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ABSTRACT
Large scale surveys are increasingly delving into sensitive topics such as gambling,
alcoholism, drug use, sexual behavior, domestic violence. Sensitive, stigmatizing
or even incriminating themes are difficult to investigate by using standard data-
collection techniques since respondents are generally reluctant to release informa-
tion which concern their personal sphere. Further, such topics usually pertain elusive
population (e.g., irregular immigrants and homeless, alcoholics, drug users, rape and
sexual assault victims) which are difficult to sample since not adequately covered
in a single sampling frame. On the other hand, researchers often utilize more than
one data-collection mode (i.e., mixed-mode surveys) in order to increase response
rates and/or improve coverage of the population of interest. Surveying sensitive and
elusive populations and mixed-mode researches are strictly connected with multiple
frame surveys which are becoming widely used to decrease bias due to undercoverage
of the target population. In this work, we combine sensitive research and multiple
frame surveys. In particular, we consider statistical techniques for handling sensitive
data coming from multiple frame surveys using complex sampling designs. Our aim
is to estimate the mean of a sensitive variable connected to undesirable behaviors
when data are collected by using the randomized response theory. Some estimators
are constructed and their properties theoretically investigated. Variance estimation
is also discussed by means of the jackknife technique. Finally, a Monte Carlo sim-
ulation study is conducted to evaluate the performance of the proposed estimators
and the accuracy of variance estimation..

KEYWORDS
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1. Introduction

Mostly in socioeconomic and biomedical studies, very often the researcher has to gather
information relating to highly sensitive, embarrassing or even threatening issues. When
doing sensitive research, posing direct questions to the respondents by means of tradi-
tional data-collection methods (e.g., self-administered questionnaires with paper and
pencil, computer-assisted telephone interviewing, computer-assisted self interviewing,
audio computer-assisted self interviewing or by computer-assisted Web interviewing)
may procure untruthful responses or even refuse to respond because of social stigma or
fear about threat of disclosure. Such systematic nonsampling response errors lead to
social desirability bias in the estimates of sensitive characteristics. Social desirability
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bias occurs when respondents tend to present themselves in a positive light, meaning
that they overreport socially acceptable attitudes which conform to social norms (e.g.,
giving to charity, believing in God, church attendance, voting, healthy eating, doing
voluntary work) and underreport socially disapproved, undesirable behaviours which
deviate from social rules (e.g., xenophobia, anti-Semitism, gambling, consumption of
alcohol, abortion, sexual violence, drug and enhancing substances, tax evasion). The
effect is to flaw the quality of the collected data and produce unreliable analysis of the
sensitive behavior under investigation.

To limit unacceptable rates of nonresponse and obtain more reliable data, indirect
questioning methods (see, e.g, Chaudhuri and Cristofides, 2013), such as the random-
ized response (RR) theory (RRT), may be used. The RRT was originated by Warner
(1965) who proposed a data-collection procedure that allows researchers to obtain
more reliable sensitive information by increasing respondents’ cooperation without
jeopardizing privacy protection. To guarantee confidentiality to the respondents, a
randomization device (decks of cards, coloured numbered balls, dice, coins, spinners,
random number generators, etc.) is used to hide the answers in the sense that the re-
spondents reply to one of two or more selected questions depending on the result of the
device. Privacy is protected since respondents do not reveal to anyone the question that
has been selected and nobody, except the respondent, knows the outcome generated
by the randomization device. Since privacy is fully protected, the approach should, in
principle, encourage greater cooperation from respondents and reduce their motiva-
tion to falsely report their attitudes. Hence, it is expected that survey participants are
compliant with the rules prescribed by the adopted randomization mechanism and are
completely honest in releasing their responses. The randomization device generates a
probabilistic relationship between respondents’ answers and the true sensitive status
which is used to draw inferences about unknown sensitive population characteristics
such as the prevalence of a stigmatizing attribute, the mean/total of a quantitative
sensitive variable or its distribution function.

The most important claim made for the RRT is that it can yield valid estimates of
sensitive behaviours. Many studies have assessed the validity of RR methods and shown
that they can produce more reliable answers than other conventional data-collection
methods based on direct questions in face-to-face interviews, self-administered ques-
tionnaires with paper and pencil, and computer assisted self interviews. On this, see,
van der Heijden et al. (2000); Lara et al. (2004); Lensvelt-Mulders et al. (2005) just to
name a few. On the other hand, using RRT incurs extra costs which can be outweighed
only if the analyses are substantially better than those derived from straightforward
question-and-answer designs.

The RRT has been applied in surveys covering a variety of sensitive topics including,
for instance, racism (Ostapczuk et al., 2009; Krumpal, 2012), drug use (Kerkvliet,
1994; Striegel et al., 2010; Stubbe et al. 2013; Perri et al., 2017), abortion (Lara et
al., 2004, 2006; Perri et al., 2016), sexual victimization (Krebs et al., 2011), academic
cheating and plagiarism (Fox and Meijer, 2008; Jann et al., 2012), tax evasion (Houston
and Tran, 2001; Korndörfer et al., 2014), HIV/AIDS infection and high-risk sexual
behaviors (Arnab and Singh, 2010; Geng et al., 2016), animal diseases (Cross et. al.,
2010; Gunarathne et al., 2016), illegal fishing and hunting (Nuno et al., 2013; Conteh
et al., 2015).

Warner’s study generated a rapidly-expanding body of research literature on alter-
native techniques for eliciting suitable RR schemes in order to estimate a population
proportion (see, e.g., Arnab, 1996; Barabesi and Marcheselli, 2006; Barabesi, 2008;
Gjestvang and Singh, 2006; Lee et al., 2013; Liu and Tian, 2013; Perri, 2008).
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Standard RR methods have been basically conceived to be used in surveys which
require a binary response (”yes” or ”no”) to a sensitive question, and seek to estimate
the proportion of people presenting a given sensitive attribute. Nevertheless, empirical
studies may address situations in which the response to a sensitive question results
in a quantitative variable and the interest of the researcher relies, in the easiest case,
on the estimation of the mean or the total of the sensitive variable under study. To
deal with such situations, Warner’s idea has been promptly extended to sensitive
quantitative variables by Greenberg et al. (1971), Eriksson (1973) and Pollock and
Beck (1976). Since then a lot of mechanism have been proposed in the literature to
scramble the response and, thus, protect respondents’ privacy (see, e.g., Eichhorn and
Hayre, 1983; Bar-Lev et al., 2004; Saha, 2007a; Diana and Perri, 2010; Gupta et al.,
2010; Odumade and Singh, 2010; Arcos et al., 2015, and the contributions collected in
Chaudhuri et al., 2016). When dealing with quantitative sensitive variables, the idea is
to ask respondents to not disclose the true value of the sensitive variable but rather to
release a scrambled value obtained by algebraically perturb the true response making
use of one or more scrambling random variables, independent each other and of the
sensitive one, which distributions are completely known to the researcher.

Usually, RR methods, both for qualitative and quantitative variables, have been the-
oretically developed assuming that the observed responses are collected on sampled
units selected according to simple random sampling. Indeed, most of the real studies
are based on complex surveys involving, for instance, stratification, clustering and un-
equal probability sampling designs. Therefore, the RRT has been extended to more
complex sampling design, as stratified sampling (Mahajan and Singh, 2005; Kim and
Elam, 2007; Saha, 2007b; Singh and Tarray, 2015), or unequal probability sampling
(Chaudhuri, 2001, 2004; Arnab and Dorffer, 2006; Saha, 2007a; Pal, 2008; Quatember,
2012). An interesting development of the RRT concerns the use of auxiliary informa-
tion at the estimation stage to improve the performance of the randomization device
without additional costs and without infringing respondents’ privacy. Recent contribu-
tions in this field have been proposed, among other, by Diana and Perri (2011, 2012);
Gupta et al. (2012); Perri and Diana (2013); Koyuncu et al. (2014); Özgül and Cingi
(2017) and Rueda et al. (2017a).

Readers interested in the RRT and other alternative indirect questioning techniques
approaches are referred to the monographs by Fox and Tracy (1986), Fox (2016)
Chaudhuri and Mukerjee (1988), Chaudhuri (2011), Chaudhury and Christofides
(2013) and Chaudhuri et al. (2016).

Traditionally, surveys have been carried out using three main methods of data col-
lection: face-to-face interviews, mail surveys and telephone interviews. Over the last 20
years, the picture has changed sharply. Telephone surveys have become a popular mode
for collecting data, especially following the creation and development of computer-
assisted telephone interviewing systems. Telephone interviews are often considered a
less costly alternative to mail and face-to-face interviews and the population coverage
reaches acceptable levels. However, telephone surveys also present some drawbacks
with regard to coverage, due to the absence of a telephone in some households and
the generalized use of mobile phone which are sometimes replacing fixed (land) lines
entirely. The potential for coverage error as a result of the exponential growth of the
cell phone-only population has led to the development of dual frame surveys. On the
other hand, sensitive surveys usually meet elusive or hard-to-reach populations which
are not listed in a unique sampling frame and required more than one frame to to be
sufficiently covered.

Dual frame surveys were introduced as a device for reducing data-collection costs
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without affecting the accuracy of the results with respect to single frame surveys. Since
then, the multiple frame sampling theory has experienced a noticeable development
and several estimators for the total of a continuous variable have been proposed. Hart-
ley (1962) proposed the first dual frame estimator which was improved by Lund (1968)
and Fuller and Burmeister (1972). Bankier (1986), Kalton and Anderson (1986) and
Skinner (1991) proposed dual frame estimators based on new techniques. Skinner and
Rao (1996) and Rao and Wu (2010) applied likelihood methods to compute estima-
tors that perform well in complex designs. More recently, Ranalli et al. (2016) used
calibration techniques to derive estimators in the dual frame context. Although the
copious literature on dual frame theory, there are very few studies that address the
problem of estimating sensitive behaviors under this setting. Recently Rueda et al.
(2015) proposed some dual frame estimators for proportions and means when data are
obtained by using the RRT.

Surveys where data are collected from three sampling frames are also used in prac-
tice. Iachan and Dennis (1993) used a three frame survey to reach the homeless pop-
ulation of Washington D.C. metropolitan area. Frames in this survey were composed
of homeless shelters, soup kitchens and street areas. On the other hand, the Cana-
dian Community Health Survey conducted by Statistics Canada (2003) is based on a
area frame, a list frame and a random digit dialing (RDD) frame. In the near future,
importance of three frame surveys is expected to grow with the use of the internet
as data-collection tool (Lohr, 2010). Indeed, it is very likely that dual frame surveys
consisting of a cell and a landline frame evolve to three frame surveys incorporating
a third frame of web users. A good revision of the problem of estimation in multiple
frame surveys can be found in Lohr (2009). Recently Rueda et al. (2017b) proposed
statistical techniques for handling ordinal data coming from a multiple frame survey
in complex sampling designs.

To the best of our knowledge, theoretical or applied works do not exist under a
multiple frame setting in the field of the RRT and, more in general, in the research area
of indirect questioning techniques. This paper aims, thus, at proposing new estimators
of the population mean of a sensitive variable when data are collected using the RRT
under a multiple frame sampling approach.

This article proceeds as follows. In Sect. 2, we introduce the notation and propose
a first multiple frame estimator of the unknown population mean in the RR setting.
The unbiasedness of the multiplicity estimator is proved and its variance worked out
(Sect. 2.1). Variance estimation is also discussed in Sect. 2.2 including the jackknife
approach. In Sect. 3., other multiple frame estimators are extended to the RR setting.
The performance of all the proposed estimators is investigated in Sect. 4 where the
findings of a Monte Carlo simulation study are commented and graphically summa-
rized. Finally, Sect. 5 concludes the article with some final remarks.

2. A multiple frame estimator for the RRT

Let U = {1, ..., k, ..., N} be a finite population composed of N units labeled from
1 to N and let A1, . . . , Aq, . . . , AQ be a collection of Q ≥ 2 overlapping frames of
sizes N1, . . . , Nq, . . . , NQ, all of them can be incomplete but it is assumed that overall
they cover the entire target population U . With Q frames, there are 2Q − 1 possible
disjointed domains. Let y be a sensitive variable to study and yk its value for the k-th
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population unit. Let us suppose that population mean of y, say

Ȳ =
1

N

∑
k∈U

yk,

is unknown and has to be estimated. This mean can be rewritten as follows

Ȳ =
1

N

Q∑
q=1

∑
k∈Aq

yk
mk

, (1)

where mk indicates the multiplicity of the k-th unit, i.e. the number of frames the unit
k is included. Multiplicities mk are needed in (??) to weight values yk, otherwise, those
units belonging to more than one frame would count more than once in the overall
sum. Let sq be a sample drawn from frame Aq under a particular sampling design,
independently for q = 1, . . . , Q and let πk(q) and πkj(q) be the first and second-order
inclusion probabilities under this sampling design, respectively. Let dk(q) = 1/πk(q)
be the sampling weight for unit k in frame Aq. Moreover, let nq be the size of sample
sq and s = ∪qsq. We assume that duplicated units has a negligible chance to happen
( Skinner 1991, Molina et al, 2015).

We assume that the variable under study y cannot be observed directly and that
in each frame it is possible to use a different RR procedure to collect data on it.
In order to consider a wide variety of RR devices, we consider the unified approach
given by Arnab (1996) according to the individuals in the sample sq use a generic
RR model denoted by RRq. For each k ∈ sq the RRq induces a random variable
Zqk so that the revised randomized response Rqk is an unbiased estimation of yk,
the real value of the sensitive variable for the k-th unit in sq. We consider RRq,
with q = 1, . . . , Q, to be independent randomization devices such that the respective
revised randomized responses Rqk satisfy the conditions (Arnab, 2004) ER(Rqk) = yk,
VR(Rqk) = σ2

qk, CR(Rqk, Rqj) = 0, where ER, VR and CR denote the expectation,
variance and covariance operators with respect to the RR mechanism.

Following Mecatti (2007), we propose the multiplicity estimator:

ˆ̄YM =
1

N

Q∑
q=1

∑
k∈sq

Rqkd
M
k (q), (2)

with dMk (q) = dk(q)/mk.

2.1. Properties of the proposed estimator

In this section we describe the main properties of the proposed estimator. The results
stated in the following theorem hold:

Theorem 2.1. The multiplicity estimator ˆ̄YM is an unbiased estimator of the popu-
lation mean Ȳ and has variance given by:

V ( ˆ̄YM ) =
1

N2

 Q∑
q=1

∑
k∈Aq

σ2
qk

mk
dMk (q) +

Q∑
q=1

∑
k∈Aq

∑
j∈Aq

ykyj
mkmj

(
πkj(q)

πk(q)πj(q)
− 1

) .
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Proof. Let Ed and Vd denote the expectation and variance operators for any sampling
design d. Moreover, let Ik(q) the indicator function, with Ed [Ik(q)] = πk(q), which
takes value 1 if the k-th unit in frame Aq is selected in the sample sq, and 0 otherwise.
Taking into account the two sources of variability induced by the sampling design and
the randomization device, we have:

E( ˆ̄YM ) =
1

N
EdER

 Q∑
q=1

∑
k∈sq

Rqkd
M
k (q)


=

1

N
EdER

 Q∑
q=1

∑
k∈Aq

Rqkd
M
k (q)Ik(q)


=

1

N
Ed

 Q∑
q=1

∑
k∈Aq

ER(Rqk)dMk (q)Ik(q)


=

1

N
Ed

 Q∑
q=1

∑
k∈Aq

ykd
M
k (q)Ik(q)


=

1

N

Q∑
q=1

∑
k∈Aq

ykd
M
k (q)Ed [Ik(q)]

=
1

N

Q∑
q=1

∑
k∈Aq

yk
mkπk(q)

πk(q)

=
1

N

Q∑
q=1

∑
k∈Aq

yk
mk

= Ȳ .

Hence the proof of the unbiasedness of ˆ̄YM .
With regard to the variance of the estimator, it stems from the variance decompo-

sition formula:

V ( ˆ̄YM ) = Ed[VR( ˆ̄YM )] + Vd[ER( ˆ̄YM )].

Hence, by omitting some steps, we have:

V ( ˆ̄YM ) =
1

N2
Ed

 Q∑
q=1

∑
k∈Aq

VR(Rqk)(dMk (q))2Ik(q)

+
1

N2
Vd

 Q∑
q=1

∑
k∈sq

ykd
M
k (q)


=

1

N2

Q∑
q=1

∑
k∈Aq

σ2
qk

mk
dMk (q) +

1

N2

Q∑
q=1

Vd

∑
k∈sq

yMk
πk(q)

 ,

where yMk = yk/mk. The quantity
∑

k∈sq y
M
k /πk(q) = ˆ¯

HT (q)Y denotes the expression

of the Horvitz-Thompson estimator (hereafter HT-estimator), computed on weighted
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values yMk , for which it is known that (see, e.g, Särndal et al., 1992):

Vd( ˆ̄YHT (q)) =
∑
k∈Aq

∑
j∈Aq

yMk y
M
j

πk(q)πj(q)
(πkj(q)− πk(q)πj(q)] .

Replacing yMk and yMj , and assembling the terms, expression (??) easily follows. Hence
the proof.

We observe that the variance of the multiplicity estimator ˆ̄YM in the RR setting is
composed of two terms. The second addendum is related to the variance of the HT-
estimator which depends on the sampling designs and the yk values in each frame. The
first term depends on the sampling designs and also on the randomization mechanism
used in each frame. It represents the cost to pay, in terms of efficiency, to increase
respondents’ confidentiality.

In the formulation of the proposed estimators it is assumed that the population size
N is known and the HT-estimator is used as baseline. Alternatively, one can consider
an Hájek-type estimator substituting N with N̂ , an unbiased design-based estimator
of N . This is a special case of ratio estimator, and it can be more efficient than the
HT-type estimator because the sample size in overlapping domains is not fixed. The
estimators are thus approximately unbiased under certain conditions on the weights
(see Lohr, 2009).

2.2. Variance estimation

It can be proved that an analytical unbiased estimator of V ( ˆ̄YM ) is given by:

v̂( ˆ̄YM ) =
1

N2

 Q∑
q=1

∑
k∈Aq

σ2
qk

mk
dMk (q) +

Q∑
q=1

∑
k∈sq

∑
j∈sq

RqkRqj

mkmj

(
1

πk(q)πj(q)
− 1

πkj(q)

) .
(3)

To compute the variance estimator v̂( ˆ̄YM ), the second-order inclusion probabilities
πkj(q) must be known for all units in each frame. In some common sampling designs (as
cluster sampling with probability proportional to size) these probabilities are unknown
or can be equal to 0 for some sampling units i, j. A simple alternative is the use of
with replacement variance estimators or replicated sampling methods (for details on
these techniques see, e.g., Särndal et al., 1992 and Wolter, 2007). Quenouille (1949)
introduced the jackknife method to estimate the bias of an estimator by deleting one
observation each time from the original data set and recalculating the estimator based
on the rest of the data. In survey sampling, it is usual to use jackknife techniques
due to their simplicity and because they are implemented in general purpose software
packages, such as R.

If we consider a non-stratified design, the jackknife estimator for Vd( ˆ̄YHT (q)) is given
by:

v̂J( ˆ̄YHT (q)) =
nq − 1

nq

∑
i∈sq

(
ˆ̄Y

(−i)
HT (q)− ỸHT (q)

)2
,

where ˆ̄Y
(−i)
HT (q) is the value taken by ˆ̄YHT (q) after eliminating unit i from sq and ỸHT (q)
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is the average of ˆ̄Y
(−i)
M (q) values. It is known that the jackknife variance estimator

is asymptotically design unbiased for the variance of Horvitz-Thompson estimator
(Wolter, 2007). So, for the large sample size n, and hence for nq sufficiently large, we

have E[v̂J( ˆ̄YHT (q))] = Vd( ˆ̄YHT ). Thus, the adapted jackknife estimator

v̂J( ˆ̄YM ) =
1

N2

 Q∑
q=1

∑
k∈Aq

σ2
qk

mk
dMk (q) +

Q∑
q=1

v̂J( ˆ̄YHT (q))

 (4)

is an unbiased estimator for the variance of the proposed multiplicity estimator ˆ̄YM .
Variance estimator (??) can be considered an extension to multiple frame setting of
the adjusted variance estimator proposed by Arnab et al. (2015).

Variance estimators (??) and (??) rely on the assumption that σ2
qk is known. Indeed,

real situations may be incurred where σ2
qk is unknown and has to be estimated. Hence,

if σ̂2
qk denote an RR-unbiased estimator of σ2

qk, unbiased variance estimates may be

achieved by modifying the first addendum in (??) and (??) and obtaining:

v̂∗( ˆ̄YM ) =
1

N2

 Q∑
q=1

∑
k∈sq

σ̂2
qk

m2
kπ

2
k(q)

+

Q∑
q=1

∑
k∈sq

∑
j∈sq

RqkRqj

mkmj

(
1

πk(q)πj(q)
− 1

πkj(q)

)
(5)

and

v̂∗J( ˆ̄YM ) =
1

N2

 Q∑
q=1

∑
k∈sq

σ̂2
qk

m2
kπ

2
k(q)

+

Q∑
q=1

v̂J( ˆ̄YHT (q))

 . (6)

3. Other multiple frame estimators

Lohr and Rao (2006) considered the so called single frame approach used by Kalton
and Anderson (1986) to proposed a single frame estimator in a multiple frame context.
Following their idea, we propose a new estimator in the form:

ˆ̄YKA =
1

N

Q∑
q=1

∑
k∈sq

Rqkd
KA
k ,

with dKA
k = π̄−1

k and π̄k =
∑

q:k∈Aq
πk(q). To compute this estimator it is necessary

to know not only the number of frames each unit belongs to but, also, the specific
frames the unit is included in. This can be an important drawback particularly if

misclassification issues are present. Note that the previous proposed estimator ˆ̄YM
only requires the knowledge of the multiplicity of each unit, no matter which frame
unit belongs to.

We can combine ˆ̄YM and ˆ̄YKA and define the new composite multiplicity estimator:

ˆ̄YCM =
1

N

Q∑
q=1

∑
k∈sq

Rqkd
CM
k , (7)
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where

dCM
k =

λkdk + (1− λk)dKA
k

mk
,

being 0 < λk < 1.
Usually, information at population level about auxiliary variables is available in

surveys. Rao and Wu (2010) followed a single frame multiplicity based approach to
extend the pseudo empirical likelihood estimator for the mean of a variable to the
multiple frame setting. Calibration (Deville and Särndal, 1992) is also a well-known
technique to deal with auxiliary information at the estimation stage. Some works
link RR models and calibration techniques together (Tracy and Singh, 1999; Diana
and Perri, 2012). Ranalli et al. (2016) proposed different calibration estimators for the
dual frame case, which can be easily extended to the multiple frame context. Using this
technique we define a calibration estimator for randomized responses in the multiple
frame context.

Let xq = (xq1, xq2, . . . , xqpq
)′ be a set of pq auxiliary variables observed in the q-th

frame, so that the vector xqk = (xq1k, xq2k, . . . , xqpqk)′ includes the values taken by
the variables xq on the k-th unit in frame Aq. In other words, we consider the case of
complete auxiliary information. In addition, we examine the more general case in which
auxiliary variables may differ in each frame, i.e. xq 6= xq, for q, r = 1, . . . , Q, q 6= r.
For the sample sq selected from frame Aq, the values of the variables {yk,xqk} are
observed.

A calibration estimator in the case of several sampling frames can be defined as:

ˆ̄YCAL =
1

N

Q∑
q=1

∑
k∈sq

Rqkd
CAL
k (q),

where dCAL
k (q) are such that they minimize

∑Q
q=1

∑
k∈sq G

(
dCAL
k (q), dMk (q)

)
, where

G(·, ·) is a particular distance function, subject to

Q∑
q=1

∑
k∈sq

dCAL
k (q)xqkδk(Aq) = txq, q = 1, ..., Q,

where δk(Aq) is the indicator variable that takes value 1 if the k-th unit is in frame
Aq and 0 otherwise, and txq are the population totals of xq.

The proposed model calibration estimator eliminates overestimation issues by sev-
eral means. We consider dMk (q) as the starting weights for the calibration and, using
the indicator variable δk(Aq), the calibration constraints ensure adjustment of the
multiplicity issues by benchmarking all information on units from frame Aq included
in the sample, irrespective of the frame they were originally selected from. Therefore,
again, multiplicity is accounted for automatically by the constraints. The properties
of this estimator can be derived from the properties of the calibrated estimators in
multiple frames (see, e.g., Ranalli et al., 2016).
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4. A Monte Carlo simulation study

In this section we run a Monte Carlo simulation study to compare empirically the
performance of the proposed multiple frame estimators in an RR setting. In so doing,
we assume that the taget variable has a normal distribution, y ∼ N(30, 3). We consider
an artificial population size of N = 10000 units and establish Q = 3 frames: frame A
has size NA = 5500, frame B has size NB = 6500 and frame C has size NC = 5000.
From these frames, we obtain the following 23 − 1 domains: a, b and c, subsets of
population units in frame A, B and C, respectively, with sizes Na = 1500, Nb = 1500
and Nc = 1000; ab, ac and bc, subsets of population units in frames A and B, A and
C, B and C, with sizes Nab = 2000, Nac = 1000, Nbc = 2000; abc domain, subset of
population units in frames A, B and C, with size Nabc = 1000. Three scenarios with
increasing sample sizes in each frame are included in the analysis. In the first scenario,
we draw samples of size nA = 288, nB = 371 and nC = 582 from each of the frames
A, B and C. In the second scenario, we consider nA = 360, nB = 464 and nC = 728
while for the third we set nA = 432, nB = 557 and nC = 874.
Two experimental situations are investigated throughout the simulation:

ES1: Samples are selected according to simple random sampling without replacement
(srswor) from all frames and in each sample we apply a different RR technique
to produce data. Specifically, in frame A we use the Eichhorn and Hayre (1983)
model: the i-th sampled units is asked to provide the randomized response zi =
yiwi where wi is a random value generated from the scrambling variable w whose
distribution law is assumed to be known. We assume that w is Fisher distributed,
w ∼ F (20, 20). In frame B, the Bar-Lev et al. (2004) device is adopted according
to which the observed randomized response zi is defined as:

zi =

{
yi with probability p
yiwi with probability 1− p.

We assume p = 0.6 and w following the exponential distribution, w ∼ Exp(1).
Finally, in frame C, we perform the Eriksson (1973) mechanism to scramble the
true response. According to this mechanism, the randomized response released
by the i-th respondent is:

zi =

{
yi with probability p
wi with probability 1− p,

where the value wi is generated from the uniform discrete random variable w =
(27.86, 29.96, 32.33). The values of w are the quartiles of the y distribution. We
assume p = 0.7.

ES2: The Bar-Lev et al. (2004) model is used to perturb the response in all frames and
samples are selected according to srswor in frame A, stratified sampling in frame
B and Midzuno sampling (see, e.g., Särndal et al., 1992) in frame C. For the
stratified sampling we considered three strata depending of the value of y, while
for implementing the Midzuno sampling design we used an auxiliary variable x
highly correlated to y (ρyx = 0.98).

Under the two experimental settings (ES1 and ES2), two distinct simulation analyses
are conducted. The first aims at assessing the performance of the proposed estimators
in terms of bias and mean square error, the second refers to the accuracy of the jack-
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Estimates sample sizes ˆ̄YM
ˆ̄YKA

ˆ̄YCM
ˆ̄YCAL

nA = 288, nB = 371, nC = 582 0.0137592 0.0130946 0.0174320 0.0137410
RB nA = 360, nB = 464, nC = 728 0.0122739 0.0115960 0.0154836 0.0122513

nA = 432, nB = 557, nC = 874 0.0117777 0.0111799 0.0144858 0.0117807
nA = 288, nB = 371, nC = 582 0.0002989 0.0002677 0.0004693 0.0002985

RMSE nA = 360, nB = 464, nC = 728 0.0002453 0.0002177 0.0003857 0.0002444
nA = 432, nB = 557, nC = 874 0.0002137 0.0001917 0.0003239 0.0002141

Table 1. ES1: Relative bias and relative mean square error for ˆ̄YM , ˆ̄YKA, ˆ̄YCM and ˆ̄YCAL under srswor in
all frames.

Estimates sample sizes ˆ̄YM
ˆ̄YKA

ˆ̄YCM
ˆ̄YCAL

nA = 288, nB = 371, nC = 582 0.0177636 0.0172636 0.0220091 0.0175873
RB nA = 360, nB = 464, nC = 728 0.0157843 0.0153962 0.0194660 0.0155997

nA = 432, nB = 557, nC = 874 0.0149888 0.0146821 0.0186161 0.0146604
nA = 288, nB = 371, nC = 582 0.0004872 0.0004690 0.0007593 0.0004733

RMSE nA = 360, nB = 464, nC = 728 0.0003906 0.0003689 0.0006047 0.0003793
nA = 432, nB = 557, nC = 874 0.0003472 0.0003327 0.0005292 0.0003334

Table 2. ES2: Relative bias and relative mean square error for ˆ̄YM , ˆ̄YKA, ˆ̄YCM and ˆ̄YCAL considering srswor
in frame A, stratified sampling in frame B and Midzuno sampling in frame C.

knife variance estimates. For each simulation setting, we consider B = 1000 simulation
runs.

4.1. Efficiency of the estimates

The performance of the estimator ˆ̄Y. = ˆ̄YM ,
ˆ̄YKA,

ˆ̄YCM ,
ˆ̄YCAL is investigated by means

of the relative bias (RB) and the relative mean square error (RMSE):

RB( ˆ̄Y.) =

∑B
k=1 |

ˆ̄Y (k)
. − Ȳ |

BȲ

and

RMSE( ˆ̄Y.) =

∑B
k=1( ˆ̄Y (k)

. − Ȳ )2

BȲ 2
,

where ˆ̄Y (k)
. denotes the estimate of Ȳ computed on the k-th simulation run. The

composite multiplicity estimator ˆ̄YCM is computed with λk as given in Singh and

Mecatti (2011), while the calibration estimator ˆ̄YCAL employes as auxiliary information
the population frame size (xqk = δk(Aq) and txq = Nq). The results of the simulation
study for the two experimental situations are graphically depicted in Figures ?? and
??, while Tables ?? and ?? give the values of RB and RMSE for all estimators in the
different sample size scenarios.

From results in Tables ?? and ?? we observe that the bias for all the estimators
considered is negligible. With respect to the efficiency, no significative differences can

be ascertained between the estimators ˆ̄YM , ˆ̄YKA and ˆ̄YCAL. In general, the best perfor-

mance in terms of RMSE is achieved by ˆ̄YKA, but this estimator needs full information

at frame level. The composite multiplicity estimator ˆ̄YCM shows the worst behavior.
This is probably due to the fact that the value of λk, used to compute the estimator, is
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obtained by minimizing the variance of the final weights dCM
k and not of the variance

of the estimator. This is a suboptimal solution which does not require estimation of
variances and covariances.

As might be expected, we also observe that both the RB and the RMSE decrease
as the frame sample sizes increase, a clear indication this of the consistency of the
estimates.

4.2. Jackknife variance estimation

We now investigate the performance of the variance estimation for all the proposed

estimators. In particular, we focus on the jackknife variance given in (??) for ˆ̄YM . The
extension to the other estimators introduced in Section 3 readily follows. Similarly
to the previous simulation study, the accuracy of the jackknife variance estimates is
assessed by means of RB and RMSE:

RB(v̂∗J( ˆ̄Y.)) =

∑B
k=1

∣∣∣v̂∗(k)
J ( ˆ̄Y.)− V ( ˆ̄Y.)

∣∣∣
BV ( ˆ̄Y.)

and

RMSE(v̂∗J( ˆ̄Y.)) =

∑B
k=1

(
v̂
∗(k)
J ( ˆ̄Y.)− V ( ˆ̄Y.)

)2

BV ( ˆ̄Y.)2
,

where v̂
∗(k)
J ( ˆ̄Y.) denotes the jackknife variance estimate computed on the k-th simula-

tion run and

V ( ˆ̄Y.) =
1

B − 1

B∑
k=1

( ˆ̄Y (k)
. − Ȳ.)2,

with Ȳ. =
∑B

k=1
ˆ̄Y (k)
. /B, ˆ̄Y. = ˆ̄YM ,

ˆ̄YKA,
ˆ̄YCM ,

ˆ̄YCAL.
For the two experimental settings (ES1 and ES2), the outcomes of this study are

graphically summarized in Figures ?? and ??, while Tables ?? and ?? report the values
of the RB and RMSE for all estimators in the different sample size scenarios.
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Jackknife variance sample sizes ˆ̄YM
ˆ̄YKA

ˆ̄YCM
ˆ̄YCAL

nA = 288, nB = 371, nc = 582 1.414224 1.574549 2.148209 1.423234
RB nA = 360, nB = 464, nc = 728 1.328427 1.506447 2.031942 1.341068

nA = 432, nB = 557, nc = 874 1.192673 1.334032 1.954348 1.192478
nA = 288, nB = 371, nc = 582 2.236686 2.767015 5.129108 2.263754

RMSE nA = 360, nB = 464, nc = 728 1.932149 2.477034 4.503975 1.967957
nA = 432, nB = 557, nc = 874 1.540854 1.923288 4.095583 1.540494

Table 3. ES1: Relative bias and relative mean square error for jackknife variance estimates under srswor in

all frames.

Jackknife variance sample sizes ˆ̄YM
ˆ̄YKA

ˆ̄YCM
ˆ̄YCAL

nA = 288, nB = 371, nc = 582 1.417381 1.526632 2.086405 1.961645
RB nA = 360, nB = 464, nc = 728 1.382939 1.544858 2.075784 1.920892

nA = 432, nB = 557, nc = 874 1.313325 1.404051 1.935690 1.847420
nA = 288, nB = 371, nc = 582 2.248999 2.601825 4.858967 4.179665

RMSE nA = 360, nB = 464, nc = 728 2.104424 2.615741 4.729312 3.957605
nA = 432, nB = 557, nc = 874 1.868052 2.133943 4.052171 3.619694

Table 4. ES2: Relative bias and relative mean square error for jackknife variance estimates under srswor in
frame A, stratified sampling in frame B and Midzuno sampling in frame C.

The results summarized in Tables ?? and ?? point out that the jackknife variance

estimation for ˆ̄YM produces RB and RMSE smaller than the other estimators, expect
for the third sample sizes scenario in the first experimental situation where the best

performance is achieved by ˆ̄YCAL even if the efficiency gain upon ˆ̄YM is nearly negligi-
ble. As in the previous study, the highest values for the RB and RMSE are ascribable

to ˆ̄YCM .
We also observe that the accuracy of the variance estimation improves as the frame

sample sizes increase.

5. Conclusions

In this article, we presented new estimators to determine the mean of a sensitive
variable when data are obtained from several frames using some scrambled response
models. We introduced a way to combine estimates from the different frames and
considered different estimators based on different level of information.

In the absence of auxiliary information, the first proposed estimator ˆ̄YM , based
on the idea of multiplicity due to Mecatti (2007), is applicable only if basic frame
level information is available for all sampled units. This information pertain to the
selection probability from the sampled frame and the number of frames from which
the unit could have been selected but without the frame identification. The second
proposed estimator ˆ̄YKA needs full frame level information: the identification of frame
membership for every sampled unit and the knowledge of inclusion probability for every

frame in which the unit belongs to. The third proposed estimator ˆ̄YCM combines the
two previous estimators. Finally, in the presence of auxiliary variables, we used the

calibration weighting method to define the fourth estimator ˆ̄YCAL. The calibration
approach is very flexible and allows auxiliary information to be introduced at several
different levels.

In practice, a different sampling procedure might feasibly be applied for each frame,
or even no randomization at all (i.e., direct response) for a particular frame. The use
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of the RR approach has certain advantages (privacy protection is assured to respon-
dents and measurement errors are reduced) but also drawbacks (the variance of the
estimates is increased by the randomization mechanism and individual response pat-
terns cannot be interpreted directly, due to the observation of randomized responses,
nor can individuals or groups of individuals be compared). That said, an interesting
idea that may be worthwhile pursuing for ongoing research may be combining ran-
domized responses end direct questions in multiple frame surveys in order to realize
a satisfactory trade-off between privacy protection, reliable data and efficiency in the
estimates.
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(a) nA = 288, nB = 371, nC = 582

(b) nA = 360, nB = 464, nC = 728

(c) nA = 432, nB = 557, nC = 874

Figure 1. ES1: Estimates for ˆ̄YM , ˆ̄YKA, ˆ̄YCM and ˆ̄YCAL under srswor in all frames.
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(a) nA = 288, nB = 371, nC = 582

(b) nA = 360, nB = 464, nC = 728

(c) nA = 432, nB = 557, nC = 874

Figure 2. ES2: Estimates for ˆ̄YM , ˆ̄YKA, ˆ̄YCM and ˆ̄YCAL under srswor in frame A, stratified sampling in

frame B and midzuno sampling in frame C.
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(a) nA = 288, nB = 371, nC = 582

(b) nA = 360, nB = 464, nC = 728

(c) nA = 432, nB = 557, nC = 874

Figure 3. ES1: Jackknife variance estimates for ˆ̄YM , ˆ̄YKA, ˆ̄YCM and ˆ̄YCAL under srswor in all frames.
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(a) nA = 288, nB = 371, nC = 582

(b) nA = 360, nB = 464, nC = 728

(c) nA = 432, nB = 557, nC = 874

Figure 4. ES2: Jackknife variance estimates for ˆ̄YM , ˆ̄YKA, ˆ̄YCM and ˆ̄YCAL under srswor in frame A, stratified

sampling in frame B and Midzuno sampling in frame C.
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