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Abstract: In this work, the pyrolysis of post-consumer mixed plastic waste (polypropylene (PP),
polystyrene (PS) and polyethylene film (PE)) is carried out. The solid product of the pyrolysis is
characterized and tested for its use as adsorbent of lead present in aqueous media. The pyrolysis
temperature has a great influence on the solid product yield, decreasing when the temperature in-
creases. The highest yield to solid product obtained is from the pyrolysis of film at lower temperature
(450 ◦C), reaching almost 14%. The results of product solid characterization reveal that the carbon,
hydrogen and nitrogen content decreases with increasing pyrolysis temperature. Furthermore, both
the ash and the volatile content are related to the pyrolysis temperature. The ash content is higher
when the pyrolysis temperature is higher, while when the temperature increases, a solid product with
lower volatile content is obtained. In respect to specific surface area, a higher pyrolysis temperature
improves the properties of the solid product as an adsorbent. The adsorption capacity increases as
the pyrolysis temperature increases, with the highest value of 7.91 mg/g for the solid obtained in the
pyrolysis at 550 ◦C. In addition, adsorption capacity increases as the initial concentration of lead rises,
reaching a maximum value close to 26 mg/g for an initial concentration of 40 mg/L. The Sips model
is the one that best reproduces the experimental results of the adsorption process equilibrium study.

Keywords: adsorption; chemical recycling; lead; plastic waste; pyrolysis

1. Introduction

As a possible response over the problems generated by the management of plastic
waste from solid municipal waste treatment and sorting plants, and in view of the imminent
need to be able to good use of this waste, the pyrolysis of plastic waste is a very promising
valorization technique, as it permits the use of this waste, without previous processing,
to obtain products with high added value. This pyrolysis process produces a liquid that
can be assimilated to a fuel or raw material for obtaining chemical products of interest, a
gas with a low calorific value that is usually used to feed the pyrolysis’ own process and
a solid product (char) that can be used as a solid fuel, as an adsorbent or even as a soil
amendment. This research will focus on the characterization and use of the solid product
as an adsorbent for heavy metals.

It is widely known that the type of material used to carry out pyrolysis has a direct
influence the products generated [1], as the composition of the materials will lead to
different yields and products. Different examples of materials to be pyrolyzed can be found
in the bibliography, but this research will focus on plastic waste, specifically on the fraction
rejected from municipal solid waste treatment plants.

Many studies on the pyrolysis of plastic waste have been found in the literature [2–10].
Research has also been found where plastic waste is mixed with other types of waste such
as lignocellulosic biomass or tires [1,11], or with plastic waste from different sources such
as those used by Esposito et al. [12] from a metal recovery plant from technological and
telecommunication equipment waste, or those used by Kantarelis et al. [13] from electrical
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cables. In addition, some researchers have also used catalysts in the pyrolysis process
of plastic materials and show that the amount of char obtained can remain constant or
increase slightly [3,4,6].

The use or application of the solid product obtained (char) by pyrolysis of plastic
waste depends in high extent on the composition of the material to be pyrolyzed, since
the characteristics and properties of the char will depend on this, as indicated above.
The most common use encountered for this product is as an adsorbent material based
on its properties such as surface area or porosity. Nevertheless, the list of char potential
applications is extended also to less traditional materials, e.g., char-based sensors [14,15]
and supercapacitors [16,17]. In some cases, this char is treated to improve these surface
properties and increase its adsorbent capacity. Bernardo et al. [18] investigated with a
mixture of pine forest biomass, used tires and a mixture of plastics composed of 56% of
PE, 27% of PP and 17% of PS to simulate the composition of the plastic fraction from
municipal solid waste in Portugal. The char produced from the pyrolysis of this material is
subjected to a sequential Soxhlet extraction process with hexane and acetone to recovery
various organic compounds of different groups that are retained in the solid. The solid
resulting is dried at 80 ◦C for 24 h in a vacuum oven. At the end of the process, a solid
composed of macropores enriched in oxygen functional groups is obtained. This solid
is used to measure its efficiency based on its adsorption of lead present in an aqueous
medium. The results achieve by these authors showed that the pyrolysis of mixtures with
a higher content of biomass waste and used tires gives rise to solid products with better
adsorption yields. Singh et al. [10] also studied the efficiency of char from pyrolysis of
polyvinyl chloride (PVC), polyethylene terephthalate (PET) and PE waste in the adsorption
of arsenic. These researchers showed that the mixture of plastic waste is a decisive factor
in the properties of the resulting carbonaceous residue, with the PVC and PE mixtures
obtaining the best results because they have the most surface areas, reaching adsorption
percentages of 99.4%. They also found that the char prepared at higher temperatures
(550 ◦C) showed greater adsorption capacity than those prepared at lower temperatures.
Singh et al. [10] concluded that the use of carbonaceous waste from pyrolysis of plastic
waste can be considered as a novel and sustainable solution based on the application as
a large-scale arsenic adsorbent and treatment for plastic waste. Jamradloedluk et al. [19]
performed a fast pyrolysis of high-density polyethylene (HDPE) plastic waste and the solid
product obtained is crushed and extruded to form briquettes. These briquettes are used
based on fuel. On the other hand, the char obtained from pyrolysis was thermally activated
at 900 ◦C for 3 h at atmospheric pressure to improve the contact area and pore volume
of the char. Another application of interest is the one proposed by Sogancioglu et al. [7],
in which previously washed PET plastic waste is pyrolyzed in a temperature range from
300 to 700 ◦C. The char obtained from this process is used based on (as an) an additive to
replace 10–50% of epoxy resin in the manufacture of epoxy composites. The char with the
best properties for this application was the one obtained at 300 ◦C.

On the other hand, lead (II) pollution is a global problem that has different life-
threatening effects. It is ubiquitously present in the environment as a result of some
anthropogenic activities, mainly, combustion of fossil fuels, mining and industrial activi-
ties [20]. For the remediation of lead (II)-contaminated wastewaters, some technologies
have been used. Between them, adsorption onto low-cost and available adsorbents is a
promising method [21]. Some studies have applied chars produced by pyrolysis as low-cost
adsorbents of lead from aqueous solutions and have reported good adsorption properties
that in general varied with pyrolysis temperature [22–28].

For example, Chan et al. [22] investigated tire char as adsorbent to remove lead
from aqueous solution and found a maximum lead adsorption capacity of 135 mg/g
at pH of 5. Park et al. [26] pyrolyzed waste chicken bones from restaurants and also
reported a high lead adsorption capacity (263 mg/g at pH 5). Mohan et al. [24] investigated
biochars produced from pyrolysis of wood and bark as adsorbents in the removal of arsenic,
cadmium and lead from water. These authors revealed that the ability of oak bark char to
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remove Pb (II) was extraordinary when it was compared to that of commercial activated
carbon in terms of the amount of metal adsorbed per unit surface area (0.5157 mg/m2

for Pb (II)). Recently, Nzediewu et al. [25] studied the lead (II) adsorption from synthetic
wastewater by biochars produced by microwave-assisted pyrolysis. Particularly, lead (II)
adsorption was especially high (165 mg/g) for canola straw biochar produced at 500 ◦C.
Crisler II et al. [29] also analyzed the ability of pecan shell biochar to adsorb lead from
aqueous solutions. The authors reported that pecan shell biochar showed an adsorption
capacity of 36.5 mg/g.

Although much is known about lead (II) adsorption on biochars derived from agricul-
tural and forestry adsorbents using conventional pyrolysis methods, studies on biochars
produced from plastics waste are lacking. Only the works of Singh et al. [10,30] or Bernardo
et al. [18] have analyzed the effects of char obtained from pyrolysis of plastics for removing
heavy metals from aqueous solutions. Particularly, Singh et al. [10] studied chars from the
pyrolysis of PVC, PET and PE, and Singh et al. [30] and Bernardo et al. [18] studied chars
from the pyrolysis of mixtures composed by biomass, plastics and scrap tires.

In this research, the pyrolysis of plastic waste from the reject fraction of municipal solid
waste treatment plants (non-recyclable mixed plastic) was carried out. This post-consumer
plastic waste consists of a mixture of polypropylene, polystyrene and polyethylene film.
As a product of pyrolysis, a solid was obtained which was characterized and tested for its
use as adsorbent of lead present in aqueous media.

2. Materials and Methods
2.1. Materials

The material used in this research is plastic waste from the reject fraction of a solid
municipal waste treatment plant located in the province of Granada (Spain). In this plant,
bales of mixed plastic are formed. These bales have been characterized to quantify the
percentage corresponding to each type of polymer. After classification, a sample of each of
the polymers to be pyrolyzed was dried and crushed to obtain a particle size suitable for
pyrolysis tests.

The following techniques were used for the identification, characterization and quan-
tification of the constituent materials of the bale:

• Visual inspection.
• Identification codes indicated by the manufacturers.
• Near Infrared Spectroscopy (NIR), using a portable analyzer, model Thermo Scientific,

microPHAZIR AG (Perkin-Elmer, Waltham, MA, USA).
• In some cases, Fourier Transform Infrared Spectroscopy (FTIR) using a Perkin–Elmer

spectrophotometer, model Spectrum 65 and Differential Scanning Calorimetry (DSC)
using a Perkin–Elmer TG-DSC simultaneous analyzer, model STA6000 (Perkin-Elmer,
Waltham, MA, USA), were used.

In conformity with the instructions of the municipal solid waste treatment plant, the
following fractions were sorted and quantified: polypropylene (PP), glass polystyrene
(GPS), high impact polystyrene (HIPS), expanded polystyrene (EPS), extruded polystyrene
(XPS), other polystyrene objects not included in the previous groups, polyethylene tereph-
thalate (PET), polyethylene (PE), film, paper and cardboard, organic matter, fines (small
pieces of materials difficult to identify), others (all material that is not plastic or is plastic
not included in any of the previous fractions).

Elemental and immediate analyses were first performed to the main plastic polymers
found in the bales. The elemental analysis was determined by using a Thermo Scientific
Flash 2000 model elemental analyzer (Thermo Thermo Fisher Scientific, Waltham, MA
USA), according to Section 2.3.1. For the determination of the immediate analysis, the
sequence detailed in Section 2.3.2 was performed, by using a Perkin–Elmer thermobalance
model STA 6000 (Perkin-Elmer, Waltham, MA, USA).
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2.2. Pyrolysis Tests

The pyrolysis tests carried out were intended to determine the influence of temperature
and composition of the sample to be pyrolyzed on the yield to solid and its properties.
Therefore, firstly, tests were performed with the different plastic materials separately (PP,
PS-HIPS, PS-GPPS, PS-EPS and film) at three pyrolysis temperatures (450 ◦C, 500 ◦C and
550 ◦C), in order to study mainly the yields of the different products obtained and the
behavior of each material. Subsequently, the study of the mixture of the different plastic
wastes was carried out, maintaining the proportion in which they are found in the mixed
plastic bales obtained in the municipal solid waste treatment plant and using the same
temperatures as before. All pyrolysis experiments were performed by duplicate and
average values are provided in the results and discussion section.

For pyrolysis tests, a Nabertherm model R50/250/12 (Nabertherm GmbH, Lilienthal,
Germany) horizontal furnace was used, which allows the required operating conditions
to be programmed (heating rate, temperature and residence time). To achieve an inert
atmosphere inside the furnace, a flow of nitrogen of 100 L/h is supplied, regulated by a
flow meter. A glass bottle immersed in an ice bath is installed at the exit of the furnace
to facilitate the condensation of the exit gases and to be able to collect and quantify the
quantity of liquid product obtained. The procedure applied was the following: (1) A
sample of 25 g of the plastic material was placed in a stainless-steel mesh with a cylinder-
shaped geometry; (2) the reactor was heated from room temperature until the operating
temperature under a continuous flow of nitrogen of 100 L/h, at a heating rate of 10 ◦C/min;
(3) when the desired temperature was reached the reactor was left at this temperature
during a residence time of 90 min. The fixed-bed reactor is a semi-batch reactor, the gases
continuously flowed through the reactor while, the solid was introduced at the initial time
and it got out when the reaction time finished.

2.3. Physical–Chemical Characterisation of Chars Obtained by Pyrolysis
2.3.1. Elemental Analysis

In order to carry out the elemental analysis of char the Thermo Scientific Flash 2000
model elemental analyzer (Thermo Thermo Fisher Scientific, Waltham, MA USA) was used,
which allows knowing the percentage by weight of carbon, hydrogen, nitrogen and sulfur.
The oxygen content was determined by difference according to the following equation:

Oxygen (%) = 100 − Carbon (% Dry Basis) − Hydrogen(% Dry Basis) − Nitrogen(% Dry Basis) − Sulphur(% Dry Basis) − Ash(% Dry Basis) (1)

where ash content was obtained from immediate analysis, as detailed in Section 2.3.2.

2.3.2. Thermal Decomposition and Immediate Analysis

The immediate analysis provides the values of moisture, contents volatiles, contents
ash and fixed carbon contents of the solids based on weight percentages. For the analysis
of thermal decomposition of the samples and determination of the immediate analysis,
a thermogravimetric analysis (TGA) was carried out on the solid product samples (char)
obtained from the pyrolysis of the plastic waste mixtures to study the weight loss of the
carbonaceous residue as the temperature increased, in a temperature range and at a specific
heating rate and in a controlled atmosphere.

The tests were performed on a Perkin–Elmer thermobalance model STA 6000 (Perkin-
Elmer, Waltham, MA, USA). First, for the study of thermal decomposition, approximately
20 mg of char was used, which was first heated in a temperature range of 30 to 850 ◦C,
with a heating rate of 20 ◦C/min and in an inert nitrogen atmosphere, selecting a gas flow
(nitrogen) of 20 mL/min. Once the temperature of 850 ◦C was reached, the gas flow was
changed to oxygen at a flow rate of 20 mL/min and maintaining for a residence time of
30 min. Secondly, for the determination of immediate analysis, the following sequence
was performed: (i) isothermal step during 30 min at 25 ◦C in an inert environment of
nitrogen (20 mL/min); (ii) heating at 20 ◦C/min from 25 to 110 ◦C in an inert environment
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of nitrogen (20 mL/min); (iii) isothermal step during 30 min at 110 ◦C in an inert environ-
ment of nitrogen (20 mL/min); (iv) heating at 20 ◦C/min from 110 to 850 ◦C in an inert
environment of nitrogen (20 mL/min); (v) isothermal step during 30 min at 850 ◦C in an
inert environment of nitrogen (20 mL/min); (vi) isothermal step during 30 min at 850 ◦C in
an oxidant environment of oxygen (20 mL/min).

2.3.3. Higher Heating Value (HHV)

For the calculation of the HHV (dry basis) of the char, the following equation has
been used:

HHV (MJ/kg) = 0.314 × C + 1.322 × H − 0.12·O − 0.12 × N + 0.0686 × S − 0.0153 × Z (2)

where C, H, O, N and S are the mass fractions, on a dry basis, of carbon, hydrogen,
oxygen, nitrogen and sulfur, respectively, in the fuel and Z the ash fraction on a dry basis.

2.3.4. Surface Analysis of Solids

This analysis was carried out using MICROMERITICS ASAP 2020C automatic equip-
ment. Adsorption-desorption isotherms of N2 and Ar at 77 K were developed by varying
the relative pressure (P/P0) of the gas at a constant temperature and recording the volume
of gas adsorbed on the surface of the solid. Through this analysis, the Brunauer, Emmett
and Teller (BET) surface area, total pore volume, average pore size and pore distribution
could be determined.

2.3.5. Chemical Composition Analysis

To perform the analysis of the chemical composition of the solids, a compact high
performance wavelength dispersive X-ray fluorescence (XRF) spectrometer was used, with
analytical capacity for the analysis of solid samples of different sizes and matrices in the
elemental range from F to Uranium, PANalytical model Zetium.

2.3.6. Fourier Transform Infrared Spectroscopy Analysis (FTIR)

By applying this technique, the infrared spectrum is obtained in a few seconds from
the vibrations of the compounds of the solid product, which provides information on the
compounds that remain in the solid after pyrolysis. A Perkin–Elmer spectrophotometer,
model Spectrum–65 (Perkin-Elmer, Waltham, MA, USA), in the 4000–400 cm−1 range was
used for this purpose.

2.4. Adsorption Tests
2.4.1. Experimental Procedure

For adsorption tests, the lead stock solution was first prepared by diluting appropriate
quantity of lead nitrate salt in deionized water until the concentration of 500 mg/L was
obtained. Afterwards, dilution was made to prepare 50 mL of a 10 mg/L lead solution.
Then, the diluted solution was added to the reactor, which was connected to a pH meter,
stirred at 300 rpm and maintained at room temperature. The pH was adjusted to 5 by
using a 0.1 M HCl solution. Then, 0.05 g of char was added to the lead solution and pH
was controlled to avoid it increases over 6–6.5 (above this value the chemical precipitation
of the metal in the form of hydroxide occur). Preliminarily tests (here not included) were
performed at different operation times (5, 15, 30, 60, 120 and 240 min) to choose the time at
which equilibrium was reached. According to the results of these experimental experiments
no differences between samples collected at 120 and 240 min was observed. Therefore,
a time of 120 min was left to elapsed, which is sufficient to reach equilibrium. After the
contact time, the solid was separated by filtration and the concentration of lead in solution
was analyzed by atomic absorption spectrophotometry using a Perkin–Elmer AAnalyst
200 spectrophotometer (Perkin-Elmer, Waltham, MA, USA).
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The adsorption capacity of the solid and the percentage of metal removal were deter-
mined by the following equations,

qe =
Ci − Cf

m
·V (3)

%Removal =
Ci − Cf

Ci
·100 (4)

where qe is the adsorption capacity, mg/g; Ci is the initial lead concentration, mg/L; Cf is
the final lead concentration, mg/L; m is the mass of adsorbent solid, g.

Since the best result in terms of adsorption capacity was obtained with the solid
resulting from pyrolysis at 550 ◦C, the equilibrium of the adsorption process was studied,
performing tests with different initial concentrations of lead (2.5, 5, 10, 20 and 40 mg/L)
maintaining the rest of the operating conditions at the same values indicated above. All
experiments were done by duplicate and, as for pyrolysis, average values are provided in
the results and discussion section.

The equilibrium results obtained for the solid resulting from pyrolysis at 550 ◦C were
adjusted to different adsorption isotherm models, which are described below.

2.4.2. Langmuir Isotherm

In this model, the attraction between the metal ions and the surface of the sorbent
material is mainly based on physical forces (electrostatic or Van der Waals forces) and its
application assumes, on the one hand, that sorption occurs at specific locations on the
sorbent surface and, on the other hand, that once the ion occupies a location, no further
sorption can occur at the same location [31,32].

It describes the surface as homogeneous based on the assumption that all adsorption
sites have equal affinity for sorbate and that adsorption at one site does not affect adsorption
at an adjacent site. This model provides information on the adsorption capacity and reflects
the behavior of the equilibrium process. The Langmuir isotherm can be represented by the
following expression:

qe =
bqmCe

1 + bCe
(5)

where qe = amount of metal ion retained per unit mass of sorbent, mg/g; Ce = equilibrium
concentration of metal ion in the liquid phase, mg/L; qm and b = Langmuir model constants
related to the maximum adsorption capacity for a complete monolayer (mg/g) and with
the affinity between sorbent and sorbate (L/mg), respectively.

2.4.3. Freundlich Isotherm

This model describes the equilibrium on heterogeneous surfaces and does not consider
the adsorption capacity of the monolayer; it assumes that the sorbent surface is hetero-
geneous and that the sorption sites have different affinities [33]. The positions with the
highest affinity are occupied first and then the rest are occupied. It is also assumed that the
binding is physical. The expression of the model is as follows:

qe = KF × C1/n
e (6)

where qe = amount of metal ion retained per unit mass of sorbent, mg/g; Ce = equilibrium
(balance) concentration of metal ion in the liquid phase, mg/L; KF = equilibrium (balance)
constant, mg/g-(L/mg)1/n; n = constant related (linked) to the affinity between sorbent
and sorbate.
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2.4.4. Redlich–Peterson Isotherm

This is a three-parameter model and incorporates the characteristics of the two previ-
ous models. The isotherm has a linear dependence with concentration in the numerator
and an exponential function in the denominator, and can be expressed as follows [34]:

qe =
A × Ce

1 + B × Cg
e

(7)

where A and B = model constants, (L/g) and ((L/mg)g), respectively; g = parameter varying
between 0 and 1, so that g = 1 results in the Langmuir isotherm and g = 0 results in Henry’s
Law.

2.4.5. Sips Isotherm

This is a model combining the Langmuir and Freundlich models, mainly used to
describe heterogeneous surfaces. When the sorbate concentration is low it reduces to
the Freundlich isotherm, while at high sorbate concentrations it resembles the Langmuir
isotherm [32,35]. The Sips model can be expressed by the following equation [36]:

qe =
b × qm × Ce

1/n

1 + b × C1/n
e

(8)

Based on the equation, it is a very flexible isotherm since for: Ce low it reduces to the
Freundlich isotherm; n = 1 reduces to the Langmuir isotherm; low Ce and n = 1 results in
Henry’s Law.

3. Results and Discussion
3.1. Identification and Characterization of the Main Polymers Existing in the Non-Recyclable
Mixed Plastics Bales from Municipal Solid Waste
3.1.1. Identification of the Main Polymers Existing in the Non-Recyclable Mixed Plastics
Bales from Municipal Solid Waste

The results obtained from the evaluation of the composition and characteristics of the
non-recyclable plastics (the feedstock of the work) containing in the municipal solid waste
(fraction non-recovery selectively) are shown in Table 1.

Table 1. Results of the identification of the polymers presented in the bales of non-recyclable mixed
plastics from municipal solid waste.

Fraction Content, %

PP 28.9 ± 3.6

PS

GPPS 1.6 ± 0.4

HIPS 2.9 ± 1.2

EPS 3.4 ± 0.9

XPS 1.2 ± 0.0

Others 0.6 ± 0.4

Total PS 9.7 ± 1.4

PET 22.0 ± 0.8

PE 4.7 ± 1.6

Film 13.4 ± 2.3

Paper and cardboard 5.2 ± 2.5

Organic matter 0.9 ± 0.2

Fines 4.2 ± 1.3

Others 11.1 ± 2.4
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The most abundant material in mixed plastic bales is PP, followed by PET, film, PS
(where EPS and HIPS are fractions predominate) and finally PE. These five fractions
represent approximately 75–80% of the bale, which means that only 20% of the bale would
be wasted. There are also other fractions based on “Others” which, although they have a
significant percentage, are made up of materials of a different nature and are difficult to
classify and separate.

Few references have been found in the literature on the specific characterization of
mixed plastic bales from the reject fraction of a municipal solid waste treatment plant,
although there are some references that study the composition of municipal solid waste in
general. In Spain, a study was carried out by López et al. [5,6], specifically in Amorebieta
(Bilbao), which shows the composition of the reject fraction of a waste sorting plant,
which represents 27% of the input material of the plant and is sent for incineration. These
researchers found that polypropylene (PP) and high-density polyethylene (HDPE) are
the most abundant polymers with 31.25% each, followed by EPS with 13.5% and PET
with 11.46%. Bernardo et al. [1] studying the co-pyrolysis of pine forest biomass, used
tire rubber and plastic waste, found that the composition of the plastics fraction from
municipal solid waste in a region of Portugal consists of 56% PE, 27% PP and 17% PS.
The research by Ates et al. [37] using municipal waste plastics from a region in Hungary,
reported a composition of 59.1% PE, 25% PP, 7.2% PS and 8.7% others (PET, PVC, PA, ABS).
Kremer et al. [38] used plastic waste from a recycling company which collects, separates
and recycles post-consumer plastics and tested two different mixtures, both consisting of
HDPE, LDPE, PP and PS, but in different proportions. Mix 1 simulated the composition of
the percentages of each type of plastic found in waste in Europe, being HDPE (22%), LDPE
(31%), PP (35%) and PS (12%) and mix 2 simulated a real mixture of waste plastics found
in the world, being HDPE (28%), LDPE (37%), PP (35%) and PS (0%). In addition, Fekhar
et al. [4] found that the proportion of plastic waste present in municipal solid waste in
one region of Hungary was 35% LDPE, 32% HDPE, 24% PP, 4% PVC, 5% others. Das and
Tiwari [2] obtain similar results, since the majority of the fractions they find in municipal
solid waste in India are LDPE, HDPE and PP, although they do not specify percentages of
each type of material. Ippolito et al. [39] study to valorize the plastic film fraction from a
recycling plant located in Italy. This fraction was characterized, obtaining a composition of
92–95% PE film, 5% PP, >1% PS, >1% PET and traces of other materials.

It should be noted that the differences observed between the results of the different
researchers are mainly due to the fact that not all studies refer to the same rejection
fraction and nor all municipal solid waste treatment plants use the same sorting system.
In furthermore, the studies belong to different countries, where customs and lifestyles are
different. In addition, samples may vary depending on the time of year, so it is difficult to
make comparative studies in this case.

Considering the results obtained in the characterization of the mixed plastic bales
obtained in this work (Table 1), only PP, HIPS, EPS and film fractions were considered to
be used in the pyrolysis tests. The PET fraction, although it is presented in high proportion,
is of interest to recycling companies and can therefore be sold on the market, so its use by
pyrolysis would not be of interest. Therefore, the following composition has been selected
for the mixture to be used in the pyrolysis tests: 55.7% PP, 8.6% PS-HIPS, 10.1% PS-EPS
and 25.7% film.

3.1.2. Elemental and Immediate Analysis of the Main Polymers Existing in the
Non-Recyclable Mixed Plastics Bales from Municipal Solid Waste

Table 2 presents the results of the immediate and elemental analysis of each of the
polymers contained in the non-recyclable mixed plastics bales from municipal solid waste.
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Table 2. Results of immediate and elemental analysis contained in the non-recyclable mixed plastics
bales from municipal solid waste.

Analysis PP PS-HIPS PS-EPS Film

Elemental Analysis

% C 82.92 66.47 91.69 77.61

% H 14.47 7.63 8.28 11.91

% N 0.16 0.14 0.11 0.10

% S 0.00 0.00 0.00 0.00

% O (by
difference) 1.75 17.84 0.00 10.38

Immediate or
Proximate Analysis

Moisture, % 0.00 1.80 0.00 1.00

Volatile, % 99.3 88.9 99.8 95.5

Fixed carbon, % 0.00 1.70 0.10 2.40

Ash, % 0.70 7.60 0.10 1.00

The main polymers existing in the bales are composed almost totally of volatile matter,
with a very low fixed carbon and ashes content. It should be observed that PS-HIPS is the
material that shows the greatest differences, especially in ash content. This may be due to
the fact that this material is accompanied by additives such as flame retardants that would
remain in the ashes [40]. Almost all of the plastic wastes have high carbon content, the
lowest being that of PS–HIPS with 66.47%, while its oxygen content is the highest, which
may be related to the above.

The results are in agreement with those obtained by Moorthy Rajendran et al. [41].
In the case of PP, almost identical results are obtained in both immediate and elemental
analysis, with a fixed carbon content of 0%, volatile matter content of 99.4% and ash content
of 0.67%. Elemental analysis shows a carbon content between 77.5–86.1%, hydrogen
content between 14.2–13.7%, oxygen content between 7.4–0.2% and nitrogen content of
0.1%. However, the results obtained for PS differ from those obtained in the present study,
although it should be noted that the type of PS used by the researchers is not specified.
The research performed by Chhabra et al. [42] also shows similar results to those of this
work. Again, results for PP are the most similar, with 0% moisture, fixed carbon and ashes
content, and C of 85.1%, H of 13.38% and O of 1.52%. Finally, Gala et al. [43] performed
immediate and elemental analysis of post-consumer plastic film waste samples, obtaining
similar results, 69.3–81.8% C, 11.1–13.2% H, 0.1–2.4% H and 0.1–6.1% O.

3.2. Pyrolysis of the Main Polymers Existing in the Non-Recyclable Mixed Plastics Bales from
Municipal Solid Waste

The yields to products (solid, liquid and gas) have been calculated by means of the
following equations,

ηsolid =
ms

m0
× 100 (9)

ηliquid =
ml
m0

× 100 (10)

ηgas = 100 − ηsolid − ηliquid (11)

where m0 = initial mass of the sample to be pyrolyzed; ms = mass of the solid obtained in
the pyrolysis process; ml = mass of liquid obtained in the pyrolysis process.

Table 3 presents the yields to products at different temperatures and using different
types of polymers in the pyrolysis process.
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Table 3. Yields to products obtained in the pyrolysis tests with the different plastic materials.

Temperature, ◦C
Yield (%)

Solid Liquid Gas

PP

450 ◦C 3.97 31.67 64.36

500 ◦C 0.69 47.63 51.69

550 ◦C 1.29 49.18 49.54

PS-HIPS

450 ◦C 10.61 27.17 62.22

500 ◦C 9.02 31.69 59.29

550 ◦C 3.53 42.31 54.16

PS-ESP

450 ◦C 1.55 52.35 46.10

500 ◦C 1.46 57.37 41.17

550 ◦C 1.00 58.09 40.91

Film

450 ◦C 13.40 25.06 61.54

500 ◦C 6.26 52.63 41.11

550 ◦C 4.39 42.94 52.67

Plastic waste mixture

450 ◦C 4.56 27.53 67.91

500 ºC 3.19 42.82 53.99

550 ◦C 2.38 44.25 53.37

Table 3 shows that operating temperature has a great influence on the product yields.
Solid product yield has clear tendency to decrease as the pyrolysis temperature increases,
except in the case of PP where the yield decreases a lot when temperature increase from
450 to 500 ◦C and increase slightly when temperature change from 500 to 550 ◦C. The
highest yield to solid product obtained is from the pyrolysis of film at lower temperature
(450 ◦C), reaching almost 14%, followed by the value obtained with high impact polystyrene
(PS–HIPS), which exceeds 10% at a temperature of 450 ◦C. This is due to the composition
of the material, as the PS–HIPS were pyrolyzed together with the wrapping paper and the
cellulose in the paper improves the yield of the solid product. With the mixture simulating
the real proportions, a maximum solid yield of 4% is achieved at 450 ◦C, so it is clear that
the solid product would be the minority product of pyrolysis, which could be considered
as a by-product based on an industrial application. Regarding liquid fraction, in general,
the liquid yield increased with temperature, for example, the liquid yield increased from
27.53% at 450 ◦C to 44.25% at 550 ◦C for the plastic waste mixture. The main reason for the
increase in liquid yield and decrease in solid yield with temperature is that the volatilization
reactions are favors by increasing temperature [44]. Finally, a maximum gaseous product
yield of 67.91% was obtained at a pyrolysis temperature of 450 ◦C in the pyrolysis of plastic
waste mixture, which decreased with rising temperature. When temperature increases, the
pyrolysis vapor was converted to lower molecular weight organic products with lower
molecular weight or other non-condensable gases. However, our results showed significant
decrease in the gas yield as the temperature was increased. Perhaps a deficient recuperation
of liquid product can occur and poor estimations of gas product are provided since gas
yield was calculated by difference as it was indicated in Equation (11).

Comparing these results with those found in the literature, there is a great similarity
with the study carried out by Buah et al. [45] using a fixed-bed reactor with a heating rate
of 10 K/min in a temperature range between 400 and 700 ◦C. These authors determined
that the yield of the different products depends directly on the temperature. Thus, they
observe a decrease in the yield of solid product from 49.8–32.3% as temperature increases,
while the yield of liquid product increases from 30–50%, and the yield of gaseous product is
practically not affected by temperature. Along the same lines is the study by Ates et al. [37].
Paradela et al. [11] studied the pyrolysis of a mixture of waste consisting of PS, PP, PE
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and pine biomass, at different temperatures (between 350 and 450 ◦C) observing that an
increase in temperature decreases the yield of the liquid product in favor of the gaseous
product, due to the fact that at higher temperatures the cracking reactions of the material
are favored, transforming the long-chain and heavy molecules into shorter and lighter
molecules. Therefore, the authors established a temperature of 400 ◦C as the most optimal to
maximize the production of liquid. The yield of the solid product was not greatly affected
by the temperature, remaining at around 15% in all the tests. Fekhar et al. [4] in their
study about pyrolysis of mixtures of high-density polyethylene, low-density polyethylene,
polypropylene and polyvinyl chloride reported that the predominant product is liquid
with yields between 53.7% and 36.8%. The yield of the solid was not higher than 10%,
being 4.9% in the case of thermal pyrolysis in the absence of catalyst. It is worth noting
the research of Sogancioglu et al. [7,46] on the pyrolysis of HDPE, LDPE and PP plastic
waste separately. These researchers reported that an increase in temperature favors the
degradation of the plastic material so that more gaseous compounds are produced. This
was more reflected in the case of HDPE because it has shorter chains than LDPE and is
easier to break down and form gaseous compounds. The yield of the solid product was
also affected by temperature in the same way as the liquid, so the highest yield was 2.34%
(HDPE) and 10.12% (LDPE) at 300 ◦C and 2.14% (HDPE) and 6.14% (LDPE) at 700 ◦C. For
pyrolysis of PP under the same conditions, comparing the results with those obtained in
the present work, a notable difference was observed in terms of yield values, especially
in the liquid (79.62–75.05%) and solid (17.71–22.78%) products. In addition, these yields
followed an inverse trend, as the research by Sogancioglu et al. [46] showed a decrease in
the yield of the liquid product in favor of the gaseous product as the temperature increases.
For the solid product, the same decreasing trend with temperature was observed, with
similar values (2.67–2.17%).

3.3. Effect of the Operating Temperature on the Properties of the Produced Solids
3.3.1. Elemental Analysis, Thermal Decomposition, Immediate Analysis, HHV and
Surface Properties

Table 4 presents the results of the characterization of the three solid samples obtained
from the pyrolysis of the non-recyclable mixed plastics from municipal solid waste at
different temperatures.

Table 4. Elemental analysis, immediate analysis, HHV and surface properties of the solids obtained by
pyrolysis of the non-recyclable mixed plastics from municipal solid waste at different temperatures.

Temperature 450 ◦C 500 ◦C 550 ◦C

Elemental Analysis

% C 55.24 34.33 17.82

% H 5.74 1.46 0.55

% N 0.46 0.40 0.24

% S 0.00 0.00 0.00

% O (by difference) 3.31 9.45 12.95

Immediate or Proximate Analysis

Moisture, % 0.61 1.02 0.84

Volatile, % 51.00 31.22 24.90

Fixed carbon, % 13.35 13.95 6.40

Ash, % 35.04 53.81 67.87

HHV, MJ/kg 23.94 10.70 3.69

Surface Properties

Specific area, m2/g 0.26 7.61 67.11

Pore volume, cm3/g 0.0011 0.0165 0.0403

Pore size, Å 166.76 87.04 60.09
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The sum of C, H, N and O is relatively low, since the samples present a high content of
inorganic compounds (ash content) as evidenced in the immediate analysis. In addition, the
carbon, hydrogen and nitrogen content decreases with increasing pyrolysis temperature.
The decrease in carbon can be attributed to the transformation of carbonaceous materials
into CH4, CO2, CO and other aromatic gases or compounds, favored by the increase in
temperature. Similarly, the increased release of volatile matter with increasing pyrolysis
temperature causes the loss of functional group, which explains the decrease in hydrogen
and nitrogen content [27].

The research performed by Buah et al. [45] revealed a similar trend. The C content
decreased with increasing pyrolysis temperature from 400 ◦C (55.13%) to 700 ◦C (49.91%),
as the H content (4.33–0.78%) and the N content (1.02–0.93%). The same tendency was
presented by the study of Cafiero et al. [40] since both the C and the H content of the
solid product obtained from pyrolysis at 450 ◦C and 650 ◦C decreased with increasing
temperature (from 87.6 to 84.3% and from 6.3 to 1.6% respectively), while the O content
increased from 0.6 to 2% in the same temperature range. Jamradloedluk et al. [19] provided
an elemental analysis very similar to the present work, with a C content of 42.65%, H
content of 3.06% and N content of 0.43%. Similar results were also reported by López
et al. [5], where the film-rich sample pyrolyzed at 500 ◦C yields carbonaceous solids with a
carbon, hydrogen and nitrogen content of 48%, 1.9% and 0.9%, respectively. In addition,
Singh et al. [30] found that the carbon content of solid products obtained from pyrolysis
of PVC, PE and PET plastic waste decreased with increasing temperature. However,
Singh et al. [10] provided different results, as the solids resulting from the pyrolysis of
different mixtures of PVC, PET and PE at different temperatures had a higher carbon
content (ranging from 41.3–84.7%), while the nitrogen (0.1–2.78%) and hydrogen content
(1.83–5.17%) were similar. Finally, Bernardo et al. [18] using different mixtures of biomass
waste, used tires and plastic waste in different proportions, obtained a solid product from
pyrolysis at 420 ◦C with a high carbon content (around 80%), while the hydrogen (5–7%)
and nitrogen (0.5–1%) contents were similar.

Figure 1 shows the thermogravimetric curve for the different solid materials.
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There are evident differences between the curves of the solids subjected to different
temperatures, especially for the solid obtained at 450 ◦C. This solid starts to degrade
significantly at a lower temperature than the rest, around 350 ◦C, losing practically 20% of
its weight in a temperature range of approximately 100 ◦C; from 460 ◦C to 730 ◦C the
degradation phase is slightly slower. In this phase, the solid loses 20% of its weight,
and again enters a more pronounced degradation phase until it reaches 807 ◦C where it
loses 15% of its weight. The last section of the curve corresponds to the amount of fixed
carbon present in the sample, since at 850 ◦C thermal degradation occurs in the presence
of oxygen. The solid obtained at 450 ◦C is the one that loses the most mass during the
thermogravimetric test, reaching a final mass fraction of 0.3, which indicates that it is the
one with the lowest amount of ash and the most volatile matter. The pyrolyzed sample
at 500 ◦C presents a more constant degradation from 400 ◦C to 730 ◦C, losing only 10% of
its weight. From 730 ◦C to 820 ◦C a more pronounced degradation occurs, with a weight
loss of 16%. Finally, the curve corresponding to fixed carbon is the longest of all, which
reveals that it is the sample with the highest fixed carbon content, reducing from 71% to
50%. With respect to the sample pyrolyzed at 550 ◦C, it shows a similar trend to the sample
pyrolyzed at 500 ◦C, although the degradation between 400 and 730 ◦C is higher, losing
15% of weight. A more pronounced degradation occurs until 820 ◦C, with a weight loss of
16%. Fixed carbon curve clearly differs from the two previous samples, being the shortest
indicating the lowest fixed carbon content. In addition, this sample is the one that has the
highest ash content (around 60%).

Table 4 also presents the results of the average immediate analysis obtained on the
basis of the thermogravimetric curves. The results reveal that both the ash content and
the volatile content are related to the pyrolysis temperature. This relationship is direct
for the ashes content, since at higher the temperature the ash content is higher, due to the
higher thermal degradation suffered by the samples. For the volatile matter content, as
expected, it presents an inverse relationship with the temperature since, as the temperature
increases, solid residues with a lower volatile content are obtained. This is due to the
fact that the higher the temperature, the more volatile compounds contained in the solid
waste are released. However, the fixed carbon content remains practically constant at
temperatures of 450 and 500 ◦C, decreasing significantly when the temperature rises up to
550◦C, which is again related to the higher decomposition of the solid at this temperature.
The results are similar to those reported by Buah et al. [45], who performed pyrolysis
on municipal waste, varying the temperature between 400 and 700 ◦C. The immediate
analysis of the solid products revealed a very similar moisture content (between 0.25 and
2.25%), ash content (between 26.73 and 42.19%) and volatile material (between 13.73 and
42%), with the fixed carbon content being slightly higher (between 26.17 and 41.57%). The
trend for carbon content was also similar, with a large increase from 400 to 500 ºC and
then remaining more or less constant up to 700 ◦C. López et al. [6] showed similar results
for the immediate analysis of the solid residue resulting from the pyrolysis of different
waste mixtures at a temperature of 440 ◦C. Specifically, for the film-rich mixture, a low
percentage of moisture (5%) and high ash content (57.7%) were obtained, although it should
be noted that these results are on a wet basis and were also carried out together with the
catalyst, as it was impossible to separate it from the resulting solid. Syamsiro et al. [3],
working with HDPE waste and PE bags, also obtained quite low values for fixed carbon
content (between 8.59% and 25.88%) and a high content of volatile matter (35.29–58.56%)
and ash (27.33–49.47%). They also obtained similar values for moisture content, around
1%. Bernardo et al. [18], who used different mixtures of biomass waste, tires and plastic
waste in different proportions, carry out pyrolysis at 420 ◦C obtaining solid products with
a fixed carbon content varying between 41.4% and 55%, a volatile material content between
28.5% and 53.3%, a low ash content (2.02–7.77%) and a low moisture content (1.03–3.94%).
These results revealed that the introduction of biomass waste and used tires improves the
properties of the carbonaceous solid obtained by pyrolysis. In another research by the same
authors [1], the carbonaceous solids reached fixed carbon content values of 94.7%, and very
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low volatile matter and ashes contents (2.18% and 3.16%, respectively). The investigation
of the pyrolysis of HDPE plastic waste by Jamradloedluk et al. [19] revealed that the solid
product presented an immediate analysis similar in terms of volatile material (51.4%) and
moisture (2.41%), but presented a higher amount in fixed carbon (46.03%), and lower ash
content (0.16%).

Regarding the results of the HHV (also reported in Table 4), the three solid samples
analyzed showed a low HHV that decreased significantly with increasing pyrolysis temper-
ature. This is mainly due to the decarbonization of the sample as the pyrolysis temperature
increases and the increase in oxygen content, which results in a lower heating value of
the material. Buah et al. [45] indicate the same decreasing in HHV value with increasing
pyrolysis temperature, with very similar results ranging from 20.4 to 11.2 MJ/kg from
400 to 700 ◦C.

Finally, Table 4 includes the results obtained from the surface analysis of the solid
products (char) obtained at the different pyrolysis temperatures. It can be concluded that
the pyrolysis temperature directly affects the properties of the solid product, in this case
pyrolysis at a higher temperature being favorable in order to obtain a solid with a higher
specific surface area. An increase of 100 ◦C in the pyrolysis temperature results in a solid
product with approximately 250 times more specific surface area. The same conclusion was
reached by Singh et al. [10] whose specific surface area values are very similar (between
0.1 m2/g and 58.9 m2/g). This increase in specific surface area may be due to the fact
that the higher the temperature, the greater the breakage of the polymer chains, favoring
the production of volatile compounds and increasing the specific surface area. However,
an increase in temperature above 650 ◦C could destroy adjacent pore walls, leading to a
decrease in the specific surface area. On the other hand, Singh et al. [10] also point out the
influence of the composition of the mixture to be pyrolyzed on the specific surface area due
to the variation in the chemical and physical properties of the different plastics. Similar
results were obtained by Tian et al. [27] studying sludge pyrolysis with a gradual increase
in the specific surface area of the solids from 10.8 m2/g at 300 ◦C to 23.8 m2/g at 700 ◦C.
As it happens with the specific surface area, the pore volume increases with increasing
pyrolysis temperature, which determines that a higher pyrolysis temperature improves
the properties of the solid product as an adsorbent. Regarding the pore size, it decreases
as the pyrolysis temperature increases, with the highest value being 166.76 Å for 450 ◦C
(approximately 3 times smaller for 550 ◦C).

3.3.2. Chemical Composition

Table 5 reports the chemical composition of the solid obtained from the pyrolysis of
the plastic waste mixtures at the different temperatures tested.

Table 5. Results of chemical composition of the solids obtained by pyrolysis of the non-recyclable mixed plastics from
municipal solid waste at different temperatures.

Composition (%)

SiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P2O5 SO3

450 ◦C 2.08 1.48 0.28 0.01 0.75 12.20 0.21 0.08 3.69 0.14 0.48

500 ◦C 2.97 2.11 0.40 0.01 1.07 17.44 0.30 0.11 5.27 0.19 0.69

550 ◦C 3.98 2.83 0.54 0.01 1.43 23.37 0.40 0.15 7.07 0.26 0.92

Composition (ppm)

Sr Ba Sb Zn Ni Br Cu Cr Cl Nb Zr Mo Pb

450 ◦C 145 4556 57 1367 121 2328 76 377 6039 18 64 7 145

500 ◦C 207 6513 82 1955 173 3328 108 539 8632 26 92 10 207

550 ◦C 277 8730 110 2620 232 4460 145 723 11570 35 123 14 20
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The chemical analysis reveals that more than calcium oxide (CaO) is the major com-
pound, followed by titanium dioxide (TiO2). Both CaO and TiO2 are additives used in the
manufacture of different types of plastics. In the case of CaO, it is used as a desiccant agent
in the pellet and to improve the mechanical properties and appearance of the plastic, while
TiO2 is an additive widely used based on its use as a white pigment [47].

3.3.3. FTIR Analysis

Figure 2 present the infrared spectra of the solid products obtained from the pyrolysis
of the plastic waste mixture at different temperatures.
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Firstly, it is observed that the infrared spectra of the solid carbonaceous residues
obtained at different temperatures are very similar. It is also observed that the solid
carbonaceous residue obtained at lower pyrolysis temperatures shows sharper bands than
those obtained at higher temperatures, due to the fact that the degradation of the different
compounds that form the material takes place as the temperature increases.

The peak located at 3620 cm−1 could correspond to a primary amine present in the
plastic film fraction, which degrades with increasing pyrolysis temperature. The peaks
located at 2920 and 2850 cm−1 correspond to the -CH3 and -CH2 groups, suggesting
the presence of long aliphatic chains. These peaks become less intense with increasing
temperature, as this increase favors polymer chain breakage, almost disappearing in the
pyrolyzed sample at 550 ◦C [2].

The highest peak presented by the carbonaceous solid residues is the one located at
1400 cm−1, which corresponds to the carboxylic -OH group. This peak also attenuates
as the pyrolysis temperature increases, suggesting the elimination of polar groups and
resulting in solid with lower polarity and higher aromaticity [24].

The other peaks of higher intensity observed around 1020 cm-1 and 870 cm-1 corre-
spond to the vibrations of the C-H bonds of aromatic rings, which also decrease in intensity
with increasing pyrolysis temperature [7].

3.4. Application of Solids on the Adsorption of Lead from Aqueous Effluents

In this section, the application of the solids resulting from the pyrolysis of the non-
recyclable mixed plastics from municipal solid waste for the removal of lead from aqueous
solutions was studied.
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The results obtained for lead adsorption capacity and percentage removal of lead for
each of the solid samples used are present in Table 6.

Table 6. Results of the lead adsorption tests in aqueous solution. Initial lead concentration = 10 mg/L;
volume of solution = 50 mL; amount of solid = 0.05 g; contact time = 120 min; room temperature.

Temperature qe, mg/g Removal %

450 ◦C 5.26 37.79

500 ◦C 5.88 44.41

550 ◦C 7.91 73.48

The results indicate that the adsorption capacity increases as the pyrolysis temperature
increase, with the highest value of 7.91 mg/g for the solid obtained in the pyrolysis at
550 ◦C. The lower adsorption capacity of the solid obtained at 450 ◦C is directly related
to the lower specific surface area compared to the solids obtained at higher temperatures,
based on the results shown in Section 3.3.1. These results are also in agreement with
those obtained in Section 3.3.3, where the elimination of polar groups is observed as the
temperature increases, achieving solid residues with lower polarity and higher aromaticity,
which can be an advantage in their application based on their use as adsorbent solids.
Finally, as the values included in Table 5 showed an important content of lead of the solid
samples and to avoid errors in the adsorption results, the possible release of lead from
the solid sample was taken into account carrying out blank tests with solid in deionized
water. The results showed that, although lead contents were not insignificant for solid
samples obtained at 450 and 500 ◦C, they were relatively immobile under adsorption
tests conditions because practically null concentration was observed in the solution in the
blank tests.

Singh et al. [10], investigated the efficiency of the carbonaceous solid from pyrolysis
of different mixtures of PVC, PET and PE waste in the adsorption of arsenic, using an
arsenic initial concentration of 1000 ppm, varying pH values between 4 and 8 and char
doses of 0.5 and 1.5 g. The highest percentage of retention was for the PVC/PE mixture,
in the same proportions pyrolyzed at 550 ◦C. The maximum percentage of retention
was between 71.6% and 99.4%. The authors observed that the solids prepared at higher
temperature (550 ◦C) showed a higher arsenic adsorption capacity. Similarly, Fang et al. [48]
performed adsorption tests of different metals, including lead, with solid products obtained
at different temperatures from walnut and peanut shells pyrolysis test. In this study, an
activation treatment is carried out on the solid and the results shows that a higher pyrolysis
temperature and a longer activation time increase the adsorption capacity of the solid. On
the other hand, Bernardo et al. [18] carried out lead adsorption tests in aqueous solution
with a concentration of 1000 mg/L, at a temperature of 25 ◦C and varying the pH, the
amount of adsorbent solid and the contact time. In this investigation, three different solids
are used from the pyrolysis of different mixtures of materials (biomass, used tires and
plastic waste) at a temperature of 420 ◦C. The results reveal that the highest adsorption
efficiency was presented by the solid obtained from the mixture formed by 50% used tires
and 50% plastic waste, reaching a retained percentage of 100%, due to its high mineral
content, especially zinc, calcium and potassium, which indicates that its adsorption capacity
lies in the formation of complexes with these minerals.

Following, considering that the best result in terms of adsorption capacity was ob-
tained with the solid resulting from pyrolysis at 550 ◦C (Table 6), a study of the equilibrium
of the process was performed. Figure 3a,b show the results of the removal percentage and
the adsorption capacity at equilibrium, qe, for each of the concentrations used.
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The removal percentage decreases with increasing concentration (Figure 3a), varying
from a value close to 90% for the lowest concentrations to a value of 65.7% for the highest
concentration. This is due to the fact that, as the solid becomes saturated, the amount of
metal retained with respect to the initial amount decreases. With respect to the adsorption
capacity (Figure 3b), this increases as the initial concentration of lead rises, reaching a
maximum value close to 26 mg/g.

These results are in agreement with those reported by Bernardo et al. [14]. The
authors investigated the influence of the initial concentration of lead, varying it between
5–100 mg/L and observed a decreasing trend in lead adsorption efficiency as the initial
concentration of lead increases, with 5 mg/L being the initial concentration of lead that
provides the highest removal percentage. These researchers also related these results to



Water 2021, 13, 1188 18 of 20

the fact that lead at pH = 6 exists mostly as a free ion at low concentrations, but at high
concentrations it has a tendency to form species based on Pb2OH3

+ or Pb3OH4
+, among

others, which hinder the adsorption process due to their larger size.
Finally, the equilibrium results present in Figure 3b have been adjusted to the different

models described in Section 2.4. By means of non-linear regression, the fit parameters for
each model have been obtained and are present in Table 7.

Table 7. Fit parameters of the experimental results to the different equilibrium models.

Langmuir
qm, mg/g b, L/mg r2 ∑(y−ycal)2

40.767 0.129 0.992 3.011

Freundlich
KF, mg/g·(L/mg)1/n n r2 ∑(y−ycal)2

5.653 1.699 0.992 3.356

Redlich–Peterson
A, L/g B, ((L/mg)g) g r2 ∑(y−ycal)2

8.550 0.617 0.66 0.994 2.395

Sips
qm, mg/g b, L/mg n r2 ∑(y−ycal)2

61.301 0.094 1.266 0.995 2.175

As can be appreciated, all the models present a good fit to the data (r2 > 0.99), with
the Sips model being the best fit (r2 = 0.995) due to the flexibility of this model, based on
the previous comments. However, although the model represents the experimental results
well, the value of qm obtained is much higher than the experimental one, which may be
due to the fact that, based on Figure 3b, equilibrium has not been reached experimentally,
so it is to be expected that the solid adsorption capacity will continue to increase.

The results are similar to those of Mohan et al. [24] where the qm values of different
biochars for lead adsorption vary between 2.62 to 13 mg/g. These researchers studied
the arsenic, cadmium and lead adsorption capacity of biochars produced from different
biomass wood wastes through pyrolysis at 400 and 450 ◦C. The researchers concluded
that the biochar with the highest lead adsorption capacity is the one obtained from oak
bark, being very promising for its possible industrial application, when compared to a
commercial activated carbon. In addition, Treviño-Cordeo et al. [49] used two types of
charcoal obtained from the carbonization at 800 ◦C of fruit seeds, which are activated
by impregnation with a 25% calcium solution and their efficiency in lead and methylene
blue removal from aqueous solutions is measured. They found qm values of 2.058 and
47.571 mg/g.

4. Conclusions

The effectiveness of chars from the pyrolysis of non-recyclable mixed plastics from
municipal solid waste for the removal of lead from aqueous medium was investigated.
Several characterization analyses were performed including elemental analysis, thermal
decomposition and immediate analysis, HHV determination, BET surface area, total pore
volume, average pore size and pore distribution analysis, FTIR and XRF analysis. The
properties and sorption capacity of chars varied with pyrolysis temperature. The highest
lead adsorption capacity was attained by the char resulting from the pyrolysis at 550 ◦C.
The maximum lead adsorption capacity (Sips isotherm) was 61.3 mg/g at pH of 5.
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