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Abstract

Methods to analyze multicategorical variables are extensively used in soci-
ological, medical and educational research. Nonetheless, they have a very
sparse presence in finite population sampling when sensitive topics are inves-
tigate and data are obtained by means of the randomized response technique
(RRT), a survey method based on the principle that sensitive questions must
not be asked directly to the respondents. The RRT is used with the aim of
reducing social desirability bias, which is defined as the respondent tendency
to release personal information according to what is socially acceptable. This
nonstandard data-collection approach was originally developed to deal with
dichotomous responses to sensitive questions. Later, the idea has been ex-
tended to multicategory responses. In this paper we consider ordinal variables
with more than two response categories. In particular, we first discuss the
theoretical framework for estimating the frequency of ordinal categories when
data are subjected to misclassification due to the use of a particular RRT.
Then, we show how it is possible to improve the efficiency of the inferential
process by employing auxiliary information at the estimation stage through
the calibration approach. Finally, we assess the performance of the proposed
estimators in a Monte Carlo simulation study.

Keywords: Ordinal logistic regression, randomized response, calibration,
Monte Carlo simulation
2008 MSC: 62D05

1. Introduction

In surveys to estimate the proportion of people bearing a stigmatizing
characteristic like habitual gambling, marijuana consumption, tax evasion
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and so on, people often do not respond truthfully when asked personal or
embarrassing questions. Obtaining valid and reliable information depends
on the cooperation of the respondents, and this depends, in turn, on the
confidentiality of their responses. Empirical researches based on self-report
measures, due to the so called social desirability bias, run the risk to pro-
duce measurement errors mainly ascribable to high nonresponse rates and
misreporting.

To reduce these nonsampling errors, [10] developed a data-collection pro-
cedure, the randomized response (RR) technique (RRT), that allows re-
searchers to elicit sensitive information while guaranteeing privacy to respon-
dents. The technique decreases social desirability bias, enhances respondent
cooperation and procures more reliable estimates. Although the RRT was
originally developed to handle dichotomous (yes/no) responses to sensitive
questions, it has been extended to polychotomous sensitive variables that
include multicategory responses.

Along this line, [6] proposed a method to estimate the proportions of
people classified in m mutually exclusive and exhaustive categories which are
coded 1, . . . ,m. The RR device consists of a box containing colored balls, say
red and white balls. Each of the white balls is marked with one of the numbers
1, . . . ,m. Let pr denote the proportion of red balls in the box and pwi

that of
white balls marked i, i = 1, . . . ,m. Each survey participant is asked to select
in private a ball from the box and report his/her true category of the sensitive
character if the ball is red, or the number marked on the ball if it is white.
Obviously, the interviewer does not know which type of colored ball has been
selected and, thus, the true category of the respondents remains undisclosed
and privacy protected. In order to estimate the true proportion Pi of people
who possess the ith category, a simple random sample of size n is taken. Let
ni denote the number of respondents reporting the ith category; hence, an
unbiased estimator of Pi is given by P̂i =

(
ni

n
− pwi

)
/pr, for i = 1, . . . ,m. A

generalization of the Liu-Chow method [6] is discussed in [1] by assuming a
randomization device such that an interviewee belonging to the ith category
reports the jth category with probability pji,

∑m
j=1 pji = 1. Further, [5]

presented a more complex RR method for the case of two sensitive questions
of interest.

In spite of the great deal of RR devices discussed in the literature, there
are very few studies that address the problem of estimating sensitive be-
haviors from ordinal variables. The aim of this paper, thus, is to propose
new estimation techniques in the RR setting when responses can be sorted.
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Section 2 presents, under a general sampling designs, a RR method for esti-
mating the frequency of ordinal categories. In Section 3, we discuss the use
of auxiliary information to improve the efficiency of the estimates. Emphasis
is given to the model-calibration approach. To evaluate the performance of
different estimators for the prevalence of sensitive categories, we present a
simulation study in Section 4 based on 2012 PISA survey data. Section 5
concludes the work with some final consideration.

2. RRT estimators under a general sampling design

Let U = {1, . . . , k, . . . , N} denote a finite population of N identifiable and
distinct units. Consider a sensitive variable Y with m response categories,
which are labeled 1, . . . ,m, and let yk denote the category label for the kth
population unit. Our aim is to estimate the frequency distribution of Y in
the population. In so doing, let zi be an indicator variable such that for each
unit k ∈ U , zki = 1 if yk = i and zki = 0 otherwise, i = 1, . . . ,m. The
problem thus, is to estimate the proportion Pi =

∑
k∈U zki/N , i = 1, . . . ,m.

Let s be a probability sample of size n drawn from U according to a
sampling design p(·). The considered sampling design induces first-order
inclusion probabilities πk =

∑
s3k p(s), second-order inclusion probabilities

πkl =
∑

s3k,l p(s) with k, l ∈ U , and design weights dk = 1/πk. Under
this general framework, from sampling theory it is well known that a design-
unbiased estimator of Pi is the Horvitz-Thompson (HT) estimator [4] defined

as P̂i,HT =
∑

k∈s zkidk/N .
Without loss of generality, we assume that sensitive data are collected on

the sampled units by means of a RR method which drives the respondent to
report his/her true category with probability pT , or is forced to report the
ith category with probability pFi

, pT +
∑m

i=1 pFi
= 1 (Liu-Chow method is an

example of this randomization method). Furthermore, we assume that the
sampling design and the randomization stage are independent each other,
and that the randomization stage is performed on each sampled units inde-
pendently.

Let rk denote the category released by kth respondent subjected to the
randomization mechanism, and let us introduce the indicator variable rki = 1
if rk = i and rki = 0 otherwise. Accordingly, under the adopted RR device,
let us consider the transformed randomized response Rki = (rki − pFi

)/pT .
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Then, an HT-type estimator for the proportion Pi is given by

P̂ ∗i,HT =
1

N

∑
k∈s

Rkidk, i = 1, . . . ,m,

and the following result holds.

Theorem 1. The estimator P̂ ∗i,HT is an unbiased estimator of the population
proportion Pi.

Proof. First of all, note that P̂ ∗i,HT is affected by two sources of variability:
one induced by the sampling design, the other by the randomization device.
Accordingly, let Ed and Vd denote the expectation and variance operators
with respect to the sampling design. Analogously, let Er and Vr denote
the expectation and variance operators with respect to the RR mechanism.
Preliminarily observing that Er(rki) = pT zki + pFi

, it is ready proved that
Rki is an RR-unbiased estimator of the latent value zki, i.e. Er(Rki) = zki.
Hence, it straightforward follows that:

E(P̂ ∗i,HT) = EdEr

(
1

N

∑
k∈s

Rkidk

)
= Ed

(
1

N

∑
k∈s

Er(Rki)dk

)
= Ed

(
1

N

∑
k∈s

zkidk

)
.

Noting the the expression in the last parenthesis denotes the standard HT
estimator P̂i,HT, the Theorem remains proved on the basis of previous con-
siderations.

Theorem 2 The variance of P̂ ∗i,HT is given by

V (P̂ ∗i,HT) = V (P̂i,HT) +
1

(NpT )2

∑
k∈U

φkidk,

where V (P̂i,HT) is the variance of the standard HT estimator, V (P̂i,HT) =∑
k,l∈U(dkdlπkl − 1)zkizli/N

2 [8], and φki = (pT zki + pFi
)(1− (pT zki + pFi

)).

Proof. Using the notation introduced in the proof of Theorem 1, the variance
of P̂ ∗i,HT stems from the variance decomposition formula:

V (P̂ ∗i,HT) = Vd(Er(P̂
∗
i,HT)) + Ed(Vr(P̂

∗
i,HT)).
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Considering the single terms of the decomposition, we have:

Vd(Er(P̂
∗
i,HT)) = Vd

(
1

N

∑
k∈s

Er(Rki)dk

)
= Vd

(
1

N

∑
k∈s

zkidk

)
= V (P̂i,HT).

Hence, the first part of V (P̂ ∗i,HT) is obtained. For the second addendum, let
us introduce the indicator variable Ik, with Ik = 1 if the kth population unit
is included in the sample, and, for the sake of brevity, let φki denote the
variance of the indicator variable rki under the adopted RR method, Vr(rki).
Now, since Ed(Ik) = πk and Vr(Rki) = φki/p

2
T , we have:

Ed(Vr(P̂
∗
i,HT)) = Ed

(
1

N2

∑
k∈s

Vr(Rki)d
2
k

)
= Ed

(
1

N2p2T

∑
k∈U

φkid
2
kIk

)

=
1

(NpT )2

∑
k∈U

φkid
2
kEd(Ik) =

1

(NpT )2

∑
k∈U

φkidk.

3. New estimators for items with ordinal outcomes

Usually, in real surveys, additional information about auxiliary variables
is available for each unit of the population that can be profitably used at
the estimation stage to increase the efficiency of the inferential process.
Let us assume that a set of q > 1 auxiliary variables is available and let
xk = (x1k, . . . , xqk)′ the vector of the observed q variables for the kth unit
of the population. There are many techniques to employ the auxiliary vari-
ables. Among these, the calibration approach introduced by [3] is widely
used in practice since it ensures that survey estimates are coherent with those
already in the public domain, while simultaneously reducing non-coverage,
nonresponse and selection biases. We therefore extend this methodology to
the RR scheme considered in Section 2.

3.1. The model-calibration ordinal estimator

We consider a superpopulation ordinal logistic model by assuming that
the finite population under study y = (y1, ..., yN)′ is the determination of
the superpopulation random variable vector Y = (Y1, ..., YN)′, that can be
described by the superpopulation model:

P (yk = i|xk) = Eξ(zki|xk) =

{
exp(αi+βxk)

1+exp(αi+βxk)
, i = 1

exp(αi+βxk)
1+exp(αi+βxk)

− exp(αi−1+βxk)
1+exp(αi−1+βxk)

, i = 2, . . . ,m
,
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where Eξ denotes the expectation with respect to the superpopulation model.
In the RR setting, the model can be rewritten as:

P (rk = i|xk) = Eξ(rki|xk) = µi(xk,θ)

=

{ exp(αi+βxk)
1+exp(αi+βxk)

pT + pFi
, i = 1(

exp(αi+βxk)
1+exp(αi+βxk)

− exp(αi−1+βxk)
1+exp(αi−1+βxk)

)
pT + pFi

, i = 2, . . . ,m
.

Pseudo-maximum likelihood (ML) estimates, say θ̂ = (α̂1, . . . , α̂m, β̂), for
the parameter θ = (α1, . . . , αm,β) are obtained by maximizing the pseudo
log-likelihood function:

`(θ) =
m∑
i=1

∑
k∈s

dkrki log µi(xk,θ).

Using pseudo-ML estimates, the probabilities of the categories are esti-
mated as:

p̂ki =


exp(α̂i+β̂xk)

1+exp(α̂i+β̂xk)
pT + pFi

, i = 1(
exp(α̂i+β̂xk)

1+exp(α̂i+β̂xk)
− exp(α̂i−1+β̂xk)

1+exp(α̂i−1+β̂xk)

)
pT + pFi

, i = 2, . . . ,m
(1)

The calibration approach allows us to account for auxiliary information
and modify, as little as possible, the design weights dk to define new sample
weights wk, and obtain more efficient estimates of the proportion Pi. By
using the idea of model-calibration proposed by [11], and the probabilities
calculated in (1), a new calibration estimator for Pi can be defined as:

P̂i,MC =
1

N

∑
k∈s

wkRki, i = 1, . . . ,m,

where the sample weights wk are such that:

min
∑
k∈s

G(wk, dk) s.t.
∑
k∈s

wkp̂ki =
∑
k∈U

p̂ki, (2)

and G(w, d) is a distance measure satisfying the usual conditions required in
the calibration approach given in [3]. Different calibration estimators can be
obtained by using different distance measure. In many instances, numerical
methods are required to solve the the minimization problem in (2). How-
ever, it is well known that, the choice of the chi-square distance function
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G(wk, dk) = (wk − dk)2/2dk yields to an analytic solution of the constrained
minimization problem.

Theorem 3. Under the chi-square distance function, the model-calibration
estimator is given by:

P̂i,MC =
1

N

∑
k∈s

dkRki +
1

N

(∑
k∈U

p̂ki −
∑
k∈s

dkp̂ki

)
B̂i, (3)

where B̂i = (
∑

k∈s dkp̂
2
ki)
−1(
∑

k∈s dkp̂kiRki).

Proof. The estimator can be considered a particular case of the model-
calibration estimator given in [7], Section 4.5, changing yk with Rki and
deleting the constrain

∑
k∈swk = 1. Thus, adapting expression (4.4) in [7]

we obtain expression (3).

We now discuss and prove the asymptotic unbiasedness of the proposed
calibration estimator. In so doing, we consider the usual asymptotic frame-
work in survey sampling where the finite population U and the sampling
design p(·) are embedded into a sequence of populations and designs indexed
by N , {UN , pN}, with N →∞. We assume therefore, that n tends to infinity
as N → ∞, with n/N < t < 1. In order to prove the property of the the
estimator, we make the following technical assumptions:

• Assumption 1 . Let θN denote the population parameter for UN .
Assume that θ = lim

N→∞
θN exists and that the pseudo-ML estimator is

θ̂ = θN +Op(n
−1/2).

• Assumption 2 . LetBNi =
∑

k∈UN
(µi(xk,θN))−2

∑
k∈UN

µi(xk,θN)Rki.
Assume that Bi = lim

N→∞
BNi exists for i = 1, . . . ,m, and the sampling

design is such that B̂i = BNi + op(1) with B̂i defined in Theorem 3.

Within this framework, the following result holds.

Theorem 4. Under Assumptions 1 and 2, the estimator P̂i,MC is asymp-
totically unbiased for Pi.
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Proof. By applying the Taylor series expansion at θN we have:

p̂ki = µi(xk, θ̂) = µi(xk,θN) +Op(n
−1/2),

and
1

N

∑
k∈UN

p̂ki−
1

N

∑
k∈s

dkp̂ki =
1

N

∑
k∈UN

µi(xk,θN)− 1

N

∑
k∈s

dkµi(xk,θN)+Op(n
−1/2).

The proposed estimator can be expressed as:

P̂i,MC =
1

N

∑
k∈s

dkRki +
1

N

(∑
k∈UN

p̂ki −
∑
k∈s

dkp̂ki

)
BNi +

+
1

N

(∑
k∈UN

p̂ki −
∑
k∈s

dkp̂ki

)(
B̂i −BNi

)
.

Thus, since B̂i = BNi + op(1), we have:

P̂i,MC =
1

N

∑
k∈s

dkRki+
1

N

(∑
k∈UN

µi(xk,θN)−
∑
k∈s

dkµi(xk,θN)

)
BNi+op(n

−1/2).

Taking into account the two sources of variability induced by the sampling
design and the randomization device, we have:

lim
N,n→∞

E(P̂i,MC) = lim
N,n→∞

EdEr(P̂i,MC) = EdEr

(
1

N

∑
k∈s

dkRki

)

+
Bi

N

(∑
k∈UN

µi(xk,θN)− Ed

(∑
k∈s

dkµi(xk,θN)

))
.

From Theorem 1, we have EdEr
(

1
N

∑
k∈s dkRki

)
= E(P̂ ∗i,HT) = Pi, and ob-

serving that Ed
(∑

k∈s dkµi(xk,θN)
)

=
∑

k∈UN
µi(xk,θN), it is ready proved

that lim
N,n→∞

E(P̂i,MC) = Pi

We remark that from calibration theory [3], it is well known that all other
calibration estimators that use different distance functions are asymptoti-
cally equivalent to the estimator P̂ ∗i,MC, under certain regularity conditions
concerning the shape of the distance function. Thus, the choice of the dis-
tance measure G(wk, dk) has only a modest impact on important properties
of the estimators like the variance.
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3.2. The difference ordinal estimator

We can formulate an alternative estimator of the proportion Pi, for i =
1, . . . ,m, that uses the predicted values p̂ki. Preliminary, let Pi be reformu-
lated as:

Pi =
1

N

(∑
k∈U

p̂ki +
∑
k∈U

(zki − p̂ki)

)
.

Note that the total
∑

k∈U p̂ki is known, whereas the total of the differences∑
U(zki − p̂ki) is unknown (since zki is unknown) although it can be unbias-

edly estimated through the an HT-type estimator. Thus, we define a new
estimator of Pi as:

P̂i,DIF =
1

N

(∑
k∈U

p̂ki +
∑
k∈s

dk(Rki − p̂ki)

)
.

The estimator includes two components: a sum of predicted values for
the population, and an adjustment term

∑
k∈s dk(Rki − p̂ki). The motiva-

tion underlying the construction of P̂i,DIF is the possibility to achieve highly
accurate estimates through a fitted model which produces small residuals
Rki − p̂ki.
The estimator can be rewritten as:

P̂i,DIF =
1

N

∑
k∈s

dkRki +
1

N

(∑
k∈U

p̂ki −
∑
k∈s

dkp̂ki

)
,

and takes the form of a difference-type estimator [8] adapted to RR data. It

is worthwhile highlighting the similarity of the estimator P̂i,DIF with P̂i,MC:

they have the same expression except for the value of B̂i which is equal to 1
in P̂i,DIF.
Within this framework, the following result holds.

Theorem 5. Under Assumption 1, the estimator P̂i,DIF is asymptotically
unbiased for Pi.

Proof. From the Assumption 1, we have:

1

N

∑
k∈UN

p̂ki −
1

N

∑
k∈UN

µi(xk,θN) = Op(n
−1/2)
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and
1

N

∑
k∈s

dkp̂ki −
1

N

∑
k∈s

dkµi(xk,θ)N = Op(n
−1/2).

Accordingly, P̂i,DIF can be written as:

P̂i,DIF =
1

N

(∑
k∈s

dkRki −
∑
k∈s

dkµi(xk,θN)

)
+

1

N

∑
k∈UN

µi(xk,θN)+Op(n
−1/2)

and, analogously to the proof of Theorem 1, it follows that:

lim
N,n→∞

E(P̂i,DIF) = lim
N,n→∞

EdEr(P̂i,DIF)

=
EdEr
N

(∑
k∈s

dkRki −
∑
k∈s

dkµi(xk,θN) +
∑
k∈UN

µi(x,θN)

)
= Pi,

which proves the asymptotic unbiasedness of P̂i,DIF.

4. Monte Carlo simulation

To assess the performance of the estimators proposed in Section 3, a
Monte Carlo (MC) simulation study has been designed using real data from
the 2012 PISA survey (Programme for International Student Assessment)
and assuming as target population the 15-year-old Spanish students (N =
15499) who participated in the survey. From the questionnaire, we chose
the question “How strongly do you agree with the statement: I enjoy reading
about mathematics?” to identify the variable of interest (Y ) with four ordi-
nal response categories: 1 = “strongly agree”, 2 = “agree”, 3 = “disagree”
and 4 = “strongly disagree”. The population percentages obtained for these
categories were 0.03, 0.149, 0.413 and 0.408, respectively.

We considered two scenarios: auxiliary variables with low and high cor-
relation, with the aim of investigating whether the performance of estima-
tors improves by increasing the correlation with the study variable. In the
scenario characterized by low correlation, we employed three auxiliary vari-
ables, say X1, X2 and X3, which correspond to the three following questions
included in the questionnaire: “Making an effort in maths is worth because
it will help me in the work that I want to do later on”; “ Learning maths is
worthwhile for me because it will improve my career”; “ I will learn many
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things in maths that will help me get a job”. The three variables admit the
same four ordinal response categories of the study variable and show a corre-
lation with it around 0.3; specifically ρY X1 = 0.39, ρY X2 = 0.33, ρY X3 = 0.35.
For the second scenario, we simulated three variables by perturbing the
above said auxiliary variables in order to produce higher correlation with
the study variable. For the synthetic variables X1, X2 and X3 we have now:
ρY X1 = 0.69, ρY X2 = 0.78 and ρY X3 = 0.85.

Under this setting, we considered a single-stage stratified cluster design
with unequal selection probabilities. In particular, the PISA students were
assumed as the target population that we grouped in five strata according to
the location of schools (villages, small towns, towns, cities and large cities).
Within each stratum, a sample of schools was selected with probabilities
proportional to the number of enrolled students according to the Midzuno
sampling design [9]. Three sample sizes for schools were considered in the
study, n = 25, 50, 100. For each student in the selected schools, we simulated
the RR model discussed in Section 2 for m = 4 response categories by assum-
ing that student is asked to release the true response category with pT = 0.6
or he/she is forced to declare to posses the ith category with probability
pFi

= 0.1, i = 1, . . . , 4. The randomization of the category was achieved by
means of a random number generated from a Uniform distribution in the
interval (0,1).

To estimate the proportion Pi of students with the ith category, we em-
ployed the estimators P̂ ∗i,HT, P̂i,MC and P̂i,DIF discussed in Section 3. For

each category, and each estimator P̂i = P̂ ∗i,HT, P̂i,MC, P̂i,DIF, we computed the

percentage bias, B(P̂i) = 100 × EMC(P̂i − Pi), and the percentage mean

squared error, MSE(P̂i) = 100 × EMC(P̂i − Pi)
2 on the basis of 1000 sim-

ulation runs. Hence, the percentage relative efficiency, RE(P̂i) = 100 ×
MSE(P̂i)/MSE(P̂ ∗i,HT), was computed to compare the performance of the
estimators. The free statistical software R [2] was used to perform the sim-
ulation study.

The results for bias, mean squared error and relative efficiency are shown
in Table 1 for different sample sizes and for each of the four response cat-
egories, under the two correlation scenarios. Note that the sample size in
Table 1 refers to the number of schools (primary sampling unit) selected. All
the students enrolled in the school represent the elementary units that are
surveyed and whose size surveyed cannot be determined in advance since it
depends on the size of the schools selected at the first sampling stage.
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Overall, we observe that the use of the auxiliary information through the
estimators P̂i,MC and P̂i,DIF may yield more efficient estimates than the HT

estimator. The model calibration estimator P̂i,MC outperforms P̂ ∗i,HT in all
the situations and the efficiency gain is particularly high for categories 3 and
4. On the contrary, the difference estimator P̂i,DIF may be less efficient than

P̂ ∗i,HT in some cases. A feature which is common to both P̂i,MC and P̂i,DIF is
that their performance improves when the correlation between the auxiliary
variables and the study variable increases. Finally, we observe that all the
considered estimators are consistent since their MSE sharply decreases when
the sample size of the primary sampling units (schools) increases passing
from n = 25 to n = 100.

5. Conclusions

Nowadays, nonstandard survey techniques that reduce social desirability
bias by increasing respondent cooperation in sensitive research are attract-
ing more and more the interest of statisticians, survey practitioners and re-
searchers involved in social, medical and behavioral sciences. Although many
RR methods have been proposed in the literature since the sixties to perturb
the responses, improving the efficiency of the estimators of sensitive charac-
teristics remains still an open problem that needs methodological advances
since privacy protection and efficiency of the estimates are opposite aspects.
In general, methods that offer a high degree of privacy protection lead to
estimators with high variance too; on the contrary, methods which produce
very efficient estimators tend to jeopardize the respondent privacy. Finding a
trade-off between privacy and efficiency is a matter of concern in real studies
about sensitive topics.

In this paper, we have tried to tackle the challenge of improving the
efficiency of the estimates for the frequency of ordinal sensitive categories
without infringing privacy protection. In our proposal, we have investigated
under a RR setting, the model-calibration estimator and the difference es-
timator. Both the estimators are based on the use of auxiliary information
available in advance for each unit of the population under study.

The asymptotic unbiasedness of the estimators has been theoretically
proved and their performance assessed in a simulation study based on the
2012 PISA survey. The simulation results point out the good performance of
the model-calibration estimator which, therefore, becomes eligible for future
research. In particular,the model-calibration approach could be used in a
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generalization of the Liu-Chow RR method [6] according to the respondent
belonging to the ith category deliberately missclassifies his/her response and
reports the jth category with a transition probability pji.
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Categories
Estimator 1 2 3 4

n = 25

P̂ ∗
i,HT

B 0.275 1.422 3.538 -5.140
MSE 0.094 0.163 0.609 0.604
RE 100 100 100 100

Low correlation

P̂i,DIF

B 0.259 1.428 3.531 -5.218
MSE 0.093 0.147 0.358 0.462
RE 98.936 90.184 58.785 76.490

P̂i,MC

B 0.255 1.492 3.483 -5.230
MSE 0.085 0.142 0.317 0.440
RE 90.426 87.117 52.053 72.848

High correlation

P̂i,DIF

B 0.128 1.053 3.595 -4.776
MSE 0.087 0.147 0.332 0.416
RE 92.553 90.184 54.516 68.874

P̂i,MC

B 0.189 1.057 3.694 -4.940
MSE 0.074 0.106 0.248 0.340
RE 78.723 65.031 40.723 56.291

n = 50

P̂ ∗
i,HT

B 0.242 1.418 3.685 -4.831
MSE 0.045 0.088 0.358 0.406
RE 100 100 100 100

Low correlation

P̂i,DIF

B 0.181 1.334 3.509 -5.024
MSE 0.048 0.079 0.231 0.350
RE 106.667 89.773 64.525 86.207

P̂i,MC

B 0.255 1.492 3.483 -5.230
MSE 0.043 0.076 0.207 0.337
RE 95.556 86.364 57.821 83.005

High correlation

P̂i,DIF

B 0.126 1.228 3.546 -4.900
MSE 0.045 0.074 0.216 0.332
RE 100 84.091 60.335 81.773

P̂i,MC

B 0.164 1.243 3.550 -4.956
MSE 0.039 0.061 0.179 0.295
RE 86.667 69.318 50.000 72.660

n = 100

P̂ ∗
i,HT

B 0.209 1.230 3.395 -4.943
MSE 0.022 0.052 0.209 0.326
RE 100 100 100 100

Low correlation

P̂i,DIF

B 0.226 1.253 3.436 -4.914
MSE 0.024 0.048 0.170 0.291
RE 109.091 92.308 81.340 89.264

P̂i,MC

B 0.217 1.263 3.441 -4.921
MSE 0.022 0.047 0.165 0.287
RE 100 90.385 78.947 88.037

High correlation

P̂i,DIF

B 0.234 1.360 3.300 -4.893
MSE 0.022 0.048 0.160 0.288
RE 100.000 92.308 76.555 88.344

P̂i,MC

B 0.234 1.277 3.391 -4.903
MSE 0.020 0.039 0.145 0.264
RE 90.909 75.000 69.378 80.982

Table 1: Bias, mean squared error and relative efficiency (in percentage) of the estimators
for Pi. 15
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You are right. We mentioned the wrong article. As per your suggestion, we have now 

included: 

Liu, P. T., and Chow, L. P. (1976). A new discrete quantitative RR model. Journal of the 
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Comment 2.In Section 2, the design weights 𝑑𝑘 = 1/𝜋𝑘  are used as the probability 

sampling design based on first-order inclusion probabilities 𝜋𝑘Then, the second-order 

inclusion probabilities 𝜋𝑘𝑙should be addressed with some details in this article. On Page 

5, line 5, the equation of 𝐸𝑑 (𝑉𝑟(𝑃̂𝑖,𝐻𝑇
∗ ))should be 

1
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authors should define what𝜙𝑘𝑖  is.  
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𝑈,which, together with𝜋𝑘𝑙  are used in Theorem 2 to express the variance of the 
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Horvitz-Thompson estimator, say 𝑉(𝑃̂𝑖,𝐻𝑇
∗ ).In any case, in Section 2 we have explicitly 

given the definition of the inclusion probabilities in order to improve the clearness.  

Please, note that, through the paper, theoretical results are obtained and discussed 

under a generic sampling design and, consequently, it is not possible the give the exact 

(or approximate) expressions for 𝜋𝑘and 𝜋𝑘𝑙  which, as it is now, can be defined only 

after a sampling design is specified.  

 

We have corrected the expression for 𝐸𝑑 (𝑉𝑟(𝑃̂𝑖,𝐻𝑇
∗ )). Although the meaning of 𝜙𝑘𝑖  

was defined in the first version of the manuscript in the proof of Theorem 1, we realize 

now, after your comment, that, perhaps, it was the wrong place. Therefore, in the 

revisited version of the paper,we have defined𝜙𝑘𝑖  directly in Theorem 2 and its proof. 

 

 

Comment 3. In Section 3, page 6, line 4, the log-likelihood function should be the sum 

of i=1 to m and 𝑘 ∈ 𝑠. And it is unclear what calibration weights 𝑤𝑘 and distance 

function 𝐺(𝑤𝑘,𝑑𝑘) are. 
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Thanks for your comment. We have corrected the log-likelihood function and included 

in Section 3, after eqn. (1), more information about the calibration approach, wkand 

G(wk,dk) . 
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In Section 4, the authors should explain how they generated the auxiliary variables with 

low and high correlation, and what the performance of (0.39, 0.33, 0.85) is. In Table 1, 

the authors write that for n=25, the percentage bias of 𝑃̂𝑖,𝐻𝑇
∗  is 0,275, but it should be 

0.275. And if MSE(𝑃̂𝑖,𝐷𝐼𝐹
∗ ) = 0.093 andMSE(𝑃̂𝑖,𝐷𝐼𝐹

∗ ) = 0.094, then 

theRE(𝑃̂𝑖,𝐷𝐼𝐹
∗ ) should be 0.093/0.094=0.9893. It is necessary to check the details in 

Table 1. Finally, it will be very interesting if the authors can clearly stress 
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mathematically that the best performance is achieved for 𝑃̂𝑖,𝑀𝐶
∗ rather than𝑃̂𝑖,𝐷𝐼𝐹
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and𝑃̂𝑖,𝑀𝐶
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We have checked and corrected all the values in the table. The differences were due to 

the decimals used. We changed the values using three decimals in order to avoid 

reader confusion. 

We are sorry but we do not have a rigorous proof of the different performance of the 

estimators and, at the moment, we are not able to produce it. Deriving theoretical 

comparisons may be certainly interesting but perhaps out the aim of the present paper 

which, given the aims of Mathematics and Computers in Simulation, has been 

deliberately oriented to a simulation study. More important thing, analytical and 

theoretical considerations will require a large amount of study which final outcome is, 

however, uncertain. In fact, first we must explore the performance of the competitive 

estimators in the standard sampling framework without the RR stage, than we must 

compare them in the RR setting. It may happen that the uniform superiority of 𝑃̂𝑖,𝑀𝐶
∗  

cannot be ascertained in all the situations.Certainly, your suggestion may be object of 

future research. We thank you for this incentive. 

To conclude to point, note, please, that we have included in the paper Theorem 4 and 

5 for a wider theoretical discussion about𝑃̂𝑖,𝑀𝐶
∗  and 𝑃̂𝑖,𝐷𝐼𝐹

∗  as requested by another 

referee. 

 

 

 

 


