

standard survey approach adopts a randomization device such as a deck of cards, dice, coins,

coloured numbered balls, spinners or even a computer to conceal the true answer, in the sense

that respondents reply to one of two or more selected questions depending on the result of

the device. Specifically, the randomization device determines whether respondents should an-

swer the sensitive question or another, neutral, one or even provide a pre-specified response

(e.g., “yes”) irrespective of their true status concerning the stigmatizing behaviour. The ran-

domization device generates a probabilistic relation between the sensitive question and a given

answer which is used to draw inference about unknown parameters of interest, for instance the
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prevalence of a sensitive attribute in the target population. The rationale of the RRT is that

interviewees are less inhibited when the confidentiality of their responses is guaranteed. This

goal is achieved because all responses are given according to the outcome of the randomization

procedure, which is unknown both to the interviewer and to the researcher and, consequently,

respondents’ privacy is preserved.

Since Warner’s pioneering work, a large number of RR mechanisms have been considered,

with continual innovations of existing devices as well as novel proposals. Such procedures have

been amply discussed, for example, by Fox and Tracy (1986), Chaudhuri and Mukerjee (1988),

Chaudhuri (2011) and Chaudhuri and Christofides (2013). Contextually, many studies have

assessed the validity of RR methods, showing that they can produce more reliable answers than

conventional data collection methods (e.g., DQ in face-to-face interviews, self-administered

questionnaires with paper and pencil and computer-assisted self interviews). In this respect,

see van der Heijden et al. (2000), Lara et al. (2004) and Lensvelt-Mulders et al. (2005), to

name just a few. Finally, let us note that considerable use is made of the RRT and its variants in

real-life studies of a great variety of topics including, for instance, the use of drug, athletic and

cognitive performance-enhancing substances (Goodstadt and Gruson, 1975; Kerkvliet, 1994;

Simon et al., 2006; Striegel et al., 2010; James et al., 2013; Stubbe et al., 2013; Dietz et

al., 2013; Shamsipour et al., 2014), the estimation of the prevalence of fraud in the area of

disability benefits (van der Heijden et al., 2000; Lensvelt-Mulders et al., 2006), racial prejudice

in Germany (Ostapczuk et al., 2009; Krumpal, 2012), the impact of HIV/AIDS infection in

Botswana (Arnab and Singh, 2010), the prevalence of induced abortion in the United States,

Mexico, Botswana, Taiwan and Turkey (Lara et al., 2006; Oliveras and Letamo, 2010), voting

turnout (Holbrook and Krosnick, 2010a), tax evasion (Houston and Tran, 2001; Korndörfer et

al., 2014), plagiarism in Swiss and German student papers (Jann et al., 2012), induced abortion

and irregular immigrant status among foreign women in Calabria (Perri et al., 2016) and the

illegal use of natural resources (Chaloupka, 1985; Schill and Kline, 1995; Solomon et al., 2007;

Blank and Gavin, 2009; Arias and Sutton, 2013; Conteh et al. 2015).

Despite the good reputation that the RRT has acquired over time as a tool to obtain reliable

data while protecting respondents’ confidentiality, avoiding unacceptable rates of nonresponse

and reducing social desirability response bias, the approach, at least in its basic idea, suffers

from some inadequacies that have limited its complete acceptance among survey statisticians

and practitioners. The main limitations may be summarized in the following points: (i) RRT

surveys are, in general, more time-demanding and costly than other types of survey modes;
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(ii) RRT estimates are subject to greater sampling variance (i.e., lower efficiency) than DQ es-

timates. This loss of efficiency represents the cost of obtaining more reliable information by

reducing response bias. Consequently, achieving estimates which are comparably efficient with

those obtained under DQ may require a considerably larger sample with the consequent increase

in cost, an aspect which is rarely acceptable; (iii) RRT surveys lack reproducibility, in the sense

that the same respondent may give different information if asked to repeat the survey. This is

because his/her answer depends on the outcome of the randomization device. Hence, condi-

tioned to a selected sample of respondents, the estimation process may yield different estimates

according to the outcome of the device; (iv) lack of understanding and trust among respon-

dents. Chaudhuri and Christofides (2007) observed that the RRT basically asks respondents to

provide information that may seem useless or even deceitful. When the respondent does not

understand the mathematical logic underlying the technique, then the entire procedure may be

suspect, leading the respondent to believe there might be a way for the interviewer to determine

his/her exact status regarding the sensitive characteristic by processing the response provided.

Moreover, respondents may not understand the instructions for using the RR device and/or not

trust the privacy protection offered. Hence, they might intentionally refuse to participate in the

survey or break the rules of the RR design; (v) RR procedures require a randomization device

to drive the answer. In Warner’s original model, the suggested device was a spinner but any

other physical device, like dice, a deck of cards or coloured numbered balls, could be used.

Using physical devices limits the application of the RRT exclusively to face-to-face personal

interviews and may also be more time consuming (the procedure must be explained to each

survey participant) and costly (the devices must be obtained) than DQ. Other means of survey

administration, such as telephone interview, self-administered mail questionnaire and internet-

delivered interviews, seem to be precluded. In addition, respondents could find it difficult to

use a physical device, for instance due to reduced motor capacity, or be suspicious of using

something provided by the interviewer.

Mindful of these drawbacks, alternative indirect questioning techniques have been proposed

which overcome some of the limitations affecting the RRT and enable sensitive information

to be acquired while preserving respondents’ confidentiality. Such alternative methods are en-

compassed in different approaches which include the nominative technique (Miller, 1985), the

three card method (Droitcour et al., 2002), the non-randomized response technique (Tian and

Tang, 2014) and the item count technique (hereafter ICT; Raghavarao and Federer, 1979; Miller,

1984; Droitcour et al., 1991). All of these alternatives were originally conceived for surveys
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requiring a “yes” or “no” response to a sensitive question, or a choice of responses from a set of

nominal categories, and do not address quantitative sensitive characteristics. Recently, Chaud-

huri and Christofides (2013) and Trappmann et al. (2014) have proposed a generalization of the

ICT that can be used to survey a quantitative sensitive characteristic and to estimate its mean.

This variant of the ICT is called the item sum technique (hereafter IST) and is the focus of

the present article, which has a twofold aim: (i) to provide a general framework for the IST

by extending the results of Chaudhuri and Christofides (2013) and Trappmann et al. (2014)

from simple random sampling to a generic complex sampling design; (ii) to investigate the ef-

fectiveness of employing auxiliary information to improve, without incurring additional costs

or increasing the sample size, the efficiency of estimates when the IST is used to obtain data

from a complex survey. The first of these study aims is motivated by the fact that real surveys

are customarily conducted by using complex sampling designs such as stratified and/or cluster

sampling, with units selected according to a specific varying probability scheme. The second

concerns the fact that, in sampling practice, DQ techniques for collecting information about

nonsensitive characteristics make use of auxiliary variables to improve sampling designs and to

achieve higher precision in the estimates of unknown population parameters. Nevertheless, and

although a number of proposals have been made to improve the estimation of the population

proportion and the population mean of sensitive variables in the RRT (see, among others, Diana

and Perri,2009, 2010, 2011, 2012; Perri and Diana, 2013), very few such procedures have been

suggested to improve the performance of the IST. To the best of our knowledge, there is only the

paper by Trappmann et al. (2014) who outlined a procedure to estimate regression models for

the IST, and that of Hussain et al. (2015) who discussed ratio, product and regression methods.

Hence, we seek to fill this gap, giving prominence to the use of auxiliary information.

The rest of this article is organized as follows. Sections 2 and 3 describe the ICT and the

IST, respectively. In Section 4, we discuss methodological advances for IST estimation under

a generic sampling design. Specifically, a Horvitz-Thompson type estimator is examined in

Section 4.1, a calibration type estimator is proposed in Section 4.2, and in Section 4.3 the

calibration approach is employed for domain estimation. The results of various simulation

experiments are presented and commented on in Section 5. In particular, Section 5.1 includes:

(i) a numerical comparison of DQ, IST and RR estimates under three sampling designs; (ii)

an analysis of the effect on the Horvitz-Thompson and calibration type estimators caused by

the presence of a different correlation coefficient between the target variable and the innocuous

variable; (iii) an analysis of the performance of the Horvitz-Thompson and calibration type
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estimators for the domain of interest. Section 5.2 is then devoted to an analysis of just the

IST calibration estimators, investigating their performance when the number of nonsensitive

variables used in the IST design is increased. The accuracy of the variance estimator is also

investigated. Section 6 concludes the paper with some final remarks.

2 The item count technique

Assume that the researcher wishes to use the ICT to determine the prevalence of a sensitive

attribute A in a population, for instance the amount of work performed and not declared to

the tax authorities. The ICT (also known as “the unmatched count technique”, “block total

response” or “list experiment”) was originally conceived by Raghavarao and Federer (1979)

and Miller (1984), and consists of drawing two independent samples from the target population,

say s1 and s2. Without loss of generality, units belonging to sample s1 are provided with a long

list (LL) of items containing (G + 1) dichotomous questions, of which G are nonsensitive,

while the remaining one refers to the sensitive attribute A. The sampled units are instructed to

consider the LL, and to count and report the number of items that apply to them (i.e., the number

of “yes” responses) without answering each question individually. Consequently, respondents’

privacy is protected since their true sensitive status remains undisclosed unless they report that

none or all of the items in the list apply to them. By contrast, units belonging to sample s2 are

asked to make a similar response to a short list (SL) of items, containing only the G innocuous

questions which are identical to those present in the LL. The innocuous items should be chosen

and worded in sufficient quantity as to ensure the necessary variability in their application to

the units in the population.

The answers given by samples s1 and s2 are then pooled to obtain an estimate of the preva-

lence πA of units bearing the sensitive attribute A. An unbiased estimator of πA is termed

the difference-in-means estimator, and is obtained as the difference between the means of the

answers in sample s1 and in sample s2:

π̂A = µ̂1 − µ̂2. (1)

Following Miller (1984), the body of research literature on the subject expanded rapidly, dis-

cussing alternative techniques and item count schemes to increase the efficiency of the estimator

of πA and to overcome some shortcomings of the original version. For instance, Chaudhuri and

Christofides (2007) proposed a modification of the method aimed at protecting against a pos-
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sible “negative” value for the estimate, which might arise from (1), and at increasing privacy

protection should all or none of the (G + 1) items be applicable to a respondent in sample s1.

The revised ICT requires that an innocuous characteristic B, unrelated to the sensitive one and

possessed by a known proportion πB of the population, be considered. Then, units in sample s1
are presented with a list of (G + 1) items of which the first G are innocuous and the (G + 1)st

item stands for “I have the characteristic A, or B or both”. Similarly, units in the second sam-

ple s2 are given a list of (G + 1) items, of which the first G items are exactly the same as

those in sample s1 while the (G + 1)st item stands for “I do not have either characteristic A or

B”. Using the same notation as in the original ICT, an unbiased estimator of πA is obtained as

π̂A = µ̂1 − µ̂2 + 1 − πB. Under this variant, privacy protection is guaranteed, provided that

at least one of the innocuous items applies. In order to overcome this minimum requirement,

Christofides (2015) presented a new version of the ICT in which respondents’ privacy is fully

protected since no answer reveals whether the sensitive attribute is possessed. Subsequently,

Shaw (2016) revised Chaudhuri and Christofides’ method (2007) and proposed a procedure

based on a single sample. Other attempts to improve the ICT and thus contribute to its growing

use among survey practitioners have been made, among others, by the following: Droitcour et

al. (1991) proposed a design in which πA is estimated by using two-list experiment applied

to the same units in such a way as to reduce sampling variability; Glynn (2013) suggested an

adjustment to the estimator given in (1) which yields greater efficiency, although at the cost of

greater bias; Blair and Imai (2010) introduced the list R package to conduct statistical analysis

for the ICT, implementing the methods described by Imai (2011), Blair and Imai (2012), Blair

et al. (2014), Imai et al. (2015) and Aronow et al. (2015); Hussain et al. (2012) provided

the variance expression of the estimator π̂A under simple random sampling and suggested an

improved ICT that does not require two samples; Aronow et al. (2015) proposed a method to

combine ICT and DQ estimates; Holbrook and Krosnick (2010b), in order to compare direct

and list experiment estimates within the same target population in a real-world study, randomly

split the selected sample into three groups: the first received the SL, the second received the

LL and the third was surveyed only by DQ, with no list at all; Chaudhuri and Christofides

(2013) discussed a three-sample procedure, extending the variant suggested by Chaudhuri and

Christofides (2007).
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3 The item sum technique

Standard item count methods are primarily used in surveys which require a binary response to a

sensitive question, and seek to estimate the proportion of people bearing a given sensitive char-

acteristic. Nevertheless, in practice many situations may be encountered in which the response

to a sensitive question results in a quantitative variable. For instance, sensitive questions may

refer to the number of extramarital relationships, the amount of personal income or wealth, the

number of times income taxes are evaded, and so on. For situations like these, Chaudhuri and

Christofides (2013) presented a variant of the ICT, suitable for quantitative sensitive character-

istics, that Trappmann et al. (2014) termed the item sum technique (IST) and used in a CATI

survey on undeclared work in Germany. The IST works in a similar way to the ICT. Two inde-

pendent simple random samples are drawn from the population. Units belonging to one of the

two samples are presented with the LL of items containing the sensitive question and a number

of nonsensitive questions; units in the other sample receive only the SL of items consisting of

the nonsensitive questions. All of the items refer to quantitative variables, possibly measured

on the same scale as that of the sensitive variable. Respondents are then asked to report the total

score of their answers to all of the questions in their list, without revealing the individual score

for each question. Like the ICT, the mean difference of the answers between the LL-sample

and the SL-sample is then used as an unbiased estimator of the population mean of the sensitive

variable.

Hussain et al. (2015) proposed a one-sample variant of the IST, in which each of the units in

the simple random sample is provided with a list of items and just one of these items contains

queries about stigmatizing and non-stigmatizing variables. These authors also considered ratio,

product and regression estimators to incorporate auxiliary information into the IST estimation

procedure. The one-sample approach to the IST has also been considered by Shaw (2015).

To the best of our knowledge, to date there have been no other contributions regarding the

IST. Motivated by this perceived research gap, and seeking to contribute to the development of

the IST in real-world studies, we suggest some methodological advances based on the use of

auxiliary information at both the design and the estimation stages. Specifically, we introduce

a general framework for estimating the population mean of a sensitive quantitative variable by

assuming that the samples are randomly obtained under a generic sampling design. Hence, we

discuss the use of the calibration technique to improve the efficiency of the estimates and then

extend this calibration approach to the estimation of domains. In addition, we discuss variance
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estimation and the impact on the estimates of including an increased number of innocuous

questions in the list of items. Part of the discussion is based on an extensive simulation study.

4 Advances in IST estimation

4.1 Estimation under a generic sampling design: the Horvitz-Thompson
type estimator

Consider a finite population U = {1, . . . , N} consisting of N different and identifiable units.

Let yi be the value of the sensitive character under study, say y, for the ith population unit. Our

aim is to estimate the population mean Ȳ = N−1
∑

i∈U yi.

Let us assume a generic sampling design p(·) with positive first- and second-order inclusion

probabilities πi =
∑

s3i p(s) and πij =
∑

s3i,j p(s), i, j ∈ U . Let di = π−1i denote the known

sampling design-basic weight for unit i ∈ U , and Ep and Vp the operators expectation and

variance under the sampling design p(·). Two independent samples, s1 and s2, are selected

from U according to the design p(·). One of the samples, say s1, is confronted with a LL of

items containing (G + 1) questions of which G refer to nonsensitive characteristics and one

is related to the sensitive characteristic under study. The other sample s2 receives a SL of

items that only contains the G innocuous questions. All sensitive and nonsensitive items are

quantitative in nature. Respondents in both samples are requested to report the total score of

all the items applicable to them, without revealing the individual score on each of the items.

Without loss of generality, let t be the variable denoting the total score applicable to the G

nonsensitive questions, and z = y + t the total score applicable to the nonsensitive questions

and the sensitive question. Hence, the answer of the ith respondent will be zi = yi + ti if i ∈ s1
or ti if i ∈ s2. We observe that for G = 1, the variable t simply denotes the innocuous variable

and ti its value on the ith unit.

Under the design p(·), let

ˆ̄ZHT =
1

N

∑
i∈s1

dizi and ˆ̄THT =
1

N

∑
i∈s2

diti

be the unbiased Horvitz-Thompson (hereafter HT; Horvitz and Thompson, 1952) estimators of

Z̄ = N−1
∑

i∈U(yi + ti) and T̄ = N−1
∑

i∈U ti, respectively. Hence, a HT type estimator of Ȳ

can be immediately obtained as:

ˆ̄YHT = ˆ̄ZHT − ˆ̄THT . (2)
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From the unbiasedness of ˆ̄ZHT and ˆ̄THT , it readily follows that the estimator ˆ̄YHT is unbiased

for Ȳ . In fact

Ep(
ˆ̄YHT ) = Ep(

ˆ̄ZHT )− Ep(
ˆ̄THT ) =

1

N

∑
i∈U

zi −
1

N

∑
i∈U

ti

=
1

N

∑
i∈U

(zi − ti) =
1

N

∑
i∈U

yi.

The variance of ˆ̄YHT , as long as the two samples s1 and s2 are independent, can be expressed

as:

Vp(
ˆ̄YHT ) = Vp(

ˆ̄ZHT ) + Vp(
ˆ̄THT )

=
1

N2

(∑
i∈U

∑
j∈U

∆ij(dizi)(djzj) +
∑
i∈U

∑
j∈U

∆ij(diti)(djtj)

)
,

where ∆ij = πij − πiπj . Finally, an unbiased estimator of V( ˆ̄YHT ) is achieved by means of

V̂p(
ˆ̄YHT ) =

1

N2

(∑
i∈s1

∑
j∈s1

∆̌ij(dizi)(djzj) +
∑
i∈s2

∑
j∈s2

∆̌ij(diti)(djtj)

)
,

where ∆̌ij = ∆ij/πij .

4.2 Estimation in the presence of auxiliary information: the calibration
type estimator

The growing availability of population information derived from census data, administrative

registers and previous surveys provides a wide range of variables that can be used to increase

the efficiency of the estimation procedure. In this respect, a useful approach is that calibration

by which new sampling weights are constructed to match benchmark constraints on auxiliary

variables while remaining “close” to the design-basic weights (Deville and Särndal, 1992).

Särndal (2007) provides an overview of several developments in calibration estimation, showing

that this tool can be used to combine and/or align estimates from different surveys. Calibration

is also widely used as a tool to reduce nonresponse and coverage error. This aspect has been

discussed at length by Särndal and Lundström (2005), and further explored by Kott and Chang

(2010) and, more recently, by Kott (2014).

Let us now discuss how calibration estimation may be extended to address IST surveys.

In so doing, we assume that a vector x of Q auxiliary variables is available from different
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sources such that the vector of values xi = (xi1, . . . , xiQ)t is known ∀i ∈ U . Additionally,

let X̄ = N−1
∑

i∈U xi denote the vector for the known population means of the Q auxiliary

variables. Our goal is to estimate the population mean Ȳ by using the observations of the

variables z, t and x in the samples s1 and s2, and the known vector values X̄ in the population.

In order to obtain a calibration estimator of Ȳ in the IST setting, we follow Deville and Särndal

(1992) to obtain a new system of weights ωij based on sample sj , j = 1, 2, by minimizing the

chi-squared distance function

Φsj(di, ωij) =
∑
i∈sj

(ωij − di)2

diqi
, j = 1, 2 (3)

subject to the calibration equations

1

N

∑
i∈sj

ωijxi = X̄, (4)

where the qi’s are known positive constants unrelated to the di’s. Minimization of (3) under (4)

then yields the weights ωij given by:

ωij = di +
diqiλ

txi

N
, j = 1, 2 (5)

where λ = (λ1 . . . , λQ)t is the vector of the Lagrange multipliers given by:

λ = N2F−1sj
(X̄− ˆ̄XHT ),

with Fsj =
∑

i∈sj diqixix
t
i and where ˆ̄XHT denotes the vector of the HT estimators of the

population means X̄ based on the sample sj .

According to the calibration weights obtained from (5), we define a calibration type estimator

of Ȳ as:
ˆ̄YC = ˆ̄ZC − ˆ̄TC , (6)

where
ˆ̄ZC =

1

N

∑
i∈s1

ωi1zi = ˆ̄ZHT + (X̄− ˆ̄XHT )tB̂s1

is the calibration estimator of Z̄ obtained on the basis of the LL-sample s1, with B̂s1 =

F−1s1

∑
i∈s1 diqixizi, and

ˆ̄TC =
1

N

∑
i∈s2

ωi2ti = ˆ̄THT + (X̄− ˆ̄XHT )tB̂s2
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is the calibration estimator of T̄ obtained from the SL-sample s2, with B̂s2 = F−1s2

∑
i∈s2 diqixiti.

Following Deville and Särndal (1992), it can be shown that the estimator ˆ̄YC is asymptotically

unbiased for Ȳ and its asymptotic variance is given by:

Vp(
ˆ̄YC) = Vp(

ˆ̄ZC) + Vp(
ˆ̄TC)

=
1

N2

(∑
i∈U

∑
j∈U

∆ij(diEi)(djEj) +
∑
i∈U

∑
j∈U

∆ij(diGi)(djGj)

)
,

where

Ei = zi − xt
iB1 with B1 =

(∑
i∈U

qixix
t
i

)−1∑
i∈U

qixizi

and

Gi = ti − xt
iB2 with B2 =

(∑
i∈U

qixix
t
i

)−1∑
i∈U

qixiti.

An estimator for this variance is:

V̂p(
ˆ̄YC) =

1

N2

(∑
i∈s1

∑
j∈s1

∆̌ij(diei)(djej) +
∑
i∈s2

∑
j∈s2

∆̌ij(digi)(djgj)

)
, (7)

where

ei = zi − xt
iB̂s1 and gi = ti − xt

iB̂s2 .

4.3 Estimation for domains

As in Section 4.1, let U denote the target population from which two samples, s1 and s2, are

drawn according to the sampling design p(·). Let Ud ⊂ U denote a domain of interest of Nd

units, δdi the domain identifier taking the value 1 if i ∈ Ud, and sjd the subset of sj containing

units from Ud, sjd = sj ∩ Ud, with j = 1, 2. It is straightforwardly determined that the sizes of

s1d and s2d are random variables.

In order to obtain an estimate of the domain mean Ȳd = N−1d

∑
i∈Ud

yi, let us first consider,

following (2), the HT type estimator defined as:

ˆ̄YHT,d =
1

Nd

∑
i∈s1d

dizi −
1

Nd

∑
i∈s2d

diti.
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The estimator ˆ̄YHT,d is design-unbiased. In fact,

Ep(
ˆ̄YHT,d) =

1

Nd

Ep

(∑
i∈s1d

dizi

)
− 1

Nd

Ep

(∑
i∈s2d

diti

)

=
1

Nd

Ep

(∑
i∈s1

diziδdi

)
− 1

Nd

Ep

(∑
i∈s2

ditiδdi

)

=
1

Nd

∑
U

ziδdi −
1

Nd

∑
U

tiδdi

=
1

Nd

∑
i∈Ud

zi −
1

Nd

∑
i∈Ud

ti

=
1

Nd

∑
i∈Ud

(zi − ti) =
1

Nd

∑
i∈Ud

yi.

The variance of ˆ̄YHT,d is given by:

Vp(
ˆ̄YHT,d) =

1

N2
d

(∑
i∈Ud

∑
j∈Ud

∆ij(dizi)(djzj) +
∑
i∈Ud

∑
j∈Ud

∆ij(diti)(djtj)

)
,

which can be unbiasedly estimated with

V̂p(
ˆ̄YHT,d) =

1

N2
d

(∑
i∈s1d

∑
j∈s1d

∆̌ij(dizi)(djzj) +
∑
i∈s2d

∑
j∈s2d

∆̌ij(diti)(djtj)

)
.

This variance may be unacceptably large for certain domains. Notwithstanding, it may be

improved by using calibration when (multi-)auxiliary information on the domains is available.

In this paper, however, we only discuss design-based estimation for sufficiently large domains.

If the (random) size of the domain sample sd is insufficient to meet demands concerning the

precision of the estimates, small-area (model-based) estimation may be needed.

Using the same notation as in Section 4.2, if the vector of the population means X̄ is known

in the domain Ud, the domain calibration type estimator can be defined as:

ˆ̄YC,d =
1

Nd

∑
i∈s1

ωi1ziδdi −
1

Nd

∑
i∈s2

ωi2tiδdi,

where weights ωij , j = 1, 2, are determined by minimizing the chi-squared distance function

Φsjd(di, ωij) =
∑
i∈sjd

(ωij − di)2

diqi
, j = 1, 2
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subject to the conditions

X̄Ud
=

1

Nd

∑
i∈Ud

xi =
1

Nd

∑
i∈sj

ωijxiδdi

and

Nd =
∑
i∈sj

ωijδdi, j = 1, 2.

The expressions of ˆ̄YC,d, of its variance, and of the variance estimator can easily be obtained by

adapting the results given in Section 4.2.

5 Simulation study

This section presents two simulation studies to numerically investigate the performance of the

HT and calibration type estimators when sensitive quantitative data are to be obtained by the

IST. The first study is designed to: (i) compare the proposed IST estimators and a competi-

tor RRT estimator which uses two different scrambling variables; (ii) evaluate, within the IST

framework, the effects of using innocuous items with different correlations with the target sen-

sitive variable; (iii) evaluate the performance of the IST for domain estimation. The second

simulation study highlights the accuracy of the variance estimators and enables us to evaluate

the effects of using more than one nonsensitive item in the calibration setting.

5.1 Simulation 1: comparisons and correlations

The study is based on real data obtained by World Bank Enterprise Surveys compiled in China

between December 2011 and February 2013 (http://www.enterprisesurveys.org). During this

period, 2700 privately-owned firms and 148 state-owned firms were interviewed. The total

sales value for 2011 was taken as the study variable (y). In order to perform the IST procedure,

the total annual cost of electricity was taken as the innocuous variable (t). The estimation for

the entire population and for the study domains are discussed below. To estimate the popula-

tion mean Ȳ in the IST setting, we first calculated the HT type estimator (2) and compared it

with the calibration type estimator (6). Calibration was performed with respect to the follow-

ing auxiliary variables: total annual sales three years ago (2009), permanent/full-time workers

three fiscal years ago (2009), and firm’s yearly average inventory of finished goods in 2011.

To determine the cost in terms of loss of efficiency of using the IST to increase respondents’
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privacy protection, we also considered the corresponding estimators of Ȳ , say ˆ̄YHTy and ˆ̄YCy ,

which were computed on the basis of the true value of the target variable. Additionally, the HT

and calibration type estimates were compared with the estimates derived from another indirect

questioning method referable to the RRT. Thus, the responses were assumed to be randomized

by the scrambled response model (SRM) proposed by Bar-Lev et al. (2004). According to this

model, the ith survey unit provides the randomized response zi defined as:

zi =

{
yi with probability θ

yiwi with probability 1− θ,

where wi is a random number generated from the scrambling variable w whose distribution is

completely known to the researcher. Hence, an unbiased HT estimator for Ȳ is obtained as:

̂̄Y SRM =
1

N

∑
i∈s

diri,

with

ri =
zi

θ + (1− θ)W̄
and where W̄ denotes the known mean of w. We assumed θ = 0.5 and then investigated the

performance of the estimates under two different distribution laws for the scrambling variable

w:

• w ∼ F10,10 as in Eichhorn and Hayre (1983) and Arcos et al. (2015). We refer to this

choice as SRM1;

• w ∼ exp(1) as in Rueda et al. (2017). We refer to this choice as SRM2.

In our study, available data at firm-level were taken as the target population from which a

sample of size n was selected according to: (i) simple random sampling without replacement

(SRSWOR); (ii) stratified SRSWOR; (iii) Midzuno sampling design (see, e.g., Sukhatme et al.,

1984). The sample size ranges from 25 to 200 firms. The population was then stratified into

three industrial sectors, termed “manufacturing”, “retail” and “other services”, after recoding

the available variables. From each stratum, a number of samples were selected according to

SRSWOR with proportional allocation from 5% to 15% of the population size. The Midzuno

sampling design was implemented with first-order inclusion probabilities proportional to the

number of establishments owned by the firm.
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In order to evaluate the performance of the HT and calibration estimators under the DQ, IST

and RRT survey modes, the absolute relative bias (RB) and relative mean squared error (RMSE)

were computed for the estimator ˆ̄Y ∗ = ˆ̄YHTy ,
ˆ̄YCy ,

ˆ̄YHT ,
ˆ̄YC ,

ˆ̄YSRM1 ,
ˆ̄YSRM2 ,

ˆ̄YC1 ,
ˆ̄YC2:

|RB( ˆ̄Y ∗)| =

∣∣∣∣∣EM( ˆ̄Y ∗)− Ȳ
Ȳ

∣∣∣∣∣ and RMSE( ˆ̄Y ∗) =
EM( ˆ̄Y ∗ − Ȳ )2

Ȳ 2
,

where ˆ̄YCi
denotes the calibration estimator of Ȳ under the SRMi, i = 1, 2, while EM denotes

the mean operator evaluated on the basis of 10,000 Monte Carlo replications for different sample

sizes.

The results of the simulation study for the three different sampling designs are illustrated in

Figure 1. Although the behavior of the SRM estimates appears irregular, there is no evidence

of any significant bias for all the estimators considered, at least as the sample size increases. In

fact, for all the estimators, the absolute RB falls within a reasonable range. In terms of RMSE,

the IST estimators perform well. Overall, these findings are very interesting and highlight the

successful use of auxiliary information at the IST estimation stage. While the HT estimator

based on the true values yi slightly outperforms, as expected, the HT type estimator based

on the IST values zi, the calibration estimators are unexpectedly nearly equivalent, both in

terms of (absolute) bias and of mean squared error. On the other hand, the behaviour of the

SRM estimators is less stable and less satisfactory than that of the IST estimator ˆ̄YHT . This is

particularly true for the estimates obtained using SRM2, which are generally less efficient than

those provided by ˆ̄YHT . As regards the estimates under SRM1, in some cases across the three

sampling designs, they appear to be slightly more efficient than ˆ̄YHT but, in general, the IST

seems to outperform the RRT approach, at least for the scrambling models considered in the

present study. This results also holds when SRM and IST estimates are compared under the

calibration setting.

For all the estimators considered, it is also evident that using auxiliary information at the

design stage through stratification and sampling with varying probability can improve the effi-

ciency of the estimates with respect to SRSWOR. In this study, the improvement obtained by

stratification is notable.

Finally, the mean squared error of the estimators tendentially decreases as the sample size

increases, which is an evident indication of the consistency of all the estimates produced.

[Figure 1]
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We then focused on the IST approach and investigated the influence on the estimates pro-

duced by innocuous variables which exhibit different degrees of correlation with the target vari-

able. Therefore, the above simulation was repeated, but considering, as well as the nonsensitive

variable “total annual cost of electricity” (t = t1 with ρyt1 = 0.753), the variable “total annual

rental cost of machinery, vehicles and equipment” (t = t2 with ρyt2 = 0.526) and the variable

“total annual cost of raw materials” (t = t3 with ρyt3 = 0.811).

The results of the simulation concerning only the performance of the estimators in the IST

framework are illustrated in Figure 2.

[Figure 2]

We observe that two HT type estimators ˆ̄YHT1 and ˆ̄YHT2 , which employ t1 and t2 as auxiliary

variables, show a similar performance while, when using the auxiliary variable t3, the efficiency

of the estimates decreases. Hence, the choice of which innocuous variable to use is a matter of

some importance for the researcher. On the contrary, no striking differences are apparent when

the IST calibration type estimators are considered, and the results appear to be robust to the

choice of the innocuous variable. For the IST calibrated estimators, the correlation between the

target variable and the calibration variable is more important than that between the target and

the innocuous variable.

Finally, we investigated the behaviour of the estimators when we wish to obtain estimates for

population domains. For this purpose, the above study was repeated, but splitting the firms into

domains according to the numbers of employers. In this case, three domains were considered:

small, medium and large firms. Again, we focused only on the IST approach. For brevity,

Figure 3 shows only the outcomes of stratified sampling. The results obtained are very similar

to those of the first simulation study and confirm that the IST can also be profitably used in

more complex survey situations.

[Figure 3]
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5.2 Simulation 2: focusing on the IST calibration estimator

In the previous simulation study, we ascertained the very good performance of the IST cali-

bration estimators. Accordingly, we then focused on the calibration approach and ran a new

simulation in order to explore some additional features concerning: (i) the influence on the

estimates of the length of the list; (ii) the accuracy of the variance estimation.

For this purpose, we considered the population included in Shaw (2015). This population is

composed of N = 117 units and includes, beside the target variable y, five innocuous variables.

To perform the calibration we generated a new variable (x) correlated with y (ρyx = 0.754). The

population was stratified into three strata using the cut-off values 4 and 7 of y. Hence, 10,000

samples of several sample sizes were selected from the population according to SRSWOR and

stratified SRSWOR. In this process, for each sample, the calibration estimates are obtained by

increasing the number of innocuous items. Let ˆ̄YC,G denote the IST calibration estimator for

the list of items which includes G innocuous variables, G = 1, . . . , 5. Hence, for each ˆ̄YC,G, we

computed the absolute RB and RMSE as in Section 5.1.

The results obtained are shown in Figure 4. Clearly, the performance of the estimators

strongly depends on the length of the list. As the number of innocuous items increases, both

the absolute RB and the RMSE increase, although the RB always remains within an acceptable

range of values. The fact that the efficiency of the estimates deteriorates as the length of the

list increases is not surprising, since the more innocuous items are included, the higher the vari-

ance of the total score t reported by the respondents. The best performance of the estimators is

achieved when one or two innocuous variables are used to perturb the true sensitive response.

With respect to this point, Trappmann et al. (2014) suggested using a single nonsensitive item

in order to improve the efficiency of the procedure.

[Figure 4]

Finally, another simulation was run to investigate the behaviour of the variance estimator of
ˆ̄YC,G. This experiment is summarized in the following steps:

1. For all the IST situations considered, calibration type estimates are computed on the basis

of 50,000 samples selected from Shaw’s population (sample sizes ranging from 10 to 50

units) according to SRSWOR and stratified SRSWOR. Hence, an approximation of the
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true theoretical variance of ˆ̄YC,G is achieved by the simulated variance:

Vsim( ˆ̄YC,G) =
1

50000

50000∑
k=1

( ˆ̄Y
(k)
C,G − Ȳ )2

where ˆ̄Y
(k)
C,G is the calibration type estimate computed on the kth sample andG = 1, . . . , 5;

2. 10,000 Monte Carlo samples are drawn from Shaw’s population according to SRSWOR

and stratified SRSWOR, and variance estimates V̂( ˆ̄YC,G) are computed as reported in (7);

3. The absolute relative bias and relative mean squared error for the variance estimates are

computed as:

|RB(V̂( ˆ̄YC,G))| =

∣∣∣∣∣EM(V̂( ˆ̄YC,G))− Vsim( ˆ̄YC,G)

Vsim( ˆ̄YC,G)

∣∣∣∣∣
and

RMSE(V( ˆ̄YC,G)) =
EM(V̂( ˆ̄YC,G)− Vsim( ˆ̄YC,G))2

(Vsim( ˆ̄YC,G))2
.

Figure 5 shows the behaviour of the absolute RB and the RMSE for different sample sizes

and under the two sampling designs.

[Figure 5]

Overall, both the absolute RB and the RMSE of the variance estimator for the suggested

IST calibration estimator produce very small values. Moreover, we observe that: (i) the RMSE

decreases as the sample size increases; (ii) the satisfactory behaviour of the variance estimator

does not seem to be affected by the increased number of innocuous variables used to perform

the IST.

6 Conclusions

This article describes advances that may be achieved in the use of the IST when auxiliary in-

formation is available for the entire population, at no additional cost. This situation is very

common in sampling practice and has given rise to many papers discussing the situation when

nonsensitive parameters must be estimated. However, to the best of our knowledge, very few
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studies have addressed the question of estimating a quantitative sensitive characteristic when

using the IST and auxiliary information. This is probably due to the fact that the IST has only

recently been introduced, as a variant of the much better known ICT, which is suitable for

collecting data on sensitive attributes.

In our work, auxiliary information is employed at both the design and the estimation stages.

In particular, under a generic sampling design, we introduce, for a two-list experiment, a

Horvitz-Thompson type estimator and a calibration type estimator in order to efficiently esti-

mate the mean of a sensitive quantitative variable. The performance of the proposed estimators

is analyzed extensively by means of simulation experiments based on two data sets. Specifi-

cally, the efficiency of the two estimators based on “perturbed data” is compared with that of

analogous estimators based on “true data”. This comparison is then extended to include the

RRT, an indirect questioning mode that represents an alternative to the IST. This comparison

is effected under different sampling designs. The results arising from the simulation study are

very interesting and promising. For the data considered, at least, our findings reveal that IST

surveys can provide estimates which are nearly as efficient as those obtained from a DQ survey

while, in general, outperforming RRT estimates. This is particularly true for the calibration

type estimators. Accordingly, we further investigated the behaviour of these estimators by run-

ning additional simulations in order to assess variance estimation and the impact made on the

estimates when the number of innocuous variables is increased.

The idea of using calibration in the IST is certainly original and merits future research at-

tention. We hope that the promising results obtained from this study will encourage academics

and researchers to incorporate our proposal into applied studies, to gain a better understanding

of the potential of the IST in real-world analyses and to contribute to extending its use as an

alternative indirect questioning technique in surveys.

Acknowledgments

This work is partially supported by Ministerio de Economı́a y Competitividad of Spain (grant

MTM2015-63609-R), Ministerio de Educación, Cultura y Deporte (grant FPU, Spain) and by

the project PRIN-SURWEY (grant 2012F42NS8, Italy)

20



References

[1] Arcos, A., Rueda, M.M., Singh, S., 2015. Generalized approach to randomized response

for quantitative variables. Quality & Quantity 49: 1239-1256

[2] Arias, A., Sutton, S.G. 2013. “Understanding recreational fishers compliance with no-

take zones in the Great Barrier Reef Marine Park.” Ecology and Society 18: Available at

http://dx.doi.org/10.5751/ES-05872-180418.

[3] Arnab, R., Singh, S. 2010. “Randomized response techniques: An application to the

Botswana AIDS impact survey.” Journal of Statistical Planning and Inference 140:941-

953.

[4] Aronow, P.M., Coppock, A., Crawford, F.W., Green, D.P. 2015. “Combining list experi-

ment and direct question estimates of sensitive behavior prevalence.” Journal of Survey

Statistics and Methodology 3:43-66.

[5] Bar-Lev, S.K., Bobovitch, E., Boukai, B. 2004. “A note on randomized response models

for quantitative data.” Metrika 60:255-260.

[6] Blair, G., Imai, K. 2010. list: Statistical Methods for the Item Count Technique and List

Experiment. URL=http://CRAN.Rproject.org/package=list.

[7] Blair, G., Imai, K. 2012. “Statistical analysis of list experiments.” Political Analysis

20:47-77.

[8] Blair, G., Imai, K., Lyall, J. 2014. “Comparing and combining list and endorsement ex-

periments: Evidence from Afghanistan.” American Journal of Political Science 58:1043-

1063.

[9] Blank, S.G., Gavin, M.C. 2009. “The randomized response technique as a tool for es-

timating non-compliance rates in fisheries: a case study of illegal red abalone (Haliotis

rufescens) fishing in Northern California.” Environmental Conservation 36:112-119.

[10] Chaloupka, M. Y. 1985. “Application of the randomized response technique to marine

park management: An assessment of permit compliance.” Environmental Management

9:393-398.

21



[11] Chaudhuri, A. 2011. Randomized Response and Indirect Questioning Techniques in Sur-

veys. Chapman & Hall/CRC, Boca Raton, FL.

[12] Chaudhuri, A., Christofides, T.C. 2007. “Item count technique in estimating the pro-

portion of people with a sensitive feature.” Journal of Statistical Planning and Inference

137:589-593.

[13] Chaudhuri, A., Christofides, T.C. 2013. Indirect Questioning in Sample Surveys.

Springer-Verlag Berlin Heidelberg.

[14] Chaudhuri, A., Mukerjee, R. 1988. Randomized Response: Theory and Techniques.

Marcel Dekker, Inc., New York.

[15] Conteh, A., Gavin M.C., Solomon, J. 2015. “Quantifying illegal hunting: A novel appli-

cation of the randomised response technique.” Biological Conservation 189:16-23.

[16] Christofides, T.C. 2015. “A new version of the item count technique.” Model Assisted

Statistics and Applications 10:289-297.

[17] Deville, J.C., and Särndal, C.E. 1992. “Calibration estimators in survey sampling.” Jour-

nal of the American Statistical Association 87:376-382.

[18] Diana, G., Perri, P.F. 2009. “Estimating a sensitive proportion through randomized re-

sponse procedures based on auxiliary information.” Statistical Papers 50:661-672.

[19] Diana, G., Perri, P.F. 2010. “New scrambled response models for estimating the mean of

a sensitive quantitative character.” Journal of Applied Statistics 37:1875-1890.

[20] Diana, G., Perri, P.F. 2011. “A class of estimators for quantitative sensitive data.” Statis-

tical Papers 52:633-650.

[21] Diana, G., Perri, P.F. 2012. “A calibration-based approach to sensitive data: A simulation

study.” Journal of Applied Statistics 39:53-65.

[22] Dietz, P., Striegel, H., Franke, A.G., Lieb, K., Simon, P., Ulrich, R. 2013. “Random-

ized response estimates for the 12-month prevalence of cognitive-enhancing drug use in

university students.” Pharmacotherapy 33:44-50.

22



[23] Droitcour, J.A., Caspar, R.A., Hubbard, M.L., Parsley, T.L., Visseher, W., and Ezzati,

T.M. 1991. “The item count technique as a method of indirect questioning: A review

of its development and a case study application.” Pp. 187-209. In: Measurement Error

in Surveys. Biemer, P.P., Groves, R.M., Lyburg, L.E., Mathiowetz, N., Sudmar. S. (Eds),

Wiley, New York.

[24] Droitcour, J.A., Larson, E.M. 2002. “An innovative technique for asking sensitive ques-

tions: The three-card method.” Bulletin of Sociological Methodology 75:5-23.

[25] Eichhorn, B.H., Hayre, L.S., 1983. “Scrambled randomized response methods for obtain-

ing sensitive quantitative data”. Journal of Statistical Planning and Inference 7:306-316.

[26] Fox, J.A., Tracy, P.E. 1986. Randomized Response: A Method for Sensitive Survey. Sage

Publication, Inc., Newbury Park.

[27] Glynn, A.N. 2013. “What can we learn with statistical truth serum? Design and analysis

of the list experiment.” Public Opinion Quarterly 77:159-172.

[28] Goodstadt, M.S., Gruson, V. 1975. “The randomized response technique: A test on drug

use.” Journal of the American Statistical Association 70:814-818.

[29] Holbrook, A.L., and Krosnick J.A. 2010a. “Measuring voter turnout by using the ran-

domized response technique: Evidence calling into question the method’s validity.” Pub-

lic Opinion Quarterly 74:328-343.

[30] Holbrook, A.L., and Krosnick J.A. 2010b. “Social desirability bias in voter turnout re-

ports: Tests using the item count technique.” Public Opinion Quarterly 74:37-67.

[31] Horvitz, D.G., Thompson, D.J. 1952. “A generalization of sampling without replacement

from a finite universe.” Journal of the American Statistical Association, 47:663-685.

[32] Houston, J., Tran, A. 2001. “A survey of tax evasion using the randomized response

technique.” Advances in Taxation 13:69-94.

[33] Hussain, Z., Shah, E.A., Shabbir, J. 2012. “An alternative item count technique in sensi-

tive surveys.” Revista Colombiana de Estadistica 35:39-54.

23



[34] Hussain, Z. Shabbir, N., Shabbir J. 2015. “An alternative item sum technique for im-

proved estimators of population mean in sensitive surveys.” Hacettepe Journal of Math-

ematics and Statistics, First published online

[35] Imai, K. 2011. “Multivariate regression analysis for the item count technique.” Journal

of the American Statistical Association 106:407-416.

[36] Imai, K., Park, B., Greene, K.F. 2015. “Using the predicted responses from list experi-

ments as explanatory variables in regression models.” Political Analysis 23:180-196.

[37] James R.A., Nepusz T., Naughton D.P., Petróczi A. 2013. “A potential inflating ef-
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Figure 1: Performance of the HT and calibration estimators under DQ, IST and RRT survey
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Figure 2: Performance of the HT and calibration estimators under DQ and IST survey modes
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Figure 3: Stratified domain estimates by the HT and calibration estimators under DQ and IST
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Figure 5: Performance of the variance estimator for the IST calibration estimators with an

increasing number of innocuous items
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