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ABSTRACT 

During recent years, the new omics technologies have revolutionized the biomedical 

research paradigm, changing from studying few specific elements based on previous 

hypotheses to studying complete systems like the genome or the transcriptome, 

generating hypotheses from the data. This change has created the necessity of a new 

profile in the biomedical research, the bioinformatician or computational biologist, who 

combines knowledge about biology, informatics and statistics in order to analyse these 

huge amounts of data and to develop new analytical methods. 

In this context of massive data generation, different public repositories were created 

where researchers can submit the data generated in their studies with the aim of 

guaranteeing the reproducibility of their results and of doing the data usable in other 

retrospective studies. For the last years, the amount of stored data in public repositories 

has grown exponentially thanks to the lowering costs of the necessary technologies to 

generate them. One of the most used repositories is the Gene Expression Omnibus (GEO), 

maintained by the NCBI. GEO contain the data generated in all types of omics projects, 

including gene expression, methylation or DNA sequencing, among others. 

The availability of all these amounts of information offers an invaluable resource to 

generate and test hypotheses through the use and integration of these data. However, for 

that aim, proper statistical and computational methods for integrating information are 

necessary. Among the strategies to reanalyse public data is the meta-analysis, consisting 

on the combination of the results from different studies using proper statistical techniques 

with the aim of increasing the statistical power and resolving discrepancies between 

studies, among other applications. 

The main objective of this doctoral thesis has been the development of computational 

methods for the integration of heterogeneous data sets with the aim of analysing them in 

conjunction using meta-analysis and integrated analysis methods. 

Firstly, MetaGenyo was developed, which is a web tool for performing meta-analysis of 

genetic association studies. MetaGenyo implements all the necessary steps to conduct this 

kind of studies guaranteeing the use of proper statistical techniques for each case. 
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Once the potential of meta-analysis to integrate data from different origins to analyse 

common effects and detect anomalies was demonstrated, we used the framework 

developed in MetaGenyo to develop ImaGEO, another interactive tool that implements 

the complete analysis workflow to integrate gene expression studies and to analyse them 

jointly to find differentially expressed genes. ImaGEO permits the download and analysis 

of transcriptomics data from the GEO repository using the studies identifiers as input. 

Gene expression regulation is a complex process in which DNA methylation has an 

important role. Hence, studying methylation alterations and integrating them with gene 

expression data is a key for unrevealing the molecular mechanisms of several diseases. 

In this context, mCSEA was developed, which is a new method for detecting differentially 

methylated regions. This algorithm was integrated in an R package published in the 

Bioconductor repository. Among other features, mCSEA includes a module to integrate 

differentially methylated regions with the expression of close genes, addressing a 

common problem in multi-omics methylation-expression studies. 

Finally, databases that compile public information from specific pathologies have been 

established as a new alternative for the exploit of those data by the research community 

of that area. ADEx was developed following that premise, which is a database that 

compiles the available transcriptomics and methylation studies from autoimmune 

diseases and includes a layer of visualization and analysis, including meta-analysis. Using 

ADEx, the interferon signature in different pathologies was studied and several potential 

biomarkers with altered gene expression patterns consistent in each diseased were 

identified.  

In conclusion, in this thesis four tools for exploiting and integrating biomedical data were 

developed, using known meta-analysis techniques as well as a new algorithm for 

differential methylation detection.  
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RESUMEN 

Durante los últimos años, las nuevas tecnologías ómicas han revolucionado el paradigma 

de la investigación biomédica, pasando de estudiar unos pocos elementos concretos 

basándose en hipótesis previas a estudiar sistemas completos como el genoma o el 

transcriptoma, generando hipótesis a partir de los datos. Este cambio ha creado la 

necesidad de un nuevo perfil en la investigación biomédica, el del bioinformático o 

biólogo computacional, que combina conocimientos de biología, informática y estadística 

para analizar estas grandes cantidades de datos y desarrollar nuevos métodos analíticos. 

En este contexto de generación de datos masivos, se crearon distintos repositorios 

públicos en los que los investigadores pueden subir los datos que generan en sus estudios 

con el fin de garantizar la reproducibilidad de sus resultados y de que puedan ser usados 

en otros estudios retrospectivos. Durante los últimos años, la cantidad de datos 

almacenados en repositorios públicos ha crecido exponencialmente gracias al 

abaratamiento de las tecnologías necesarias para generarlos. Uno de los repositorios más 

usados es el Gene Expression Omnibus (GEO), mantenido por el NCBI. GEO contiene 

los datos generados en todo tipo de proyectos ómicos, incluyendo datos de expresión, 

metilación o secuenciación de ADN, entre otros. 

La disponibilidad de toda esta gran cantidad de información ofrece un recurso inestimable 

para generar y contrastar hipótesis mediante el uso o integración de estos datos. No 

obstante, para ello se requieren metodologías estadísticas y computaciones apropiadas 

que puedan ser aplicadas para la integración de información. Entre las estrategias para 

reanalizar datos públicos se encuentra el meta-análisis, que es la combinación de los 

resultados de distintos estudios mediante técnicas estadísticas apropiadas con el fin de 

aumentar el poder estadístico y de resolver discrepancias entre estudios, entre otras 

aplicaciones. 

El objetivo principal de esta tesis doctoral ha sido el desarrollo de métodos 

computacionales para la integración de conjuntos de datos heterogéneos y de distinto 

origen, con el objeto de analizarlos conjuntamente mediante metodologías de meta-

análisis y análisis integrado de datos.  

En primer lugar, se desarrolló MetaGenyo, una herramienta web para llevar a cabo meta-

análisis de estudios de asociación genética. MetaGenyo implementa todos los pasos 
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necesarios para llevar a cabo este tipo de estudios garantizando el uso de las técnicas 

estadísticas adecuadas en cada caso. 

Visto el potencial de los meta-análisis para integrar datos de diferente origen con el 

objetivo de analizar efectos comunes o detectar anomalías, utilizamos el framework 

desarrollado en MetaGenyo para desarrollar ImaGEO, otra herramienta interactiva que 

implementa un flujo completo de análisis para integrar estudios de expresión génica y 

analizarlos conjuntamente para la búsqueda de genes diferencialmente expresados. 

ImaGEO permite la descarga y procesamiento de datos desde el repositorio GEO usando 

los identificadores de los estudios como entrada. 

La regulación de la expresión génica es un proceso complejo en el cual la metilación del 

ADN tiene un papel importante. Por lo tanto, el estudio de las alteraciones en la metilación 

y su integración con datos de expresión génica es clave para revelar los mecanismos 

moleculares de muchas enfermedades. En este contexto, se desarrolló mCSEA, un nuevo 

método de detección de regiones diferencialmente metiladas. Este algoritmo se integró 

en un paquete de R publicado en el repositorio Bioconductor. Entre otras funcionalidades, 

mCSEA incluye un módulo de integración de las regiones diferencialmente metiladas con 

la expresión de genes cercanos, abordando un problema común de estudios multi-ómicos 

de metilación-expresión. 

Finalmente, las bases de datos que recopilan información pública sobre patologías 

concretas se han establecido como una nueva alternativa para la explotación de dichos 

datos por parte de la comunidad investigadora de dicha área. Bajo esta premisa se preparó 

ADEx, una base de datos que recopila los estudios disponibles de transcriptómica y 

metilación sobre enfermedades autoinmunes e incluye una capa de exploración y análisis, 

incluyendo meta-análisis. Con ADEx se estudió el comportamiento de la firma del 

interferón en distintas patologías y se identificaron potenciales biomarcadores con 

alteraciones en la expresión consistentes dentro de las distintas enfermedades. 

En conclusión, en esta tesis se han desarrollado cuatro herramientas para la explotación e 

integración de datos biomédicos mediante la aplicación de técnicas conocidas de meta-

análisis y un nuevo algoritmo de detección de metilación diferencial. 
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ABBREVIATIONS 

AD: autoimmune disease 

BMIQ: Beta-Mixture Quantile  
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eQTL: expression quantitative trait loci 
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GEO: Gene Expression Omnibus 
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GSEA: Gene Set Enrichment Analysis 

GWAS: genome-wide association study 

HDAC: histone deacetylase 
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ICGC: International Cancer Genome Consortium 

IFN: interferon 

IMA: Illumina Methylation Analyzer 

INDEL: small-scale insertion/deletion 

JCR: Journal Citation Reports 
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NCBI: National Center for Biotechnology Information 

NGS: next generation sequencing 

NHGRI: National Human Genome Research Institute  
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qPCR: quantitative polymerase chain reaction 

REM: random effect model 

RFLP: Restriction Fragment Length Polymorphism 

RNA: ribonucleic acid 

SE: standard error 

SNP: single nucleotide polymorphism 

SWAN: Subset-quantile Within Array Normalization 

TCGA: The Cancer Genome Atlas 

WGBS: whole-genome bisulfite sequencing 
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1 INTRODUCTION 

1.1 OMICS DATA: A REVOLUTION IN BIOMEDICINE 

During the 20th century, the development of molecular biology techniques permitted the 

generation of biological data like the sequences of amino acids in proteins or nucleotide 

sequences in deoxyribonucleic acid (DNA). As early as 1965, Margaret Dayhoff, who is 

considered one of the first computational biologist, published Atlas of Protein Sequence 

and Structure, a book where she compiled all the known protein sequences at that time 

(Dayhoff, 1965). Some years later, on 1982, GenBank database (Clark et al., 2016) was 

created to store the DNA sequences submitted by many laboratories around the world. 

These initial biological databases were the beginning of the exponential growth of data in 

life sciences. 

However, the amount of time and resources to generate biological data during those times 

was huge. Maybe the best example of that was the Human Genome Project (Lander et al., 

2001), started in 1990 and officially finished in 2003 when most of the human genome 

was sequenced and assembled (International Human Genome Sequencing Consortium, 

2004). This milestone was achieved after 13 years of work and a budget of 4.8 billion 

dollars (Lewin et al., 2018). 

 

Figure 1. Cost of sequencing 1 megabase of DNA along time. Y axis is on logarithmic scale. This figure 

was generated from the data published by the National Human Genome Research Institute (NHGRI) 

(Wetterstrand, 2020). 
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Nevertheless, a few years later after the Human Genome Project completion, the DNA 

sequencing technologies advanced towards high-throughput sequencing or next 

generation sequencing (NGS). Since then, the necessary time and money to sequence 

DNA has dropped drastically (Figure 1), passing from $5292 per sequenced megabase 

(Mb) in 2001 to $0.008 in 2020 (Wetterstrand, 2020). In fact, the sequencing of a human 

genome costs currently less than $700. 

These innovations permitted the onset of omics disciplines, a set of areas that study 

biological systems from a global perspective, like genome sequences (genomics), gene 

expression (transcriptomics) or epigenetic regulation (epigenomics). Microarrays 

technologies have also contributed to the initial increase of omics studies, although its 

use is decreasing in accordance with the drop of NGS prices. Other omics, like proteomics 

and metabolomics, do not depend on DNA sequencing, but other technological advances 

facilitated their growth (e.g., mass spectrometry). 

Omics data have changed the perspective of the biomedicine research. For instance, 

instead of studying a few candidate mutations in one or few genes suspected to be linked 

to a disease, the whole genome can be compared between cases and controls to identify 

mutations associated to the risk of having the disease. This is a hypothesis-free approach, 

opposite to the classical hypothesis-driven one used in science during centuries. The 

number of biomedical advances thanks to this change in perspective is countless. For 

instance, transcriptomics-derived biomarkers permit the stratification of breast cancer 

patients depending on their risk of recurrence (Cronin et al., 2007; Prat et al., 2012). Using 

omics-based biomarkers it is possible to perform a deep characterization of a disease in 

order to stratify patients and to prescribe them the best available treatments based on their 

specific molecular background. This constitutes the bases of precision medicine, so omics 

data are fueling precision medicine through the discovery and use of biomarkers 

(Quezada et al., 2017). 

1.2 PUBLIC OMICS REPOSITORIES 

In parallel to the popularization of the technologies and, consequently, to the increasing 

number of omics studies, public omics data repositories emerged. These repositories 

allow scientists to store their data in common platforms and to make them available to 
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the scientific community. Omics data sharing is key to ensure the transparency and 

reproducibility of the biomedical studies that employ high-throughput technologies. 

One of the most popular repositories is Gene Expression Omnibus (GEO) (Edgar et al., 

2002), developed by the National Center for Biotechnology Information (NCBI). The 

initial purpose of GEO was to store microarrays data before NGS development, but it has 

been adapted to share any type of high-throughput data, including ribonucleic acid 

(RNA)-Seq, chromatin immunoprecipitation (ChIP)-Seq or methylation data, among 

others. 

In order to organize the large amounts of data stored in GEO, each dataset, sample and 

platform is associated to a unique GSE, GSM and GPL code respectively. In addition, 

authors are requested to follow some minimal guidelines to organize their data in order 

to facilitate the usage of those data by the users. During the recent years, the amount of 

data available in GEO has risen drastically (Figure 2). At the end of 2020, 140,758 

datasets and 4,082,707 samples generated with 21,646 annotated platforms were publicly 

available in GEO. 

Figure 2. Trend of the number of available datasets and samples in GEO since the third quarter of 

2000 to the end of 2020. Blue bars indicate the number of datasets and the red line indicates the number 

of samples. The data used to generate this plot was obtained from the GEO summary webpage 

(https://www.ncbi.nlm.nih.gov/geo/summary/?type=history). 
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The Sequence Read Archive (SRA) (Leinonen et al., 2011), also maintained by the NCBI, 

is another public repository dedicated to store raw sequence and alignment data from 

NGS experiments. Among other data, SRA stores the raw data from high-throughput 

GEO datasets. Similarly to GEO, SRA has experienced a huge growth during the recent 

years and, at the end of 2020, SRA stored more than 46 x 1015 sequenced bases 

(https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi).  

The European analogous databases to SRA and GEO are the European Nucleotide 

Archive (ENA) (Harrison et al., 2021) and ArrayExpress (Athar et al., 2019) respectively, 

both developed by the European Bioinformatics Institute (EBI). The amount of available 

data in these databases can be exemplified by the 119 trillion sequences available in ENA 

and the more than 59 Tb of archived data in ArrayExpress. Another relevant European 

database is the European Genome-phenome Archive (EGA) (Lappalainen et al., 2015), 

which has the particularity of containing identifiable personal biomedical data from 

patients who consented the use of their data for research. 

In addition to the previous general data repositories, there are also several databases 

dedicated to share data from specific projects which generated large amounts of omics 

data. For instance, The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013) project 

generated over 2.5 Pb of multi-omics data from 33 cancer types which can be accessed 

through the Genomic Data Commons (GDC) Data Portal (Grossman et al., 2016). The 

International Cancer Genome Consortium (ICGC) also compiles large amounts of 

information in their data portal, including the TCGA data but also other projects like the 

recent pan-cancer analysis of whole genomes (PCAWG) (ICGC/TCGA Pan-Cancer 

Analysis of Whole Genomes Consortium, 2020). 

Another important project that share large amounts of data is the Encyclopedia of DNA 

Elements (ENCODE) (ENCODE Project Consortium, 2012), which is focused on human 

functional genomics data. Data from RNA-Seq, ChIP-Seq, ATAC-Seq or DNase-Seq, 

among others, from over 13,000 datasets is available in the ENCODE data portal (Davis 

et al., 2018). 
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1.3 EXPLOITING PUBLIC OMICS DATA: META-ANALYSIS 

In the previous section, some of the most popular public data repositories have been 

reviewed. However, there are a lot of other projects and databases with available data 

that, using the proper statistical and computational techniques, can be an invaluable 

resource for hypothesis testing and knowledge generation. 

Perez-Riverol et al. recently evaluated the impact of public omics datasets in research, 

reaching the conclusion that many of the public datasets are re-analysed at least once and, 

in April 2019, 58,054 of the datasets followed up by their OmicsDI resource has at least 

one citation, specially transcriptomics datasets (Perez-Riverol et al., 2019). Some 

concrete examples of relevant works where public data were used are articles published 

in the Cell journal (Bailey et al., 2018; Chen et al., 2018; Huang et al., 2018; Sanchez-

Vega et al., 2018). These metrics make evident the current importance of public omics 

data reutilization. 

Public data download and analysis is not always easy and commonly requires advanced 

computational skills. In addition, even for expert users, these tasks are usually time 

consuming. For those reasons, several software has been developed in order to facilitate 

these tasks. Some examples are the GEOquery (Davis and Meltzer, 2007) and 

TCGAbiolinks (Colaprico et al., 2016) R packages, which permit the easy data 

downloading from GEO and TCGA data respectively. 

In addition to individual reanalyses, a common approach to exploit public data is to 

perform meta-analyses. A meta-analysis is a general approach to combine the data and/or 

results from several studies of the same problem in order to solve discrepancies across 

these studies and to increase the statistical reliability of the results raising the sample size. 

Meta-analysis has been applied to all types of data and, although there are some common 

steps for all types of meta-analyses (e.g., data selection or quality control), each type of 

meta-analysis has particularities depending on the kind of data analysed. 

There are three main approaches to conduct a meta-analysis: methods based on effect 

sizes combination, methods based on P-values combination and methods based on ranks 

combination (Toro-Domínguez et al., 2020), described in Section 3.1. 
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1.4 META-ANALYSIS OF GENETIC ASSOCIATION STUDIES 

Genetic epidemiology discipline uses clinical data from families and populations to find 

phenotypic traits (e.g. diseases) that are heritable and, therefore, are caused by variations 

in the DNA (The Psychiatric GWAS Consortium, 2009). Once a phenotype is determined 

to be heritable, different molecular biology techniques are used in order to discover which 

genetic traits are linked to these kinds of heritable phenotypes. Before the development 

of DNA sequencing techniques, strategies like Restriction Fragment Lengths 

Polymorphisms (RFLPs) allowed to determine genomic regions associated with the 

studied phenotype. A major achievement in this context was the identification of the 

Huntington’s disease gene (Gusella et al., 1983). However, after the emergence of DNA 

sequencing techniques and, specially, NGS, researchers have been able to discover 

associations between variations in the DNA and phenotypes. 

In this context, there are two main approaches to discover the genetic cause of a 

phenotype: genetic association studies (GAS) and genome-wide association studies 

(GWAS). The main difference between these approaches is the scale: while GAS test the 

association in one or few candidate regions, GWAS test for associations along the entire 

genome. The use of one or other approach depends on several variables like the 

complexity of the studied treat or the previous knowledge about the studied phenotype. 

There are various kinds of mutations that can be studied in these analyses. The most 

common genetic variation are single nucleotide polymorphisms (SNPs), which are 

variations on a single nucleotide in the DNA. Other common studied variations are small-

scale insertions/deletions (INDELs), which are small insertions or deletions in the 

genome. 

GAS present some limitations. For instance, these studies are usually performed with a 

small sample size, they are performed with patients belonging to one single ethnicity or 

have other methodological issues (Li and Meyre, 2013). These problems result in low 

reproducibility and insufficient statistical power of each individual study. 

To address these limitations, meta-analyses of GAS may be used. Meta-analysis has been 

used in a wide range of disciplines, and GAS are no exception. In fact, during the last 

years, these kind of meta-analyses have experienced an exponential increase (Ioannidis 

et al., 2013). However, GAS meta-analyses require some important steps and 



1. INTRODUCTION 

27 

 

considerations that are frequently overlooked by the authors of these studies (Ioannidis et 

al., 2013). These common errors are committed, in part, because these meta-analyses are 

sometimes performed by researchers without the necessary statistical knowledge. In 

addition, there is not any dedicated software to perform GAS meta-analyses, so authors 

use general meta-analysis or statistical programs which do not guide through the 

necessary steps of a GAS meta-analysis. 

1.5 META-ANALYSIS OF GENE EXPRESSION DATA 

According to the central dogma of molecular biology (Crick, 1970), RNA polymerases 

synthesize RNA molecules from DNA templates (e.g., genes) during the process known 

as transcription. Then, ribosomes use those RNA molecules, known as messenger RNA 

(mRNA) to produce proteins during the translation process. Latter research revealed that 

this scenario is more complex, occurring phenomena like reverse transcription (when 

RNA is transcribed to DNA though reverse transcriptases). 

Gene expression is defined as the process by which the information encoded in genes is 

used to produce their corresponding gene product, which usually are functional proteins, 

although they can also be functional non-coding RNAs. Given the major importance of 

gene expression in the basis of biology and medicine, measuring it has been a very active 

research field in biomedicine. Gene expression can be estimated measuring the proteins 

in cells with molecular biology techniques like Western blots or high-throughput 

approaches (proteomics). However, proteins are not easy to identify and quantify, and 

non-coding RNA abundances can not be measured given that they are not translated into 

proteins. For these reasons, it is common to estimate gene expression from the levels of 

mRNA in the samples, which is a simpler molecule easier to work with. Techniques like 

Northern blot or quantitative polymerase chain reaction (qPCR) may be used to quantify 

one or few mRNAs. However, new high-throughput technologies permitted the onset of 

transcriptomics, which is the study of whole sets of transcripts produced by the genome 

(known as transcriptome). 

Among the first high-throughput technologies for gene expression quantification, 

hybridization arrays, or microarrays, had been a very popular choice before NGS 

became affordable. This technology is based on the hybridization between transcripts and 

probes, DNA sequences fixed on a solid surface (array) (Schena et al., 1995). The mRNA 
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has to be converted to DNA and marked with fluorescent dyes. After hybridization and 

washing steps, the arrays are scanned in order to measure the fluorescence signal in each 

spot. A lot of different microarrays technologies were used with differences in the probes 

employed (complementary DNA or oligonucleotides) or the number of detected 

fluorescent signals (1 color or 2 colors arrays) (Schulze and Downward, 2001). 

Furthermore, many companies commercialized microarrays with different technologies, 

and even custom arrays were designed by research groups for specific tasks. For these 

reasons, the gene expression data generated with microarrays is very heterogeneous and 

specific analytical pipelines must be applied for each platform. 

Together with the emergence of NGS technologies, a new approach for gene expression 

quantification, RNA-Seq, started to replace microarrays. RNA-Seq consists on the 

application of some of the available NGS technologies to sequence RNA molecules. 

Despite, as happened with microarrays, there are different RNA-Seq protocols with 

technical variations among them, the raw data produced in these experiments is much 

more homogeneous, consisting generally on the sequences and the associated bases 

qualities in fastq files.  

Both microarray and RNA-Seq data analysis share some essential steps to pass from raw 

data to expression matrices ready to perform statistical analyses. The specific methods 

depends on both the kind of data and the aim of the objectives and they were 

comprehensively reviewed for microarrays (Slonim and Yanai, 2009) and RNA-Seq 

(Conesa et al., 2016). 

Gene expression meta-analysis, as other types of meta-analysis, may be used to integrate 

different studies focused on the same phenotype, increasing the statistical power and 

resolving discordances between individual studies. This approach has been applied, for 

instance, in the context of cancer (Bell et al., 2017; O’Mara et al., 2016) and autoimmune 

diseases (Afroz et al., 2017; Song et al., 2014). 

However, gene expression meta-analyses have other applications more specific to this 

kind of data. For instance, a meta-analysis can be performed to integrate studies of 

different phenotypes in order to find common differentially expressed genes among them. 

This approach may be useful to discover novel molecular similarities among conditions 

which may be the basis to propose known therapies for some disorders as novel therapies 
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for other molecularly similar disorders (drug repurposing). Shared gene expression 

signatures for autoimmune diseases (Toro-Domínguez et al., 2014) or neurological 

diseases (Kelly et al., 2019) have been discovered following this strategy. 

Furthermore, another application is the identification of opposed gene signatures among 

different phenotypes. For instance, it was known that cancer and central nervous system 

diseases (like Alzheimer’s disease, Parkinson’s disease and schizophrenia) have an 

inverse comorbidity. For that reason, a meta-analysis was performed searching for genes 

underexpressed in one disorder and overexpressed in other ones, finding inverse patterns 

between both groups of pathologies (Ibáñez et al., 2014). 

1.6 DNA METHYLATION 

Epigenetics study heritable changes in gene expression occurring without changes in the 

DNA sequence (Berger et al., 2009). There are multiple epigenetic marks involving 

consequences for gene expression, like chromatin remodeling, non-coding RNAs 

expression, histone modifications or DNA methylation (Ibeagha-Awemu and Zhao, 

2015). Most of epigenetic epidemiology studies centers on DNA methylation because it 

is relatively stable and there are many available platforms to quantify it (Bakulski and 

Fallin, 2014). 

DNA methylation is the addition of a methyl group (CH3) at the C5 position of a cytosine, 

generally located in a cytosine-phosphate-guanine (CpG) dinucleotide (Figure 3) (Bird, 

2002). DNA methyltransferases (DNMTs) are the enzymes which fix and preserve DNA 

methylation. CpG islands (CGI) are groups of CpG dinucleotides in a genomic region. 

There are more than 40,000 CGI in a mammalian genome and they are usually located in 

the promoters or in the first exon of the genes (Orlando et al., 2012), but there are also 

many CGI distant from annotated promoters (Deaton and Bird, 2011). Around 70 % of 

human gene promoters are linked to a CGI, including almost all housekeeping genes and 

a significant proportion of development regulators and tissue-specific genes (Saxonov et 

al., 2006). All these evidences point that CGIs are strongly correlated with transcription 

initiation. 

The details of how DNA methylation affects gene expression are still under research. An 

increase in the methylation levels in CpG regions reduce the physical accessibility of 

DNA to transcription factors, resulting in a decrease in gene expression (Suzuki and Bird, 
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2008). On the other hand, methylation in CpG regions is recognized by a group of proteins 

called MDBs. MDBs are associated with chromatin remodeling proteins enzymes like 

histone deacetylases (HDACs). So, when a MDB recognize a methylated CpG region, it 

recruits HDACs which remove acetyl groups from the histones, compacting the 

chromatin and impeding transcription factors and transcription machinery to interact with 

DNA, decreasing the gene expression (Jones and Laird, 1999). 

It is known that DNA methylation has an important role in many cellular processes, so it 

is currently being studied by many researchers in order to get a better understanding of 

human development and diseases (Robertson, 2005). In this context, epigenome-wide 

association studies (EWAS) search for associations between lifestyle, environmental 

factors or diseases and epigenetic changes, mostly DNA methylation (Flanagan, 2015). 

There are different technologies to determine DNA methylation status, being whole-

genome bisulfite sequencing (WGBS) one of the most accurate and with highest 

coverage. However, Illumina’s BeadChip arrays (Infinium HumanMethylation27, 

Infinium HumanMethylation450 and Infinium MethylationEPIC) are much more 

affordable and simpler to analyse, and they are currently the most used platforms in 

human EWAS (Teh et al., 2016). 

Illumina BeadChip microarrays contain probes to interrogate different amounts of CpG 

sites (e.g., 485,577 CpGs in the Infinium HumanMethylation450) (Morris and Beck, 

2015). While the Infinium HumanMethylation27 microarray only contained one type of 

probes, the Infinium HumanMethylation450 and Infinium MethylationEPIC genotype 

bisulfite-converted DNA using two types of methylation assays (Figure 4). 

Figure 3. Diagram of the methylation of a cytosine in the DNA. 
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Figure 4. Infinium I (A) and Infinium II (B) methylation assays designs. 3’ extreme of Infinium I probes 

matches either a GT dinucleotide coming from an unmethylated CpG site or a GC dinucleotide coming 

from a methylated CpG site. Infinium II probes hybridize until the G from the GT/GC dinucleotides, 

Methylation is determined by single-base extension: A and G bases are labeled with different colors, and 

they are incorporated to unmethylated and methylated sites respectively. Figure extracted from Bibikova et 

al., 2011 © Elsevier, license number 4991800130743. 

Infinium I assay has 2 probes per CpG site: one probe hybridizes to the methylated 

cytosine and the other one hybridizes to the unmethylated one, which has been 

transformed to thymine after bisulfite treatment and genomic amplification. On the other 

hand, Infinium II assay consists of one single probe per CpG site capable to hybridize to 

both methylated (C) or unmethylated (T) sites, each of one previously marked with 

different colors (Bibikova et al., 2011).  
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1.7 OMICS DATA IN AUTOIMMUNE DISEASES 

The immune system is a complex network of organs, cells and biological processes that 

act coordinately as a defense against external agents such as bacteria or viruses 

(Nicholson, 2016). In mammals, there are 5 main types of immune cell types: neutrophils, 

lymphocytes, monocytes, basophils and eosinophils. Nevertheless, for each cell type there 

are different subpopulations depending on the receptors (i.e., proteins that bind to ligands 

or cytokines) present in their membranes. 

The immune system is divided into the innate immune system and the adaptative 

immune system, although both are very connected. The innate immune system is the first 

one acting in case of infection and it triggers a relatively unspecific response based on 

inflammation, which is the recruitment of some immune cell types like macrophages and 

neutrophils. If the infection persists, the adaptative immune system is activated by the 

recruitment of lymphocytes (T-cells and B-cells), which make specific responses and 

remember the pathogen so, in case of a future infection from the same pathogen, a more 

efficient and quick response is activated. 

There are several diseases due to misfunctions in the immune system, classified in groups 

like immunodeficiencies (loss in the ability to activate immune responses), allergies 

(hypersensitivity reactions) or autoimmune diseases (ADs). ADs are originated when 

the adaptative immune system mistakenly recognizes healthy own tissues of the organism 

as foreign and activate an immune response against them. There are organ-specific ADs 

(e.g., type I diabetes) with an autoimmune response against one organ, and systemic ADs 

(e.g., systemic lupus erythematosus) which affect several organs. Commonly, ADs are 

chronic and affects significantly the lifespan of the patients, being at the top 10 causes of 

death for women and being risk factors for other severe illnesses like cardiovascular 

diseases and cancer (Lens-Pechakova, 2016). 

Recent omics studies discovered that, in ADs, there is an interplay between environmental 

factors, genetic predisposition, epigenomics alterations and gene expression (Teruel et 

al., 2017). These studies also put in evidence the high molecular variability existing not 

only between different ADs, but also among patients of the same disease and even for the 

same patient along time (Toro-Domínguez et al., 2018). Such heterogeneity makes very 

challenging to advance in precision medicine for these diseases, and large amounts of 
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data from several patients is needed to classify patients and prescribe them the most 

appropriate treatments. 

A major research topic in this context is the activity of the interferon (IFN) signature. IFN 

is a group of cytokines that trigger the immune response. Molecularly, IFN binds to 

specific cell receptors, initiating a downstream signaling that results in the gene 

expression regulation of several genes. The alteration of such genes, named IFN 

signature, has been observed in several ADs. However, there are many ADs patients that 

do not present this signature, evidencing again the heterogeneity of these diseases. 

As for other diseases, many omics studies have been performed to get insight into ADs, 

especially transcriptomics and epigenomics ones (Teruel et al., 2017). These studies 

normally focus on specific biological questions, so the generated data is used to solve 

these questions and it is normally deposited on public repositories like GEO. These 

datasets are especially valuable in the context of ADs, given the necessity of collecting 

large amounts of data to overcome with the heterogeneity of these diseases and to advance 

towards precision medicine by, for instance, finding shared molecular patterns among 

diseases (Barturen et al., 2020). 

However, for several reasons it is not easy to integrate these data. The first challenge is 

to identify the specific studies that can be interesting to reanalyse, given that repositories 

like GEO employ unstructured text to store the metadata of each dataset (Chen et al., 

2019). In addition, many different platforms have been used to generate such data (e.g., 

different gene expression microarrays). Furthermore, there is not a standard procedure to 

process omics data, resulting in heterogeneous pipelines that introduce systematic biases 

among studies.  

Despite these inconveniences, some works integrated different ADs datasets. For 

instance, Toro-Domínguez et al. found a shared molecular pattern between systemic 

lupus erythematosus, Sjögren’s syndrome and rheumatoid arthritis performing a gene 

expression meta-analysis of public data (Toro-Domínguez et al., 2014). Furthermore, the 

same authors integrated several lupus datasets to perform a drug repurposing study, 

proposing new treatments for this disease (Toro-Domínguez et al., 2017). These are 

examples of the potential of reusing public ADs data. However, these works implicated 

a remarkable effort to overcome with the challenges already mentioned. 
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1.8 MULTI-OMICS DATA INTEGRATION 

Single-omics biomedical studies have increased drastically our knowledge about the 

molecular mechanisms of many diseases. However, during the recent years, several 

articles are evidencing that, although single-omics studies may be very useful, the 

integrated analysis of more than one omics data type (multi-omics studies) may provide 

a deeper knowledge of the complex molecular pathways and interactions in the context 

of complex diseases (Civelek and Lusis, 2014). These diseases can not be easily explained 

by a single layer of information, but by the interplay between several biological layers. 

For this reason, regardless the proved utility of single-omics studies, they usually provide 

limited information regarding  the molecular causes of diseases (Huang et al., 2017). To 

solve this limitation, some projects like TCGA (Weinstein et al., 2013) generated multi-

omics data covering multiple biological layers like DNA sequence, gene expression, 

DNA methylation and so on. 

Multi-omics studies present an opportunity to acquire a better understanding of diseases 

and their cause-effect relationships, resulting in important advances like novel therapies 

developments (Hasin et al., 2017) and it is expected that, during the next years, multi-

omics studies play an essential role in the understanding of complex diseases. However, 

these approaches also present many challenges. Novel statistical methods are necessary 

to perform proper analyses and to extract new knowledge from multi-omics data. 

A typical multi-omics study approach is the integration of gene expression and the 

methylation status, given that the relationship between both is well studied. Methylation 

in the promoter region of a gene is usually correlated with repression of that gene 

expression through the inhibition of transcription factors binding and the recruitment of 

proteins involved in gene repression (Long et al., 2017). A recent example of a successful 

expression and methylation integration is a work where genes with coherent expression 

and methylation changes were proposed as colorectal cancer biomarkers (Kerachian et 

al., 2020). 

Another very common multi-omics integration are expression quantitative trait loci 

(eQTL) studies. In this approach, genomics and transcriptomics data are integrated in 

order to find genetic variations correlated with changes in gene expression. This technique 

has been very useful to identify causal variants in genomics studies (Claussnitzer et al., 

2015). 
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Many methods have been proposed to integrate multi-omics data not from only 2 or few 

technologies, but from many biological layers (Gomez-Cabrero et al., 2019). If the 

integrated layers have a direct relationship, like methylation and gene expression, it is 

frequent to perform correlation analyses to find associations between them. More 

advanced statistical models can be also applied. For instance, mediation analysis is based 

on regression models and considers one layer as a cause of a disease and another one as 

a mediator (Sun and Hu, 2016). Genomics and transcriptomics data have been integrated 

by mediation analysis, considering the gene expression as the mediator between SNPs 

and the pathology (Yen-Tsung Huang et al., 2014).  

Another common strategy is to use prior knowledge of molecular relationships to map 

and model multi-omics data. These networks can be based, for instance, on metabolic 

pathways (Jeong et al., 2000), physical interaction between proteins (Behrends et al., 

2010), genomic interactions (Vidal et al., 2011) and other physical interactions between 

biological layers. 

Furthermore, there is a group of unsupervised methods that do not rely on previous 

knowledge. Some popular unsupervised data integration methods are based on matrix 

factorization, like NMF (Zhang et al., 2011) and iCluster (Shen et al., 2009). There are 

also Bayesian unsupervised methods, such as Patient-Specific Data Fusion (Yuan et al., 

2011), Bayesian Consensus Clustering (Lock and Dunson, 2013) and Multiple Dataset 

Integration (Kirk et al., 2012). Finally, SNF (Wang et al., 2014) is a popular unsupervised 

network-based method for clustering patients into subgroups. 
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2 OBJECTIVES 

The main objective of this doctoral thesis is the development and application of novel 

bioinformatics and statistical methods to address important challenges in the context of 

biomedical data analysis and data integration. For that aim, the following specific 

objectives were proposed. 

1. Development of a bioinformatics workflow for genetic association meta-analysis

that implements the required analytical steps. This workflow includes data

preparation, Hardy-Weinberg equilibrium testing, heterogeneity tests, genetic models

construction, publication bias assessment, subgroup analysis and sensitivity analysis.

Implementation of the entire workflow in a web-based application.

2. Implementation of a pipeline to perform gene expression meta-analysis with public

data. The pipeline includes data download and preparation, quality controls, meta-

analysis based on the effect sizes and P-values combination methods and enrichment

analysis. Implementation of a web-based interface to launch the meta-analyses and to

generate interactive reports.

3. Implementation of a novel algorithm based on Gene Set Enrichment Analysis to

detect subtle differentially methylated regions overlooked by the current methods.

Integration of the differentially expressed regions and the expression of nearby genes

to find multi-omics coherent signals. Preparation of an R package with the entire

workflow.

4. Compilation and curation of the expression and methylation data available in public

repositories from five autoimmune diseases to find novel biomarkers and to explore

common and unique molecular profiles. Development of a web-based database to

share, analyse and integrate the compiled data, including features like networks

analysis and meta-analysis.
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3 METHODS 

The specific methodology employed to accomplish each of the thesis objectives are 

described in the corresponding articles provided in the Appendix. However, in this 

section, we explain in more detail some general methods shared by different articles, as 

well as specific methods that are briefly summarised in the publications. 

3.1 META-ANALYSIS 

In this thesis, we implemented several meta-analysis methods in order to integrate 

different types of biomedical data. Concretely, we applied methods based on effect sizes 

combination to GAS and gene expression meta-analysis. In addition, we also 

implemented methods based on P-values combination to gene expression data. Finally, 

we integrated meta-analysis based on ranks combination in our autoimmune diseases 

database in order to combine the results from several transcriptomics studies. 

3.1.1 Meta-analysis based on effect sizes combination 

In this approach, the effect (defined as the intensity of a phenomenon) among different 

studies is compared. The effect size may be calculated differently depending on the type 

of data analysed. For instance, in genetic association studies, it is common to use the 

odds-ratio to calculate the effect size (Stringer et al., 2011). On the other hand, in gene 

expression studies, the effect sizes are calculated from the differential expression between 

experimental groups, commonly using the Hedge’s estimator (Hedges, 1982). 

Independently of the method used to calculate the effect sizes, the following step is to 

calculate a combined effect of all the studies for each element we are analyzing (e.g., 

mutations for genetic studies). The combined effect allows to estimate if the phenomenon 

is statistically significant or not considering the included studies. It may be calculated 

using a fixed effect model (FEM) or a random effect model (REM). 

FEM is a very conservative method as it assumes a high level of homogeneity among 

studies (Nakagawa et al., 2017). For this reason, it should be only applied after checking 

this assumption with methods like the Cochran’s Q test or the I2 statistic (Higgins and 

Thompson, 2002). The combined effect ( T̅) in a meta-analysis assuming a FEM is 

calculated following Equation 1 (Borenstein et al., 2009): 
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∑ 𝜔𝑖𝑇𝑖
𝑘
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𝑘
𝑖=1

 (1) 

 

Where Ti are the individual effects from each study and ωi are the weights of each study, 

calculated in Equation 2: 

 

 
𝜔𝑖 =

1

𝑉(𝑇𝑖)
 (2) 

 

Being V(Ti) the variance of the effect of each study. 

On the other hand, REM assumes that the effect sizes is different among the studies, so 

the combined effect indicates the average of the effect sizes rather than an equal effect 

size for all the studies like in FEM (Cohn and Becker, 2003). Consequently, REM is a 

less conservative method than FEM and it commonly represents better the biological 

reality, where heterogeneity is very common (Waldron and Riester, 2016). The combined 

effect in REM (T̅∗) is calculated likewise FEM’s T̅ (Equation 3), but the weights in REM 

(ωi
∗ ) are calculated from both within-study variance, V(Ti), and the between-study 

variance, τ2 (Equation 4). 
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 (4) 

 

τ2 may be calculated following Equation 5: 
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𝜏2 {

𝑄 − 𝑑𝑓

𝐶
 𝑖𝑓 𝑄 > 𝑑𝑓

0 𝑖𝑓 𝑄 ≤ 𝑑𝑓
 (5) 

 

Where Q is calculated with Equation 6, C is calculated with Equation 7 and df are the 

degrees of freedom (number of studies – 1). 
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3.1.2 Meta-analysis based on P-values combination 

In this approach, the P-values from the individual studies are combined into a new 

integrated P-value. In this way, very heterogeneous studies (e.g. with different 

experimental conditions er analytical platform) can be integrated easily (Sutton et al., 

2000). There are different methods to achieve this. The simplest ones are using the 

maximum (Wilkinson’s method) or the minimum (Tippet’s method) P-values among 

the studies. 

On the other hand, Fisher’s method (Equation 8) can be used to give importance to very 

significant P-values, due to one single small P-value may result in a significant combined 

P-value (Heard and Rubin-Delanchy, 2018). Pearson’s method (Equation 9) is similar, 

but it is more sensible to large P-values. 
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Finally, Stouffer’s method (Equation 10) may be used. 

 

 
𝑃 =

∑ 𝑍𝑖
𝑘
𝑖=1

√𝑘
 (10) 

 

Being Zi defined in Equation 11.  

 

 𝑍𝑖 = Φ−1(1 − 𝑝𝑖) (11) 

 

Where Φ is the normal standard normal cumulative distribution function. 

The major advantage of Stouffer’s method is that weights can be included (Equation 12) 

in order to assign different importance to the different studies (e.g., studies with more 

samples can have higher weights).  
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3.1.3 Meta-analysis based on ranks combination 

In these methods, a statistic (e.g., fold-change) is used to order the features of each 

individual dataset obtaining the ranks for each study. Then, the ranks are combined in 

order to find features with consistent high and low ranks. Ranks combination methods are 

nonparametric, meaning that none probability distribution is assumed, and they permit to 

integrate very heterogeneous data. In addition, these methods are robust against outliers. 

However, if there is diversity of variance among the datasets, the accuracy can be affected 

(Hong and Breitling, 2008). 

Rank Product method consists on multiplying the ranks of each feature among the 

studies (Equation 13). The P-value is obtained permutating with random ranks, what 

makes this method computationally demanding (Breitling and Herzyk, 2005) and, 

therefore, it is only recommended when the amount of included studies is low. 

 

 

𝑅𝑃𝑔 = ∏ 𝑟𝑖𝑔

𝑘

𝑖

 (13) 

 

A similar method is Rank Sum (Equation 14), which is more efficient at the cost of 

providing less accurate results than Rank Product: 

 

 

𝑅𝑆𝑔 = ∑ 𝑟𝑖𝑔

𝑘

𝑖

 (14) 

 

3.2 META-ANALYSIS OF GENETIC ASSOCIATION STUDIES 

One of the objectives of this thesis was to implement a complete workflow to perform 

GAS meta-analyses. For that aim, it was first necessary to understand the methodology 

employed to analyse the individual studies and, then, to implement all the required steps 

to integrate the results from several individual studies. 
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3.2.1 Individual GAS methodology 

A GAS typically follows a case-control design which compares the frequencies of 

reference and candidate alleles among the case and control subjects. A simple, yet very 

common example of a GAS focuses on SNPs. In the simplest scenario, there are two 

alleles (e.g., A allele, suspected to be linked to a disease and B allele, the reference in the 

population). Therefore, each subject may be homozygote for the candidate allele (AA), 

heterozygote (AB) or homozygote for the reference allele (BB). These three possibilities 

are often summarized in two variables comparisons following a specific genetic model.  

For instance, for the dominant genetic model, it is assumed that having one A allele is 

enough to have the disease. Therefore, the tested comparison is AA + AB vs BB. Such 

comparison may be used to prepare a two-by-two contingency table (see example at Table 

1). From the contingency table, four variables can be extracted (a, b, c and d) that may be 

used to calculate the Odds Ratio (OR) following Equation 15.  

 

 
𝑂𝑅 =

𝑜𝑑𝑑𝑠 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑤𝑖𝑡ℎ 𝐴𝐴 𝑜𝑟 𝐴𝐵

𝑜𝑑𝑑𝑠 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑤𝑖𝑡ℎ 𝐵𝐵
=

(𝑎/𝑏)

(𝑐/𝑑)
=

𝑎 𝑥 𝑑

𝑏 𝑥 𝑐
 (15) 

 

As can be deduced, OR is the odds of having the disease if the subject has a candidate 

genotype (AA or AB for dominant model) divided by the odds of having the disease if 

the subject has a reference genotype (BB for dominant model). An OR > 1 indicates A is 

linked to the disease following dominant model. If OR is close to 1, there is no linkage 

between the SNP and the disease. An OR < 1 indicates A allele has a protective effect 

against the disease. 

 

Table 1. Contingency table for a case-control GAS using a dominant genetic model. 

 Cases Controls 

AA + AB a b 

BB c d 
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The contingency table may be also used to assess the statistical significance of the 

association. For that aim, confidence intervals (CI) and P-values may be calculated. 

Typically, a Fisher’s exact test (Fisher, 1934) is used to calculate the P-value under the 

null hypothesis that OR is 1. 

Genetic association to a phenotype may follow different genetic models. Depending on 

the model, the contingency table will be different and therefore the resulting OR. In 

addition to the dominant model, the comparisons may follow a recessive model (AA vs 

AB + BB) or an over-dominant model (AB vs AA + BB). Pairwise comparisons 

considering only two of the possible genotypes may also be performed (AA vs BB, AA 

vs AB or AB vs BB). In addition, an allelic model may be used (A vs B), where the 

linkage of each allele is tested. 

It is common that researchers calculate the ORs for different genetic models and choose 

the one with the highest statistical confidence (Attia et al., 2003; Thakkinstian et al., 

2005). However, this approach has been criticized due to the increase of risk of false 

positives and some authors recommend to choose a genetic model before OR calculation 

(Bagos, 2013). In any case, if different models are tested, a P-value adjustment for 

multiple testing should be applied in order to mitigate this risk. 

3.2.2 GAS meta-analysis workflow 

As previously commented, it is common that published GAS meta-analyses contain some 

methodological errors. In order to mitigate this, we implemented a complete workflow 

that guides the users through all the analytical steps. Next, we describe each one of these 

steps that were implemented in our pipeline. 

One common error in this type of meta-analysis is not testing if the controls from each 

included study are in Hardy-Weinberg equilibrium (HWE). HWE is a model used in 

population genetics which demonstrates mathematically that genotype frequencies are 

constant among generations unless some event (e.g., natural selection, genetic drift, etc.) 

alters such frequencies (Edwards, 2008). HWE establish that, for a locus with A and B 

alleles with frequencies f(A) = p and f(B) = q, the expected frequency for the AA and BB 

homozygotes and AB heterozygotes are f(AA) = p2, f(BB) = q2 and f(AB) = 2pq 

respectively.  
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HWE assumptions are useful in GAS meta-analyses because, theoretically, control 

subjects should accomplish them (Khoury et al., 2005). Therefore, if HWE is violated in 

a study, it is very likely that there is some technical problem in that study (e.g., errors 

during genotyping). That is why HWE in the controls from all the included studies in a 

GAS meta-analysis should always be tested as a quality control, and studies with controls 

deviated from HWE should be removed from the analysis. HWE is usually tested with a 

χ2 test, a general statistical method to assess if there is a significant difference between 

the expected and the observed frequencies. A P-value for the χ2 test may be obtained for 

each study. A P-value lower than a threshold (commonly 0.05) indicates that there is a 

deviation from HWE and that study should be discarded from further analyses. 

GAS meta-analyses normally apply effect sizes combination methods (FEM or REM 

models), explained in the previous section. In this case, the effects are the ORs from the 

different studies. FEM are indicated when there is homogeneity in the analysed data and 

REM otherwise. However, heterogeneity tests are not always performed and FEM or 

REM models are applied arbitrarily, what is another major error in a GAS meta-analysis. 

There are several methods to assess heterogeneity, but the most common in this context 

are the I2 estimator and the Cochran’s Q test (Whitehead and Whitehead, 1991), as well 

as a χ2 test to get a P-value. 

As said in the previous section, different genetic models may be used to calculate the ORs 

of a GAS. This is also the case when several GASs are meta-analysed, so the same genetic 

models have to be applied to all the studies in order to get comparable ORs. 

A very useful representation in these meta-analyses is a Forest plot. In this plot, the effect 

sizes with the CI are shown for each study, as well as the weights assigned and the number 

of subjects in each group of the contingency table for cases and controls. Heterogeneity 

metrics may also be included in these plots. Therefore, this is a very convenient plot to 

summarize the results of a GAS meta-analysis. An example of a Forest plot can be 

observed in Figure 2 of the MetaGenyo article (Section 7.1). 

Another important step of these meta-analyses is to test for publication bias in the 

selected studies. Publication bias may occur because significant positive results have 

more chances to be published and cited than negative results (Hopewell et al., 2009). This 
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bias can be very problematic for a meta-analysis or systematic review due to they can be 

skewed towards positive results.  

The main way to check for the presence of publication bias in the studies is a visual 

inspection of a funnel plot. In a funnel plot, the estimated effects (e.g., OR) of the 

individual studies are plotted against some precision or size measure of the studies, often 

the standard error (SE). (Sterne et al., 2011). The SE is plotted on the Y axis with a reverse 

scale, so those studies with lower SE are placed at the top of the graphic. If there is not 

bias, the points should shape an inverse funnel, with the studies with higher SE and 

varying ORs dispersed at the bottom, and the studies with lower SE and less disperse ORs 

concentrated at the top. An asymmetric funnel plot may indicate publication bias, as well 

as other methodological problems like inadequate studies design, errors in the analyses 

or artefacts (Egger et al., 1997). In order to avoid relying on a subjective interpretation of 

the funnel plots, Egger et al. proposed a test for funnel plots asymmetry based on 

regression analysis (Egger et al., 1997; Sterne et al., 2000). 

If there are covariates in the data like race, country and so on, it is a good practice to 

perform not only a general meta-analysis with all the studies, but also subgroup meta-

analyses including only the studies from specific groups. This approach may be useful to 

discover associations specific to a population that may be overlooked in a general 

analysis. 

Finally, it is very recommended to perform a sensitivity analysis in order to verify that 

the meta-analysis results are not excessively influenced by one or few very significant 

studies. A common strategy to assess this is the leave-one-out method, consisting of 

repeating the meta-analysis n times (being n the number of included studies), but 

excluding one study in each repeat (Viechtbauer and Cheung, 2010). If one of the studies 

is influencing too much on the results, it becomes evident through this method because 

when that study is excluded, the results will be much less significant (e.g., higher P-value 

or ORs closer to 1). 

3.3 META-ANALYSIS OF GENE EXPRESSION DATA 

A gene expression meta-analysis also has some particularities compared to other types of 

data. In order to implement a workflow to perform gene expression meta-analyses, we 

took into account these particularities and included analytical steps to address them. 
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On the first place, a quality control of each included study should be performed in order 

to detect outliers and other technical problems (Toro-Domínguez et al., 2020). Outlier 

detection is usually performed checking the similarity between samples with techniques 

like principal component analysis, correlation or clustering (Shieh and Hung, 2009). In 

addition, missing values are a common problem in this kind of data, given that a reliable 

signal is not always obtained for all the genes and samples and some microarrays contain 

probes only for a fraction of the genes. This problem can be handled imputing the missing 

values using the mean expression of the gene in the non-missing samples or using 

similarity models like K-nearest neighbor (Aittokallio, 2010; Liew et al., 2011). 

The next issue in gene expression meta-analysis is the gene annotation. Given the 

diversity of platforms and annotation databases available, it is common that the different 

studies do not share the same gene annotation. Therefore, it is necessary to collapse the 

gene names to common identifiers (e.g., gene symbol). Furthermore, it is common that 

different rows of the data matrices are measures of the same gene (for instance, some 

probes in microarrays target different regions of the same gene). For that reason, the 

different values referring to the same genes should be summarized with some strategies 

like obtaining the mean or median value, or choosing the row with the highest mean value 

(Miller et al., 2011). Another common problem, also due to the heterogeneity in platforms 

and gene annotations, is that some genes may be present in some of the included studies 

and not in others. Typically, the solution is to select the genes shared by all the datasets, 

although some new approaches are being proposed in order to avoid the loss of data 

caused by such strategy (Bobak et al., 2020). 

Once the meta-analysis is performed using one of the methods described in Section 3.1, 

a list of differentially expressed genes across the studies is obtained. The most common 

representation of the results is a heatmap with the expression values of significant genes. 

Furthermore, a functional analysis may be used with the aim of identifying pathways, 

cellular functions, etc. enriched with significant genes from the meta-analysis. 

3.4 DIFFERENTIAL METHYLATION ANALYSIS 

With the aim of developing a novel algorithm for differential methylation analysis with 

data generated with Illumina BeadChip platforms, it was important to understand how 

these data are generated and processed and the current strategies to perform these 
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analyses. Furthermore, in this section we also introduce Gene Set Enrichment Analysis, 

which is the main method we employed to develop our new algorithm. 

3.4.1 BeadChip data processing 

In order to convert the fluorescence signals measured by the Illumina microarrays to 

proper methylation data for statistical analyses, there are a set of preprocessing steps that 

should be performed. Most of the available software for these tasks are R packages 

available in Bioconductor, like minfi (Aryee et al., 2014), RnBeads (Assenov et al., 2014) 

and wateRmelon (Pidsley et al., 2013).  

Raw data of Illumina BeadChips platforms are idat files containing the fluorescence 

intensities at each microarray spot. These raw idat files may be processed to obtain a β-

value for each interrogated site using Equation 16. 

 

 
𝛽 =

𝑀

𝑀 + 𝑈 + 100
 (16) 

 

Being M the methylated probe intensity and U the unmethylated probe intensity. As can 

be deduced from the previous formula, β is a number between 0 and 1. 0 indicates that all 

interrogated copies for a CpG site are unmethylated, while 1 indicates that all copies are 

methylated.  

On the other hand, methylation can be also quantified with the M-values, obtained with 

Equation 17. 

 

 
𝑀𝑣 = log2 (

𝑀

𝑈
) = logit(𝛽) (17) 

 

β-values are normally more useful to do graphical representations due to they are very 

easy to interpret. However, M-values are generally more suitable to perform statistical 

analyses given that they better accomplish with the statistical assumptions of the EWAS 
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parametric methods and it has been demonstrated that they provide a better detection ratio 

of differentially methylated sites and more true positives than β-values (Du et al., 2010). 

It is essential to normalize the data in order to correct it from systematic bias introduced 

by the technology itself. Normalization allows the data to represent with maximum 

fidelity the biological features which generated it. Some common normalization methods 

are functional normalization (Fortin et al., 2014), normal-exponential out-of-band (Noob) 

correction (Triche et al., 2013), Subset-quantile Within Array Normalization (SWAN) 

(Maksimovic et al., 2012) and Beta-Mixture Quantile (BMIQ) (Teschendorff et al., 2013). 

In order to improve sensitivity and specificity, it is important to filter the methylation 

data. A useful first filtering step is to use the detection P-values calculated by some 

packages, like minfi, for each CpG site. This detection P-value is obtained comparing the 

methylated and unmethylated DNA signals at each site to the background signal measured 

from control probes. Probes with detection P-value > 0.01 are not trusty and it is 

recommended to remove them from the analyses. In addition, it is recommended to 

discard those CpGs located in the sex chromosomes if both male and female samples are 

included in the study (Maksimovic et al., 2017), as well as probes containing SNPs 

(Naeem et al., 2014) and those which are cross-reactive (Chen et al., 2013). 

Once the methylation data is processed, a typical analysis in an EWAS is to obtain the 

differentially methylated positions (DMPs) and the differentially methylated regions 

(DMRs) between the experimental groups. 

3.4.2 DMPs detection with linear models 

The most common strategy to calculate the DMPs is to apply linear models with packages 

like limma (Ritchie et al., 2015). As previously commented, it is recommended to use 

normalized M-values rather than β-values for this analysis. The models can be fitted, in 

addition to the explanatory variable (e.g., experimental group), with different covariates 

that could act as potential confounding factors in the data, both from technical (e.g., 

sample plate) and biological (e.g., age or gender) origin. 

3.4.3 DMRs analysis 

With the DMPs identification, the probability of each CpG site to be differentially 

methylated between different groups is calculated. However, methylation patterns are not 

usually found in isolated CpGs. Instead of that, clusters of proximal CpGs are 
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hypermethylated or hypomethylated (Peters et al., 2015). That is the reason why several 

methods have been designed to detect DMRs instead of individual differentially 

methylated CpGs. There are two main approaches to analyse DMRs: to search DMRs in 

predefined regions (e.g., promoters or CGIs) or to search DMRs de novo, without relying 

on previous annotations of the genome. 

Among the predefined methods, some of the most used tools are Illumina Methylation 

Analyzer (IMA) (Wang et al., 2012), RnBeads (Assenov et al., 2014) and City of Hope 

CpG Island Analysis Pipeline (COHCAP) (Warden et al., 2013) R packages. IMA and 

COHCAP methods average the methylation values in the predefined regions and tests for 

differential methylation using these values. On the other hand, RnBeads rely on limma 

results, aggregating the P-values obtained by the linear modelling by the predefined 

regions. 

On the other hand, de novo methods like DMRcate (Peters et al., 2015), bumphunter (Jaffe 

et al., 2012) or Probe Lasso (Butcher and Beck, 2015) use different algorithms to inspect 

the whole genome searching for DMRs.  

3.4.4 Gene Set Enrichment Analysis 

Gene-set analysis (GSA) was developed in the context of expression data analysis with 

the aim of overcoming methodological limitations in standard analyses, like the lack of 

reproducibility or the fact that several phenotypes cause a limited change in a set of genes 

rather than big alterations in one or few genes (Ein-Dor et al., 2006). There are many 

GSA algorithms, each one with different biological and statistical assumptions. 

Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) is one of the first 

developed GSA methods and still nowadays it is one of the most popular approaches. It 

uses a given metric (e.g., fold-change or t statistic) to rank all the measured genes and 

applies a weighted Kolmogorov–Smirnov statistic (Hollander and Wolfe, 1999) to 

calculate an Enrichment Score (ES). Basically, ES for each set is calculated running 

through the entire ranked list increasing the score when a gene in the set is encountered 

and decreasing the score when the gene encountered is not in the set analysed. ES of this 

set is the maximum difference from 0. Significance of each ES is calculated permuting 

the sets and recomputing ES, getting a null distribution for the ES. Nominal P-value is 

calculated relative to the computed null distribution. Once the nominal P-values for all 
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sets have been computed, GSEA adjust them for multiple hypothesis testing by a very 

conservative Family-Wise Error Rate method and a less restrictive FDR method. 

Although GSEA algorithm has been widely used, it has some limitations regarding its 

efficiency, especially due to the calculation of null distributions step. For this reason, fast 

gene set enrichment analysis (FGSEA) method was proposed as a faster implementation 

of GSEA algorithm (Korotkevich et al., 2019). This new algorithm was implemented in 

the Bioconductor package fgsea (Korotkevich et al., 2019). 
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4 RESULTS 

4.1 METAGENYO: GENETIC ASSOCIATION STUDIES META-ANALYSIS 

As previously commented in Section 1.4, although the amount of GAS meta-analysis is 

constantly growing, many of them contain methodological errors that detract from their 

usefulness. That is, in part, because of the absence of a dedicated software for this specific 

type of meta-analysis. Researchers, commonly without deep statistical knowledge or 

programming skills, use software intended for general meta-analysis. However, these 

software do not guide users through all the necessary steps of a GAS meta-analysis. As a 

consequence, one or more steps described in the previous section are frequently skipped. 

With the aim of providing a tool to improve this situation, we developed MetaGenyo 

(Martorell-Marugan et al., 2017), a web application that guides users through all the meta-

analysis steps and permits to perform these analyses in an intuitive and easy way. 

MetaGenyo is available at http://bioinfo.genyo.es/metagenyo and, until February 2021, it 

has been accessed almost 8,000 times and the paper has 49 accumulated citations 

according to Google Scholar. One of the most recent applications of MetaGenyo is a work 

which associated the T allele of the SNP rs35705950 to a protective effect against 

COVID-19 (Moorsel et al., 2020). 

In this article (provided in Section 7.1), in addition to present MetaGenyo, we reviewed 

previously published software packages to perform GAS meta-analysis, providing a 

comparative summary of all of them. Furthermore, we carried out a meta-analysis of 

A23G SNP of XPA gene and digestive cancers proposed in (He et al., 2015) using 

MetaGenyo. We found a new association between this SNP and a protective effect of the 

heterozygous genotype against esophageal cancer under the codominant genetic model. 

This significant association was overlooked by the authors of the original meta-analysis 

given that they did not test the overdominant genetic model. 

This first article of the doctoral thesis was the first step towards the accomplishment of 

the thesis objectives since the published software permits to exploit public biomedical 

data (in this case, data from genetic studies) with an interface usable by any user without 

advanced statistical or bioinformatics knowledge. 
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4.2 IMAGEO: GENE EXPRESSION META-ANALYSIS 

The amount of gene expression meta-analysis publications has been growing during the 

recent years thanks to centralized repositories like GEO that facilitates the obtention of 

transcriptomics data. Although there were several tools to perform gene expression meta-

analysis, many of them require advanced programming skills to download and preprocess 

the data and to apply the proper meta-analysis methods. There were some interactive tools 

that facilitated these analyses. However, these tools lacked some useful features, like the 

possibility to input GEO identifiers to automatically download and analyse the 

corresponding datasets. 

For those reasons, we developed ImaGEO, a web tool that permits to introduce GEO 

datasets identifiers to, automatically, download and perform a meta-analysis with the 

corresponding datasets. Furthermore, users can also upload expression data not available 

in GEO in order to integrate them with other studies. The article describing ImaGEO was 

published at Bioinformatics journal (Toro-Domínguez, Martorell-Marugán et al., 2019). 

In this work, in addition to show the ImaGEO features, we showed the ImaGEO potential 

performing a meta-analysis of lung cancer and Alzheimer’s disease searching for opposite 

gene expression patterns. We found several genes deregulated in opposite directions, as 

was expected from these disorders given their inverse comorbidity.  

This second article fits into the scope of the thesis given that it presents an interactive tool 

to exploit the large amount of transcriptomics data available in the public repository GEO.  

4.3 MCSEA: DMRS ANALYSIS AND INTEGRATION WITH GENE EXPRESSION 

Although there are many available tools to detect DMRs from methylation arrays data, 

all of them share the characteristic that they are optimized to detect DMRs where the 

differential methylation is very marked between experimental conditions. This condition 

is true in diseases with severe dysregulation of methylation status, being the better 

example cancer (De Smet et al., 1999). However, this is not always the case, especially 

in the context of complex diseases, where the differential methylation may be much more 

subtle, but still have a role in the pathogenesis of those disorders. Some examples are 

found in hypertension or schizophrenia patients (Guerrero-Bosagna et al., 2014). 
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Given that available EWAS methodologies have focused on detecting large methylation 

differences between phenotypes, there is a lack of bioinformatics tools designed to find 

small methylation changes in complex phenotypes, so, when this kind of study is per-

formed, there are usually a lot of false negatives in the results or even non-significant 

results at all (Bohlin et al., 2015; Chiavaroli et al., 2015; Gervin et al., 2012). This lack 

of proper tools to perform such kind of EWAS motivated us to develop a new approach 

based on GSEA. We called our approach mCSEA (for methylated CpGs Set Enrichment 

Analysis) and it is capable to detect subtle but consistent methylation differences in 

predefined genomic regions. In addition, we developed a module to integrate the mCSEA 

results with gene expression data in order to find DMRs correlated with expression 

alterations in surrounding genes. 

We implemented mCSEA in an R package which we submitted to the Bioconductor 

repository. An article presenting this tool was published in the Bioinformatics journal 

(Martorell-Marugán et al., 2019). In this article, we simulated methylation data with 

differential methylation in some regions. We simulated different levels of differential 

methylation, from very marked to very subtle difference. We compared the performance 

of mCSEA with other available tools for these simulated data, obtaining better results for 

mCSEA not only when the methylation difference is small, but also when it is large, being 

a suitable method for both scenarios. In addition, we reanalysed previously published data 

from children exposed to maternal diabetes (Kim et al., 2017), finding differentially 

methylated promoters in genes related to metabolic disorders, as was expected from this 

experimental design. 

This work fulfills the thesis scope given that, although a minimum of R language 

knowledge is required to use mCSEA, it still does not require advanced programming 

skills in order to run their functions. Furthermore, the module of methylation and 

expression integration allows to perform multi-omics analyses, what is another of the 

thesis objectives. 

4.4 ADEX: AUTOIMMUNE DISEASES DATABASE 

The lack of a data repository dedicated to ADs motivated us to develop ADEx (for 

Autoimmune Diseases Explorer), a database with public omics data processed 

homogeneously that facilitates the reuse of those data in retrospective studies. The 
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database is accessible through a web tool with visualization and analysis options, 

including differential gene expression analysis, networks analysis and meta-analysis, 

among others. We benefitted from the experience acquired during the development of 

MetaGenyo and ImaGEO to build the ADEx application in the same framework. 

Furthermore, the meta-analysis methods developed for ImaGEO and the multi-omics 

integration included in mCSEA were incorporated in ADEx. 

Using ADEx, we explored the IFN signature in all the expression studies, confirming its 

heterogeneity between diseases and tissues. Furthermore, we proposed a set of candidate 

biomarkers for each disease using the meta-analysis integrated in ADEx. The article 

describing ADEx is currently under review in BMC Bioinformatics journal, and a preprint 

is available at the bioRxiv repository (Martorell-Marugán et al., 2020). 

This work fits into all the main purposes of this thesis, given that ADEx integrates public 

biomedical data in an easy-to-use database, and it also allows to integrate expression and 

methylation data from the same samples. 
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5 CONCLUSIONS 

In this doctoral thesis, new computational and statistical methods for the analysis and 

integration of biomedical data have been developed. Specifically, the main conclusions 

of this thesis are the following: 

1. MetaGenyo web tool allows to perform meta-analysis of genetic association studies 

rigorously. It is the first web-based application for this specific type of meta-analysis. 

The utility of MetaGenyo was demonstrated finding a novel association between the 

polymorphism rs1800975 of XPA gene and the esophageal cancer incidence. 

2. The developed application ImaGEO includes state-of-the-art methods to integrate 

heterogeneous gene expression studies. Its main novelty lies in the automatic data 

acquisition and processing directly from the GEO repository. 

3. mCSEA is a new algorithm for detecting differentially methylated regions based on 

the Gene Set Enrichment Analysis method. This algorithm outperforms other 

available tools both when the methylation differences are large and when they are 

very subtle. Using mCSEA, differentially methylated regions in siblings discordant 

to maternal diabetes exposure during their gestation were detected. It is possible to 

integrate the methylation analyses results with gene expression data with a function 

included in the mCSEA package. 

4. Expression and methylation data available from 5 autoimmune diseases have been 

compiled in the ADEx database. This is the first omics database dedicated to 

autoimmune diseases. ADEx permits exploring the genes profiles along many 

studies. It also includes functionalities for multi-omics integration. Interferon 

signature was studied with ADEx, uncovering a differential behavior depending on 

the disease and the tissue. Using the ADEx integrated meta-analyses, it is possible to 

obtain lists of genes with similar gene expression alterations across studies. These 

genes are potential biomarkers for these diseases. 
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6 CONCLUSIONES 

En la presente tesis doctoral, se han desarrollado nuevos métodos computacionales y 

estadísticos para el análisis e integración de datos biomédicos. Concretamente, las 

principales conclusiones de esta tesis son las siguientes: 

1. La herramienta web MetaGenyo permite realizar meta-análisis de estudios de 

asociación genética rigurosamente. Es la primera aplicación web para este tipo 

específico de meta-análisis. La utilidad de MetaGenyo se demostró encontrando una 

nueva asociación entre el polimorfismo rs1800975 del gen XPA y la incidencia del 

cáncer de esófago. 

2. La aplicación desarrollada ImaGEO incluye métodos punteros para integrar estudios 

de expresión génica heterogéneos. Su principal novedad radica en la adquisición y 

procesamiento automáticos de datos directamente desde el repositorio GEO. 

3. mCSEA es un nuevo algoritmo para la detección de regiones diferencialmente 

metiladas basado en el método Gene Set Enrichment Analysis. Este algoritmo supera 

a otras herramientas disponibles tanto cuando las diferencias de metilación son 

grandes como cuando son muy sutiles. Usando mCSEA, se detectaron regiones 

diferencialmente metiladas en hermanos discordantes a exposición de diabetes 

materna durante su gestación. Es posible integrar los resultados de los análisis de 

metilación con datos de expresión génica con una función incluida en el paquete de 

mCSEA. 

4. Se han compilado datos de expresión y metilación disponibles para 5 enfermedades 

autoinmunes en la base de datos ADEx. Esta es la primera base de datos ómicos 

dedicada a enfermedades autoinmunes. ADEx permite explorar los perfiles de genes 

a lo largo de muchos estudios. También incluye funciones para la integración de 

multi-ómicas. Con ADEx se estudió la firma del interferón, revelando un 

comportamiento diferente dependiendo de la enfermedad y el tejido. Usando el meta-

análisis integrado de ADEx, es posible obtener listas de genes con alteraciones en su 

expresión similares entre estudios. Estos genes son biomarcadores potenciales para 

estas enfermedades. 
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Abstract 

Background: Genetic association studies (GAS) aims to evaluate the association 

between genetic variants and phenotypes. In the last few years, the number of this type of 

study has increased exponentially, but the results are not always reproducible due to 

experimental designs, low sample sizes and other methodological errors. In this field, 

meta-analysis techniques are becoming very popular tools to combine results across 

studies to increase statistical power and to resolve discrepancies in genetic association 

studies. A meta-analysis summarizes research findings, increases statistical power and 

enables the identification of genuine associations between genotypes and phenotypes. 

Meta-analysis techniques are increasingly used in GAS, but it is also increasing the 

amount of published meta-analysis containing different errors. Although there are several 

software packages that implement meta-analysis, none of them are specifically designed 

for genetic association studies and in most cases their use requires advanced programming 

or scripting expertise.   

Results: We have developed MetaGenyo, a web tool for meta-analysis in GAS. 

MetaGenyo implements a complete and comprehensive workflow that can be executed in 

an easy-to-use environment without programming knowledge. MetaGenyo has been 

developed to guide users through the main steps of a GAS meta-analysis, covering Hardy-

Weinberg test, statistical association for different genetic models, analysis of 

heterogeneity, testing for publication bias, subgroup analysis and robustness testing of 

the results.  

Conclusions:  MetaGenyo is a useful tool to conduct comprehensive genetic association 

meta-analysis. The application is freely available at http://bioinfo.genyo.es/metagenyo/. 

Keywords: Genetic association study, Meta-analysis, Web tool, Shiny 
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Background 

Genetic association studies (GAS) estimate the statistical association between genetic 

variants and a given phenotype, usually complex diseases [1]. In the last few years, the 

number of genetic association studies has increased exponentially, but the results are not 

consistently reproducible. This lack of reproducibility may be influenced by several 

factors, including the analysis of non-heritable phenotype, inappropriate quality control, 

wrong statistical analysis, low sample size, population stratification, incorrect multiple-

testing correction or technical biases [2]. 

Meta-analysis is a statistical technique for combining results across studies and it is 

becoming very popular as a method for resolving discrepancies in GAS. It summarizes 

research findings, increases statistical power and enables the identification of genuine 

associations [3]. In this context, in 2011 there was a 64-fold increase in genetics-related 

meta-analysis compared to 1995 [4]. 

Despite the increasing number of publications in this field there is a lack of dedicated 

software tools to perform a complete GAS meta-analysis in a friendly environment. In 

this context, most published works in the field have used commercial software suites such 

as STATA [5] or SPSS [6]. These are statistical software packages that include general 

functions for meta-analysis in their configuration. In addition, freely available R packages 

such as meta [7] or metafor [8] are also widely used but all these solutions share common 

limitations: do not provide all required steps for a GAS meta-analysis (e.g. evaluating 

Hardy Weinberg equilibrium (HWE) or genetic models) and require advanced statistical 

or bioinformatics knowledge to be properly used. 

In this context, Park et al. have reported several analytical errors in published GAS meta-

analysis [9], many of them could be avoided using a dedicated software for GAS meta-

analysis with predefined functions and automatic computations of the required statistics. 

Here we present MetaGenyo, an easy-to-use web application which implements a 

complete meta-analysis workflow for GAS. Once the data has been loaded, it provides a 

guided and complete workflow that comprises the main steps in GAS meta-analysis, 

including HWE test, checking heterogeneity, publication bias indicators, statistical 

association testing for different genetics models, subgroup analysis and robustness 

testing. The use of MetaGenyo does not require advanced statistical or bioinformatics 
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knowledge and we hope it will be a useful application for researchers working in the field 

of genetic association studies. 

Implementation 

MetaGenyo has been implemented as a web tool using shiny [10], a web application 

framework for RStudio [11]. Backend computations are carried out in R using available 

packages and custom scripts. MetaGenyo provides the following functionalities: 

Testing HWE 

Departures from HWE can occur due to genotyping errors, selection bias and stratification 

[12]. Therefore, goodness-of-fit of HWE should be checked in each study before pooling 

data. HardyWeinberg package [13,14] is used to compute a P-value for each study in the 

control population in order to identify low-quality studies. As we test for HWE in several 

studies, the obtained P-values are corrected by Benjamini and Hochberg false discovery 

rate (FDR) [15]. 

Genetic Models 

Given two alleles (A, a) the three possible genotypes (AA, Aa, aa) can be dichotomized 

in different ways yielding different genetic models. GAS can be carried out assuming a 

specific genetic model based on biological criteria but in most of the cases different 

models are simultaneously evaluated. MetaGenyo performs meta-analysis in several ways 

[16], including allele contrast (A vs. a), recessive (AA vs. Aa + aa), dominant (AA + Aa 

vs. aa) and overdominant (Aa vs. AA + aa) genetic models as well as pairwise 

comparisons (AA vs. aa, AA vs Aa and Aa vs aa). All P-values are adjusted for multiple 

testing with the Bonferroni method [17]. 

Statistical analysis and Heterogeneity 

To perform meta-analysis, MetaGenyo combines the effect sizes of the included studies 

by weighting the data according to the amount of information in each study. Association 

values are calculated based on two different statistic models: Fixed Effects Model (FEM) 

and Random Effects Model (REM). The choosing between both models depends on the 
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amount of heterogeneity in the data, which is also evaluated with heterogeneity indicators 

such as I2 and Cochran’s Q test (see on-line help of the program). Meta package (7) is 

used to get such heterogeneity indicators and association results. Finally, this same 

package is used to generate Forest plots to summarize information for effect size and the 

corresponding 95% confidence interval (CI) of each study and the pooled effect. Forest 

plots can be generated for FEM, REM or both, and can be downloaded with very high 

resolution. 

Publication Bias 

Publication bias occurs because of meta-analysis are performed using published studies, 

which usually report only significant associations, while studies showing no significant 

results tend to remain unpublished. This may therefore give a falsely skewed positive 

result. To test for publication bias, MetaGenyo provides funnel plots and Egger's test [16] 

for each genetic model. Funnel plots are generated with meta package [7] and Egger's test 

is performed using the metafor package [8]. 

Subgroup Analysis 

MetaGenyo provides a subgroup analysis in order to evaluate associations in a subset of 

studies based on the user defined criteria (e.g. studies from the same country). Many 

genetic associations are population-specific and can be undiscovered in a general meta-

analysis, but discovered when studies are split. For each group, a meta-analysis is 

performed with FEM or REM, depending on the heterogeneity test: If heterogeneity P-

value < 0.1, REM will be used. Otherwise, FEM will be used instead. These results are 

downloadable in Excel and text formats. 

Sensitivity Analysis 

In order to test the robustness of the meta-analysis performed, MetaGenyo performs a 

leave-one-out influence analysis using meta package [7]. Briefly, the meta-analysis is 

repeated several times, each time excluding one of the studies, in order to determine how 

each individual study affects the overall statistics [18]. A forest plot with these results is 

generated for the selected genetic model. 
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Figure 1. Overview of MetaGenyo. The scheme represents the tool’s workflow. First, data is uploaded by 

the user and it can be reviewed. Secondly, HWE P-values are calculated, so users can decide to exclude 

some bad-quality samples and reupload their data. In Association tests, Forest plots, Publication bias and 

Subgroup analysis tabs users can download the meta-analysis results. Finally, users can check the sensitivity 

analysis. 

Software Usage 

An overview of MetaGenyo is provided in the on-line help of the application and Figure 

1. First, the user loads the collected data from individual studies as a text or excel file

with some specifications on the file format. Once the data has been loaded, a complete 

analysis is performed providing results and visualizations in different tabs: (1) The data 

tab, where the user can check if the data has been correctly submitted. (2) Hardy-

Weinberg tab, where a HWE P-value column is added to the data. (3) Association values 

tab. This contains different association values and heterogeneity indicators for each 



7. APPENDIX. ARTICLES

66 

genetic model. (4) Forest plot tab contains forest plot visualizations in high-quality image 

format for each genetic model. (5) Publication bias tab, where the user can see the funnel 

plot and Egger’s test results. (6) Subgroup analysis tab to obtain a summary of the analysis 

or to evaluate the association and heterogeneity results taking into account stratification 

based on user-defined variables and, finally, (7) Sensitivity tab to perform a robustness 

analysis. 

Results and discussion 

Despite there are many programs designed to perform GWAS meta-analysis (reviewed in 

[19]), there is a lack of tools specially designed to perform GAS meta-analysis, so 

researchers use general statistical or meta-analysis software, adapting it to the particular 

purposes in such type of meta-analysis. This lack of dedicated software increases the 

required resources to perform a GAS meta-analysis, facilitates the inclusion of 

methodological errors and requires advance bioinformatics expertise. 

Table 1. Characteristics of available meta-analysis software. 

STATA SPSS MIX MetaEasy meta rmeta metafor MetaGenyo 

USABILITY 

Availability Commercial Commercial Commerciala Freeb Free Free Free Free 

Web-based No No No No No No No Yes 

Operating system 

Windows, 

Mac OS, 

Linux 

Windows, 

Mac OS, 

Linux 

Windows Windows 

Windows, 

Mac OS, 

Linux 

Windows, 

Mac OS, 

Linux 

Windows, 

Mac OS, 

Linux 

Anyc 

Guided workflow No No No No No No No Yes 

Programming 

knowledge 
Yesd Yesd No No 

R 

language 

R 

language 

R 

language 
No 

FUNCTIONALITIES 

Specific for GAS 

meta-analysis 
No No No No No No No Yes 

HWE testing Yes No No No No No No Yes 

Heterogeneity 

assessment 
Yes Yes Yes Yes Yes Yes Yes Yes 

Random/Fixed effect 

models 
Yes Yes Yes Yes Yes Yes Yes Yes 

Forest plot Yes Yes Yes Yes Yes Yes Yes Yes 

Automatic testing of 

genetic models 
No No No No No No No Yes 

Publication bias Yes Yes Yes No Yes Yes Yes Yes 

Subgroup analysis Yes No Yes No Yes No Yes Yes 

Robustness analysis Yes No Yes No Yes No Yes Yes 

P-value correction for

multiple testing 
Yes Yes No No No No No Yes 

Notes: (a) There is a MIX free version with reduced capabilities. (b) MetaEasy is free, but it depends on the proprietary 

software Microsoft Excel. (c) MetaGenyo is accessed through an internet browser, so there are no limitations regarding 

the operating system used to access it. (d) Although STATA and SPSS are command-based software, there are 

Graphical user interfaces (GUIs) available which permits replacing scripting by user-friendly interactive commands. 
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Among the most widely used software solutions in this field are STATA [5], SPSS [6] 

and SAS [20]. These are popular software suites that provide a set of statistical functions 

that can be used in a broad range of applications and data analysis problems, but they are 

proprietary software and are not specialized in GAS meta-analysis. These limitations are 

partially overcome by R packages such as meta [7], rmeta [21] and metafor [8]. These are 

freely-available software libraries to perform a complete meta-analysis in a flexible way. 

However, their use requires R programming skills, they do not provide a guided workflow 

and they are not specifically designed to perform GAS meta-analysis. In addition, there 

are some Excel extensions such as MIX [22] and MetaEasy [23]. These extensions are 

easy to use, but they require the usage of the proprietary software Microsoft Excel. 

In this context, MetaGenyo is a user-friendly web application that implements a complete 

meta-analysis following a guided workflow, which does not require programming 

knowledge. Table 1 contains a summary of the main advantages and disadvantages of 

some reviewed GAS meta-analysis software. 

To demonstrate the functionality of MetaGenyo we have used data from a published GAS 

meta-analysis [24]. In this study, the authors performed a meta-analysis to study the 

association between the A23G SNP of XPA gene (rs1800975) and digestive cancers. 

They collected genotype information from 18 case-control studies including 4170 patients 

and 6929 controls in total. In this polymorphism, the G allele was considered the 

reference, so the A allele was the risk allele (this parameter must be specified in 

MetaGenyo). Results from the complete analysis and a comparison with results reported 

in the original article can be found in Additional file 1.  

Briefly, both sets of results are highly concordant, but in the original publication the 

authors did not correct the P-values for multiple testing or evaluated different genetic 

models as provided by MetaGenyo. In this context, we also found some discrepancies 

between both sets of results due to use of inappropriate statistical tests or labeling 

mistakes, specially at the subgroup analysis step (see Additional File 1). Because 

MetaGenyo automatically performs all meta-analysis steps in a guided analysis we 

reduced these potential sources of errors. All these similarities and differences are detailed 

in Additional file 1. 
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Figure 2. Forest plot with overdominant model and FEM statistics of esophageal cancer data 

generated with MetaGenyo. The tested comparison is AG vs. AA + AG (overdominant model) and FEM 

was used. 

The application generated results for all possible genetic models and allowed us to easily 

evaluate results for different subgroups in a unified framework. In this context, using the 

tumor type feature to stratify the data revealed a significant association for the 

overdominant model in esophageal cancer studies not previously reported (OR=0.84, 

95% CI=0.73-0.96, P-value=0.0016, Bonferroni-adjusted P-value=0.0448) [Figure 2]. 

Although the original work reported no significant association between this 

polymorphism and the risk of any type of digestive cancer for the studied models, there 

may be a protective effect of AG genotype against the risk of esophageal tumors 

overlooked at the original article because the authors did not test this genetic model. 

Indeed, a similar association has been found in another GAS meta-analysis with lung 

cancer samples [25]. 

Conclusions 

In this work, we present MetaGenyo, a free easy-to-use web tool to perform GAS meta-

analysis. It provides a guided workflow through the most important steps of a meta-

analysis.  

We demonstrated MetaGenyo’s functionality replicating a previously published meta-

analysis [24]. In addition, thanks to the automatic testing of several genetic models and 

subgroup analysis we found a significant association between rs1800975 SNP in XPA 
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gene and esophageal cancer under the overdominant genetic model that may be 

interesting enough for further testing. 

Surprisingly, there is a large heterogeneity in statistical methods, lack of quality control 

steps or misleading reporting and interpretation of results in many published meta-

analysis [9]. Therefore, an application such as MetaGenyo will be a very useful tool for 

the research community providing a guided and solid workflow. 

Availability 

Project name: MetaGenyo 

Availability: MetaGenyo web tool, example datasets and help are accessible at 

http://bioinfo.genyo.es/metagenyo/. 

Any restrictions on use by academics: none 

List of abbreviations 

CI: Confidence intervals; FDR: False discovery rate; FEM: Fixed effect model; GAS: 

Genetic association study; GUI: Graphical user interface; GWAS: Genome-wide 

association study; HWE: Hardy-Weinberg equilibrium; OR: Odds-ratio; REM: Random 

effect model; χ2: Goodness-of-fit chi-square. 
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Additional files 

File name: Additional file 1 

File format: .pdf 

Title of data: MetaGenyo’s use case Description of data: Document showing the results 

of analyzing the data provided by [24] using MetaGenyo and comparison with the original 

results 

Additional file 1 

Here we provide a use case and a detailed analysis of results from the reanalysis of data 

reported by He et al. [1]. 

The input file for MetaGenyo was a text file containing the original data of the meta-

analysis and reformatted to accomplish with the MetaGenyo input format [Supplementary 

table 1]. 

The application guides the user across the statistical functions that should be used in the 

analysis, allowing non-expert users to perform a complete meta-analysis covering all the 

required steps.  
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P-values for HWE were calculated in controls and adjusted P-values greater than 0.05

indicated that the study fits with HWE conditions [Supplementary table 2]. The 

unadjusted P-values are the same that those calculated by the original authors [Table 1 in 

the original paper]. However, as the analysis comprises several studies, it is important to 

adjust P-values for multiple testing in order to reduce false positives, which were not 

calculated by the original authors. MetaGenyo corrects P-values by FDR method. 

Supplementary Table 1. Input table for the example meta-analysis. 

Author Ethnicity Tumor type 

Source 

of 

control 

GG 

cases 

GA 

cases 

AA 

cases 

GG 

control 

GA 

control 

AA 

control 

Dong et al Asian Gastric PB 47 120 86 128 322 162 

Feng et al Asian Esophageal HB 28 83 85 56 91 54 

Gil et al Caucasian Colorectal HB 26 58 16 50 67 16 

Guo et al Asian Esophageal PB 65 139 123 128 322 162 

Hall et al Caucasian Esophageal HB 75 81 15 398 451 125 

Hansen et al Caucasian Colorectal PB 176 187 31 339 359 90 

Huang et al a Asian Esophageal PB 22 69 59 32 160 210 

Huang et al b Asian Cardiac PB 20 60 65 13 55 112 

Huang et al c Asian Gastric PB 12 57 77 13 55 112 

Jelonek et al Caucasian Colorectal HB 29 33 4 46 70 17 

Joshi et al Caucasian Colorectal PB 136 133 33 149 170 30 

Liu Asian Esophageal PB 11 35 50 11 47 38 

Palli et al Caucasian Gastric PB 134 115 35 249 215 59 

Pan et al Caucasian Esophageal HB 179 166 35 151 219 88 

Xie Asian Hepatocellular PB 139 203 73 144 219 116 

Zhang Asian Esophageal HB 33 82 91 44 96 66 

Zhen Asian Esophageal PB 99 145 107 53 188 159 

Zhu Asian Esophageal PB 50 69 69 52 88 63 

Abbreviations: PB=population-based; HB=hospital-based. 
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Supplementary Table 2. P-value and adjusted P-value by FDR of χ2 test for HWE in control samples 

of each study. 

Author HWE P-value HWE adjusted P-value 

Dong et al 0.1694 0.4064 

Feng et al 0.1806 0.4064 

Gil et al 0.3686 0.6032 

Guo et al 0.1694 0.4064 

Hall et al 0.8751 0.8751 

Hansen et al 0.7312 0.8751 

Huang et al a 0.8434 0.8751 

Huang et al b 0.0966 0.3478 

Huang et al c 0.0966 0.3478 

Jelonek et al 0.2252 0.4088 

Joshi et al 0.0558 0.3478 

Liu 0.5353 0.7412 

Palli et al 0.2271 0.4088 

Pan et al 0.5893 0.7577 

Xie 0.0711 0.3478 

Zhang 0.4116 0.6174 

Zhen 0.8259 0.8751 

Zhu 0.0631 0.3478 

Supplementary figure 1. Forest plot with dominant genetic model and REM statistics generated with 

MetaGenyo. 
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In the next step, statistical associations were evaluated for different genetics models. In 

the original work, the authors evaluated four different genetic models: dominant model 

(AA + AG vs. GG), recessive model (AA vs. AG + GG), heterozygote comparison (AG 

vs. GG) and homozygote comparison (AA vs. GG). All those comparisons can be 

performed with MetaGenyo, in addition to allele contrast (A vs. G), overdominant model 

(AG vs. AA + GG) and (AA vs. AG) comparison. A forest plot was obtained to 

summarize the results applying REM statistics with dominant genetic model 

[Supplementary Figure 1], as the original authors did [Figure 2 in the original paper]. We 

noticed that some individual statistics are slightly different between the original forest 

plot and those reported by MetaGenyo. After comparing the forest plot reported in the 

original publication and the data that was used to generate it, we realized that some labels 

were exchanged in this plot (e.g. Guo et al. label actually contains the data from Gil et al. 

study). This mislabeling caused the discrepancies between both forest plots. 

Supplementary table 3. MetaGenyo’s subgroup analysis results with dominant genetic model and 

splitting the samples by ethnicity. 

Ethnicity 
Test of association Test of heterogeneity 

OR 95 % CI P-value Model I2 P-value

Overall 0.8940 [0.7426; 1.0762] 0.2365 Random 0.7339 0.0001 

Asian 0.8968 [0.6625; 1.2139] 0.4807 Random 0.7823 0.0001 

Caucasian 0.8809 [0.7059; 1.0993] 0.2619 Random 0.6626 0.0068 

Supplementary table 4. MetaGenyo’s subgroup analysis results with dominant genetic model and 

splitting the samples by tumor type. 

Tumor type 
Test of association Test of heterogeneity 

OR 95 % CI P-value Model I2 P-value

Overall 0.8940 [0.7426; 1.0762] 0.2365 Random 0.7339 0.0001 

Colorectal 0.9549 [0.8025; 1.1362] 0.6029 Fixed 0.4521 0.1401 

Esophageal 0.8668 [0.6102; 1.2314] 0.4249 Random 0.8395 0.0001 

Gastric 1.0527 [0.8449; 1.3117] 0.6471 Fixed 0.0000 0.7701 
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Supplementary figure 2. Funnel plot of AG vs. GG comparison generated by MetaGenyo. 

However, in gastric tumor samples in which we did not found agreement, we observed 

that, for some reason, original authors included samples from cardiac cancer in the gastric 

cancer group, causing these discrepancies with MetaGenyo results. 

A funnel plot was also generated, revealing that there was not publication bias in the data 

(see Supplementary figure 2). This MetaGenyo output is very similar to the previously 

published one [Figure 5 in the original paper], except the x and y axes are the opposite 

between both figures and MetaGenyo use the OR as the x axis, while the original plot 

uses the log(OR). 

Finally, a sensitivity analysis was performed with MetaGenyo generating a forest plot of 

the results excluding one of the studies in each step [Supplementary figure 3] revealing 

that the results were not biased by any single study from those originally included in the 

work. The original authors performed the same sensitivity analysis and reached the same 

conclusions, but they did not include a forest plot of such analysis. 
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Supplementary figure 3. Forest plot of sensitivity analysis under overdominant model and REM 

statistics. 
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Abstract 

Summary: The Gene Expression Omnibus (GEO) database provides an invaluable 

resource of publicly available gene expression data that can be integrated and analyzed to 

derive new hypothesis and knowledge. In this context, gene expression meta-analysis is 

increasingly used in several fields to improve study reproducibility and discovering 

robust biomarkers. Nevertheless, integrating data is not straightforward without 

bioinformatics expertise. Here, we present ImaGEO, a web tool for gene expression meta-

analysis that implements a complete and comprehensive meta-analysis workflow starting 

from GEO dataset identifiers. The application integrates GEO datasets, applies different 

meta-analysis techniques and provides functional analysis results in an easy-to-use 

environment. ImaGEO is a powerful and useful resource that allows researchers to 

integrate and perform meta-analysis of GEO datasets to lead robust findings for 

biomarker discovery studies. 

Availability: ImaGEO is accessible at http://bioinfo.genyo.es/imageo/ 

Contact: marta.alarcon@genyo.es or pedro.carmona@genyo.es 

Supplementary information: Supplementary data are available at Bioinformatics 

online. 
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1 Introduction 

Due to the increasing use of high-throughput techniques, the amount of information 

available in biomedical databases is growing exponentially. In particular, Gene 

Expression Omnibus (GEO) (Barrett et al., 2013) is a public gene expression repository 

that contains more than 94000 datasets and over 2 million of samples. This is an 

invaluable resource that, with the appropriate methods and tools, can be exploited to 

integrate gene expression data for applications such as biomarker discovery (Toro-

Domínguez et al., 2014), disease classification or phenotype comparisons (Carmona-Sáez 

et al., 2017), among others. Several software tools have been developed to take advantage 

of this information. GEO2R was originally available in GEO portal to allow researchers 

without computational skills to perform differential expression analysis in individual 

datasets. In the last few years, tools such as ShinyGEO (Dumas et al., 2016) or ScanGEO 

(Koeppen et al., 2017) have extended some of the GEO2R functionalities to explore, 

retrieve and analyze gene expression data in an easy-to-use environment.  

However, this amount of data offers new possibilities beyond the analysis of individual 

datasets. In this context, there is an increasing number of studies that integrate different 

datasets to perform gene expression meta-analysis (geMAs). This technique is usually 

applied to increase the sample size but it can be also used to integrate datasets from 

different phenotypes in order to discover common biomarkers (Toro-Domínguez et al., 

2014). In this context, there are different tools for geMAs such as INMEX (Xia et al., 

2013) or ExAtlas (Sharov et al., 2015), but they lack from a complete workflow starting 

from GEO identifiers that, at the same time, requires a minimal user interaction in terms 

of data processing. A detailed comparative analysis of available tools is provided in the 

additional material. 

In this work, we present ImaGEO, a web-based application to perform a complete geMAs 

starting from GEO identifiers. The application provides a step-by-step workflow that 

guides the user through the entire analysis accelerating the re-use of publicly available 

gene expression data for biomarker discovery purposes. The application currently 

supports a curated set of platforms from Illumina, Affymetrix and Agilent for human and 

model organisms including Saccharomyces cerevisiae, Drosophila melanogaster, Danio 

rerio and Mus musculus and others such as Rattus norvegicus and Pseudomonas 

aeruginosa (see the online help with complete list of supported platforms). 
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Figure 1: Workflow of ImaGEO. The image summarizes and orders the five modules of ImaGEO. 1) 

Data input from GEO or custom data. 2) Quality Control is performed for each dataset followed by 

sample/gene filtering. 3) Gene expression Meta-analysis. 4) Functional analysis 5) Results in html report. 

2 Methods 

ImaGEO has been developed in Shiny, a web application framework for R. Internally, it 

is divided in 5 modules (Figure 1): (1) Data loading and processing module where users 

can enter the GEO IDs or upload custom datasets and establish the parameters of the 

analysis. GEO data is retrieved and processed using GEOquery package (Davis and 

Meltzer, 2007). Expression values are transformed to logarithmic unless they already are 

and probe identifiers are annotated to unique gene identifiers. (2) Quality control module 

that shows data metrics and quality control checking. (3) Meta-analysis module contains 
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a total of 9 different meta-analysis methods adapted from functions contained in MetaDE 

R package, which are effect size (ES), Fisher's, Stouffer's, adaptively-weighted, sum or 

product of ranks and the selection of minimum or maximum p-value across results. (4) 

Functional analysis module. Enrichment analysis of Gene Ontology terms is performed 

in the list of over- and under-expressed genes obtained in the meta-analysis. (5) Report 

Module: where a html report is generated to explore all results using Nozzle.R1 R 

package. The report is divided in four sections that summarize the results of each step. 

First, a summary section contains an overview of the data and the analysis parameters 

used. Secondly, the quality control study shows the distribution of the expression values 

in boxplots and the missing values for each dataset along with a comparison pre and post 

quality control. Thirdly, the results section displays an interactive table with significant 

genes annotated with Gene Symbol identifiers, gene names, p-values, corrected p-values, 

fold-change values. In addition, heatmaps of top 100 and all significant genes are 

available. Finally, if the user chooses the enrichment analysis its results are provided in 

table format. A detailed documentation of methods and results can be found in the 

application web site. 

3 Case study 

As a working example we provide a use case that identify genes deregulated in opposite 

directions among lung cancer (LC) and Alzheimer (AD), two diseases that display inverse 

co-morbidity according to epidemiological data (Sánchez-Valle et al., 2017). This is 

another type of application of geMAs that can be easily conducted in ImaGEO and can 

be applied to analyze inverse gene expression patterns among phenotypes, for example 

for drug repurposing analysis. As input we used Alzheimer (GEO IDs: GSE5281, 

GSE48350 and GSE4757) and lung cancer datasets (GEO IDs: GSE33532, GSE19188, 

GSE19804, GSE7670 and GSE10072). To detect genes that were deregulated in opposite 

directions we simply switched group labels (cases/controls) in both diseases. Therefore, 

selecting effects sizes (ES) and Random Effects Model as meta-analysis options we 

obtained 997 genes that were over-expressed in AD and under-expressed in LC 

(AD+/LC-) and 1220 genes with opposite patterns (AD-/LC+). Similarly to the results 

reported by Sanchez-Valle et al, functional analysis of AD+/LC- genes yielded biological 

pathways related to inflammatory responses and processes associated to AD-/LC+ genes 
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were related to synaptic transmission and mitochondrial activities, that the authors stated 

could be implicated in the inverse co-morbidity between these diseases. This analysis was 

executed in a few minutes and is a good example of the potential of ImaGEO to perform 

a comprehensive geMAs. We are confident that it will be a useful application for the 

research community to exploit and re-use GEO data for deriving new biological 

knowledge and hypothesis generation. 
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Additional file 

Additional Table 1 contains a summary of the main features of available web tools for 

Gene Expression Meta-analysis. 

NetworkAnalyst 

(INMEX) 
Exatlas Gemma CancerMA ImaGEO 

Ref 
(Xia, Gill, & Hancock, 

2015)

(Sharov, 

Schlessinger, & 

Ko, 2015)

(Zoubarev et 

al., 2012)

(Feichtinger, 

McFarlane, & 

Larcombe, 

2012)

Guided workflow Yes No No No Yes 

Programming/Bioinformatics 

knowledge 

Partial (data formatting 

and annotating)
No No No No 

Meta-analysis Techniques 

Effect sizes, P-values, 

Rank products and Vote 

counts 

Effect sizes, z-

score, and 

Fisher’s 

methods(Pairwise 

comparison) 

P-value P-value

Effect sizes, Fisher's, 

Stouffer's, adaptively-

weighted, sum or 

product of ranks, 

minimum or maximum 

p-value

Group assignation 
Manually or by 

programming 

Manually, one by 

one 
Automatically No Manually 

Data input Dataset formatted 
GEO IDs/ 

Custom data 

GEO IDs and 

set of genes or 

GO terms 

Set of genes GEO IDs/Custom data 

Platform supported 

47 built-in microarray 

probe ID libraries for 

human, mouse, and rat. 

For other IDs or 

organisms, make sure all 

datasets have the same 

ID type. 

All GEO 

platforms that 

contain gene 

symbol 

references into 

GEO files 

413 platforms 
HG-U133 

Plus 2 
94 platforms 

Species 16 43 10 Human 

Human, mouse, rat, 

Escherichia coli, 

Pseudomona 

aeruginosa, 

Arabidopsis thaliana, 

Drosophila 

melanogaster, Danio 

rerio and 

Saccharomyces 

cerevisiae 

QC No 

Inner dataset 

normalization, 

filtering genes 

and samples 

Gene 

assignment, 

detect outliers 

and inner 

dataset 

normalization 

Inner dataset 

normalization 

Inner dataset 

normalization, outliers 

detection, 

preprocessing and 

filtering by genes and 

samples 

Functional Analysis 

Protein-Protein 

interactions, Gene-

miRNA interactions, 

TF-gene interactions, 

Protein-Drug 

interactions, Protein-

chemical interactions, 

KEGG, Reactome, GO 

KEGG, 

phenotypes, GO 

Annotation by 

gene 
GO GO 
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mCSEA: Detecting subtle differentially 

methylated regions 
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Abstract 

Motivation: The identification of differentially methylated regions (DMRs) among 

phenotypes is one of the main goals of epigenetic analysis. Although there are several 

methods developed to detect DMRs, most of them are focused on detecting relatively 

large differences in methylation levels and fail to detect moderate, but consistent, 

methylation changes that might be associated to complex disorders.  

Results: We present mCSEA, an R package that implements a Gene Set Enrichment 

Analysis method to identify differentially methylated regions from Illumina 450K and 

EPIC array data. It is especially useful for detecting subtle, but consistent, methylation 

differences in complex phenotypes. mCSEA also implements functions to integrate gene 

expression data and to detect genes with significant correlations among methylation and 

gene expression patterns. Using simulated datasets we show that mCSEA outperforms 

other tools in detecting DMRs. In addition, we applied mCSEA to a previously published 

dataset of sibling pairs discordant for intrauterine hyperglycemia exposure. We found 

several differentially methylated promoters in genes related to metabolic disorders like 

obesity and diabetes, demonstrating the potential of mCSEA to identify differentially 

methylated regions not detected by other methods.  

Availability: mCSEA is freely available from the Bioconductor repository. 

Contact: pedro.carmona@genyo.es 

Supplementary information: Supplementary data are available at Bioinformatics 

online. 
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1 Introduction 

DNA methylation is by far the most studied epigenetic mark. It affects gene expression 

and has an important role in several disorders. Epigenome-wide association studies 

(EWAS) are performed to find associations between DNA methylation alterations and a 

given phenotype (Flanagan, 2015). 

There are several methodologies to determine DNA methylation status, including high-

throughput techniques such as whole-genome bisulfite sequencing (WGBS) or 

methylation arrays. WGBS is the one with the highest coverage but Illumina’s BeadChip 

arrays (Infinium HumanMethylation450 and Infinium MethylationEPIC) are still much 

more affordable and simpler to analyze, and they are currently the most used platforms in 

human EWAS (Teh et al., 2016). 

EWAS are usually applied to find associations between individual CpG sites and 

outcomes. However, methylation patterns are not usually found in isolated CpGs, but 

clusters of proximal CpGs are hypermethylated or hypomethylated (Peters et al., 2015). 

That is the reason why several methods have been designed to detect differentially 

methylated regions (DMRs) instead of differentially methylated positions (DMPs). In this 

context, some methods use predefined regions as candidates for DMRs identification (e.g. 

gene promoters or CpG Islands), while others do not rely on previous annotations and 

search de novo DMRs. 

There are two different paradigms related to DNA methylation pointed out in a recent 

review by Leenen et al. (Leenen et al., 2016). The first one is that, in some disorders such 

as cancer, regulatory regions are clearly hypermethylated or hypomethylated, with 

methylation differences greater than 60 % (see for example De Smet et al., 1999; Mikeska 

and Craig, 2014). However, there is a second paradigm in which complex disorders are 

associated with very subtle differences in CpGs methylation, with methylation 

differences of 1-10 % between phenotypes. As remarked by Leenen et al. these subtle 

methylation differences are relevant hallmarks associated to the diversity of many 

complex non-malignant diseases, such as type 2 diabetes, major depression, 

schizophrenia, hypertension, and cardiovascular diseases (see for example Levenson, 

2010; Guerrero-Bosagna et al., 2014).  



7.3. mCSEA 

89 

Nevertheless, most of the available DMR methods have focused on detecting large 

methylation differences between phenotypes. In this context, they have worked properly 

and they have allowed the discovery of many epigenetic causes of several diseases 

(Lappalainen and Greally, 2017). However, these tools may fail to detect significant 

DMRs in complex diseases or heterogeneous phenotypes, where there might be small 

differences among methylation signals but consistent across the analyzed regions and 

samples. Therefore, no individual CpGs or regions may meet the threshold for statistical 

significance in many published studies, although there may be biologically meaningful 

differences (see for example Bohlin et al., 2015; Chiavaroli et al., 2015; van Dongen et 

al., 2015; Gervin et al., 2012; Kim et al., 2017). 

In addition, some of these tools average all sites in a given region, but if a significant 

pattern is associated to a subset of sites it may be underestimated if all sites are analyzed 

as a block. 

This scenario motivated us to develop a new approach based on Gene-Set Enrichment 

analysis (GSEA) (Subramanian et al., 2005), a popular methodology for functional 

analysis that was specifically designed to avoid some related drawbacks in the field of 

gene expression. GSEA is able to detect significant gene sets that exhibit strong cross-

correlation when differential expression of individual genes is modest from the statistical 

point of view. GSEA uses a given statistical metric to rank all genes of a genome and 

applies a weighted Kolmogorov–Smirnov (KS) statistic (Hollander and Wolfe, 1999) to 

calculate an Enrichment Score (ES). Basically, ES for each set is calculated running 

through the entire ranked list increasing the score when a gene in the set is encountered 

and decreasing the score when the gene encountered is not in the analyzed set. ES of this 

set is the maximum difference from 0. The significance of each ES is calculated 

permuting the sets and recomputing ES, getting a null distribution for the ES.  

We have developed a new R package in which we have implemented a GSEA-based 

differential methylation analysis where gene sets are defined as sets of CpG sites in 

predefined regions. This new tool, named mCSEA (methylated CpGs Set Enrichment 

Analysis), is capable to detect subtle but consistent methylation differences in predefined 

genomic regions from 450K and EPIC microarrays data. The R package is freely available 

in Bioconductor repository. 
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2 Materials and methods 

2.1 mCSEA workflow 

mCSEA R package consists of five main functions (Figure 1). The first step is to rank all 

the CpG probes by differential methylation. As input, a presorted list can be used, but if 

a matrix of β-values or M-values is provided the rankProbes() function applies limma 

(Ritchie et al., 2015) to fit a linear model and return the t-statistic assigned to each CpG 

site.  

The main mCSEA function, mCSEATest(), evaluates the enrichment of CpG sites 

belonging to the same region in the top positions of the ranked list by applying the GSEA 

implementation of the fgsea package (Sergushichev, 2016). Regions whose CpG sites are 

over-represented in the top or bottom of the list can be detected as differentially 

methylated. As predefined regions, mCSEA allows users to perform analysis based on 

promoters, gene bodies and CpG-islands (CGIs). These predefined regions were defined 

based on R annotation packages IlluminaHumanMethylation450kanno.ilmn12.hg19 and 

IlluminaHumanMethylationEPICanno.ilm10b2.hg19 for 450K and EPIC arrays 

respectively. We defined each region as shown in Table 1, following previous works 

(Sandoval et al., 2011). In addition, researchers can provide a set of defined regions in 

the analysis by providing a file with genomic positions. 

mCSEATest() function provides different statistics for each analyzed region, including a 

P-value of the regions to be differentially methylated, a P-value adjusted by false

discovery rate (FDR) and the ES. In addition, a Normalized Enrichment Score (NES) is 

calculated in order to correct the bias for the different region sizes. The necessity and 

implementation of NES was explained in the original GSEA’s paper (Subramanian et al., 

2005). 

mCSEA package include two functions to visualize the results: mCSEAPlot() and 

mCSEAPlotGSEA(). The former represents methylation values of a given region in its 

genomic context (see Figure 3 (A) for an example). The latter generates GSEA’s 

enrichment plot (see Figure 3 (C) for an example), showing the positions of the CpG in a 

determined region along the entire ranked list. 
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Figure 1. mCSEA workflow. Grey boxes are input data and green boxes are mCSEA’s functions. The 

scheme also shows the order in which functions should be executed. 

Table 1. Terms from annotation data used for defining each type of region in mCSEA. 

Region type Column from annotation data Terms 

Promoters UCSC_RefGene_Group 
TSS1500, TSS200, 5’UTR, 

1stExon 

Gene bodies UCSC_RefGene_Group Body 

CpG Islands Relation_to_Island 
Island, N_Shore, S_Shore, 

N_Shelf, S_Shelf 

Finally, the package implements a function, mCSEAIntegrate(), which integrates gene 

expression data in the analysis. For that purpose, the leading edge CpGs of each region is 

first defined. The leading edge is the set of CpGs that contributes to the ES of the region, 

so these CpGs are the most differentially methylated ones. These sites are averaged for 

each region in each sample. Then, Pearson’s correlation coefficient is calculated between 

each region’s methylation and the proximal gene(s)’ expression (i.e. genes within 1500 

base pairs upstream and downstream from the region).  If the integration is performed 

with promoters, significant negative correlations are returned, due to it has been observed 

an inverse correlation between promoters’ methylation and gene expression (Jones and 

Baylin, 2002). On the contrary, if the integration is performed in gene bodies, significant 

positive correlations are returned instead, due to a positive correlation between gene body 
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methylation and expression has been observed (Aran et al., 2011). If the integration is 

performed in CGIs, both positive and negative significant correlations are returned, due 

to CGIs can be located in both promoters and gene bodies. 

2.2 Methods comparison 

In order to test our method, we used both simulated and real data. We simulated 450K β-

values for 20 samples using the same approach as Peters et al. (Peters et al., 2015). We 

randomly selected 714 promoters to be hypermethylated and another 714 promoters to be 

hypomethylated in 10 samples (cases) compared to the other 10 (controls). Only 

promoters with at least 5 associated CpGs were selected. We simulated datasets with a β-

value mode differences among phenotypes (Δβ) ranging from 0.9 to 0.05 across promoter 

CpG sites. We compared mCSEA’s performance with state-of-the-art solutions, both 

predefined (IMA (Wang et al., 2012) and RnBeads (Assenov et al., 2014)) and de novo 

(DMRcate (Peters et al., 2015), bumphunter (Jaffe et al., 2012), and Probe Lasso (Butcher 

and Beck, 2015)) algorithms. IMA package uses as input raw idat files and not a β-values 

matrix. Therefore, to compare its approach using the simulated data we implemented the 

method that is applied by IMA, that is to calculate the median of the methylation values 

for each predefined region and to apply limma to these averaged values. We did not 

included COHCAP package (Warden et al., 2013) due to it restricts the analysis to CGIs. 

For all methods we used default parameters with the exceptions compiled in 

Supplementary Table 1. 

All results were considered significant using FDR < 0.05 threshold. For IMA and 

RnBeads, we searched for DMRs in promoter regions and we considered as true positives 

(TP) those promoters annotated with the actual differentially methylated promoters, and 

as false positives (FP) the called regions not annotated with the actual DMRs. For the rest 

of the methods, due to they return de novo DMRs, we considered as TP those actual 

DMRs overlapping at least one called region, and as FP the called regions not overlapping 

any actual DMR. For all methods we considered as false negatives (FN) the actual DMRs 

not called by the corresponding method. 

For each method and Δβ we calculated the sensitivity (Equation 1) and the precision or 

positive predictive value (PPV) (Equation 2).  
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𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100 (1) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100 (2) 

We also tested the performance of the proposed method in the methylation datasets 

previously published by Kim et al., 2017. This dataset contains Illumina 450K 

methylation data from 18 sibling pairs discordant for intrauterine exposure to maternal 

gestational diabetes mellitus (GDM). This data is publicly available from GEO database 

(GEO ID: GSE102177). We reanalyzed the data with IMA, RnBeads, DMRcate, Probe 

Lasso, bumphunter and mCSEA. We selected these methods because all of them are 

popular tools for DMRs analysis and allow complex experimental designs with paired 

samples and covariates, as was our case. Probe Lasso does not directly allow paired–

analysis but we adapted its functions to include it in the comparison. 

3 Results 

3.1 Comparison of DMRs analysis packages 

We performed a functional comparison of mCSEA and the most popular R packages used 

to DMRs analysis from Illumina microarrays data (Table 2). An essential function of this 

kind of software is the capability to analyze data from complex experimental designs, due 

to methylation data is very sensitive to environmental factors (Marsit, 2015) and it is 

important to take into account sex, age, ethnicity and other confounding factors. In 

addition, some experiments require a paired analysis (e.g. when normal and cancer cells 

are extracted from the same patient). mCSEA can handle with both, covariates adjusting 

and paired analysis. Other important features compared were the type of regions that can 

be included in the analysis and the capacity of integrating gene expression data. Our 

method and COHCAP are the only tools capable to integrate gene expression data in the 

analysis to define genes that show strong correlation in gene expression and methylation 

data, which is a very relevant feature. 
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Table 2. Comparison of available R packages for DMRs analysis using Illumina’s microarray data. 

IMA RnBeads DMRcate Bumphunter COHCAP Probe Lasso1 mCSEA 

Reference 
(Wang et al., 

2012) 

(Assenov et al., 

2014) 

(Peters et al., 

2015) 

(Jaffe et al., 

2012) 

(Warden et al., 

2013) 

(Butcher and 

Beck, 2015) 
- 

DMRs analyzed Predefined Predefined De novo De novo Predefined De novo Predefined 

Platforms 27K and 450K 27K and 450K 450K and EPIC 
27K, 450K and 

EPIC 
27K and 450K2 450K and EPIC 

450K and 

EPIC2

Statistical test 

Wilcoxon rank-

sum, t-test and 

empirical Bayes 

CpG-level P-

values 

aggregation 

with Fisher’s 

method 

Kernel 

 Smoothing 

Bumphunter 

algorithm 
ANOVA 

Probe Lasso 

algorithm 
GSEA 

Accepts 

methylation 

matrix as input 

No Yes Yes Yes Yes Yes Yes 

Adjusting for 

covariates 
Yes Yes Yes Yes Only one3 No Yes 

Paired analysis Yes Yes Yes Yes Yes3 No Yes 

Implemented 

parallelization 
No Yes Yes Yes No Yes Yes 

Integration of 

Gene 

Expression Data 

No No No No Yes No Yes 

Predefined 

Regions 

UCSC-defined 

regions 

(TSS1500, 5’ 

UTR, gene 

body…) 

Promoters, gene 

bodies, CGIs, 

tilling regions, 

user-defined 

regions 

- - CGIs - 

Promoters, gene 

bodies, CGIs, 

user-defined 

regions 

1Implemented in ChAMP package (Morris et al., 2014). 2Other platforms can be analyzed introducing custom 
annotations. 3It is only possible to adjust for one covariate or to perform a paired analysis, but not both.  

3.2 Simulated data results 

We calculated the number of TP, FP and FN returned by each tested method for each Δβ 

interval, in addition to sensitivity and PPV (Supplementary Table 2). As can be noted in 

Figure 2, mCSEA yielded a 100 % of sensitivity detecting methylation differences 

ranging from Δβ=0.9 to Δβ=0.2 and it outperformed the rest of methods when the 

methylation differences were especially small (0.05). In addition, mCSEA returns a low 

number of FP, resulting in a high PPV for all Δβ (Supplementary Table 2). Only DMRcate 

and Probe Lasso overcome mCSEA in PPV, but at the cost of having a significantly lower 

sensitivity for all Δβ.  
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Figure 2. Performance with simulated data. Each line represents results from different methods. The Y-

axis represents the number of TP for each Δβ. Red line represents the total number of TP included in the 

dataset (1428).   

3.3 DMRs in maternal diabetes exposure discordant siblings 

To demonstrate the mCSEA’s functionality, we analyzed the data reported by Kim et al. 

(Kim et al., 2017). This is a methylation dataset from child sibling pairs: one of the 

siblings was exposed to maternal diabetes during their gestation, while the other was not. 

This intrauterine hyperglycemia exposure is associated with an increased risk of obesity 

and diabetes. Authors collected data from discordant siblings for maternal diabetes 

exposure in order to get insight into possible epigenetic aberrations in the exposed sibling. 

Methylation differences in such type of experiment were expected to be very subtle and, 

in fact, the authors did not report any significant result from the statistical point of view 

(FDR < 0.05), but they focused in the most differentially methylated genes and discussed 

their biological relevance. 
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Figure 3. INS gene promoter methylation in GDM and control samples. Methylation is quantified with 

β-values. A) Genomic context of INS promoter. Each point represents the methylation of each sample. 

Lines link the mean methylation of each group. KS leading edge panel marks with green bars those CpGs 

contributing to the ES and with red bars the rest of them. This plot was obtained with mCSEAPlot() 

function, implemented in mCSEA package. B) Boxplot showing the subtle difference in INS promoter 

methylation status between controls and GDM samples. C) GSEA plot for INS promoter. Vertical lines 

mark the location of INS-associated CpGs along the entire ranked list of analyzed CpGs (horizontal black 

line). Red lines represent the maximum and minimum ES. This plot was obtained with mCSEAPlotGSEA() 

function, implemented in mCSEA package. 

In this dataset, DMRcate and Probe Lasso did not return any significant DMR. These 

methods applied limma to detect significant DMPs and call DMRs based on them. 

Although they work properly when methylation differences are high, they did not reveal 

any significant result for slight methylation differences. 

RnBeads is also based on limma for detecting DMRs, but it combines the results by region 

types (promoters, CGI, and so on) aggregating the P-values obtained by the linear 

modeling, so, even if there are not any significant DMPs, RnBeads is potentially capable 

to find significant DMRs. However, this was not the case. This method did not return any 
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significant DMR (FDR < 0.05). IMA approach did not return any significant DMR 

neither.  

Bumphunter yielded one significant DMR (FDR = 0.03, FWER = 0.01) located at the 

promoter of SDHAP3 pseudogene. Up to our knowledge, there is not any known 

relationship between SDHAP3 and development or metabolic disorders. 

mCSEA yielded 1055 significant DMRs (FDR < 0.05) in gene promoters: 228 

hypermethylated and 827 hypomethylated promoters in cases compared to controls 

(Supplementary Table 3). 

To assess the biological significance of these results, we performed an enrichment 

analysis using Enrichr (Chen et al., 2013). The most significant enriched pathway in 

KEGG database (Kanehisa and Goto, 2000) is “Maturity onset diabetes of the young” 

(hsa04950) pathway (adjusted P-value = 0.0011) (Supplementary Table 4). This pathway 

is related with a type of diabetes characterized to appear in patients younger than 25 years 

old and to be non-insulin dependent. Promoter regions of nine out of the twenty-six genes 

associated to this pathway were identified as significantly differential methylated regions, 

including PDX1, FOXA2, PAX6 or INS. INS gene, which we found to be 

hypermethylated in cases, is an important gene that has been previously associated to 

diabetes in several works and it has been reported as a silenced gene with a fully 

methylated promoter associated to diabetes development (Yang et al., 2011). In addition, 

it has been observed that high levels of glucose increase the INS methylation level (Yang 

et al., 2011), so this hypermethylation could be induced during gestation. Methylation 

differences in INS promoter between children exposed and non-exposed to intrauterine 

hyperglycemia are subtle, but consistent across all CpG sites of the promoter (Figure 3). 

Such small methylation difference is the cause why this DMR remains undetected by all 

the other tested methods. The same may be occurring in many other genomic regions. 

On the other hand, the most significant enriched pathway from OMIM Disease database 

is obesity (adjusted P-value = 0.0085) (Supplementary Table 5). Eight out of fifteen genes 

related to this disease contained significant DMRs, including UCP1, UCP3, GHRL or 

PCSK1. So, we found methylation alterations in genes related to diabetes and obesity, the 

two main diseases associated to intrauterine GDM exposure. 
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4 Conclusions 

Here we present mCSEA, a novel R package for predefined DMRs detection based on 

GSEA method. We compared mCSEA with the most widely used methods to detect 

DMRs. Our method outperformed the rest of solutions for detecting small methylation 

differences in the simulated dataset. It is especially remarkable the capability of mCSEA 

to find DMRs even with the methylation difference as small as 0.05 between groups, but 

consistent along a relatively large region. We reanalyzed a previously published dataset, 

obtaining barely no significant results with other methods. However, mCSEA yielded 

several significant DMRs in promoters for genes associated to relevant biological 

pathways. 

We think that mCSEA will provide researchers with a useful tool to detect DMRs in 

datasets from complex diseases in which the methylation differences among phenotypes 

are small but consistent.  
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Supplementary data 

Supplementary Table 1. Parameters used for methods comparison with simulated data. 

Method Version Function Non-default parameters 

mCSEA 1.0.1 mCSEATest regionsTypes = "promoters" 

RnBeads 1.10.0 rnb.execute.computeDiffMeth 

adjust.sva = FALSE 

region.types = "promoters" 

adjust.celltype = FALSE 

DMRcate 1.14.0 dmrcate 
min.cpgs = 5 

C = 2 

Bumphunter1 2.9.9 champ.DMR 
minProbes = 5 

maxGap = 1000 

Probe Lasso1 2.9.9 champ.DMR 
method = "ProbeLasso" 

minProbes = 5 

1Bumphunter and Probe Lasso were executed through ChAMP package 
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Supplementary Table 2. Simulated data analysis results for each compared method. 

Δβ = 0.9 

Method TP FP FN Sensitivity (%) PPV (%) 

mCSEA 1428 1 0 100.00 99.93 

Averaged regions 1428 136 0 100.00 91.30 

RnBeads 1068 486 360 74.79 68.73 

DMRcate 1385 0 43 96.99 100.00 

Bumphunter 1068 68 360 74.79 94.01 

Probe Lasso 171 0 1257 11.97 100.00 

Δβ = 0.5 

Method TP FP FN Sensitivity (%) PPV (%) 

mCSEA 1428 5 0 100.00 99.65 

Averaged regions 1428 145 0 100.00 90.78 

RnBeads 1065 474 363 74.58 69.20 

DMRcate 1385 2 43 96.99 99.86 

Bumphunter 1066 79 362 74.65 93.10 

Probe Lasso 170 0 1258 11.30 100.00 

Δβ = 0.2 

Method TP FP FN Sensitivity (%) PPV (%) 

mCSEA 1428 25 0 100.00 98.28 

Averaged regions 1428 133 0 100.00 91.48 

RnBeads 173 65 1255 12.11 72.69 

DMRcate 157 0 1271 10.99 100.00 

Bumphunter 115 77 1313 8.05 59.90 

Probe Lasso 0 0 1428 0.00 NA 

Δβ = 0.1 

Method TP FP FN Sensitivity (%) PPV (%) 

mCSEA 325 31 1103 22.76 91.29 

Averaged regions 0 2 1428 0.00 0.00 

RnBeads 0 0 1428 0.00 NA 

DMRcate 0 0 1428 0.00 NA 

Bumphunter 1 68 1427 0.07 1.45 

Probe Lasso 0 0 1428 0.00 NA 

Supplementary Tables 3, 4 and 5 are Excel spreadsheets that can be accessed at the 

Bioinformatics journal site.
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7.4 A COMPREHENSIVE AND CENTRALIZED DATABASE FOR EXPLORING OMICS 

DATA IN AUTOIMMUNE DISEASES 
This article is currently under review at BMC Bioinformatics journal. This is a non peer-reviewed preprint 

published at the bioRxiv repository (2020.06.10.144972; doi: https://doi.org/10.1101/2020.06.10.144972). 
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Abstract 

Autoimmune diseases are heterogeneous pathologies with difficult diagnosis and few 

therapeutic options. In the last decade, several omics studies have provided significant 

insights into the molecular mechanisms of these diseases. Nevertheless, data from 

different cohorts and pathologies are stored independently in public repositories and a 

unified resource is imperative to assist researchers in this field.  Here, we present ADEx 

(https://adex.genyo.es), a database that integrates 82 curated transcriptomics and 

methylation studies covering 5609 samples for some of the most common autoimmune 

diseases. The database provides, in an easy-to-use environment, advanced data analysis 

and statistical methods for exploring omics datasets, including meta-analysis, differential 

expression or pathway analysis. 

Keywords: Autoimmune disease, database, GEO, transcriptomics, epigenomics, 

curation, dataset, interferon signature, gene expression, meta-analysis 
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Background 

Autoimmune diseases (ADs) are a group of complex and heterogeneous disorders 

characterized by immune responses to self-antigens leading to tissue damage and 

dysfunction in several organs. The pathogenesis of ADs is not fully understood, but both 

environmental and genetic factors have been linked to their development [1]. Although 

these disorders cause damage to different organs and their clinical outcomes vary between 

them, they share many risk factors and molecular mechanisms [2]. Some examples of 

ADs are systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren’s 

syndrome (SjS), systemic sclerosis (SSc), considered systemic autoimmune diseases 

(SADs) and type 1 diabetes (T1D), which is considered an organ-specific autoimmune 

disease. Most of these diseases are classified as rare given their prevalence, but altogether 

ADs affect up to 3 % of the population considering conservative estimates [3]. 

In ADs patients, the pathology is developed during several years but it is only detected 

when tissue damage is significant. For that reason, early diagnosis is important and 

complicated. Additionally, some ADs often show a non-linear outcome that alternates 

between active and remission stages thus making their study even more difficult. Despite 

huge efforts have been made to develop ADs biomarkers and therapies, these do not fit 

for every patient and their clinical responses differ greatly [4]. 

During the past decade, the use of omics technologies has provided new insights into the 

molecular mechanisms associated with the development of ADs, opening new scenarios 

for biomarkers and treatments discovery [5]. In this context, it is remarkable the 

characterization of the type I interferon (IFN) gene expression signature as a key factor 

in the pathology of some SADs, especially in SLE and SjS [6], which has improved our 

knowledge of the underlying molecular mechanisms and has opened new therapeutic 

strategies based on blocking the pathways related to this signature. 

Regardless of the large amount of omics studies describing new biomarkers and 

therapeutic strategies in ADs [7–10], in most cases these biomarkers are not consistent 

across different studies or have not fully accomplished their diagnostic goals. Indeed, the 

widely studied IFN signature is highly variable between patients [11] and it is associated 

with differences in response to treatments which target it, as has been reported for 

example in the phase-II results of Sifalimumab clinical trial for SLE patients [12]. In 
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addition, in most of the cases, biomarkers are defined from the analysis of a single type 

of omic data (commonly gene expression), but multi-omics data integration can provide 

a more complete understanding of molecular mechanisms and more robust and 

biologically relevant biomarkers. 

Most of the omics datasets generated from different cohorts and studies in ADs published 

to date have been deposited and are available in public repositories such as Gene 

Expression Omnibus (GEO) [13] or ArrayExpress [14]. Although all these valuable data 

can be used in retrospective analyses in order to generate new knowledge and accelerate 

drug discovery and diagnosis, it is not easy to compare neither to integrate available data 

because they are generated from different platforms and/or processed with different 

analytic pipelines. In this context, there are great efforts from the bioinformatics 

community to develop standardized data analysis workflows and resources that facilitate 

data integration and reproducible analysis. For example, Lachmann et al. [15] have 

recently reprocessed a large collection of raw human and mouse RNA-Seq data from 

GEO and Sequence Read Archive (SRA) using a unified pipeline and they have 

developed the ARCHS4 as a resource to provide direct access to these data through a 

web-based user interface. Other singular projects such as The Cancer Genome Atlas 

(TCGA) [16] or the Genotype-Tissue Expression project (GTEx) [17] provide also large 

and homogeneously processed datasets for tumor samples and human tissues 

respectively. These unprecedented resources motivate the development of applications 

and data portals to help researchers gather information with the aim of improving 

diagnosis and treatment in multiple diseases, most notably in cancer research, where such 

information is actually being used in the clinical practice [18]. 

Despite such enormous potential, in the context of ADs there is a lack of a centralized 

and dedicated resource that facilitates the exploration, comparison and integration of 

available omics datasets. This is indeed an area in which this type of application would 

be tremendously beneficial, given that the low prevalence of each individual disease 

makes difficult the recruitment of large patients cohorts [4]. 

To bridge this gap, in this work we have compiled and curated most of the publicly 

available gene expression and methylation datasets for five ADs: SLE, RA, SjS, SSc and 

T1D. To this end, we have developed and applied homogeneous pipelines from raw data 

and we developed ADEx (Autoimmune Disease Explorer), a data portal where these 
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processed data can be downloaded and exploited through multiple exploratory and 

statistical analyses. ADEx facilitates data integration and analysis to potentially improve 

diagnosis and treatment of ADs.  

In order to demonstrate the potential, we queried the database to explore the expression 

pattern of IFN regulated genes across all autoimmune diseases. This analysis revealed 

that the IFN signature is consistent in SLE and SjS but it shows heterogeneity in RA 

samples. In a second analysis, we integrated all datasets in order to define a set of 

consistent biomarkers for each disease considering the expression data from multiple 

studies. 

Construction and content 

We have prepared five different pipelines to process data for each platform (RNA-Seq, 

Affymetrix and Illumina gene expression microarrays, and Illumina methylation arrays 

27K and 450K). All these workflows are written in R language and are publicly available 

in GENyO Bioinformatics Unit GitHub (https://github.com/GENyO-

BioInformatics/ADEx_public). Figure 1 contains an overview of the different steps 

performed to prepare the data for ADEx application. 

Data collection 

Collection of the datasets included in ADEx was carried out by searching in the GEO web 

page with ADs names as key terms. We filtered the results by study type (expression 

profiling by array, expression profiling by high throughput sequencing and methylation 

profiling by array), organism (Homo sapiens) and platform manufacturer (Affymetrix or 

Illumina). 

We downloaded the metadata for these initial datasets with GEOquery [19] R package in 

order to apply our inclusion criteria and exclude those studies and samples that do not 

meet them. We only included case-control studies from samples, which were not treated 

with drugs in vitro. Exclusively datasets with available raw data were considered. Studies 

whose controls and cases belong to different tissues were discarded. We only selected 

datasets with 10 samples at least. We divided the datasets containing samples from 
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different diseases, platforms, tissues or cell types in subgroups so that these are constant 

and avoid possible batch effects. 

82 datasets containing 5609 samples passed our filtering criteria (see Additional file 1 for 

complete information about all included datasets). Then we downloaded their raw data 

with GEOquery [19]. For expression microarrays, we downloaded CEL files and raw text 

files for Affymetrix and Illumina platforms respectively. For RNA-Seq, we downloaded 

the fastq files from the European Nucleotide Archive. For methylation microarrays, we 

downloaded raw methylation tables if they were available and idat files otherwise. 

Metadata curation 

GEO does not require submitters to use either a fixed structure or standard vocabulary to 

describe the samples of an experiment. For that reason, it was necessary to manually 

homogenize the information provided within all the selected datasets using standardized 

terms. There are some methods for automatic curation of GEO metadata, but manual 

curation is still necessary to get high-quality metadata [20]. This metadata curation was 

an essential step for the following analyses and permits an easy datasets information 

exploration. 

Platforms curation 

We have used a total of 12 different gene expression platforms from microarray and 

RNA-Seq technologies. Microarray platforms quantify expression levels in probes. In 

order to match probe identifiers to gene names, platforms annotation files are available 

from GEO. However, we found that some of these annotation files match probes to 

inappropriate gene names. On the one hand, some platforms save gene names with errors 

due to the conversion of gene names such as MARCH1 or SEPT1 into dates, a common 

error that has been reported previously [21].  In these cases, we fixed manually these 

genes in the annotation files. On the other hand, some platforms use obsolete or different 

aliases to refer to the same genes. We used human genes’ information from NCBI 

repository in order to match aliases with actual official gene symbols and substituted them 

in the platform annotations. 
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Figure 1. Processing pipeline for ADEx data. Black arrows indicate intermediate processing steps. Red 

arrows indicate the inputs to ADEx application. 

Data processing 

Raw data from Illumina expression microarrays were loaded by reading the plain text 

files. In order to remove background noise, we kept only the probes that had a Detection 

P-value lower than 0.05 in 10 % of the samples. Then we performed a background

correction and quantile normalization [22] using neqc function from limma package [23]. 

CEL files from Affymetrix expression microarrays platforms were loaded to R 

environment with affy package [24]. To filter low intensity probes, we removed all probes 

with an intensity lower than 100 in at least 10 % of the samples. Normalization was 

carried out computing Robust Multichip Average (RMA) normalization [25] with affy 

package [24]. 

For RNA-Seq datasets, fastq files were aligned to human transcriptome reference hg38 

using STAR 2.4 [26] and raw counts were obtained with RSEM v1.2.31[27] with default 

parameters. Raw counts were filtered using NOISeq R package [28], removing those 

features that have an average expression per condition lower than 0,5 counts per million 
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(CPM) and a coefficient of variation (CV) higher than 100 in all conditions. Counts 

normalization was carried out with TMM method [29]. 

We translated microarrays probes identifiers to gene symbols using our curated 

annotation tables. For those genes targeted by two or more microarray probes, we 

calculated the median expression values of all their targeting probes. For RNA-Seq, we 

translated ENSEMBL identifiers to gene symbols using biomaRt package [30, 31].  

Methylation raw data are available in GEO as idat or text files depending on the dataset. 

Idat files were read with minfi package [32], while text files were read in the R 

environment. In both cases, poorly performing probes with a detection P-value above 0.05 

in more than 10 % of samples were removed. Probes adjacent to SNPs, located in sexual 

chromosomes or reported to be cross-reactive [33] were also removed. We normalized 

the methylation signals using quantile normalization with lumi package [34]. Finally, for 

datasets generated with 450k platform, we applied BMIQ normalization [35] using 

wateRmelon package [36] in order to correct for the two types of probes contained in this 

platform. 

Differential expression analysis 

We performed a differential expression analysis in all datasets independently towards the 

identification of differential patterns among disease samples and healthy controls. These 

analyses were performed in different ways depending on the source of data. Gene 

expression profiles from microarray platforms were carried out by the standard pipeline 

of limma package [23]. We used lmFit function to fit a linear model to the gene expression 

values followed by the execution of a t-test by the empirical Bayes method for differential 

activity (eBayes function). On the other hand, gene expression profiles from RNA-Seq 

platforms were analyzed by the standard pipeline of DESeq2 package [37]. In both cases, 

differential expression analysis provided P-values, adjusted P-values by False Discovery 

Rate (FDR) and log2 Fold-Change (FC). 

Pathway analysis 

Pathway enrichment analysis was precomputed for each expression dataset using 

differential expression analysis results. We considered DEGs those genes with a FDR 

lower than 0.05 and we performed hypergeometric tests to check if each pathway contains 
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more DEGs as expected by chance. We used KEGGprofile 1.24.0 R package to perform 

this analysis but beforehand we manually updated its dependency, KEGG.db, the 

database used to perform the statistical test. The pathways were plotted using the KEGG 

mapper tool Search&Color Pathway, with the genes colored by their FC between case 

and control samples. 

Signaling network analysis 

We integrated signaling network analysis applying HiPathia software [38] to gene 

expression data so that changes in the activity of the network from different pathways can 

be detected. We precomputed this analysis for each gene expression dataset. Firstly, we 

translated the gene expression matrix and scaled it. Then, we calculated the transduction 

signal and compared among conditions, cases and controls. 

Causal networks inference 

We used the CARNIVAL [39] R package pipeline to analyze the causal networks 

architectures from gene expression data. For that aim, we followed the instructions 

published by their creators at https://github.com/saezlab/transcriptutorial. Briefly, 

differential expression analyses were performed with limma [23] and the results were 

used to calculate the transcription factor activities with DoRothEA [40] and the pathways 

activities with PROGENy [41]. These results were the input of CARNIVAL to calculate 

the upstream regulatory signaling pathways for each expression dataset. Finally, the 

results were stored in interactive html reports. 

Database architecture 

Pursuing an optimal data organization and quick access to all the data in ADEx, we have 

enabled an internal database with PostgreSQL. We chose this technology since it is open 

source and it is best suited to the huge dimensionality of omics datasets. 

Webtool 

ADEx user interface was designed with RStudio Shiny package. The application uses a 

set of external packages to perform analysis and graphics on demand. Most of the plots 

are generated with ggplot2 [42]. All the computations in the Meta-Analysis section are 

performed whenever users request them. Biomarkers analysis is performed with the Rank 
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Products algorithm integrated in RankProd R package [43]. The tool runs on our own 

server with CentOS 7.0 operating system, 16 processors and 32 Gb of RAM memory. 

Utility and discussion 

Data collection and processing 

ADEx contains data from 5609 samples. We have processed 82 expression and 

methylation datasets from case-control studies for SLE, RA, SjS, SSc and T1D diseases 

(see Table 1 for a summary and Additional file 1 for complete information about all 

included datasets). We have manually curated all metadata in order to standardize the 

nomenclature of phenotypes, cell types, etc. from different studies and discard samples 

or datasets that do not meet the selection criteria (see Construction and content section). 

The processed datasets are available from the Download Data section in the application. 

The ADEx application 

ADEx data portal can be used to download and analyze the processed data. ADEx is freely 

available at https://adex.genyo.es. The tool is divided in 6 different sections arranged in 

different tabs (Figure 2a). 

Table 1. Summary of accessible studies and samples by disease and data type in ADEx. 

Expression Methylation Total 

Disease Datasets - Samples Datasets - Samples Datasets - Samples 

SLE 20 - 2053 13 - 628 33 - 2681 

RA 17 - 1122 3 - 835 20 - 1957 

SjS 9 - 400 1 - 29 10 - 429 

SSc 5 - 229 1 - 37 6 - 266 

T1D 11 - 176 2 - 100 13 - 276 
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Section 1: Data overview 

Information about the available datasets can be found in both table or pie plot formats in 

this section. In tables, information about the sample phenotype and their data origin is 

provided. In pie plots quantitative information is provided regarding the clinical and 

phenotype information. All this information has been extracted from GEO or from the 

associated published articles whenever supplied. This information can be presented 

individually for each dataset or grouped by disease. While a single dataset is being 

explored, the experiment summary is shown. Users can use this section to identify 

datasets of their interest to be analyzed in the following sections. 

Section 2: Gene Query 

This section was created in order to explore the expression and methylation of a specific 

gene, or the correlation between them, within a single dataset. Users can explore the 

different gene expression values for each dataset comparing case and control samples 

with a boxplot. Meanwhile, methylation data is presented at CpG level, so that users can 

select a region of the gene (e.g. promoter) and the mean methylation value for cases and 

controls is plotted for every CpG probe contained in the selected region. 

It has been demonstrated the strong relationship of gene expression and methylation 

levels [44]. That is why, in this section, users can also integrate both expression and 

methylation values to search for direct or inverse correlations. Finally, gene expression 

correlation analysis can be performed in order to get insight into the relationship between 

different genes and to find groups of coexpressed genes. 

Section 3: Gene Set Query 

Here users can select several datasets and genes in order to explore the FC between 

patients and controls across studies. All datasets from a disease can be automatically 

selected by clicking the right buttons, or individual studies can be selected by clicking 

directly on the table. Users can introduce a list of genes to explore their expression, 

although there are several preloaded gene lists covering the coexpression modules 

reported by Chaussabel et al. [45]. These modules consist of sets of coexpressed genes 

among hundreds of samples from different diseases. Each transcriptional module is 

associated with different pathways and cell types, most of them related to the immune 
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system [45]. See our use case 1 for an example of this type of analysis (Figures 2b and 

2c).  

Section 4: Analyze Dataset 

In this section, we focus the analysis on whole datasets instead of individual genes. By 

default, a heatmap with the expression of the top 50 differentially expressed genes 

(DEGs) sorted by FDR is displayed. It is also possible to sort them by FC and cutoffs can 

be applied to both statistics. Additionally, differential expression analysis results can be 

downloaded as an excel table.  

Furthermore, users can also study the KEGG [46] enriched pathways associated with the 

dataset selected. These results are precomputed using all the DEGs that have an FDR 

value below 0.05. A table gathers the significantly enriched KEGG pathways along with 

their associated hypergeometric test statistics and an interactive plot shows detailed 

information of the participant genes in the pathway colored according to their FC.  

Beyond conventional pathway enrichment methods, we have implemented more 

sophisticated mechanistic models of cell signaling activity which have demonstrated to 

be very sensitive in deciphering disease mechanisms [38, 47] as well as the mechanisms 

of action of drugs [48, 49]. To offer this functionality we have applied HiPathia software 

[38] to gene expression data. This method estimates changes in the activity of signaling

circuits defined into different pathways. With this approach, it becomes possible to study 

in detail the specific signaling circuits altered in ADs within the different signaling 

pathways. We precomputed this analysis for each dataset and the results are available as 

tables and interactive reports. 

Finally, in this section the results of causal pathways analyses are available. We used 

CARNIVAL [39] software to construct the network topologies from the gene expression 

datasets in order to identify upstream alterations propagated through signaling networks 

in autoimmune diseases. 

Section 5: Meta-Analysis 

ADEx also implements meta-analysis functionalities based on gene expression data to 

integrate and jointly analyze different and heterogeneous datasets. We implemented a 

meta-analysis approach to search for biomarkers and common gene signatures across 
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different datasets from the same or different pathologies [50] based on the FCs of each 

dataset and gene. Datasets have to be selected similarly to Section 3 to launch the meta-

analysis. See our use case 2 for examples of this type of analysis (Figure 3). 

Figure 2. Overview of ADEx application and analysis of IFN signature across diseases. a) ADEx has 

six main sections. Section 1 provides information about available datasets. In section 2, users can explore 

expression and methylation for individual genes. Section 3 implements a module to explore data for a gene 

list, such as gene module or genes from a biological pathway, across several datasets. Section 4 allows 

researchers to perform analysis on individual datasets retrieving differential expression signatures and 

pathways and cell signaling enrichment analyses. Section 5 implements meta-analysis methods to integrate 

multiple datasets in order to define common biomarkers. Section 6 is for data download. b) Gene Set Query 

section screenshot. Datasets and gene set input is shown. Users select data there to plot a heatmap. c) IFN 

signature expression generally separates SLE and SjS from other ADs. Heatmap with the IFN genes 

generated in ADEx. Color represents the log2 FC of disease versus healthy samples (red for overexpression 

and blue for underexpression). 
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Section 6: Download data 

In this section, users can select one or several datasets and download them. Curated data 

is obtained with the aim of performing additional analyses externally to ADEx 

application. 

Use case 1: Exploring the IFN signature across diseases 

Using as a query a set of genes (a gene expression signature, genes from the same 

pathway, etc.), it becomes straightforward to explore how the signature is expressed 

across different datasets or diseases. In order to demonstrate the potential of ADEx, we 

explored the IFN signature expression status in different diseases given its importance in 

the autoimmune disorders [11]. To address this goal, we evaluated the expression level 

across all datasets of IFN signature previously defined [51] (Figure 2b). We observed that 

IFN signature is strongly overexpressed in SLE and SjS patients (Figure 2c), as previously 

described [52, 53]. These two diseases are clearly separated from the other pathologies 

based on these IFN-regulated modules. RA IFN signature is highly heterogeneous, which 

is coherent with previous studies [54]. Interestingly, IFN modules are overexpressed in 

most of the RA studies that used synovial membrane tissue, while this effect is absent or 

very subtle in most of the RA blood studies. This is expected because the primary 

inflammation sites in this disease are the synovial joints [55]. 

Use case 2: Biomarker discovery in ADs 

To show the functionality of ADEx for biomarker discovery, we also performed a disease-

centered meta-analysis with all the datasets included in the database in order to define 

candidate biomarkers for each disease. We removed those genes with NA values in more 

than 75 % of the samples and we used RankProd package [43] to calculate the Rank 

Product statistics and the adjusted P-value. We considered significant those genes with 

adjusted P-value < 0.05. Since there are datasets from different cell types, tissues, 

platforms and so on, our aim was to find global biomarkers independently of all those 

variables.  We discovered 1703 consistently deregulated genes in SLE, 367 in SjS, 743 

in RA, 45 in SSc and 294 in T1D (Figure 3 and Additional file 2). We used the information 

from Interferome database [56] to annotate each gene depending on how each type of IFN 

affects its expression (upregulation or downregulation). For that aim, we queried the 

Interferome database, searching for genes with an absolute log2 FC > 2 after IFN addition. 
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Figure 3. Integration of multiple datasets reveal candidate biomarkers for each disease. The observed 

effect of IFN I, II and III on gene expression is annotated at the left of each heatmap. Color represents the 

log2 FC. Heatmaps contains the significant biomarkers for a) SLE, b) SjS, c) RA, d) T1D and e) SSc. 

Given that this database contains different experimental conditions, we averaged the log2 

FC and considered as genes upregulated by IFN those with an average log2 FC > 0 and 

as downregulated those with an average log2 FC < 0. As can be observed in Figure 3, 

most of SLE, SjS and RA biomarkers are expressed according to the observed IFN effect 

on them, supporting the major role of IFN action in these diseases. It is notable the 

contribution of type II IFN (IFN II) to the observed expression changes. IFN II role in 

ADs is frequently underestimated in favour of type I IFN (IFN I) and, in fact, IFN 

signature definitions commonly focus on genes regulated by IFN I [6, 10, 52]. However, 

it has been demonstrated that Type II IFN has a key role in ADs pathogenesis [57]. Our 

findings support such importance and the need to focus the attention on IFN II regulation 

pathways to design new therapeutic strategies.  

In RA, the strongest biomarker signals come from synovial tissue studies, and these 

datasets are perfectly separated from the blood studies. This is coherent with the IFN 

signature expression results (Figure 2c). 
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Conclusions 

Despite that the heterogeneity of ADs is evident, there are common molecular 

mechanisms involved in the activation of immune responses. In this context, integrative 

analyses of multiple studies are crucial to discover shared and differential molecular 

signatures [58]. Nowadays there are many ADs datasets publicly available, but a strong 

computational knowledge is necessary in order to analyze them properly. With the aim 

of filling this gap between experimental research and computational biology, interactive 

easy-to-use software are valuable tools to perform exploratory and statistical analysis 

without strong computational expertise. This type of tool has been developed for other 

diseases and has helped to reuse public data and generate new knowledge and hypotheses 

[59–61]. 

A resource of this type is urged in the field of ADs to: 1) Compile available ADs’ public 

data in a single data portal, 2) Access to integrable data processed with uniform pipelines, 

and 3) Perform both individual and integrated analysis interactively. We developed ADEx 

database to accomplish all those objectives. Then, we used ADEx data and functions to 

illustrate our tool potential exploring the IFN signature in different diseases and revealing 

genes consistently over- and underexpressed which could be good biomarkers for these 

diseases. 

As far as we know, ADEx is the first ADs omics database and we expect it to be a 

reference in this area. During the coming years, ADEx will be expanded including data 

from more ADs and other omics.  
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Additional file 1 

Additional file 1. Description of the datasets included in the ADEx database. This 

table contains information about each study included in ADEx, with disease, platform, 

sample size and reference (if available). 

Dataset 
Studied 

disease 
Experimental strategy Platform 

Sample 

size 
Reference 

GSE10325 SLE 
Expression profiling by 

array 

[HG-U133A] Affymetrix 

Human Genome U133A 

Array 

67 [1] 

GSE104174 SSc 

Expression profiling by 

high throughput 

sequencing 

Illumina HiSeq 2500 

(Homo sapiens) 
72 [2] 

GSE108497 SLE 
Expression profiling by 

array 

Illumina HumanHT-12 

V4.0 expression 

beadchip 

512 NA 

GSE110007 SjS 
Methylation profiling by 

array 

Illumina 

HumanMethylation450 

BeadChip 

(HumanMethylation450_

15017482) 

31 [3] 

GSE110169 SLE, RA 
Expression profiling by 

array 

[HG-U219] Affymetrix 

Human Genome U219 

Array 

234 [4] 

GSE110174 SLE 
Expression profiling by 

array 

[HT_HG-

U133_Plus_PM] 

Affymetrix HT HG-

U133+ PM Array Plate 

154 [4] 

GSE110607 SLE 
Methylation profiling by 

genome tiling array 

Illumina 

HumanMethylation450 

BeadChip 

(HumanMethylation450_

15017482) 

104 [5] 

GSE110914 T1D 

Expression profiling by 

high throughput 

sequencing 

Illumina HiSeq 2500 

(Homo sapiens) 
42 [6] 

GSE112341 T1D 

Expression profiling by 

high throughput 

sequencing 

Illumina HiSeq 2500 

(Homo sapiens) 
22 [7] 

GSE117931 SSc 

Expression profiling by 

array, Methylation 

profiling by genome 

tiling array 

llumina HumanHT-12 

WG-DASL V4.0 R2 

expression beadchip, 

Illumina 

HumanMethylation450 

BeadChip 

(HumanMethylation450_

15017482) 

74 NA 

GSE11907 SLE 
Expression profiling by 

array 

[HG-U133A] Affymetrix 

Human Genome U133A 

Array 

[HG-U133B] Affymetrix 

Human Genome U133B 

Array 

546 [8] 
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Dataset 
Studied 

disease 
Experimental strategy Platform 

Sample 

size 
Reference 

GSE12021 RA 
Expression profiling by 

array 

[HG-U133A] Affymetrix 

Human Genome U133A 

Array 

[HG-U133B] Affymetrix 

Human Genome U133B 

Array 

57 [9] 

GSE124073 SSc 

Expression profiling by 

high throughput 

sequencing 

Illumina HiSeq 2000 

(Homo sapiens) 
73 [10] 

GSE124939 SLE 

Expression profiling by 

high throughput 

sequencing 

Illumina HiSeq 4000 

(Homo sapiens) 
72 [11] 

GSE13887 SLE 
Expression profiling by 

array 

[HG-U133_Plus_2] 

Affymetrix Human 

Genome U133 Plus 2.0 

Array 

27 [12] 

GSE23117 SjS 
Expression profiling by 

array 

[HG-U133_Plus_2] 

Affymetrix Human 

Genome U133 Plus 2.0 

Array 

15 [13] 

GSE24706 SLE 
Expression profiling by 

array 

Illumina HumanWG-6 

v3.0 expression beadchip 
48 [14] 

GSE27895 SLE 
Methylation profiling by 

array 

Illumina 

HumanMethylation27 

BeadChip 

(HumanMethylation27_2

70596_v.1.2) 

23 [15] 

GSE30153 SLE 
Expression profiling by 

array 

[HG-U133_Plus_2] 

Affymetrix Human 

Genome U133 Plus 2.0 

Array 

26 [16] 

GSE38351 SLE,RA 
Expression profiling by 

array 

[HG-U133A] Affymetrix 

Human Genome U133A 

Array 

[HG-U133_Plus_2] 

Affymetrix Human 

Genome U133 Plus 2.0 

Array 

74 [17] 

GSE40611 SjS 
Expression profiling by 

array 

[HG-U133_Plus_2] 

Affymetrix Human 

Genome U133 Plus 2.0 

Array 

49 [18] 

GSE42861 RA 
Methylation profiling by 

array 

Illumina 

HumanMethylation450 

BeadChip 

(HumanMethylation450_

15017482) 

689 [19] 

GSE45291 SLE,RA 
Expression profiling by 

array 

[HT_HG-

U133_Plus_PM] 

Affymetrix HT HG-

U133+ PM Array Plate 

805 [20] 

GSE50772 SLE 
Expression profiling by 

array 

[HG-U133_Plus_2] 

Affymetrix Human 

Genome U133 Plus 2.0 

Array 

81 [21] 

GSE51092 SjS 
Expression profiling by 

array 

Illumina HumanWG-6 

v3.0 expression beadchip 
222 [22] 
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Dataset 
Studied 

disease 
Experimental strategy Platform 

Sample 

size 
Reference 

GSE55098 T1D 
Expression profiling by 

array 

[HG-U133_Plus_2] 

Affymetrix Human 

Genome U133 Plus 2.0 

Array 

22 [23] 

GSE55235 RA 
Expression profiling by 

array 

[HG-U133A] Affymetrix 

Human Genome U133A 

Array 

30 [24] 

GSE55457 RA 
Expression profiling by 

array 

[HG-U133A] Affymetrix 

Human Genome U133A 

Array 

33 [24] 

GSE56606 T1D 
Methylation profiling by 

array 

Illumina 

HumanMethylation27 

BeadChip 

(HumanMethylation27_2

70596_v.1.2) 

100 [25] 

GSE56649 RA 
Expression profiling by 

array 

[HG-U133_Plus_2] 

Affymetrix Human 

Genome U133 Plus 2.0 

Array 

22 [26] 

GSE57383 RA 
Expression profiling by 

array 

[HT_HG-

U133_Plus_PM] 

Affymetrix HT HG-

U133+ PM Array Plate 

112 [27] 

GSE57869 SLE 
Methylation profiling by 

array 

Illumina 

HumanMethylation27 

BeadChip 

(HumanMethylation27_2

70596_v.1.2) 

12 [28] 

GSE59250 SLE 
Methylation profiling by 

array 

Illumina 

HumanMethylation450 

BeadChip 

(HumanMethylation450_

15017482) 

434 [29] 

GSE60424 T1D 

Expression profiling by 

high throughput 

sequencing 

Illumina HiScanSQ 

(Homo sapiens) 
134 [30] 

GSE61635 SLE 
Expression profiling by 

array 

[HG-U133_Plus_2] 

Affymetrix Human 

Genome U133 Plus 2.0 

Array 

129 NA 

GSE63903 SSc 
Expression profiling by 

array 

Illumina HumanHT-12 

V4.0 expression 

beadchip 

14 [31] 

GSE65010 RA 
Expression profiling by 

array 

[HG-U133_Plus_2] 

Affymetrix Human 

Genome U133 Plus 2.0 

Array 

48 [32] 

GSE65391 SLE 
Expression profiling by 

array 

Illumina HumanHT-12 

V4.0 expression 

beadchip 

996 [33] 

GSE71841 RA 
Methylation profiling by 

array 

Illumina 

HumanMethylation450 

BeadChip 

(HumanMethylation450_

15017482) 

24 NA 

GSE72509 SLE 

Expression profiling by 

high throughput 

sequencing 

Illumina HiSeq 2500 

(Homo sapiens) 
117 [34] 
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Dataset 
Studied 

disease 
Experimental strategy Platform 

Sample 

size 
Reference 

GSE7451 SjS 
Expression profiling by 

array 

[HG-U133_Plus_2] 

Affymetrix Human 

Genome U133 Plus 2.0 

Array 

20 [35] 

GSE77298 RA 
Expression profiling by 

array 

[HG-U133_Plus_2] 

Affymetrix Human 

Genome U133 Plus 2.0 

Array 

23 [36] 

GSE80183 SLE 

Expression profiling by 

high throughput 

sequencing 

Illumina HiSeq 2000 

(Homo sapiens) 
16 [37] 

GSE82221 SLE 

Expression profiling by 

array, Methylation 

profiling by genome 

tiling array 

Illumina HumanHT-12 

V4.0 expression 

beadchip, Illumina 

HumanMethylation450 

BeadChip 

(HumanMethylation450_

15017482) 

110 [38] 

GSE84844 SjS 
Expression profiling by 

array 

[HG-U133_Plus_2] 

Affymetrix Human 

Genome U133 Plus 2.0 

Array 

60 [39] 

GSE87095 RA 
Methylation profiling by 

array 

Illumina 

HumanMethylation450 

BeadChip 

(HumanMethylation450_

15017482) 

122 [40] 

GSE89408 RA 

Expression profiling by 

high throughput 

sequencing 

Illumina HiSeq 2000 

(Homo sapiens) 
218 [41] 

GSE90081 RA 

Expression profiling by 

high throughput 

sequencing 

Illumina HiSeq 2000 

(Homo sapiens) 
24 [42] 

GSE93683 SjS 
Expression profiling by 

array 

[HG-U133_Plus_2] 

Affymetrix Human 

Genome U133 Plus 2.0 

Array 

48 [39] 

GSE95065 SSc 
Expression profiling by 

array 

[HG-U133A_2] 

Affymetrix Human 

Genome U133A 2.0 

Array (HGU133A2 Hs 

ENTREZG 19.0.0) 

33 NA 
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the development of the thesis, including works and collaborations out of the focus of the 

thesis. For articles published in JCR journals, the impact factor (IF) and position (Q = 
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