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Abstract—When a network operator designs strategies for
planning and operating Guaranteed Bit Rate (GBR) slices, there
are inherent issues such as the under(over)-provisioning of radio
resources. To avoid them, modeling the User Equipment (UE)
blocking probability in each cell is key. This task is challenging
due to the total required bandwidth depends on the channel
quality of each UE and the spatio-temporal variations in the
number of UE sessions. Under this context, we propose an
analytical model to evaluate the UE blocking probability in
an Orthogonal Frequency Division Multiple Access (OFDMA)
cell. The main novelty of our model is the adoption of a
multi-dimensional Erlang-B system which meets the reversibility
property. This means our model is insensitive to the holding time
distribution for the UE session. In addition, this property reduces
the computational complexity of our model due to the solution for
the state transition probabilities has product form. The provided
results show that our model exhibits an estimation error for the
UE blocking probability below 3.5%.

Index Terms—Blocking probability, OFDMA, GBR, Erlang-B

I. INTRODUCTION

Nowadays, the industry digitalization has boosted a wide
variety of unprecedented services with stringent requirements.
To economically provide them over a common infrastructure,
network slicing has emerged as a solution [1]. Implemented
as slices, most of these services are envisioned to rely on
data transmissions with a strict Guaranteed Bit Rate (GBR)
for each User Equipment (UE). When a network operator
designs planning and operational strategies for GBR slices,
it must consider the specific bandwidth consumption of each
active UE per slice as well as the spatio-temporal variations
in the number of UE sessions. Designing these strategies is
challenging due to the bandwidth consumption of each UE is
conditioned to its channel quality. With the aim of maintaining
the Block Error Rate (BLER) for the UE’s data below a
certain threshold, the cells adopt Link Adaptation (LA). This
technique enables each cell to adapt the UEs’ Modulation
and Coding Scheme (MCS) according to the experienced
channel effects (i.e., path loss, shadowing, fast fading, inter-
cell interference) [2].
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To avoid inherent issues such as the under(over)-
provisioning of radio resources, modeling the UE blocking
probability in each cell is crucial for designing planning and
operational strategies for GBR slices. Thereby, the network
operator could decide the required number of cells, including
their bandwidths, to deploy/scale GBR slices while the UE
blocking probability is below a certain threshold.

Valuable models for evaluating the UE blocking probability
have already been proposed in the literature (reported in
Section II). Most of them rely on Markov chains and queue
theory. However, they are not appropriate for GBR slices due
to they consider a variable rate per each UE. Additionally,
some of these models are only valid for UE session durations
following an exponential distribution, thus they cannot model
the traffic behavior in real scenarios [3].

In this article, we focus on modeling the radio resource
consumption of a GBR slice. Specifically, we have proposed
an analytical model for assessing the UE blocking probability
in a GBR slice for an Orthogonal Frequency-Division Multiple
Access (OFDMA) cell under Poisson session arrivals. Using
our model, the network operator can decide the number of
radio resources required by a cell to provide a GBR slice while
the UE blocking probability is below a given threshold. The
main novelty of our model is the employment of a Multi-
dimensional Erlang-B system which meets the reversibility
property. It means our model allows the adoption of an
arbitrary distribution for the UE session duration. Additionally,
this property involves the solution for the state probabilities
has product form, thus it eases their computation. Another
innovation is the consideration of the average Signal-to-
Interference-plus-Noise Ratio (SINR) for each UE. This allows
a more precise characterization of the UEs’ channel quality
within the cell. The provided results show that our model
exhibits an estimation error for the UE blocking probability
below 3.5%.

The article is organized as follow. Section II summarizes
the relevant literature. Section III presents the system model.
In Section IV, we present the proposed Multi-dimensional
Erlang-B model. This model is validated in Section V. Finally,
Section VI draws the main conclusions and the future work.

II. RELATED WORK

The existing literature for modeling the UE blocking prob-
ability in a cell is vast. In [4], the authors model a Code
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Division Multiple Access (CDMA)-High Data Rate (HDR)
cell with a multi-class processor sharing queue. Since the
processor sharing discipline is insensitive to the holding time
distribution, arbitrary distributions can be adopted for the
UE session duration. This discipline also forces an equal
distribution of radio resources among the UEs, thus this model
properly captures the behavior of Variable Bit Rate (VBR)
services. In [5], this work was extended by including intra-cell
UE mobility. However this improvement involves loosing the
insensitivity property, thus only the exponential distribution is
valid for the UE session duration.

In both works, the authors have considered concentric rings
to model the channel quality distribution within the cell. This
approximation easily enables the model to capture the behavior
of LA techniques. For this reason, others authors have adopted
this approach. In [6]–[8], the authors also focus on scenarios
with intra-cell UE mobility but considering other medium
access techniques such as Wideband CDMA (WCDMA) and
OFDMA. Other works concentrate on non-3GPP access tech-
nologies. For instance, the authors of [9] define a model for
WiMAX cells. This model is then used by a Quality of Service
(QoS)-oriented resource allocation strategy for streaming flows
that require a constant bit rate. Additionally, other authors
consider services beyond mobile broadband. For example, the
authors of [10], [11] adapt their models to IPTV services.

Despite these works present valuable contributions, the con-
sideration of concentric rings limits the accuracy for modeling
the distribution of the channel quality. For instance, two UEs
located to the same distance from an access node could not
perceive the same channel quality. The reason is there could
be different obstacles and geographical features between each
UE and the access node, involving a different impact of the
channel effects such as shadowing or fast fading.

In an attempt to improve the model for the channel quality
distribution, the authors of [12] consider a combination of
indicators such as the RSRP, RSRQ, RSSI and SINR for
each UE. Then, they use these indicators in a Markov chain
which models the operation of a cell with intra-cell UE
mobility. Notwithstanding, the authors assume the reduction
of the UE data rate when the total required bandwidth exceed
the available bandwidth in the cell, thus this model is more
appropriate for VBR services.

III. SYSTEM MODEL

In this work, we focus on the downlink operation of
one OFDMA cell. It provides a GBR service to their UEs,
which dynamically request and release data sessions. This cell
also supports LA, thus it must consider the channel quality
perceived by each UE to allocate them radio resources. Based
on this scenario, we first present the model for the cell. Then,
we define the characteristics of the offered traffic. Finally, we
describe the model for the radio resources.

A. Cell Model

To measure the channel quality within the cell, we adopt the
SINR. This indicator depends on the radio environment and

varies over time mainly due to (a) the path loss propagation,
(b) shadowing, (c) fast fading and (d) inter-cell interference.
In this work, we assume UEs have reduced mobility within the
cell (e.g., semi-static people in live events such as sport events
or concerts, IoT sensors, equipment for industry 4.0), thus (a)-
(b) remain constant throughout the session duration while (c)-
(d) vary over time. Let us define γ

(t)
u,n as the instantaneous

SINR measured by the UE u in the Resource Block (RB) n
(see section III-C) from the cell c. This parameter is provided
by Eq. 1, where PRXc denotes the received power from the
access node. This power results from the transmitted power
less the attenuation suffered by the channel effects. Lj is the
cell load factor and αj,n is a function that takes the value 1
when the RB n is allocated to the neighbor cell j and the value
0 otherwise [1]. Note that the value for αj,n will depend on
the radio resource allocation algorithm implemented in each
neighbor cell. Finally PN is the noise power measured in one
RB.

γ(t)u,n =
PRXc∑

j∈C\{c} Ljαj,nP
RX
j + PN

(1)

In this work, we focus on the average SINR for each UE
γu. To obtain this parameter, we average γ(t)u,n over all the RBs
consumed by the UE u (i.e., ∀n ∈ N u,(t)

RB ), and the time period
Tff as Eq. 2 shows. This period is a time window over the fast
fading is distinguishable. We also assume if γu is measured
several times throughout the UE session, its remains constant.
Note that the operator | · | denotes the cardinality of a set (i.e,
the number of elements).

γu =
1

Tff

∫ τ+Tff

τ

1

|N u,(t)
RB |

∑
n∈Nu,(t)

RB

γ(t)u,ndt (2)

Considering γu is measured for a considerable amount of
UEs, we can derive the Probability Density Function (PDF)
for the average SINR fPDF (γ) to model the channel quality
within the cell. Since this feature could take a huge number
of values, we split them into NZ regions to make it treatable.
Depicted in Fig. 1, each region z is defined as the set of values
for the average SINR such as γ ∈

[
γ(z−1), γz

)
. For simplicity,

we assume the session of an active UE takes place in one of
these NZ regions with probability πz , which is provided by
Eq. 3. Note that

∑NZ

z=1 πz = 1.

πz =

∫ γz

γ(z−1)

fPDF (γ)dγ (3)

Finally, we can also derive the average data rate per band-
width unit SEz (i.e., spectral efficiency) for each region z by
using Eq. 4. The function fSINR→SE(γ) maps the SINR to
the spectral efficiency under the assumption each UE achieves
all the required radio resources. This function depends on the
LA technique employed in the cell.

SEz =

∫ γz

γ(z−1)

fSINR→SE(γ)fPDF (γ)dγ (4)
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Fig. 1. Splitting fPDF (γ) into NZ regions

B. Traffic Model

To model the traffic demands within a cell, we consider the
statistical distributions and the average values for the arrival
rate of UE sessions and the session duration.

For the arrival rate, we assume an average of λ UE session
requests per unit time following a Poisson distribution. Since
a Poisson process can be split into NZ independent process
[13], we can also express the average arrival rate for each
region as λz = λπz . Note that λ =

∑NZ

z=1 λz .
With respect to the session duration ts,u for each UE u,

we assume a random variable extracted from an arbitrary
distribution. Additionally, we define µ = 1/E [ts,u] as the
average rate for releasing UE sessions per unit time. Note that
the release rate is independent from the region z.

C. Radio Resource Model

We assume an OFDMA cell with a total bandwidth W . This
bandwidth is divided into N OFDM sub-carriers. In turn, these
sub-carriers are grouped in groups of NSC sub-carriers. Each
group defines a RB, which is the smallest unit of resources
that can be allocated to a UE. The number of available RBs
on average during a slot is given by Eq. 5. The parameter ∆f
is the bandwidth between sub-carriers whereas OH denotes
the overhead factor due to control plane data.

Nslot
RB =

⌊
W

NSC∆f
(1−OH)

⌋
(5)

Assuming all the UEs require an average data rate equal
to the service GBR DGBR, we need to compute the average
number of RBs for each UE u in a time slot. Since we assume
each UE is born in a specific region z, there exist only NZ
values for the average number of RBs required by a single
UE within the cell. These values are given by Eq. 6 and must
satisfy Eq. 7 for any UE which is born in a region z (i.e., Uz).
In Eq. 7, Ln,u denotes the specific amount of RBs allocated to
the UE u in each time slot, whereas Nu

slots denotes the number
of time slots during the session duration ts,u. We assume Ln,u
is determined by a scheduler which aims to meet the GBR
requirements of each UE.

Nslot
RB,z =

⌈
DGBR

SEzNSC∆f

⌉
(6)

Nslot
RB,z =

1

Nu
slots

Nu
slots∑
n=1

Ln,u ∀u ∈ Uz (7)

IV. CAPACITY MODEL OF AN OFDMA CELL

This section explains the proposed model for an OFDMA
cell, including the methodology used for deriving the UE
blocking probability, the average RB utilization, and the cell
capacity.

A. Multi-dimensional Erlang-B model

Let us consider a cell where the values of fPDF (γ) are
grouped into NZ regions. To model this system we employ a
multi-dimensional Erlang-B system. In this model, we assume
each UE session takes place into one region z, defined by
the tuple (λz, µ). The offered traffic intensity in each region
becomes ρz = λz/µ, and the total offered traffic intensity is
ρ =

∑NZ

z=1 ρz .
Let s = (U1, U2, ... , UNZ

) denotes the state of the system,
where Uz is the number of active UEs in the region z. To define
the set of feasible states, we take into account (a) an active UE
in the region z consumes Nslot

RB,z RBs to meet its requirements;
and (b) the available RBs in the cell are limited by Nslot

RB .
These statements are gathered by Eq. 8, which provides the
necessary condition to define a feasible state.

Nslot
RB −

NZ∑
z=1

UzN
slot
RB,z ≥ 0 ∀s (8)

Using this equation, we can build the state transition dia-
gram as Fig. 2 shows. Note that for understandability purposes,
the represented diagram only shows two dimensions. To define
the upper bounds in each dimension, we use Eq. 9. In this
equation, U cmaxz|Uy

denotes the maximum number of UEs in the
region z conditioned to the number of UEs in the remaining
regions (e.g., red states for region 1, and green states for
region 2). If the remaining regions have 0 UEs, we can
define the absolute maximum number of UEs in region z as
Uamaxz =

⌊
Nslot

RB

Nslot
RB,z

⌋
.

U cmaxz|Uy
=

⌊
Nslot
RB −

∑
y∈Z\{z} UyN

slot
RB,y

Nslot
RB,z

⌋
(9)

To clarify how the state transition diagram is built, Fig. 3
depicts a specific realization of the two-dimensional Erlang-
B system presented in Fig. 2. In this example, each UE
consumes DGBR = 2 Mbps. Considering the average spectral
efficiencies derived by Eq. 4 for each region are SE1 = 2.778
bps/Hz and SE2 = 1.389 bps/Hz, the required amount of RBs
in each region are Nslot

RB,1 = 4 and Nslot
RB,2 = 8 (i.e., using Eq.

6 and considering ∆f = 15 KHz and NSC = 12 sub-carriers).
If we assume the cell has available Nslot

RB = 20 RBs, we can
check how Eq. 8 is met for all the states presented in Fig. 3.
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Fig. 2. State transition diagram for a two-dimensional Erlang-B system. Note that red and green states correspond to U1 = Ucmax
1|U2

and U2 = Ucmax
2|U1

,
respectively.

Furthermore, the absolute maximum number of UEs in each
region (i.e., when the number of UEs in the remaining regions
is 0) is Uamax1 = 5 UEs and Uamax2 = 2 UEs, respectively.
Finally, focusing on the upper bounds in each dimension (i.e.,
red and/or green states), we can verify how Eq. 9 is met. For
instance, considering region z = 1, the upper bounds (i.e., red
states) are (a) U cmax1|U2=0 = 5 when U2 = 0; (b) U cmax1|U2=1 = 3
when U2 = 1; and (c) U cmax1|U2=2 = 1 when U2 = 2.

The resulting multi-dimensional Erlang-B system corre-
sponds to a reversible Markov process (see proof in appendix
A). This implies the proposed model is insensitive to the
distribution of the UE session duration, which means the state
probabilities depend only upon the mean service time [13].
Furthermore, the solution for the state probabilities has product
form as Eq. 10 shows, where p(Uz) is the one-dimensional
truncated Poisson distribution for traffic stream in region z
and K is a normalization constant.

p(U1, U2, ... , UNZ
) =K · p(U1) · p(U2) · ... · p(UNZ

)

=K ·
NZ∏
z=1

ρUz
z

Uz!

(10)

To obtain the state probabilities, we need to derive K.
This constant can be computed by summing all the state
probabilities and equaling the resulting expression to 1, i.e.,∑
∀s p(U1, U2, ... , UNZ

) = 1. To that end, we recursively
cover all the feasible states by using Eq. 11.

K−1 =

Uamax
NZ∑

UNZ
=0

Uuplim
NZ−1|UNZ∑
UNZ−1=0

...

Uuplim
1|UNZ

,UNZ−1,... ,U2∑
U1=0

(
NZ∏
z=1

ρUz
z

Uz!

)
(11)

In this equation, there is a summation per dimension with
the aim of covering all the feasible states. The iterator of each
summation is the number of UEs per a specific dimension,
and it is bounded by the upper limit given in Eq. 12. This
limit is an extension of U cmaxz|Uy

(see Eq. 9) which restricts its
inter-dimensional dependence to those regions above z, i.e.,
the iterators of the outer summations. In this way, when the
iterators of the outer summations increase, these summations
will not cover those probabilities previously covered by the
previous iterators. Considering the example provided in Fig.
3, this equation will iteratively cover the states of each row
from the bottom to the top.

Uuplimz|UNZ
,UNZ−1,... ,Ux

=⌊
Nslot
RB −

∑NZ

y=z+1 UyN
slot
RB,y

Nslot
RB,z

⌋
∀x > z (12)

B. UE Blocking Probability

Assuming a new UE session is born in region z, it
will be blocked if there not exists a transition from the
current state s(t) = (U1, U2, ... , Uz, ... , UNZ

) to s(t+1) =
(U1, U2, ... , Uz + 1, ... , UNZ

). This happens when Uz + 1 >
U cmaxz|Uy

. In this way, the blocking states for each dimension
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Fig. 3. Specific realization of the state transition diagram for a two-dimensional Erlang-B system.

are delimited by Eq. 9 (e.g., red states for region 1 in Fig. 3).
If we iteratively cover the blocking states for each dimension,
we can compute the UE blocking probability Bz conditioned
to the region z where the new UE session is born by Eq. 13.

Bz =

Uamax
Nz∑

UNZ
=0

Ubplim
NZ−1|z,UNz∑
UNZ−1=0

...

Ubplim
1|z,UNz

,UNz−1
,... ,U2∑

U1=0

p
(
U1, U2, ... , U

cmax
z|Uy

, ... , UNz

)
(13)

This expression is composed by NZ − 1 recursive summa-
tions, one per region excluding z. In turn, each summation
is delimited by U bplimk|z,UNz ,...,Ux

, given by Eq. 14. The aim of
this upper bound is similar to Eq. 12 with the difference the
region z is not considered (i.e., Uz must be forced to U cmaxz|Uy

).
Thereby, the summations only cover the blocking states in
each iteration. The variable k denotes the specific region that
a summation covers.

U bplimk|z,UNz ,...,Ux
=⌊

Nslot
RB −

∑
y>k,y∈Z\{z} UyN

slot
RB,y

Nslot
RB,k

⌋
∀x > k (14)

Finally, the UE blocking probability in the cell is computed
as the sum of the conditional blocking probabilities weighted
by the probability of a UE session is born in each region (see
Eq. 15).

B =

NZ∑
z=1

πzBz (15)

C. Mean number of consumed RBs and Cell Capacity
Another key parameters derived by our model are the mean

number of RBs consumed in a cell NRB , and the cell capacity
Dc.

The mean number of RBs can be computed as the average
number of UEs Uz in each region z multiplied by the con-
sumed RBs (see Eq. 16). In turn, we compute Uz using Little’s
theorem [13], i.e., Uz = λz/µ (1−Bz) = ρz (1−Bz).

NRB =

NZ∑
z=1

UzN
slot
RB,z (16)

The cell capacity is provided by Eq. 17. It is derived as the
product of the mean number of UEs in each region multiplied
by the data rate consumed by each UE.

Dc =

NZ∑
z=1

UzDGBR (17)

V. NUMERICAL RESULTS

Since the state-of-the-art models for computing the UE
blocking probability (see section II) are not appropriate for
GBR slices under our assumptions (i.e., reduced UE mobility
and arbitrary distribution for the duration of the UE sessions),
we cannot provide a fair comparison between these models
and our model. For this reason, in this section we only
focus on the validation of the proposed model. First, we
present the experimental setup. Then, we analyze the aspects
that impact on the execution time of our model. Finally, we
evaluate the relative error for the UE blocking probability.
Due to space limit, this section is focused on this parameter.
Notwithstanding, we have also derived similar results for the
mean number of consumed RBs and the cell capacity.

A. Experimental Setup

To validate the proposed model, we use a Matlab-based sim-
ulator that simulates the arrival and departure of UE sessions
in a cell. This simulator receives the PDF for the average
SINR fPDF (γ) as an input parameter. Table I summarizes
the configuration parameters. Regarding the access technology,
we assume a 5G New Radio (5G-NR) cell implementing an
OFDMA scheme with ∆f = 15 KHz, and NSC = 12. We
also consider several cell bandwidths from 10 MHz to 20
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TABLE I
CONFIGURATION PARAMETERS

Parameters Configuration
Access Technology 5G NR
Sub-carrier Spacing

∆f (OFDMA) 15 KHz

Sub-carriers per
RB NSC (OFDMA) 12

Access Node: Bandwidth W
/ Number of RBs Nslot

RB

10 MHz / 52 RBs; 15 MHz / 79 RBs;
20 MHz /106 RBs;

PDF average SINR in
the cell: fPDF (γ)

Built using a dataset from a live LTE network

Service GBR DGBR 10 Mbps (e.g., on demand HD videostreaming)
PDF Regions 5, 9, 15 lineally spaced regions

Traffic Load ρ From 0.2 to 1.5

MHz [14]. Additionally, the radio resource allocation in 5G-
NR is carried out by multiples of 2, 4, 8 and 16 RBs [15].
In our evaluation, we consider each UE consumes multiples
of 4 RBs, thus Eq. 6 was accordingly modified. With respect
to fPDF (γ), we have derived it by using real dataset from a
Long Term Evolution (LTE) network. Note that 5G dataset is
not available due to the deployment of 5G networks are already
in an early stage. Specifically, this dataset contained the
probabilities of reporting a certain Channel Quality Indicator
(CQI). This means we have directly used the Table 5.2.2.1-3
in [15] to map each probability into the spectral efficiency
achieved by a specific CQI, i.e., this table correspond to
the spectral efficiency provided by the 5G New Radio (NR)
standard. For the GBR service, we have assumed a data rate
of DGBR = 10 Mbps.

Considering these configuration parameters, we have eval-
uated the UE blocking probability in function of the offered
traffic intensity. Specifically from ρ = 0.2 to 1.5. Additionally,
we have considered different values for the number of regions,
from NZ = 5 to 15. All the experiments have been carried out
on a computer with 16 GB RAM and an Intel core i7-7700HQ
@ 2.80 GHz.

B. Execution Time Evaluation

We have assessed the time complexity of our analytical
model in two scenarios. In the former, we have covered several
cell bandwidths, considering NZ = 9. In the latter, we have
considered different number of regions, with a cell bandwidth
of 15 MHz (i.e., 79 RBs). The results for both scenarios
are shown in Table II. We observe the execution time grows
exponentially with the number of regions and cell bandwidth.
The reason is using higher values for both parameters involves
an increment in the number of states in the Markov chain as
Eq. 8 shows. Note that the execution time does not depend on
the offered traffic intensity.

TABLE II
EXECUTION TIME

NZ = 9 Nslot
RB = 79

Nslot
RB = 52 Nslot

RB = 79 Nslot
RB = 106 NZ = 5 NZ = 9 NZ = 15

0.009 s 0.0036 s 0.171 s 0.006 s 0.032 s 0.343 s

(a) UE Blocking Probability: Model vs Simulation

(b) Relative error

Fig. 4. Evaluation of UE Blocking Probability for different cell bandwidths.

C. Model Validation

To validate our model, we have computed the relative error
as εr(%) = Bsim−Bmod

dsim
· 100, where Bsim and Bmod denote

the UE blocking probability extracted from the model and
simulator, respectively.

In Fig. 4(a), we depict the UE blocking probability derived
from our model and the simulator. It shows how the UE
blocking probability increases when (a) the available RBs
in the cell are decreased and (b) the offered traffic intensity
increases. This graph is useful for network operators because
it allows to decide the bandwidth for each cell (i.e., Nslot

RB )
while a threshold for B is provided, given certain conditions
for the offered traffic intensity and the cell interference (i.e., a
specific fPDF (γ)). Due to the scale used for the vertical and
horizontal axes in Fig. 4(a), the error between the simulation
and the model cannot be observed. In Fig. 4(b), we represent
the relative error, which is below 3.5 % for any case. We also
notice this error is higher with higher cell bandwidths. This
fact is induced by the simulator because it takes less samples
for the highest states (e.g., blocking states) when the number
of states increases. The reason is the probability of reaching
the blocking states is lower (i.e., see Fig. 4(a)), thus less data
samples for these states are taken during the simulation (i.e.,
number of times in a blocking state)

Finally, we evaluate the relative error when our model use a
different number of regions. In 5(a), each case were compared
with the simulator implementing NZ = 15. We observe εr
is below 1.5% when the model also implements NZ = 15.
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(a) The simulator implements NZ = 15

(b) The simulator implements the same number of regions as the model

Fig. 5. Relative error in the evaluation of UE Blocking Probability for
different number of regions

However, this error increases when the number of regions
decreases. This increment is not induced by our model but
rather the fact of splitting the fPDF (γ) (see Fig. 1). When the
number of regions is reduced and this number is small enough,
each region could take a portion of the fPDF (γ) different from
the case of using a higher number of regions. This results
in a slightly different distribution of πz , which involves an
unfair comparison. In Fig. 5(b), we observe the relative error
considerably decreases when each simulation implements the
same number of regions as our model, proving it suits the
simulator results.

VI. CONCLUSIONS AND FUTURE WORK

Network slicing is envisioned as a solution for providing
emerging services over a common network infrastructure.
Implemented as slices, most of these services will rely on
data transmission with a strict GBR. Designing strategies for
planning and operating GBR services could involve inherent
issues such as the under(over)-provisioning of radio resources.
To avoid that, it is crucial to model the UE blocking probability
in each cell. Under this context, we propose an analytical
model to evaluate this parameter. The main novelty is the
consideration of a multi-dimensional Erlang-B system, which
meets the reversibility property. This means our model is valid
for arbitrary distributions of the UE session duration. This
property also reduces the computation complexity of the model
due to the solution for the state probabilities has product form.
Additionally, our proposal considers the PDF for the average
SINR in the cell to model the distribution of the channel

quality. The results show that our model exhibits an estimation
error for the UE blocking probability below 3.5%.

Regarding the future work, several challenges lie ahead. One
challenge is to include the effect of the scheduling discipline
(e.g., proportional fair). Another challenge is considering
services which simultaneously support VBR and GBR traffic.

APPENDIX A
REVERSIBILITY IN A MARKOV PROCESS

To proof the reversibility property of the proposed model,
we follow the Kolmogorov cycle criteria [13]. This states that
a necessary and sufficient condition for reversibility of a multi-
dimensional Markov process is that for each dimension-pair,
the circulation flow among four neighboring states in a square
equals to zero (i.e., flow clockwise = flow counter-clockwise).

Considering four neighbor states from two arbitrary regions
z and x (i.e., z 6= x): s1 = (U1, ... Uz, ... Ux, ... UNz

), s2 =
(U1, ... Uz, ... Ux + 1, ... UNz

), s3 = (U1, ... Uz + 1, ... Ux +
1, ... UNz

), and s4 = (U1, ... Uz+1, ... Ux, ... UNz
), we derive

the clockwise and counter clockwise flows fcw = λx · p1 ·λz ·
p2 · (Ux + 1)µ · p3 · (Uz + 1)µ · p4 and fccw = λz · p1 ·λx · p4 ·
(Uz + 1)µ · p3 · (Ux + 1)µ · p4, respectively. We denote py the
probability of state sy . If we compare both equations, we easily
check that the clockwise and the counter clockwise flows are
equal. Thus, the proposed Erlang-B model is reversible.
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