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Abstract—The efficient deployment of Internet of Things (IoT)
over cellular networks, such as Long Term Evolution (LTE) or
the next generation 5G, entails several challenges. For massive
IoT, reducing the energy consumption on the device side becomes
essential. One of the main characteristics of massive IoT is small
data transmissions. To improve the support of them, the 3GPP
has included two novel optimizations in LTE: one of them based
on the Control Plane (CP), and the other on the User Plane
(UP). In this paper, we analyze the average energy consumption
per data packet using these two optimizations compared to
conventional LTE Service Request procedure. We propose an
analytical model to calculate the energy consumption for each
procedure based on a Markov chain. In the considered scenario,
for large and small Inter-Arrival Times (IATs), the results of
the three procedures are similar. While for medium IATs CP
reduces the energy consumption per packet up to 87% due to
its connection release optimization.

I. INTRODUCTION

Machine Type Communications (MTC), and more generally
the Internet of Things (IoT), are big umbrellas that include
a plethora of different applications. The Third Generation
Partnership Project (3GPP) has classified IoT into two sce-
narios: massive IoT (mloT) and ultra-reliable and low latency
communications (URLLC) [1]. Both frameworks are identified
as use cases either for Long Term Evolution (LTE) and for
5G. The foreseen huge number of connected IoT devices in
mloT, even considering the expected small volume of data per
session, will lead to a significant network signaling overload.

Recently, MTC and Narrowband IoT (NB-IoT) 3GPP’s
tracks have achieved improvements regarding to device com-
plexity, coverage, and power consumption [1]. In this sense,
the 3GPP has included two new mechanisms in LTE, the
Control Plane Cellular IoT (CP) optimization and the User
Plane Cellular IoT (UP) optimization. The purpose of these
procedures is to optimize the data transmission for IoT devices.
Hence, we pursue to {ind out their advantages.

In this paper, we concentrate on the energy consumption
of the devices, which is one of the most relevant Key Perfor-
mance Indicators (KPI) for IoT. Specifically, we answer the
following questions: i) What is the energy reduction achieved
by IoT devices with these new mechanisms, and ii) Which
devices benefit from using these mechanisms, as we expect
different Inter-Arrival Times (IATs) for different devices.

To answer these questions, we will use the conventional data
transmission through Service Request (SR), with an inactivity
timer (7;) of 10s, as the baseline procedure.

There are other works focused on energy consumption
analysis for LTE. The authors of [2] analyze the impact of the
Discontinuous Reception (DRX) mechanism. 3GPP’s technical
report [3] includes the battery lifetime estimation during an
uplink transmission for different cellular IoT deployments.
However, to the best of our knowledge, there are no energy
consumption comparisons at the IoT device side between the
new 3GPP IoT optimizations and the baseline SR scheme.

For this goal, we study the signaling, resources allocated,
and steps performed in each procedure. Then, we estimate
and compare the average energy consumption per packet and
device’s battery lifetime for each scheme. This work extends
the analytical model of [4]. From the radio access capacity
analysis of [4], we add the analysis of the energy consumption
per data packet, and the power saving mechanisms. In the
considered scenario, the results show that for large and small
IATs, the performance of the three procedures is similar.
However, for medium IATs the CP optimization reduces up to
87% the energy consumption per packet due to its connection
release optimization.

The remainder of this paper is organized as follows. Section
II gives an introduction to LTE data transmission, and power
saving mechanisms. Section III provides the analytical model
and the energy consumption estimation. Section IV shows the
numerical results. Finally, Section V sums up the conclusions.

II. LTE OPTIMIZATIONS FOR 10T

In this section, we first explain the data transmission scheme
used in LTE and the two data transmission optimizations added
for IoT. Then, we describe two LTE power saving mechanisms.

A. Data Transmission Procedures for loT

In LTE, the transmission of data packets requires an estab-
lished Radio Resource Control (RRC) connection between the
device and the evolved NodeB (eNB). When an RRC connec-
tion has been established, the device is in RRC Connected.
After a device’s inactivity period of T;, the RRC connection
is released through an S1-Release procedure, then the device
changes to RRC Idle.
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Fig. 1. User Equipment (UE) triggered Service Request procedure [5].

If an RRC Idle device wants to communicate with the
network, it has to perform the SR to establish the RRC connec-
tion and request resources again. Part of the work of the 3GPP
for IoT focus on reducing the signaling overhead required to
establish and release a communication channel compared to
conventional LTE. There are two solutions introduced [5]: one
of them based on the Control Plane (CP), and the other on the
User Plane (UP). Therefore, the procedures available to send
data packets from an RRC Idle IoT device in LTE are:

1) Service Request (SR) Procedure: This is the conven-
tional data transmission procedure. Figure 1 shows a typical
sequence of signaling messages. The first four messages
comprise the contention-based random access (RA) procedure.
Steps 3 and 4 of the RA procedure are used as part of the RRC
connection establishment. The subsequent signaling messages
perform: device’s authentication in the Mobility Management
Entity (MME) through Non Access Stratum (NAS) security
level (steps 6 and 7), Access Stratum (AS) security context
establishment between the device and the eNB (steps 8 and
9), RRC reconfiguration (steps 10 and 11), and data bearers’
establishment with other core entities (steps 14 to 17).

2) Control Plane Cellular IoT Optimization (CP): This
optimization uses the control plane to forward the device’s
data packets. To do that, they are sent through NAS messages
to the MME. Figure 2 shows a typical sequence of signaling
messages. Contrary to conventional SR, the MME is responsi-
ble for the data packets’ security check, and forwarding them
to the Serving Gateway (SGW) through the new S11-U bearer.

This procedure does not apply AS security, and there is no
RRC reconfiguration, which represents a reduction of signaling
messages over the radio interface. Furthermore, the device can
include in the NAS message the Release Assistance Indication
to the MME. This information can notify whether no further
data transmission is expected. Then, the MME could release
the connection immediately if there is no pending traffic, and
S1-U bearer (between eNB and SGW) is not established.
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2.Random Access Response
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4.RRC Connection Setup
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5.RRC Connection Setup C
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Fig. 2. Mobile Originated data transport in control plane solution [5].
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Fig. 3. UE initiated Connection Resume procedure in user plane solution [5].

3) User Plane Cellular IoT Optimization (UP): The trans-
mission of data in this optimization is over the data plane,
by means of preserving the RRC context instead of release
it. Two control procedures are defined: Connection Resume
and Suspend. Both are similar to two conventional control
procedures, SR and S1-Release, respectively. However, the
signaling messages slightly change. Compared with SR, the
context of the device is stored in the device and the network.
Then, there is no need to reestablish the AS security context.
Figure 3 shows a typical sequence of signaling messages.

B. Power Saving Functions

While the device has an RRC connection established, it has
to listen to the network in order to decode Physical Downlink
Control Channel (PDCCH) in every subframe. For a device,
it implies to keep the radio receptor always on. Therefore,
it is a waste of energy when there is not data available. To
improve the device’s battery lifetime, the 3GPP has introduced
enhancements to enable devices to communicate on a per-need
basis, increasing the time in low-power consumption mode.

1) Discontinuous Reception (DRX): Is a mechanism that
allows the device to stop monitoring radio channels and to
enter low-power consumption mode for short periods of time.

In LTE, this functionality has two modes, called
Connected Mode DRX and Idle Mode DRX. Both
DRX modes allow the device to monitor the PDCCH channel
discontinuously, in order to check if there is data available
in Connected Mode DRX, or paging messages in Idle
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Mode DRX. There are a set of user specific DRX parameters
configured based on the device activity. For more information
about DRX, see [6].

2) Power Saving Mode (PSM): Is a device’s mode which
implies that the device is not reachable, but it is still registered
with the network [7]. The energy consumption in PSM is
almost as being in the power-off state, that is, lower than
the energy consumption of RRC Idle. The PSM mode starts
after a period of time in which the device is in RRC Idle
without further activity, called Active Time. Then, the device
will enter PSM mode. A device is in PSM until a mobile
originated event requires the communication with the network.
For more information about PSM, see [7].

III. ENERGY CONSUMPTION ANALYSIS

In this work, we provide a Markov chain analysis of the
average energy consumption needed to transfer one data packet
for the three control procedures explained before. The analysis
is divided into two different parts. First, we model with a
Markov chain the behavior of a device. Then, we estimate the
average energy consumption per packet as a function of the
stationary probabilities and the average energy consumption
required to complete each event of the Markov chain.

A. Transmission Model

The basic time unit in the analysis is one LTE subframe
(Ims). We consider the resources needed for every packet
transmission are allocated to the device in units of Resource
Block (RB) pairs. We assume that the packet generation
process of each IoT device follows a Poisson model with rate
Aapp Dackets per ms. The data rate of the IoT device is derived
from its average IAT in ms, therefore Ay, = ﬁ.

To model the device’s behavior, we consider three operation
modes (see Figure 4):

1) Off: The device is in RRC Idle, and uses PSM mech-
anism to save energy.

2) Communication: This operation mode starts when the
RRC Idle device wants to send a data packet. It involves the
steps incurred since the device starts its RA procedure until
the device is in RRC Connected. This operation mode also
includes the subsequent data transmissions while the device is
still in RRC Connected. Between transmissions, the device
is in Inactive operation mode. The last transmission happens
when the device is not going to send any data packet within
the inactivity timer 7;. Therefore, this operation mode includes
signaling and data packets between the network and the device.

3) Inactive: This operation mode includes the steps when
the device is in RRC Connected, but it is not sending data
packets. We assume the device uses Connected Mode DRX
to save energy. After DRX inactivity time Tprx;, we only
assume long DRX cycles. These cycles are composed by two
timers: 7;., which denotes the period of time the device is idle
within the DRX cycle, and 75,4, defined as the period of time
the device is listening to the network within the DRX cycle.
After the last transmission and its inactive time, the device
changes to RRC Idle. We assume that whenever the device
reaches RRC Idle, itdirectly changes to Off operation mode.

RRC Idle RRC Connected RRC Idle
X * T
DRX Connected DRX Connected
Prx

o Torxi Tic Tona

H

o Prx .-

e pi I

Ps|
PSM  Signaling Data Tx Last data TX  DRX long cycle Time

Operation \ ¥ L T = T Ayt T T
mode: o C | cilc | o

Fig. 4. ToT device behavior assumed (O: Off, C: Communication, 1: Inactive).

B. Markov Chain Analysis

Figure 5 depicts the proposed Markov chain to model the
considered operation modes. Our model is an extension of the
one proposed in [4].

To connect to the network, up to m retransmissions of
the RA procedure are allowed. If a device fails to request
a connection, the device backs off. The states {i,0} rep-
resent the ith RA attempt. The backoff time is uniformly
chosen in the range (0,W.— 1), being W, the maximum
backoff window size. Then, the states {i,k} represent the
kth backoff counter of the ith retransmission. Additionally,
CR (i) state corresponds to the ith connect request attempt,
which represents the remainder steps the device has to perform
to change to RRC Connected, i.e. RRC establishment,
AS security reestablishment, RRC reconfiguration, or bearers
establishment. The T'X state represents the transmission of a
data packet while the device is in RRC Connected. Lastly,
Active and LC (n) respectively represent the period of time
the RRC Connected device waits before starts Connected
Mode DRX, and the nth long DRX cycle. The number of long
DRX cycles is denoted by N, derived as N, = LTI_—I%%*

Let p,, denote the probability of having uplink traffic in
a subframe, expressed as p,, = 1 — e Aarr. Let p. and p,
respectively be the probabilities of collision at RA procedure
and error at the connection request. Expressions for p. and p,
can be found in [4]. Let,

e P, denote the outage probability, derived as P, =
1—(1—=pe)(1—pe).

o Py, be the data transmission probability before T; expires,
expressed as py, = 1 — e~ Mare i,

* P, denote the data transmission probability before Tprx;
expires, derived as p, =1 — e AappTDRX

o pie = 1 — e rare(TiatTona) pe the probability of trans-
mission before 15 + T,y q expires.

Then, based on [4], the transition probabilities of the

Markov chain can be expressed as:

P (070|0ff) = Pon

P(CR(i)]i,0) =1 - pc, i €[0,m]

P (Connect|CR (i)) =1 — p., i€ [0,m]

P(z‘,k|¢—1,0):§;, kelo,W,—1],i€[l,m]
e

P(i.HCR(i—1) = £=, ke[0,W.—1] i€ [Lm]

c

P (Active|Connect) = P (Active|TX) = pi,
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Fig. 5. Markov chain model for m retransmissions of a device during Off, Communication and Inactive operation modes (OM) for the three procedures.

P (LC (0) |Active) =1 — p,

P(LC (1) ILC (n—1)) =1 pu, elN, 1]
P (TX|Active) =
P(TX|LC (n)) = pie, n € [0, N, — 2]
P(TX|LC(N.—1))=1

P (Inactive|TX)
P (Drop|m,0) = p.

P (Drop|CR(m)) =
P (Off|Drop) = P(Of f|Inactive) = 1

Let b; denote the steady state probability that a device is at j
state. Then, they can be derived as [4]:

= P (Inactive|Connect) = 1 — py,

boff = (1 - pon) boff + bd’l”op + binactive
b0,0 = ponboff
bi,o = Peber(i—1) + Pebi—1,0 = (Pe (1 — pc) + pe) bo,o

bi;k = mvﬁkb = % (pe (1 - pc) J’_pc)i b0,0

i,0 =
bCR(i) = (1 - pc) bi70 = (1 - pc) (pe (1 - pc) +pc)i b0,0
bdrop = pebCR(m) +pcbm,0 = (pe (1 - pc) + pc)m+1 b0,0
bconnect - (1 - pe) bCR(i)
1=0
bactive = Dtz (bconnect + bTX) = 1fﬁbconnect

bLC(n) = (1 - plc)n (1 - pa) bactive
N.—2

bTX = pabactive + Dic Z bLC(n) + bLC(NC—l) = bactive
n=0
MLact'Lve (1 ptz) (bTX + bconnect)
By imposing the probability normalization condition:
1= boff + bconnect + bO o+ bdrop + bactive + bTX+
m W.—1

binactive + Z Z bz k+ Z bCR(z) + Z bLC(n)

i=1 k=0

then, we obtain b,y as

1— m+1 1— .
(1= ( pe) |
1—s

+(1—sm aux)) B

boff = (1 +pon (1 -+ Sm+l +

s(1—s™)(1+W,)
2(1—s)

where s = p.(1—pc) + pe, and aur = 2 — py, +

1 Ne
TP (3_pt:v+(1_pa)l(171ich>'

C. Estimation of the Average Energy Consumption per Packet

The average energy consumption per packet can be derived
from the power and duration of each state of the Markov
chain [2]. Then, let E; be the average energy consumption
of the j state. Let N, denote the number of packets sent
while the device is in RRC Connected. The average energy
consumption per packet [, can be calculated as:

N Zj b Ej
D Np

where N, = beonnect (1 + Y pey Pta™ (1 — pz) ). The
expression of each b; is already derived, so we need to derive
each element of E;. For the power analysis, we consider four
different device’s power levels [8]:

o Sleep (Ps): The device consumes minimum power. The
low-power clock is on while the device is sleeping.

o Idle (F;): The device is not transmitting or receiving
packets. It keeps on the accurate clock to be able to
maintain the synchronization with the air interface.

e RX (Pgrx): The device is expecting a packet from the
network, or processing a response to the network. Then,
the RX branch of the device is on.

e TX (Prx): The device is transmitting a packet to the
network, the TX branch of the device is on. To obtain
the transmit power required, we use the 3GPP’s power
control equations of the different uplink physical channels
considered in the analysis (see [9]).

Next, we derive E; for each state j of the Markov chain.
For these calculations, we use the latency analysis of [10], and
the messages sizes of [4], [11]. Table I shows the notation.

Of f state: The device does not transmit uplink packet in
current subframe Eof b= Eof ;= Eof ;=P
o 0,0 state: The device performs the RA procedure

L]

E5S = EG5 = EJf = TprePi+ Trapy Prx + Pyre

o 7,0 state: After a unsuccessful connection and a back-
off time, the device retries the RA procedure. Then

SR CP upr
E’LO _E’LO _E’LO _E

o 1, k state: kth backoff wait ESR ECP

EVP =P,
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« CR state: The device performs a connection request.
For CP procedure, the data transmission happens at this
stage sending the data into the RRC Connection Setup
Complete message (Bcompep)

ECR(z) = TE R Prx + Prip ([

Beomp
[ Fr] ]2

Bireg

BRBp—I +

s—comp r—UL

BrBp -‘ + [ Braep -I)

EC _TCP p +pP Biegq + Beompe p

CR(’L) CRrx RX RBp BrBp BrBp
UP Beom

ECR(z) =Tcrpx PRX +PRBP(’V -‘ + ’VWB:—D

o Connect state: After a successful connection, the device

sends its data packet. For CP procedure this packet has
been already sent, so ECP =0

Baata
Econnect Econnect PRBP ( ’VBR;,,-‘ )

o Active state: The device listens to the network, no uplink
packet until time /

Breg

BrBp

Tporxi—1
Eactive = Z €_>\“pp(l_1) (1 — e_Aam') I+
=1
€_>“L””<TDRXi_1)TDRXi) Prx
Eactwe = Eactwe = Eactwe = Eactive

o LC state: The device is in a long DRX cycle, no uplink
packet until time /
TictTona—1
ELC = e_Aaml(l_l) (1 — e upp) lP+
=1
_)\a;DP(TchFTond_l) (TZC]DZ + TondPRX)
B} = Bif = Bpl = Erc
e TX state: The device sends a data packet. For CP
procedure, the data packet is sent as NAS signaling into
a RRC UL Information Transfer message (Bgqtac )

Eff = Efy = Prpyp ([%ﬁﬁb
ESE = Prpy (| e ])

o Inactive state: After the last transmission, the device
changes to Inactive. The device stays in this state until
the connection is released. For CP procedure, we assume
the release of the connection is done after a period
sufficiently long (Ty,q:¢) such that a waiting data packet
can be delivered to the device from the MME [5]

E Eznadwe - (TDRXi + NcTond) PRX"’
(NC{Z"lC + TSPU.'I"C) ‘PZ

inactive —

Eznactwe = TwaitPRX
where Tspare = Ti—(Torxi + Ne (Tie + Tona)) denotes
the spare time after DRX and before the expiration of T;.
o Drop state: If the device fails all attempts of the RA
procedure and connection requests, the device drops the
data packet There is not energy consumption in this state,
then Ed7 "0p Edrop = Edrop 0.

TABLE I
VARIABLE NOTATION AND VALUES
Variable Value Description
. Average energy concumption in state j
E5 Variable | ¢ ihe procedure z € {SR,CP,UP}
Ps 0.03 Sleep power consumption (mW) [8]
P; 10 Idle power consumption (mW) [8]
Prx 100 RX power consumption (mW) [8]
Prx, ax 200 TX max power consumption (mW) [9]
TX power consumption per RB pair (mW)
PrBp 32.18 (700m, Po_pusca = —100dBm, o =1,
ATF = OdB, and fc = O)
Preamble TX power consumption (mW)
Ppre 32.18 (700m, Preamblelnitial RT P = —100dBm,
Apre = 0dB, and RampingStep = 0dBm)
Tpre 2.5 Time before preamble transmission (ms)
TrRARx 10 RX time to perform RA (ms)
T2 41.16.16 Sum of processing delays (UE and eNB) to
CRRrx [ establish a connection (ms), z€ {SR,CP,UP}
TpbRrxi 200 DRX Inactivity timer (ms) [12]
ond 4 RRC Connected On duration timer (ms)[12]
T 80 DRX Long Cycle (ms) [12]
T; 10000 Inactivity timer (ms)
Twait 54 S1 processing and transfer delay (ms) [13]
BrBp 36 Bytes per RB pair (QPSK modulation)
req 7 RRC Request message size (bytes)
comp 20 RRC Setup Complete message size (bytes)
Bs—comp 13 RRC Security Mode Complete size (bytes)
B,._urL 10 RRC Reconfiguration Complete size (bytes)
Baata 100 Data payload size (bytes)
B 129 RRC Setup Complete + NAS control plane
compc p SR + Bgatq message size for CP (bytes)
B 120 RRC UL inf. transfer + NAS control plane
datacp SR + Bg.t, message size for CP (bytes)

IV. EXPERIMENTAL SETUP AND MAIN RESULTS

We evaluate the energy consumption per packet of the three
control procedures explained. For the radio resources available
in the evaluation, we assume: system bandwidth of SMHz (25
RBs), one RA opportunity every Sms, 3 symbols for PDCCH
per subframe, format 1 of the PDCCH, a fragmentation
threshold of 6 RB pair, 54 available preambles, and a backoff
window W, of 20 ms. We assume the path loss model of [3],
and a detection probability of 1. We consider an IAT which
ranges from 320 ms to 48 hours. Additionally, the maximum
allowed number of RA retries m is 9 [4]. Table I summarizes
other parameters’ values considered in the evaluation. We
consider an example of the parameters’ usual value ranges,
although the values are available from different sources.

Figure 6 shows the average energy consumption per packet
only considering Communication operation mode. As ex-
pected, CP and UP optimizations reduce the energy consump-
tion compared to SR. However, for small IATs the CP solution
is worst. This is due to data packets are sent as signaling.

Figure 7 shows the average energy consumption per packet
for different IATs when the outage probability P,,; increases.
The results include the three devices’ operation modes, as
described in Subsection III-A. For small IATs, the packet
transmissions while the device is in RRC Connected domi-
nates the energy consumption. As the transmissions’ frequency
is reduced, Connected Mode DRX and PSM energy con-
sumption begin to prevail. For both large and small IATs,
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munication operation mode for SR, CP and UP (Pt = 0).

= SR
=-==CP

A UP
Pout=0
Pout = 0.1
Pout = 0.2
Pout = 0.3

mJ/packet

Fig. 7. Average energy consumption per packet for SR, CP and UP, and
different Pyq¢.

the three procedures achieve similar results. However, for
medium IATs the CP procedure reduces up to 87% the energy
consumption per packet. This is due to the reduced period of
time in Inactive state after the last transmission. However, CP
procedure is the one most affected by an increase of Py,¢. As
the energy consumption during signaling states and Inactive
state are similar in CP, the retransmissions to connect to the
network impact CP results.

Further, from the average energy consumption per packet,
in Figure 8 we estimate the device’s battery lifetime with a
battery capacity of SWh, as [3]. Battery lifetime’s upper bound
(labeled as Base) represents a device always in PSM. CP shows
an extended battery lifetime for almost all values.

V. CONCLUSION

In this paper, we analyze and compare the average energy
consumption of an IoT device when it sends data packets in
LTE. The data transmission procedures analyzed are: conven-
tional Service Request (SR), Control Plane (CP), and User
Plane (UP) optimizations. Particularly, we have presented a
Markov chain model to estimate the average energy con-
sumption per packet. Our analysis includes different device’s
operation modes: Off, Communication, and Inactive.

The conducted evaluation highlights there is not an optimal
solution which fits all data rates. For medium and big IATs,

Years

-~

i
-
10° 10* 10
Reports per day

Fig. 8. Battery Lifetime Estimation for SR, CP and UP procedures.

the energy consumption of Connected Mode DRX and
PSM dominates the results. Within the medium IATs, CP
optimization reduces up to 87% the energy consumption for
the considered scenario. This reduction is due to CP’s Re-
lease Assistance Indication. This indication informs the MME
whether can immediately release the connection. Despite we
consider an example scenario, the CP’s release optimization
would continue to reduce the energy consumption compared
to UP and SR for other scenarios. Finally, for large and small
IATs, the results of the three procedures are similar.
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