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Abstract

In this work we present a study on the features of electron transport and

photon absorption in quantum dot arrays. We developed theoretical models

and implemented a simulator to assess the viability of semiconductor colloidal

quantum dot arrays as solar cell active components. To this end, we have focused

our study on the calculation of the miniband structure, carrier mobility and

photon absorption coefficient.

In this thesis we investigated carrier transport in quantum dot superlatti-

ces, a kind of highly ordered systems. Transport in these systems have been

widely studied using hopping models. These approaches seem to be adequate

for disordered and diluted systems, where quantum dot eigenstates overlap

weakly and with no periodicity with other neighboring quantum dot. As the

state of the art continues to advance towards higher quality, better ordered

quantum dot arrays, experimental results report data evidencing band-like

transport features. In this thesis we propose a novel picture helping to unders-

tand carrier transport in these systems, combining impurity scattering effects

with the carrier ensemble thermalization through phonon scattering contribution.

Regarding photon absorption, we mainly focused on studying the influence

of quantum dot material, size and interdot distance in the absorption in two-

dimensional arrays. We carried out a deep analysis on the influence of light pola-

rization, Fermi level position and temperature in the system. We developed this

study with the aim of proposing several strategies focused on finding applications

on intermediate band solar cells. Finally a set of unpublished results are presented

7



on this topic for finite systems.



Resumen

En este trabajo se presenta un estudio de las propiedades del transporte

electrónico y la absorción de fotones en redes de puntos cuánticos. Hemos

desarrollado modelos teóricos e implementado un simulador para evaluar la

viabilidad de puntos cuánticos de semicondictor como componentes para células

solares. Para ello, se ha enfocado este estudio en el cálculo de las propiedades de

la estructura de minibandas, movilidad electrónica y coeficiente de absorción de

fotones.

En esta tesis se ha investigado el transporte de electrones en superredes

de puntos cuánticos, un tipo de sistemas altamente ordenados. El transporte

en este tipo de sistemas ha sido estudiado comúnmente mediante modelos de

hopping. Estos modelos han demostrado su eficacia en sistemas desordenados

y disoluciones, en los cuales los autoestados cuánticos tienen un solapamiento

débil y en los cuales no hay periodicidad. A medida que la tecnoloǵıa progresa,

cada vez se fabrican dispositivos de mayor calidad, en los cuales los puntos

cuánticos están más ordenados. En estos dispositivos los datos experimentales

evidencian un mecanismo de transporte de electrones con caracteŕısticas propias

de la conducción a través de bandas de enerǵıa. En esta tesis proponemos un

nuevo modelo para ayudar a entender el transporte en estos sistemas en el cual

se combina la dispersión de electrones por la presencia de impurezas con la

termalización mediante dispersión electrón-fonón.

En cuanto a absorción de fotones, nos hemos centrado en el estudio de la

dependencia de la absorción con el material del que está compuesto el punto
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cuántico, su tamaño, y la distancia entre puntos cuánticos en redes bidimensio-

nales. Hemos llevado a cabo un análisis en profundidad sobre la dependencia de

la absorción con la dirección de polarización de la luz, temperatura y nivel de

Fermi. Este estudio se ha desarrollado con el objetivo de proponer estrategias

focalizadas en encontrar aplicaciones para células solares de banda intermedia.

Por último, se presentarán resultados aún no publicados sobre este tema en redes

de dimensiones finitas.
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16 1. Introduction and background

1.1. Motivation

Solar cells are an emerging technology in our hyper industrialized society

whose high dependency on non-renewable energy sources has driven our species

to a point in which decisive action has to be taken in order to avoid an ecological

disaster with no return. To that end, this thesis is a comprehensive investigation

of one of the many solar cell technologies under the spotlight, quantum dot solar

cells. Quantum dots are one of the technologies that has risen the fastest in

terms of energy conversion in the last years[1].

In this research we propose the use of colloidal quantum dots, a form of

quantum dots (QDs) that exhibit low size dispersion and good passivation[2–4].

There are already several proposals of QDs as an active element in solar cells

which will be discussed later. In the case of this work it is proposed that with the

ever improving device fabrication quality, QDs can be arranged in a periodical

fashion, used to create a periodic lattice of quantum dots, in which we can adapt

the formalism and principles used in atomic crystals to understand the dynamics

of these types of systems.

The final goal of this work is to serve as a toolkit or guide to orient the

experimental work on colloidal quantum dots for optoelectronic applications,

easing the process of selection of the various properties of the desired device,

such as QD size, composition, operation temperature, etc.

1.2. Objectives and methodology

The aim of this work is to understand the underlying dynamics of electronic

carriers in QD periodic arrangements, proposing two models. One to describe

electrons under an external electric field and another one to describe light

interaction (photon absorption). To this end, there are two physical quantities

we have been able to calculate and compare to real data: electronic mobility and

photon absorption. These two quantities are essential to any solar cell operation,
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and are linked to other properties such as diffusion length and carrier lifetime.

During this work we used the following steps to obtain our results:

• An atomistic approach, the semiempirical pseudopotential, is used to mo-

del the isolated quantum dot, obtaining its eigenstates and calculating the

potential energy.

• The tight binding model is used to calculate the electronic structure for

periodic and finite QD ensembles.

• For the mobility calculations, we proposed a model based on the Markov

chain, significantly reducing computational time in simulations compared

to other computational approaches like, for example, Monte Carlo-based

calculations

• Lastly, for the absorption calculations we used the semiclassical approxi-

mation to calculate the electron-photon interaction.

In all steps of the calculations we have done a thorough exploration of the

different variables that have an effect on the final device, namely QD chemical

composition, morphology, stoichiometry, and QD size; and for the device configu-

ration, such as periodical lattice constant, temperature and Fermi level. We have

programmed a simulator to perform the calculations and compared them to real

data whenever available.

1.3. Overview

Quantum dots are structures whose dimensions are in the nanometer range.

As usual with this kind of systems, its dynamics are heavily affected by quantum

effects. In these systems, quantum confinement leads to a discrete energy

spectrum (in contrast with other nanoscopic systems such as quantum wires or

wells, or even bulk crystals). This discrete spectrum could inspire someone to

treat them as artificial atoms[5–7].
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Electronic properties depend importantly upon QD size. This is a key feature

of QDs. Quantities such as band gap can be tuned by changing the QD size for

a given material, and new quantum effects arise that are not observed in bulk

form (e.g. multiexcitonic effects[8] or indirect to direct band gap variations[9]).

Because of this, materials that are not interesting for optoelectronic applications

in their bulk form can be revisited for these purposes when synthesized in QD

form.

This poses the QD as a very promising field of research in material physics

[10–13]. Quantum dots present multiple potential uses, ranging from biomedical

approaches using their particular photoluminescense and biocompatibility [14–

19], new computing paradigms as quantum computing [20–22], lasers [13, 23–25],

and, the focus of this research, solar cells [26–33]

QD solar cell is one of the solar technologies whose efficiency has advanced

the quickest in recent years[1], achieving a 16.6 % efficiency[34]. We have

developed a simulator to calculate the band structure, electron mobility and

photon absorption coefficient to be able to assess the viability of QD candidates

for this technology.

On the QD synthesis level, there are mainly two approaches: top-down and

bottom-up[14]. This research accounts only for colloidal quantum dots, which are

a subcategory inside the bottom-up fabrication process. Colloidal quantum dots

are easily mass-synthesised while being possible to achieve a low size dispersion

and good passivation [2–4] i.e. the quantum dots have less probability of having

surface dangling bonds producing electron traps which would hinder electron

transport and device regularity[35, 36].

1.4. Quantum Dot Physics

The quantum dot has unique properties that are not only dependent on its

chemical species, but also on its size. This can be roughly explained by the
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“particle in a box” model. When the box is big enough the energy spectrum can

be assumed to be continuum. In the opposite case, when the box is sufficiently

small, we have discrete energy levels, and the position of these is heavily

dependent on the box dimensions. This simplified picture is the schema behind

the QDs radius-dependent properties.

The wave vector k labels each eigenstate in the “particle in a box” picture

(no spin is considered). The allowed wave vectors are determined by the box size,

and the eigenergies can be computed from the following relation.

Ek =
~2

2m

(
k2
x + k2

y + k2
z

)
(1.1)

ki =
niπ

L
(1.2)

where m is in this case the rest electron mass, Lx, Ly, Lz are the edge lengths

of the box and ni is a natural number to calculate k along the i-th direction.

As we can see, the lower the size along a particular direction, the more sparse

the energy levels are. This means that on any transition between eigenstates,

the electron energy changes a greater amount. As equation 1.1 shows, the

energy level separation grows as the size decreases. Thus when dealing with

quantum dots, little size differences have great impact on their properties such

as luminescence[14].

This can be seen in the density of states (DOS), which represents how many

quantum states per unit energy and volume the electron may occupy in a crystal

as a function of energy. As shown in figure 1.1, assuming a parabolic band (the

same as the “particle in a box”) this density behaves very distinctly depending

on the system’s dimensions. It can be observed that when the system is 3D

i.e. all dimensions are in the macroscopic scale, the DOS is proportional to the

square root of energy. When the system is 2D i.e. there is one dimension in the

nanoscopic scale, the density behaves like a step function. When the system is

1D the density is a set of inverse square roots of energy and when the system is
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0D i.e. all dimensions in the nanoscopic scale, the density of states becomes a

Dirac delta sequence.

Figure 1.1: Density of States (DOS) for different number of dimensions .

Figure 1.2: Schematic representation of the dependence on energy levels with size [32].

This simplistic model gives a first insight into the QD physics/properties.
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Nevertheless the complexity of the QD physics grows when the atomic structure

is taken into account. Atoms at the surface present dangling bonds which

produce unoccupied, localised energy levels. This would make the surface of the

quantum dot highly reactive, which usually is something to be avoided [14]. In

order to avoid these dangling bonds, these are contacted with surfactants. These

surfactants can also be used to help in the carrier transport process, since the

absence of surface traps results in extended wavefunctions with more overlap

between QDs.

Figure 1.2, showcases the general dependency of gap size with QD size. This

is one of the most important properties of quantum dots.

1.5. The semiempirical pseudopotential method

The pseudopotential method is an approach for solving Hamiltonians that

can be used to atomically model a system. In particular, when trying to solve

the valence electron eigenstates for an atom, the core electrons have to be taken

into account, at least for orthogonality reasons. As the electronic valence wave-

functions are not really far away from the core electrons, these wavefunctions

overlap in the inner parts of the atom, which does not allow to solve them

separately. On top of this problem it must be added the fact that the strong

attractive potential of the nucleus makes the core electrons’ wavefunctions very

oscillating. This causes the valence states’ wavefunctions to have high frequency

components, which can increase the difficulty of finding the solution.

This poses a problem when trying to express the valence wavefunctions φ(r)

as a set of plane waves as follows:

φi(r) =
∑
n

ci(Gn)eiGnr (1.3)

Equation 1.3 is the proposed ansatz for solving a Hamiltonian with plane

waves, where Gn are the reciprocal lattice vectors, ci are the plane wave
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expansion coefficients and φi(r) is the solution of the Hamiltonian. In order to

correctly describe the wavefunction, a very large set of plane waves needs to be

considered because of their high frequency components.

To solve this problem one can redefine the valence wavefunction as the core

electrons’ wavefunctions, χ(r) plus another term, which we denote ϕ(r):

|φ〉 = |ϕ〉+
∑
n

an |χn〉 (1.4)

where |χn〉 is the n-th core wavefunction, an is the n-th expansion coefficient

and |ϕ〉 will be called the pseudowavefunction.

It is important to notice how this can be interpreted. At relatively long

distances from the atom the core electrons’ wavefunctions vanish, and the

pseudowavefunction |ϕ〉 tends to be identical to the valence wavefunction we are

looking for. However, at the regions where the |χn〉 summation is not negligible,

|φ〉 and |ϕ〉 are different. Anyway, when we solve the valence state wavefunction,

we are usually interested in the outermost regions.

If we left-multiply equation 1.4 by a particular core wavefunction we obtain

the following

〈χm| φ〉 = 〈χm| ϕ〉+
∑
n

an 〈χm| χn〉 =

= 〈χm| ϕ〉+ am 〈χm| χm〉 = 0

→ am = −〈χm| ϕ〉

|φ〉 = |ϕ〉 −
∑
n

|χn〉 〈χn| ϕ〉 (1.5)

We now apply the Hamiltonian to equation 1.5
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H |φ〉 = H |ϕ〉 −
∑
n

H |χn〉 〈χn| ϕ〉

E |φ〉 = H |ϕ〉 −
∑
n

En |χn〉 〈χn| ϕ〉 (1.6)

Where E is the valence wavefunction energy and En is the n-th core electron

wavefunction energy. From equation 1.5 we can also write down the following

relation

E |φ〉 = E |ϕ〉 −
∑
n

E |χn〉 〈χn| ϕ〉 (1.7)

→H |ϕ〉+
∑
n

(E − En) |χn〉 〈χn| ϕ〉 = E |ϕ〉 ;

Combining 1.6 and 1.7 we obtain

E |ϕ〉 = T |ϕ〉+

{
V (r) +

∑
n

(E − En) |χn〉 〈χn|

}
|ϕ〉 (1.8)

H is the atomic Hamiltonian, T the kinetic energy operator, V (r) the atomic

potential, E the valence state wavefunction energy and En is the n-th core

electron eigenenergy. The term in curly brackets is called the pseudopotential.

Since E > En, we have that the pseudopotential is less confining than the

attractive atomic potential, which is always negative due to its attractiveness

nature. Thus the pseudowavefunction is less oscillating in the core region than

the original wavefunction[37].

The pseudopotential in equation 1.8 is known as the Philips-Keinman

pseudopotential [37] and it is not the only one[38–42]. We recall here that the

pseudopotential method tries to find a pseudowavefunction that will be as close

as possible to the valence state wavefunction in the outer region of the atom but

will be smoother in its inner regions.
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There are two approaches when using the pseudopotential methods, the

empirical and semiempirical. In the empirical method, the pseudopotential is

obtained by adjusting parameters in the reciprocal space, assuming that the

potential can be expressed as a sum of atomic centered potentials and a spin

orbit interaction term. In the semiempirical case, a non-locality is introduced

making the potential dependent on the electronic angular momentum [37].

In this work the single quantum dot eigenstates were computed within the se-

miempirical pseudopotential framework at the University of Leeds (United King-

dom) using the Pescan code [43, 44] . As an example, in figure 1.3 we show the

potential and wavefunctions isosurfaces for a particular case, a 1.2nm radius InAs

quantum dot. For the potential, the isosurface corresponds to −0.025 Hartree and

in the case of the wavefunctions, the isosurfaces corresponds to 1.5×10−5 bohr−3

probability density value. For further references on the method used, the reader

can find more information at [37, 45, 46].

1.6. Systems considered in this work

In this work we calculate the properties of periodic systems made of quantum

dots. There are a lot of factors or variables that configure such periodic systems

(e.g. unit cell size, the primitive cell type, etc.), and we have developed a simulator

that offers a great amount of possibilities to study. In order to narrow them down

to a point where we can have a thorough and ordered discussion, we restrict

ourselves to five types of systems. We are going to classify the systems according

to their periodicity along each direction in space.

QD molecule: Any arrangement of QDs that is finite in all directions is

considered a QD molecule. It can be a particular number of quantum dots

stacked along a line or forming different geometries. Through this work we

restricted ourselves to model QD molecules as QDs stacks along a straight

line in the z-axis. We called that particular form of QD molecule a QD

stack to distinguish it from other spacial arrangements.
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Figure 1.3: For illustration purposes only, this figure shows the isopotential surface
for -0.025 Hartree and isoprobability surfaces corresponding to 1.5 × 10−5 bohr−3 for
the three lowest energy conduction band states in a InAs 1.2 nm radius quantum dot.
The wavefunctions corresponds to the lowest energy states (from the first to the third
states) in the conduction band of the QD.
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1D periodic superlattice: A periodic structure that extends in only one di-

mension. We modeled this systems along the z-axis for better comparison

with QD stacks.

2D periodic superlattice: A periodic structure that extends in two dimen-

sions. These are always the x and y-axis.

2D periodic stack: This system configuration is periodic in two directions

(usually the xy plane) but instead of having one QD per unit cell, it has a

QD stack in the direction perpendicular to the periodic plane. The system

may be also considered as a 2D periodic superlattice stack.

3D periodic superlattice: A periodic structure with one QD per unit cell

periodically extended in three dimensions.

These systems are examples of the so-called superlattices. In the same

manner that crystal lattices have a crystal basis of one or a group of atoms,

superlattices have a crystalline basis of a large set of atoms, that could be atomic

layers, quantum dots, etc. [47]

These systems are illustrated in figure 1.4
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Figure 1.4: Schematic representation of the type of systems used throughout this work.
a) isolated quantum dot, b) 1D periodic system, c) QD stack (the number of QD stacked
is a parameter) d) 2D periodic system e) 2D periodic stack and f) 3D periodic system
systems.
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30 2. Tight Binding Method

2.1. Theoretical introduction to the tight bin-

ding model

The objective of this research is to study the collective behavior of a quantum

dot array and to that end we proposed a tight binding model. Tight binding

is widely applied for infinite and finite systems where the electrons are tightly

bound to the ions, such as semiconductors, insulators, and molecules [48–50]. In

this work we have used this approach to study both infinite and finite systems,

in 1D, 2D and 3D arrangements. In the present work we have prioritized the

2D periodic system, for which we have computed electronic structure, electron

transport and photon absorption.

The tight binding model is an approximation in which the wavefunction basis

of the system under study is proposed as a linear combination of the isolated

systems’ wavefunctions (φ)[51]. These isolated systems may be a single atom, a

molecule or, as in this research, a quantum dot, or a quantum dot molecule. This

is an acceptable approximation when the isolated wavefunctions of the system

have small overlaps between them (figure 2.1). When this is the case, the system

Hamiltonian can be seen as a perturbation over the isolated system, which allows

the use of the same wavefunctions to solve the new problem[52].

System eigenfunctions are highly dependent on the distance between systems

or, in the case of crystals, the lattice constant. In the case of infinite systems,

as the lattice constant grows, energy bands tend to flatten around the QD ei-

genenergies. In the case of finite systems, their discrete energy levels tend to

approach.

2.1.1. Tight binding model overview

In this section we introduce the formalism followed along this work. For sim-

plicity the equations correspond to infinite systems having a single quantum dot

or quantum dot stack basis. The mathematical formalism used to deal with finite

systems or superlattices whose basis is a QD stack is an adaptation of it. Let us
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Figure 2.1: Tight binding illustrative figure. The black curves represent a simplified
version of an arbitrary QD wavefunction, the cyan area represents the overlapping region
integral.

start by using the set of superlattice point vectors Rv. The sum of the isolated

QD potentials creates the periodic potential with which the electron interacts.

The Hamiltonian of such a system can be expressed as follows:

Htb =
p2

2me
+
∑
Rv

V (r−Rv) =

=
p2

2me
+ V (r) +

∑
Rv 6=0

V (r−Rv) = (2.1)

= Hat +
∑
Rv 6=0

V (r−Rv)

where Htb is the system Hamiltonian, Hat the isolated QD or QD stack

Hamiltonian, me is the rest electron mass, and V (r − Rv) is the quantum dot

potential at position Rv. Hat fulfills the relation shown in equation 2.2
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Hat |φn〉 = En |φn〉 (2.2)

where En and φn are the isolated quantum dot eigenstates’ energy and

wavefunction, obtained by the semiempirical pseudopotential method explained

in section 1.5.

In equation 2.1 it is shown that the system Hamiltonian can be written as a

sum of an isolated quantum dot Hamiltonian Hat plus an extra term containing

all the neighboring quantum dot potentials forming the superlattice. If the sum

of neighboring QD potentials is small, the perturbative theory[53] allows the

use of the isolated QD wavefunctions to solve the system Hamiltonian. This

happens when the wavefunction strongly decays at any distance Rv. Provided

this condition, the proposed solution is written as

ψm(r) =
∑
n,Rs

bm,n(Rs)φn(r−Rs) (2.3)

Here, the subscript m indicates the m-th solution to the Hamiltonian, bm,n(Rs)

are the expansion coefficients for the m-th solution, at position Rs and φn is the

n-th wavefunction of the quantum dot.

Applying the Hamiltonian on this ansatz we obtain the equation to solveHat +
∑
Rv 6=0

V (r−Rv)

∑
n,Rs

bm,n(Rs)φn(r−Rs)

 = Em

∑
n,Rs

bm,n(Rs)φn(r−Rs)


(2.4)

where Em is the corresponding energy of the system’s ψm wavefunction.

At this point the theoretical development for periodic and non-periodic sys-

tems have their particular considerations.
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2.1.2. Tight binding of a periodic system

Because of the periodicity of the system, the proposed wavefunction must

satisfy the Bloch theorem

ψm(r + Rv) = ψm(r)eiqRv (2.5)

which allows to write the wavefunctions as

ψm(r) =
1√
N
Um,q(r)eiqr (2.6)

where q is a vector of the first Brillouin zone of the superlattice reciprocal

space, N is the number of unit cells and Um,q(R) is a function that has the

periodicity of the lattice.

Applying the Bloch theorem to equation 2.3 we obtain

ψm(r + Rm) =
∑
n,Rs

bm,n(Rs)φn(r−Rs + Rm)

defining Rp ≡ Rs −Rm∑
n,Rp

bm,n(Rm + Rp)φn(r−Rp) =

=
∑
n,Rp

bm,n(Rp)φn(r−Rp)e
iqRm

where the last equivalence is a consequence of
∑
n,Rp

bm,n(Rp)φn(r − Rp)

being the proposed Bloch function of equation 2.3 and in consequence it must

satisfy the Bloch’s condition. From here it is deduced that the expansion

coefficients can be rewritten as a function of the coefficient at Rp = 0

bm,q,n(Rp) = bm,q,n(0)eiqRp (2.7)

The wavefunction also depends on q and thus, for the sake of clarity, this

subscript q is also included in the wavefunction notation. This subscript changes

between wavefunctions,
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ψm,q(r) =
∑
n,Rs

bm,q,ne
iqRsφn(r−Rs) (2.8)

where the 0 has been omitted for notation clarity.

Applying the Hamiltonian operator (eq. 2.4) we obtain1

Htb |ψm,q(r)〉 =
∑
n,Rs

bm,q,ne
iqRs

{
p2

2me
+
∑
Rv

V (r−Rv)

}
|φn(r−Rs)〉 =

= Em,q
∑
n,Rs

bm,q,ne
iqRs |φn(r−Rs)〉 (2.9)

In order to obtain the expansion coefficients and the eigenenergies, we left-

multiply equation 2.9 by 〈φt(r)| and we obtain

〈φt(r)|Htb |ψm,q(r)〉 =
∑
n,Rs

bm,q,ne
iqRs 〈φt(r)|

{
p2

2m
+
∑
Rv

V (r−Rv)

}
|φn(r−Rs)〉 =

= Em,q
∑
n,Rs

bm,q,ne
iqRs 〈φt(r)| φn(r−Rs)〉 ; (2.10)

Aqbm,q = Em,qBqbm,q

Equation 2.10 represents a diagonalization problem. We also show its matrix

representation, where Aq and Bq matrices are M × M dimensional. For a

particular q the diagonalization process yields M orthogonal wavefunctions.

As stated before, a change in q modifies the system of equations, resulting in

a different set of eigenenergies. A sweep in q yields the energy bands of the

periodic system.

There is another approximation to be made, that is to use only the nearest

neighbours in the calculation, thus making finite the summations over Rv and

Rs. This approximation is in accordance with the tight binding model, in which

1In the following the notation of bras and kets includes r (not displaced function) and R
(indicating a particular superlattice position).
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the potential is strongly confining around each lattice point, and the overlapping

between QDs wavefunctions are small.

As a last step, the norm has to be calculated. Returning to equation 2.8 we

calculate the following overlap.

〈ψm,q(r)|ψm,q(r)〉 =
∑
n,Rs

∑
n′,R′s

b∗m,q,nbm,q,n′e
iq(Rs−R′s) 〈φn(r−Rs)|φn′(r−R′s)〉 =

Rp ≡ Rs −R′s → R′s = Rs −Rp

=
∑
n,Rs

∑
n′,Rp

b∗m,q,nbm,q,n′e
iqRp 〈φn(r−Rs)|φn′(r + Rp −Rs)〉 =

= N
∑
n

∑
n′,Rp

b∗m,q,nbm,q,n′e
iqRp 〈φn(r)|φn′(r + Rp)〉 = NKm,q = 1

Where N is the number of unit cells and Km,q is:

Km,q ≡
∑
n

∑
n′,Rp

b∗m,q,nbm,q,n′e
iqRp 〈φn(r)|φn′(r + Rp)〉

ψ(r)m,q =
1√

NKm,q

∑
n,Rs

bm,q,ne
iqRsφn(r−Rs) (2.11)

Km,q is the wavefunction norm. The only quantities affected by normalisa-

tion are the tight binding expansion coefficients obtained from diagonalization.

Henceforth, ψm,q(r) is the normalized previously presented wavefunction. For the

sake of simplicity, we used the same notation.

2.1.3. Tight binding of a non-periodic system

In this case we are not able to use the Bloch function as an ansatz but anyway,

like in the periodic case, we start by applying the Hamiltonian (equation 2.1) to
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the wavefunction (equation 2.3) and left-multiplying it by 〈φt(r−R′s)|.

〈φt(r−R′s)|Htb |ψm〉 =
∑
Rs,n

εnbm,n 〈φt(r−R′s)| φn(r−Rs)〉

+
∑
Rs,n

bm,n 〈φt(r−R′s)|
∑

Rv 6=Rs

V (r−Rv) |φn(r−Rs)〉

= Em
∑
Rs,n

bm,n 〈φt(r−R′s)| φn(r−Rs)〉 (2.12)

= Abm = EmBbm

In this case we do not have a reciprocal vector q to sweep through because there

is no reciprocal space properly defined. We have a single matrix diagonalization

problem. The numerical difference, however, is in the wavefunction which is shown

again below.

ψm(r) =
∑
n,Rs

bm,n(Rs)φn(r−Rs) (2.13)

In the periodic case, we have a subscript q that changes for each vector in the

first Brillouin zone. In the non-periodic case we have one diagonalization problem

for the whole system. In the periodic case the length of the set of coefficients

used in the expansion bm,q,n is M, i.e. the number of isolated QD eigenstates.

In the non-periodic case, it is equal to the total number of wavefunctions

M × N , i.e. equal to the number of isolated QD eigenstates times the number

of QDs in the system. The Bloch theorem (equation 2.7) does not apply and

therefore the subsequent relations among the bm,n(Rs) coefficients does not hold.

The normalisation is very similar to the periodic one and comes from the same

mathematical procedures. The normalized wavefunction is shown below.

ψm(r) =
1√
Km

∑
n,Rs

bm,n(Rs)φn(r−Rs) (2.14)

(2.15)

Km =
∑
t,R′s

∑
n,Rs

b∗m,tbm,n 〈φt(r−R′s)|φn(r−Rs)〉
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Figure 2.2: Representation of the path along the selected symmetry points in which
the energy bands are represented.

2.2. Application to periodic quantum dot arrays

Quantum dots are nanometer sized crystals. By means of its periodic repeti-

tion in space we can create a second kind of lattices, the so-called “superlattices”.

The mathematical formalism resembles the one for regular crystals. A band

electronic structure arises because of the quantum dot wavefunction overlaps, as

it happens in atomic crystals. These overlaps are not as strong as in atomic crys-

tals, and as a consequence the electronic structure is formed by a set of narrower

energy bands, called “minibands”, having widths in the order of hundreds of meV.

In figure 2.2 the first Brillouin zone for the studied 3D and 2D systems is

shown, alongside with the energy representation path for the minibands that

will be used throughout this work.

Figure 2.3 shows the energy levels obtained from the semiconductor conduc-

tion band of an InAs R=12 Å quantum dot compared to the eigenstates energies

of a QD molecule of two InAs QDs vertically stacked (two QD stack). We can

see how energy levels that were degenerated split under the interaction between
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Figure 2.3: Energy level comparison between the isolated InAs R=12 Å QD and two
stacked QDs of the same type.

QDs. Figure 2.4 shows the energy minibands when the InAs quantum dot is

repeated periodically along XY plane (2D periodic superlattice) with the mini-

mum superlattice constant (in this case it is said that quantum dots are one bond

length apart). Figure 2.5 shows the same periodical arrangement but using the

two-stacked quantum dots as the unit cell. Lastly, figure 2.6 shows a periodic 3D

arrangement (3D superlattice) in which the single QD is forming a simple cubic

supperlattice.
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Figure 2.4: Miniband structure of the InAs R=12 Å 2D periodic system.

Figure 2.5: Miniband structure of the 2D periodic stack with unit cell composed by
two stacked InAs R=12 Å QDs. The observed energy splitting is due to interaction
between the QD layers, equivalently to the observed splitting in figure 2.3 due to QD
interaction.
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Figure 2.6: Miniband structure for the InAs R=12 Å periodic 3D array. Here quantum
dots are repeated periodically along the three axes.

There is an important note in the computational side of the applicability of

this theory. Periodical systems are infinite. Its reciprocal space has a continuum

range of available values of q. In order to solve the miniband structure we sampled

the first Brillouin zone using a particular number of vectors, Qs. In this study this

sampling varies from 51 to 501 points per direction, depending on the calculation.

There is another important aspect regarding the number of minibands

considered within a particular calculation. For computational purposes we

selected a suitable set of QD states as the basis for the tight binding cal-

culation. Computational complexity scale approximately as M2, thus being

important to restrict ourselves only to a set of significant isolated QD eigenstates.
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3.1. General Overview

In this chapter a model to calculate ohmic mobility is presented. There are

two important proposed mechanisms used to approach electron transport in

the literature of quantum dots arrays: hopping transport and band-like transport.

In the first one, as quantum dots have different energy level values due to

size dispersion, the electron gains or loses energy in order to change its position

from a quantum dot to another[54–56]. To do this, the electron interacts with

phonons, gaining or loosing the energy difference between the states, (figure

3.1). Thus, this model has a particular feature: mobility generally increases

with temperature, since the higher the temperature, the more electron-phonon

scattering occurs [57, 58]. The energetic difference between neighbouring QDs

changes from point to point in the system but it is useful to define a macroscopic

quantity, called the activation energy (Ea) which is, on average, the energy that

the electron needs to “hop” from a QD to the next. Higher activation energies

are characteristic of more disordered systems. There are many hopping models,

depending on which mechanism is responsible for the electron hopping [59–63]

but as an example we use the one in [64], defined by equation 3.1, which models

the electronic mobility as:

µ =
ed2Ea
3hkT

T e−Ea/kT (3.1)

where e is the fundamental charge, d is the distance between QDs’ centers,

T is the coherence between initial and final states the electron is hopping, h

is the Planck constant and k is the Boltzmann constant. Figure 3.2 shows how

the mobility slope changes with temperature and activation energy for this

particular model.

On the other hand, in the miniband transport model the electron mobility is

calculated in an infinite periodic superlattice, in which a portion of QDs with a

different size, referred to as “impurities”, are responsible for electron scattering.

We modeled these impurities as QDs that have a smaller radius than the periodic
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Figure 3.1: Illustration of the hopping effect. QDs have a size-dependent gap and
other circumstantial properties (e.g. ligands, pasivation), that change the probability
for the electron to hop from one QD to the other.

Figure 3.2: Electron mobility plots of equation 3.1 for different activation energies,
as a function of temperature.
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ones. In contrast with the hopping model, the electric carrier energetic states does

not depend on the carrier real space location. The dispersion relation shown in

equation 2.10 relates the electron energy, E, with the carrier’s reciprocal vector,

q.

Each electron state in the superlattice has a velocity in the real space, which

is related to the energy gradient in the reciprocal space as:

v(qf )m =
1

~
∇qEm(q)

∣∣∣∣
qf

(3.2)

where v is the electron velocity, qf the reciprocal space vector and the subscript

m is the miniband where the electron is is located.

One of the most clear procedures to deduce about what transport mechanism

is dominating is to measure the mobility as a function of temperature[65].

Generally in band-like transport carrier mobility decreases with increasing

temperatures[66], while hopping transport behaves oppositely as it has pre-

viously pointed out and illustrated in figure 3.2.

The hopping model applies well on disordered systems, which are usually

the case in QD films and other macroscopic QD systems [56, 67, 68]. But, as

improvements are made in device fabrication, these can achieve better ordering

(periodicity) making it necessary to search for other models to explain the

features that arise in these novel systems [2–4]. That is why the mobility

calculations carried out in this investigation are based on a band-like transport

approach. We developed a simulator to improve our understanding on carrier

dynamics and to give an insight into which systems and conditions are good can-

didates for achieving high electron mobility QD superlattices for experimentalists.

To summarize, when mobility of macroscopic systems based on quantum

dots is considered, two main models emerge: the hopping transport model and

the band-like transport model. Each departs from different assumptions in terms

of quantum dots ordering quality. One way for the experimental researcher to

know which transport mechanism dominates in a particular device is to measure



3.2. Scattering Mechanism 45

the mobility dependence with temperature[65].

3.2. Scattering Mechanism

As it will be shown later, in the band-like transport model there are scatte-

ring mechanisms interrupting the carrier movement and making it to start the

process of acceleration all over again. The elapsed time between two consecutive

scattering events is called time of flight (TOF) and the average TOF is the

inverse of the average scattering rate.

Following the previous work of Shabaev et al. [69] we studied band-like trans-

port in QD superlattices focusing on lattice impurities as the main scattering

mechanism to investigate electron transport in the system. Impurities in this

work are modeled as different sized (smaller) QDs that break periodicity. Other

authors claim deep states [3, 70] or charge donors [71] may be as relevant as

size variation scattering mechanisms when studying carrier transport in these

systems but, as shown in [69], these mechanisms may be less relevant. Taking

into consideration that impurity scattering has a prominent role in carrier

transport, and the fact that this mechanism is elastic (the carrier energy does

not change after a scattering event) and temperature independent, there is

an open question to be asked: how temperature affects this transport model?

Phonon scattering, which is a temperature dependent scattering mechanism, is

not considered to be relevant in the description of carrier transport. Authors

consider that the phonon scattering rates are several orders of magnitude

smaller than impurity scattering rates [69]. This could be acceptable due to

the phonon bottleneck in nanostructures[72]. Phonon dispersion relation has

not been properly computed in QD arrays to the author’s knowledge, although

some efforts have been made [73, 74]. Nevertheless phonons are crucial when

thermalising the system. The presented model includes them indirectly, not as a

scattering mechanism limiting the TOF but as the thermalising mechanism that

populates the minibands following a close-to-equilibrium occupation distribution.



46 3. Quantum dot array electron mobility model

In the case of this work, it has been considered that the only scattering

mechanism to limit the TOF are impurities in the superlattice in the form of

differently sized QDs. The presence of different sized QDs in the periodic lattice

is almost inevitable during QD synthesis. We define the impurity concentration

as the fraction of impurity quantum dots in the periodic system, ν. Impurity

concentration is a fundamental property to evaluate the quality of the device. In

a general case, there would be a size distribution gν(RQD) containing the system

information about the number of quantum dots per unit length, area or volume

having a particular radius RQD. If gν(RQD) is too wide (great size dispersion)

the periodicity assumption is not true and thus the formalism developed in

chapter 2 does not hold. If gν(RQD) is too narrow (close to perfect periodicity),

the effects of size dispersion will not be the dominant scattering phenomena

limiting charge mobility and this model will predict higher mobilities than the

measurements (phonon scattering would be relevant in that situation). There is

no exact quantitative point were it can be assured that a model applies or not.

Nevertheless, we limited the systems at study to a scenario in which there is a

negligible probability of correlation between impurities (this limits the maximum

concentration) but also the impurity concentration has to be sufficiently high

to pose our proposed scattering mechanism as the dominant one. Thus, in

this work we considered the plausible range for impurity concentration to be

ν ∈ [0.001, 0.01].

As the different sized quantum dots are of the same material and are conside-

red to be close in radius to the periodic ones, their wavefunction energies will be

close to their periodic counterparts . This allows us to treat the problem of the

different sized QDs as a perturbation over the periodic lattice. As we are only

interested in the first order approximation of the systems, we use the Fermi’s

Golden Rule. The scattering rate is obtained from the superlattice eigenstates,

|ψq(r)〉 and the difference between the non-periodic QD potential, Vd(r), and the

periodic one, ∆V (r) = Vd(r)− V (r). The Fermi’s Golden Rule in a general case

is

Γi,f =
2π

~
∣∣〈ψc,qf ∣∣∆V |ψc,qi〉∣∣2 ρ(Ef ) (3.3)

Where ρ is the superlattice density of states and Γi,f is the scattering rate
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for transitions from the i-th to the f-th state.

A problem when implementing eq. 3.3 is that is meant to be used in systems

with a continuous energy occupation. However, at the simulation level a finite

discretization of the reciprocal space is used, Qs, in order to make the algorithm

feasible.

In fact, for a finite discretization, the density of states changes from a

continuous form to a series of Dirac deltas, ρ(E)→
∑
Ef
δ(E−Ef ). To calculate

the transport model we chose to approximate this delta to a window function

of ∆E width (we call this window the energy conservation window) and the

miniband is subdivided in N different energy levels, each of them having an

amplitude of ∆E. These levels are called energetic intervals and all the states

that are contained in each of them are mutually accessible via size dispersion

scattering processes as if they had the exact same energy.

In order to do this, equation 3.3 has to be rewritten to account for both the

fact that this simulated system has been sampled in the reciprocal space and the

energy conservation window. Equation 3.4 is the Fermi’s Golden Rule, as used in

this investigation. The wavefunction is written as the coefficient expansion, with

the normalization factors from section 2.1.2.

Γi,f = Ni
N

Qs

2π

~
1

∆E

∣∣〈ψcqf |∆V |ψcqi〉∣∣2
= Ni

N

Qs

2π

~
1

∆E

1

N2Kc,qiKc,qf

∣∣∣∣∣∑
m,s

b∗cmqf bcsqi

∫
φ∗m(r)∆V (r)φs(r)dr

∣∣∣∣∣
2

=
ν

Qs

2π

~
1

∆E

1

Kc,qiKc,qf

∣∣∣∣∣∑
m,s

b∗cmqf bcsqi

∫
φ∗m(r)∆V (r)φs(r)dr

∣∣∣∣∣
2

(3.4)

There are four new terms added to the Fermi’s Golden Rule.

Ni is the total number of impurity quantum dots in the lattice, since the

Fermi’s Golden Rule is for one scattering centre with no correlation between

impurities.
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ν = Ni
N is the impurity concentration in the superlattice.

N
Qs

is due to the fact that each point in our discretization of the reciprocal

space represents a group of physical q reciprocal space vectors. This number

is equal to the total quantum dots in the lattice, divided by the selected

discretization space.

1
∆E is a normalisation factor, due to the fact that δ(E − Ef ) has been

modeled as a window function, Θ(E −Ei)−Θ(E −Ef ), where Ei and Ef

are the minimum and maximum energies respectively of the i-th energetic

interval and Θ(E) is the step function.

In this work, we have implemented the model to study electron transport in

the lowest conduction energy miniband. As it is shown in figure 2.4, the lowest

energy miniband is placed away from the next one. This behaviour has been

observed in all the studied systems in this work because of the particular atomic

orbital configuration of the considered semiconductors [65, 75, 76]. This miniband

is assumed to be the one having a higher occupation in normal conditions within

the presented miniband set. Therefore carrier transport would be only relevant

in it. Very high doping or other extreme conditions may lead to Fermi levels

surpassing the conduction band edge, but in normal conditions the Fermi level

would be below it and, in consequence, minibands over the lowest one can be

expected to be unoccupied.

3.3. The Markov Chain

At this point, there is a known scattering rate Γi,f between all states in the

miniband. Due to the elasticity of this scattering mechanism, all the scattering

rates between crystal eigenstates from different energy intervals are 0 and can

be discarded because of energy conservation. Focusing on a particular energetic
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interval, the scattering rates can be expressed as a matrix of non-zero elements

Γ =


Γ0,0 Γ0,1 · · · Γ0,n−1

Γ1,0 Γ1,1 · · · Γ1,n−1

...
...

...
...

Γn−1,0 Γn−1,1 · · · Γn−1,n−1


where n is the number of states of the energy interval, which may vary from

interval to interval. From this matrix it can be defined the probability matrix P.

This would represent the probability to end the flight in a state f from a starting

state i.

Pi,f =
Γi,f∑
f ′ Γi,f ′

(3.5)

Using the probability matrix it is possible to compute the probability of the

electron being in each state within the energy interval as follows. Let us define

the occupation state vector as:

S =


S0

S1

...

Sn−1

 (3.6)

where Si is the probability that the electron occupies the i-th state. With this

formalism it is possible to find the occupation probability after a scattering event

by multiplying P · S. In this manner, the occupation state after t scattering

events is St = Mt · S0. In this manner it is possible to represent the occupation

probability for each state after any number of scattering events. This is known

as the Markov chain[77], and it represents a huge improvement on calculation

efficiency when compared to Monte Carlo algorithms. A thermalised state would

be, as always, one in which the occupation state S would not depend on the initial

state. In the Markov chain this is done by multiplication of the probability matrix

until the terms Pi,f converge. As these equilibrium values do not depend on the

initial state occupation, the terms Pi,f do not change with the column index f ,

and therefore the carrier equilibrium probability information is contained in the
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Figure 3.3: Schematic representation of the influence of electric field in velocity. a)
3D representation of a regular miniband, highlighting a particular energetic interval.
b) The same miniband and energetic interval with a vector field representation of the
equilibrium velocities, i.e. those that exist even if the external electric field is zero (they
mutually cancel). c) Vector field representation of the difference between the velocity
under electric field and the equilibrium velocity. This vector field is for illustration
purposes only, showing how velocity due to the electric field changes with the miniband
curvature. It can be seen that, at a certain point near the Brillouin zone limits, these
velocities change direction, showing the effects of the inflection point.

one dimensional matrix columns. Thus it can be expressed as a one dimensional

vector, P̂ (note the “ ˆ ” to differentiate the one dimensional vector from the

matrix).
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After a scattering event, each state electron has a particular probability of

being the one from which the scattered carrier will start a new flight. These

probabilities will be denoted as P̂i for the i-th state of the energy interval.

There is another important quantity to define from scattering rates for each

state, the average time of flight (TOF) 〈ti〉. This is obtained from the following

relation:

〈ti〉 =
1∑
f Γi,f

(3.7)

To summarize, the scattering rates are used to define the occupation proba-

bilities in equilibrium within a given energetic interval as well as the times of

flight between scattering events. This completes the dynamics description of the

carriers inside the superlattice in equilibrium conditions.

3.4. Carriers under electric field

The electric field has an effect in the carriers that is expressed as changes in

their crystal momentum q. This change is expressed in equation 3.8, where e is

the electron charge and E is the electric field. For illustrative purposes, the reader

may examine figure 3.3. This is based on the semi-classical approximation:

qf (t) = qi −
e

~
Eti (3.8)

It can be seen that the change rate is linear with the TOF and the electric

field. The TOF is given by the equation 3.7 and the electric field should satisfy

two conditions: i) to be low enough that mobility is an independent quantity

of the electric field (ohmic regime) and ii) to be high enough that numerical

stability of the gradient calculation in equation 3.2 is guaranteed. It should not

matter the particular value since electric mobility is independent of electric field,

in the ohmic regime.

With all velocities calculated, it is possible to compute the average velocity

for each energetic interval. In order to do this, the probability vector P̂ is used,
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as shown in equation 3.9

〈v〉j =
〈∆R〉
〈t〉

=

∑
n vntn∑
n tn

=

=

∑
iNP̂ivi 〈ti〉∑
iNP̂i 〈ti〉

=

∑
i P̂ivi 〈ti〉∑
i P̂i 〈ti〉

(3.9)

In this equation, subindex j indicates the energetic interval, n iterates over

all flights within the energetic interval. i, on the other hand, iterates along the

initial states. In the Markov chain theory, the number of times the electron starts

its flight from state i is equal to the number of total flights N multiplied by

the probability for the electron starting its flight at state i. 〈∆R〉 is the average

distance travelled by the electron in a single flight.

3.5. Mobility as a Function of Fermi Level and

Temperature

At this stage the calculations have yielded the velocities in each energetic

interval as a function of the electric field. We use this information to compute

electric mobility in the ohmic regime. Carrier mobility in each energetic interval

is a tensor quantity. In order to obtain these tensors (one for each energetic

interval) two different directions for the electric field should be simulated. The

following relation connecting the carrier velocities with their applied electric field

counterparts yields the carrier mobility for the i-th energetic interval.(
v1

v2

)
i

=

(
µ11 µ12

µ21 µ22

)
i

(
E1

E2

)
(3.10)

The subscripts 1, 2 are the direction of the lattice vectors of the superlattice,

subscript i stands for the i-th energetic interval, v1,2 are the carrier velocity

components, µl,m are the mobility tensor matrix elements and E1,2 represents

the electric field.
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After using the two electric fields, we have two velocity pairs, from which

a mobility matrix can be obtained. After this, the mobility tensor is weighted

with the Fermi-Dirac distribution, as shown in the next equation, to account for

thermalisation

µ̂(T,EF ) =

∑
i F (Ei, EF , T )niµ̂i∑
i F (Ei, EF , T )ni

(3.11)

where F (Ei, EF , T ) is the Fermi-Dirac distribution at energy Ei for a given

Fermi energy level EF and at temperature T , and ni is the number of reciprocal

vectors that fall into the i-th energetic interval, which is proportional to the

density of states.

We deem necessary to remember the reader that by using the Fermi Dirac

distribution we are assuming a near equilibrium regime, which means that electric

fields should not be too strong in order to fulfil both the equilibrium assumption

and the ohmic regime where this model stands.

3.5.1. A simplified picture for the electric carrier velocity

dependence with temperature and Fermi level

As seen in equation 3.9, the macroscopic velocity is a result of a sum of

velocities in a particular energetic interval. Let us take a pair of states with

the same energy but opposite reciprocal space vector and calculate their average

velocity. As the two states are exactly the same with the exception of a sign in

their reciprocal space location (which is arbitrary since rotating the origin the

signs would interchange) we can drop the P̂j,i in our sum and write:

〈v〉p =
v(−qp) + v(qp)

2

Where the subscript p stands for a particular pair of states.
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We can expand equation 3.2 in terms of a different reciprocal space point.

vf =
1

~
∇q(E)|qf =

1

~
∂E

∂q

∣∣∣∣
qf

≈ 1

~

(
∂E

∂q

∣∣∣∣
qi

+
∂2E

∂q2

∣∣∣∣
qi

(qf − qi)

)
(3.12)

In the equation above, qi is the reciprocal vector where the carrier starts its flight

and qf the reciprocal vector after scattering happens. Because of the symmetry

of the miniband there are relations between the first and second derivatives.

∂E

∂q

∣∣∣∣
qi

= −∂E
∂q

∣∣∣∣
−qi

∂2E

∂q2

∣∣∣∣
qi

=
∂2E

∂q2

∣∣∣∣
−qi

(3.13)

To clarify, the states qi just differ only in sign but the final states qf can be

quite different. Using equation 3.8 we obtain the following relations:

qf1 = −qi −
e

~
Eti

qf2 = qi −
e

~
Eti

Both positive and negative qi have the same summation term therefore they

are not symmetric around the origin. Now, if we substitute the expansion 3.12

into our sum of velocities and make use of relations 3.13 we obtain

vf =
1

~
∂2E

∂q2

∣∣∣∣
qi

(qf1 + qf2)
1

2
=
−1

~
∂2E

∂q2

∣∣∣∣
qi

e

~
Eti (3.14)

This holds true for every pair of states with symmetric reciprocal points around

the origin, which includes all existing states inside all existing energetic intervals.

Thus, the average carrier velocity depends on the second derivative of the

energetic miniband or, in other words, on the effective mass.

In figure 3.4 we can see the behaviour of different aspects of a typical mini-

band. We can see a change of the effective mass sign, which means that average

velocities in energy intervals above that will have opposite direction to the ones in
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energetic regions below it. Thus, the average carrier velocities in the system are

governed by the occupation distribution, which in this case is the Fermi distribu-

tion that depends heavily on Fermi energy and temperature. If both quantities

are low, the average velocity is high since the lowermost part of the miniband

is populated. As these two quantities increase, states above the inflection point

start to populate, reducing overall carrier velocity.

Figure 3.4: Qualitative example of a typical isolated miniband. We showcase the basic
behaviour of the important physical quantities. We can observe a change of sign in the
effective mass, which governs the direction of the force the electron experiences. For
a particular Fermi level, there is a fraction of electrons with energies that make the
effective mass negative. If the Fermi level is high enough, this fraction can outgrow the
electrons that are below the energetic inflection point and we would observe a change
of sign in mobility.

3.6. Various impurities

As shown in [78, 79] in a real scenario there is a continuous QD size

distribution profile, usually in the form of a gaussian curve. The model has been

reviewed to accommodate to these real situations changing the single impurity

QD size for a collection of impurities.

We assume that impurity concentration is low enough so that no interaction

between them occurs. This means that the total scattering rate in equation 3.4

changes the integral term to a sum of integrals premultiplied by their correspon-
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ding impurity concentration. Thus, equation 3.4 turns into

Γi,f =
1

Qs

2π

~
1

∆E

1√
KcqiKcqf

∑
i

νi

∣∣∣∣∣∑
m,s

b∗cmqf bcsqi

∫
φ∗m(r)∆Vi(r)φs(r)dr

∣∣∣∣∣
2

(3.15)

were νi and ∆Vi(r) are the i-th non-periodic QD concentration and potential

respectively.

Theoretically, the set of concentrations νi could be changed by a continuous

function, gν(RQD) that maps non-periodic QD radius to concentrations. Nevert-

heless the following has to be considered:

• Not any QD radius is achievable since the minimum addition possible is

one atom which increments radius in a discrete quantity.

• It would be too expensive computationally to calculate the overlaps for

arbitrarily big sets of QD radii. Nevertheless it is possible to extrapolate

scattering rates as an approximated function of QD radius.

• We cannot use an impurity with a radius greater than the periodic QD

since this would add tensions to the superlattice and break periodicity.

To model the gaussian size distribution curve we changed the set of concen-

trations of non-periodic QDs for a single quantity: the standard deviation of the

gaussian curve. In figure 3.5 it is shown in a logarithmic plot how our available

QD radii decrease their concentrations with a fairly low dispersion.

As the figure shows, following a gaussian curve the concentration of impurities

decay so rapidly that QDs with a radius 30 % smaller than the average are

irrelevant.

3.6.1. A model for any concentration profile

One of the most important results in this research is a model that allows for

a fast mobility calculation not for a single impurity QD, but for a distribution



3.6. Various impurities 57

Figure 3.5: Representation of impurities profile used in InAs QDs in our published
work [75]. The y axis is logarithmic because the radius decays very pronouncedly as
it moves away from the periodic one. Below the second value, concentrations have no
observable effects.

of impurities with varying radius[75].

The only approximation made is that, for a given impurity radius, instead

of having scattering rates with different values depending on initial and final

states, we have an average scattering rate. This is a good approximation since

in a particular system, all scattering rates lie in the same order of magnitude.

One can observe, in equation 3.4, that the scattering rate is proportional to the

impurity concentration. With the above approximation in place, we define the



58 3. Quantum dot array electron mobility model

radius-independent scattering rate as follows.

Γ̃(r) =

〈
Γ

(r)
i,f

〉
ν(r)

(3.16)

In this equation we use super index (r) to note that these quantities are for a

particular impurity radius. The radius-independent scattering rate is a quantity

that depends on the periodic quantum dot, the impurity and the superlattice

arrangement and thus is an intrinsic property of the system. This quantity

can also be interpreted as the scattering rate in the unphysical situation of an

impurity concentration of 100 %.

Mobility is inversely proportional to scattering rate, thus equation 3.11 can

be transformed in the following way

µ̂(r)(T,Ef ) =
Γ̃(r)ν

∑
i F (Ei, EF , T )niµ̂i

Γ̃(r)ν
∑
i F (Ei, EF , T )ni

=

=
Θ̂(EF , T )

Γ̃(r)ν(r)
(3.17)

The quantity Θ̂(EF , T ) is independent of the impurity concentration, but it

is also independent of the concentration independent scattering rate itself, thus

depending solely on the miniband structure and the periodic quantum dot. Now

it is possible to calculate the mobility for various impurities with the following

equation

µ̂(r)(T,EF ) =
Θ̂(EF , T )∑
r Γ̃(r)ν(r)

(3.18)

We can now use this equation to obtain any mobility tensor for any con-

centration provided a non-periodic quantum dot potential or, if we have enough

non-periodic QDs we could try to extrapolate their Γ̂(r) as in figure 3.6 and use

the exact profile for a continuous distribution. We show the results of using these

profiles in section 5.4.
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(a) CdSe Γ̃(r) (b) InSb Γ̃(r)

Figure 3.6: Representation of two different material QD’s scattering rates against the
difference of periodic and non-periodic radius. It can be seen that different materials
yield different curves. Once this curve is interpolated, we can be confident to be able to
obtain any scattering rate for any possible QD radius.
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4.1. General overview

Quantum dots are a very interesting candidate for tapping solar energy and

despite not being among the most prominent technologies in terms of energetic

efficiency they are one of the most rapidly advancing in that area[1, 34].

As it has been said in previous chapters, QDs have size-tunable proper-

ties and can be cheaply and easily mass produced [2–4, 80] specially in its

colloidal form, which are the focus of this work. QD array’s characteristics

such as bandgap, miniband curvature, absorption spectra or mobility are

heavily dependent on the wavefunction overlap. This quantity depends, on

one hand, on the isolated quantum dot properties such as size, morphology,

chemical composition, surface stoichiometry and on the other hand on device

fabrication such as surface passivation, ligand’s length, superlattice constant, etc.

Photon absorption (and other macroscopic quantities) are also affected by

the superlattice properties, such as interdot separation (superlattice constant)

or stacking layers. The photon absorption is also affected by the environment

configuration of the device, mainly temperature and Fermi energy level. All

these properties are taken into consideration since this chapter is a thorough

study of the absorption relationship with all these properties.

There are several strategies for harvesting solar energy using quantum dots,

and these can be categorized into three main areas[28, 81]:

• Polymer mixed quantum dots or bulk heterojunction[29, 32, 82] are sys-

tems where QDs acting as an electron acceptor (p-type) are blended with an

organic polymer acting as electron donor (n-type). This technology has two

advantages i) carrier separation happens wherever the photon is absorbed, since

donor and acceptor materials are in contact along the entirety of the system. ii)

it can be cheaply manufactured, since there is no high ordering required at the

microscopic level. Anyway, it has some drawbacks such as high loss in charge

transport and the fact that both electron and holes need a percolation path to
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the contacts to avoid carrier collection losses [82].

• Quantum dot sensitized solar cell (QDSSC) [14, 83–86]. In a QDSSC

quantum dots are sensitizing TiO2 or semiconductor oxide nanoparticles which

are placed in contact with an electrolyte. In these systems the QDs act as the

absorbers and transfer their electrons to the semiconductor oxide which in turn

transfer them to a transparent contact while the holes are transferred to the

electrolyte which in turn transports the carriers to another contact, the counter

electrode.

• Ordered arrays[73, 76, 87, 88] There are two other ways in which its possible

to harness solar energy with QDs. i) to build a solar cell using QD superlattices.

This can be very useful since properties such as band gap can be modulated for n

and p type materials independently. ii) the use of quantum dots for intermediate

band solar cells (IBSC) [89–91]. This would form a p − i − n structure where n

and p materials can be in their bulk form. In these devices the band gap is in

the near ultraviolet but is subdivided by an intermediate accessible and narrow

energy band formed by the quantum dots. This creates two distinct gaps. If these

band gaps are optimized and the rest of Shockley-Queisser assumptions hold,

the new efficiency limit could reach 63.2 % [92]. A problem that arises with this

bottom-up conversion (in which the strategy to surpass Shockley-Queisser limit

is to absorb two photons to create a high energy carrier) is that the electron

has to promote from the valence band (VB) to the intermediate band (IB) to

be excited once more by another photon to promote to the conduction band

(CB). This means that spontaneous emission and phonon emission have to be

less relevant than the probability of photon absorption. QDs are advantageous

in this area since they present a phonon bottleneck [72] and they have a lower

electronic coupling than their atomic lattice counterparts thus phonon scattering

or spontaneous emission is less probable to happen.

All the technologies summarized above fall in the third generation photovol-

taic cells (PV). All are promising candidates to be the next leap in solar energy

tapping. In the present work we focus our attention in the last two mentioned,
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those that make use of superlattices: superlattice solar cell and IBSC. This

research focuses mainly in the absorption coefficient of these systems since it

is a key property in determining quantities such as internal quantum efficiency

(IQE) which is a very important feature to assess their commercial viability.

4.2. Absorption definition

The fundamental physical property in this part of our work is the absorption

coefficient, α. This physical property describes how much of the incident power

per unit area, I0, is absorbed while travelling through the material. A physical,

formal definition for α is

α(~ω) =
R(~ω)

Nph(~ω)
(4.1)

where R(~ω) is the number of absorbed photons per unit of volume and

second and Nph(~ω) is the number of incident photons per unit area and second.

The relationship between α and light intensity is the Beer-Lambert law, as

shown below[93].

I(x) = Ioe
−αx (4.2)

Where I(x) is the beam light intensity after penetrating a length x below the

material’s surface.

The absorption coefficient may have different contributions depending on

the process involved e.g. optical phonons, trap to band absorptions, free carriers

absorptions, etc. We will limit our study to vertical, optical transitions i.e. those

in which electric carriers do not change their crystal momentum. These are

the transitions responsible for promoting electrons to higher energy minibands

allowing them to be harvested by the solar cell contacts and be used for current

generation.
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4.3. Electromagnetic interaction

Electron interaction with electromagnetic (EM) fields requires to be described

in the Hamiltonian. In this case we assumed the semiclassic electromagnetic

interaction Hamiltonian shown below[53].

H =
(p− eA)2

2m
+eφ(r)+V (r) =

p2 − epA− eAp + e2A2

2m
+eφ(r)+V (r) (4.3)

Where A is the vector potential, φ(r) is the electrostatic potential, V (r) is the

potential of the system under no illumination conditions and e is the elementary

charge. At this point we make use of the following assumptions:

• Coulomb gauge (∇ ·A = 0). This allows momentum operator to commute

with the vector potential

• Low intensity field. This allows us to ignore the second order term e2A2

• Plane wave in space without charge density. φ(r) = C ≡ 0

Under all these approximations equation 4.3 changes into

H =
p2

2m
+ V (r)− epA

m
≡ H0 +H ′ (4.4)

where we defined H0 as the unperturbed Hamiltonian (this one is solved in

chapter 2) and H ′ as the electromagnetic perturbation.

The illumination is supposed to be harmonic1 so A can be expressed as shown

below

A = A0 cos(kop · r− ωt)ûe =
A0

2

(
ei(kop·r−ωt) + e−i(kop·r−ωt)

)
ûe

≡ H ′↑e−iωt +H ′↓eiωt (4.5)

1At the end of the mathematical derivations we can use any waveform and calculate the
absorption by decomposing it in its harmonics and computing the absorption of each one.
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Where kop is the photon electromagnetic wave number, ω the angular frequency,

H ′↑ and H ′↓ are operators for absorption and emission respectively (they are

complex conjugates) and ûe is the unit vector of the potential direction, which

coincides with the light polarization direction.

4.4. Fermi’s Golden Rule for EM interaction

Given an initial superlattice eigenstate ψi(r) with energy Ei and final eigens-

tate ψf (r) with energy Ef and the perturbation Hamiltonian from equation 4.4,

the Fermi’s Golden Rule [53] is expressed as follows2

Γi,f =
2π

~
∣∣〈ψf ∣∣H ′↑∣∣ψi〉∣∣2 δ(Ef − (Ei+ ~ω))

+
2π

~
∑
f

∣∣〈ψf ∣∣H ′↓∣∣ψi〉∣∣2 δ(Ef − (Ei− ~ω)) (4.6)

= W ↑i,f +W ↓i,f

The time dependency of H ′↑ has become the energy conservation condition

as it happens with harmonic perturbations in the Fermi Golden Rule [53]. We

had performed several operations over the brackets above. From now on we show

only the absorption process, W ↑.

〈
ψf |H ′↑|ψi

〉
=
eA0

2m

〈
ψf
∣∣ûe · eikoprp∣∣ψi〉 ≈ eA0

2m
〈ψf |ûe · p|ψi〉 (4.7)

The above approximation is the electric dipole approximation[94], which

assumes that the light wavelength is much larger than the electric carrier one,

qi,qf � kop.

At this step we use the Hamiltonian and momentum commutator.

p =
im

~
[H, r] (4.8)

2We have omitted q in ψm,q for notation simplification.
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Substitution in equation 4.7 yields

eA0

2m

im

~
ûe [〈ψf |Hr|ψi〉+ 〈ψf |rH|ψi〉]

=
eA0i

2~
(Ef − Ei)ûe 〈ψf |r|ψi〉 (4.9)

In order to calculate 〈ψf |r|ψi〉, and assuming that the Bloch wave has a

wavelength that is much larger than the lattice vector we make use of the slowly

varying envelope approximation. We will carry out a change of variable, r′ ≡
r−R, with the purpose of referring to all the integrals to the same reference cell,

and express superlattice eigenstates as Bloch functions.

1

N

∫
∞
U∗f,qf (r)e−iqf ·rrUi,qi(r)eiqi·rdr3 =

=
1

N

∑
Rn

∫
ΩRn

U∗f,qf (r)rUi,qi(r)ei(qi−qf )·rdr3 ≈

r′ ≡ r−Rn

≈ 1

N

∑
Rn

ei(qi−qf )·Rn

∫
ΩR0

U∗f,qf (r′ + Rn)(r′ + Rn)Ui,qi(r
′ + Rn)dr′3 =

U(r′ + R) = U(r)

=
1

N

∑
Rn

ei(qi−qf )·Rn

{∫
ΩR0

U∗f,qf (r′)r′Ui,qi(r
′)dr′3 +

+Rn

∫
ΩR0

U∗f,qf (r′)Ui,qi(r
′)dr′3

}
=

=

∫
Ω

U∗f,qf (r)rUi,qi(r)dr3δ(qi − qf ) +
1

N

∑
Rn

Rne
i(qi−qf )R

∫
Ω

U∗f,qf (r)Ui,qi(r)dr3

=

∫
Ω

U∗f,q(r)rUi,q(r)dr3 +
1

N

∑
Rn

Rne
i(qi−qf )Rn

〈
Uf,qf |Ui,qi

〉
Ω

(4.10)

Where N is the number of unit cells in the system (virtually infinite) and Ω

is the unit cell volume. We have omitted δ(qi − qf ) by changing subscripts

qi, qf by q in the Bloch functions that multiply the Dirac delta. There are two
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terms in the solution. A priori, the second one seems to vanish when N tends to

infinity because of orthogonality reasons when qi = qf thus, it will not affect

in a periodic system. We will come back to this summation term later in the

chapter to discuss it in detail.

It can be seen that all the calculations done for the absorption operator

would yield the same results if we repeat calculations for the emission operator,

since the only difference between them is the wave number sign, which vanishes

anyway with the dipole approximation.

With all these approximations we can now rewrite the Fermi’s Golden Rule

to calculate the rate at which an electron occupying a particular state ψi will

promote to an unoccupied state ψf when the system is radiated with an harmonic

electromagnetic radiation with angular frequency ω such that Ef − Ei = ±~ω

Γi,f (ω) =
2π

~

∣∣∣∣eA0i

2~
(Ef − Ei)ûe ·

∫
Ω

U∗f,q(r)rUi,q(r)dr3

∣∣∣∣2 δ(Ef − (Ei + ~ω))

=
π

2~
(eA0ω)

2

∣∣∣∣ûe · ∫
Ω

U∗f,q(r)rUi,q(r)dr3

∣∣∣∣2 δ(Ef − (Ei + ~ω)) (4.11)

A property of equation 4.11 is that Γi,f = Γf,i which means that this

quantity is the same regardless if the process is an emission or an absorption. It

is an absorption process when Ei < Ef and an emission process in the other case.

4.5. Absorption per unit volume and absorption

coefficient

The total upward transition rate per unit of volume in the crystal, i.e. a

quantity related with the transition probability from an initial state with energy

Ei to a final state with energy Ef , Ef > Ei, is a quantity that accounts not only

the transition probabilities of equation 4.11, but also the occupation probability
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of the initial state and the inoccupation probability of the final state. Similarly,

the total downward transition rates per unit of volume in the crystal is related to

transitions where Ef < Ei, considering again the probabilities of equation 4.11

and the occupation and inoccupation probabilities of the initial and final states

respectively. The occupation probabilities in the superlattice in equilibrium are

given by the Fermi-Dirac statistics. Adding both, the upward and the downward

transition rates per unit of volume, we define the net upward transition rate per

unit of volume, Ri,f (~ω), that can be written as:

Ri,j(~ω) =
1

V

∑
i,f ;Ei<Ef

Γi,fF (Ei, T )(1− F (Ef , T ))δ(Ef − (Ei + ~ω))−

− Γf,iF (Ef , T )(1− F (Ei, T ))δ(Ef − (Ei − ~ω))

=
1

V

∑
i,f ;Ei<Ef

Γi,f{F (Ei, T )− F (Ef , T )}δ(Ef − (Ei + ~ω))(4.12)

Here V is the volume of the whole system.

Finally, the number of incident photons with a given energy per unit area and

unit time Nph inside the material can be expressed as the energy per unit time

per unit area (Poynting vector) divided by the photon energy

Nph =
〈S〉
~ω

=
nrcεoωA

2
0

2~
(4.13)

Where nr is the relative refractive index, c the speed of light, ε0 is the vacuum

dielectric permittivity.

Finally, the absorption coefficient α from equation 4.1 can be expressed

α(~ω) =
πe2ω

nrcε0V

∑
{i,f}:Ei<Ef

∣∣∣∣ûe · ∫
Ω

U∗f,q(r)rUi,q(r)dr3

∣∣∣∣2 {F (Ei, T )−F (Ef , T )}δ(Ef−(Ei+~ω))

(4.14)
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4.6. Computing the absorption coefficient

Due to the virtually infinite amount of reciprocal space points q that are in

a real system, we choose to sample the reciprocal space with a regular grid, as

we did in the tight binding calculation. We made a discretization that reduces

this infinite quantity of reciprocal states to a finite one, with QS states. This

sampling introduces a new factor in equation 4.14, N
QS

. This factor ensures that

all the real reciprocal vectors are represented in the limited amount of points in

the discrete sampling.

Another concept worth mentioning is the computational strategy to ensure

energy conservation. Instead of sweeping in photon energy and looking for any

pair of states that happen to have that exact energetic difference, we take the

opposite direction: we examine each pair of states (provided their reciprocal

state is equal, so momentum conservation is ensured) and calculate equation

4.14. We then associate that absorption coefficient to the energetic difference of

the two states involved.

To clarify the calculation we write the integral in terms of the tight binding

coefficient expansion. Recalling equation 2.8 and 2.6, we have that

ψm,q(r) =
1√

Km,qN

∑
n,Rn

bm,q,ne
iq·Rnφn(r−Rn)

=
1√
N
Um,q(r)eiq·r (4.15)

Thus, the term Um,q can be rewritten as

Um,q(r) =
e−iq·r√
Km,q

∑
n,Rn

bm,q,ne
iq·Rnφn(r−Rn) (4.16)

Therefore the integral of equation 4.14 can be rewritten as
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∫
Ω

U∗f,q(r)rUi,q(r)dr3 = (4.17)

=
1√

K∗f,qKi,q

∑
n,Rn

∑
n′R′n

b∗f,q,nbi,q,n′e
iq·(R′n−Rn)

∫
Ω

φ∗n(r−Rn)φn′(r−R′n)dr3

We point out that in this equation the term ei(qf−qi)·r has vanished because

qi = qf due to the vertical optical transitions.

In the same manner we calculated the integrals in equation 2.11, it is feasible

to neglect all the integrals except the ones concerning first neighbors and the

ones for the considered quantum dot. Defining Rp = R′n − Rn, for a given

R′n only Rp = 0 and Rp for nearest vectors are not dropped from the summation.

∫
Ω

U∗f,q(r)rUi,q(r)dr3 = (4.18)

=
1√

K∗f,qKi,q

∑
n,n′,Rp

b∗f,q,nbi,q,n′e
iqRp

∫
Ω

φ∗n(r−Rp)rφn′(r)dr3

When we substitute equation 4.18 into the absorption coefficient 4.14 we ob-

tain our final expression for the coefficient.

α(~ω) =
πe2ω

Qsnrcε0Ω

∑
{i,f}:Ei<Ef

∣∣∣∣∣∣
∑

n,n′,Rp

b∗f,qf ,nbi,qi,n′e
iqRp√

K∗f,qKi,q

× . . . (4.19)

· · · × ûe ·
∫

Ω

φ∗f (r−Rp)rφ(r)dr3

∣∣∣∣2 {F (Ei, T )− F (Ef , T )}δ(Ef − (Ei + ~ω))

We note that V , the system’s total volume, disappears in the equation and Ω,

the unit cell volume, replaces it. This is because of the N
Qs

factor that relates the
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real reciprocal space (N points) and our sampling (Qs points) of the reciprocal

space.

So far, with equation 4.19 we are able to compute the absorption for all

photons whose energy is equal to the energy differences from miniband to

miniband, between states with the same q vector. This calculation consists on

computing a histogram. Once we calculate the absorption coefficient for all

energetic differences available in the system we use bins of a certain width and

represent the resulting curve. The final result depends on the Qs discretization

and the bin width. The less granular the Brillouin zone sampling, the more

accurate the calculation. The narrower the bin width, the noisier the absorption

coefficient curve. Therefore, a compromise for Qs and the bin width should be

considered for a proper calculation.

4.7. Considerations on finite systems

One of the most striking aspects of this work is the unexpected results when

computing the absorption coefficient in finite systems. An example is shown

in figure 4.1, where we calculate the absorption for a 2D periodic stack of 10 QDs.

We can notice a very high absorption peak at very low energies when light

is polarized along the stack direction3 i.e. ẑ. This low energy peak is an order

of magnitude higher than the other peaks of the absorption curve which, as

the inset shows, are of similar magnitude as those corresponding to the x̂

polarization. This peak is non-existent in 2D periodic superlattices.

In figure 4.1 the Fermi level is at the conduction band edge (only conduction

bands are present) and temperature was 77K thus the population is highly

concentrated in the lowermost energetic states of the system. The photon energy

corresponding to the low energy absorption peaks could be inferred from figure

3All the stacked systems in this work are stacked along the ẑ direction and the periodicity
is along x̂ and ŷ directions.
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Figure 4.1: Absorption calculations for a 2D periodic stack of 10 QDs. Light polarized
along the ẑ direction with an inset showing the same curve, cropped to hide the low
energy peak (left panel) and absorption curve for light polarized along the x̂ direction
(right panel).

4.2, corresponding to vertical transitions between the group of lowest energy

minibands (the ones originated from the lowest energy miniband in the 2D

periodic lattice without stacking).

In the case of a regular 3D periodic superlattice (i.e. physical limit of an

infinite 2D stack) this group of bands would turn into a continuum, that would

form the energetic band along ẑ axis. In that case, there would not be any low

peak absorption, since that would violate the momentum conservation, yet it is

happening in this case where the stacking along ẑ axis is finite. This inspired

us to investigate if the conservation of momentum has the same mathematical

interpretation when there is a finite system and thus not a proper reciprocal

lattice can be established.

To improve our understanding of this effect, we studied 1D systems. Our 1D
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Figure 4.2: Miniband structure of the 10 stacked InAs R=12Å two-dimensional quan-
tum dot array.

study can be divided into two essentially different types of systems: the finite

(QD molecules) and the infinite ones (periodic systems).

Figure 4.3 shows the energies of some systems to compare. The figure shows

the energy of three finite systems versus the 1D periodic one. It can be seen

that in all cases the molecular states are within the width of the periodic system

minibands.

We also found an interesting correspondence shown in the figure 4.4 sug-

gesting that there is some relationship between finite and periodic systems.

There is an excellent correlation when plotting the q vectors of the mini-

band states whose energy is equal to the molecule ones. This suggests that the

molecular states have a relation with the periodic states with particular q vectors.

With this context let us now analyse the second term in the last expression
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Figure 4.3: Comparison of the 1D InAs R=12Å periodic system minibands (blue lines)
and the energy spectra of 20, 40 and 60 R=12Å QD molecules.

of equation 4.10 to gain insight on the complete behaviour of energy absorption.

1

N

∑
Rn

Rne
i(qi−qf )·Rn

〈
Uf,qf |Ui,qi

〉
(4.20)

For now we can omit the bracket, since it can be factored out of the summa-

tion and make some changes to facilitate our calculations. Firstly we define the

reciprocal vector distance ξ = qi − qf . Secondly, we redefine Rn = lcunûz where

n is the n-th superlattice position and lcu is the unit cell length. We can relate

this expression to the geometric series as shown below
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Figure 4.4: Plotting of q vector whose energy coincides with the i-th molecular state.
We used the first 40 molecular states of a 40 QDs molecule and compared them with

the first miniband. The slope is 7.7032× 10−2 ' 1

N + 1

1

N

(N−1)/2∑
n=−(N−1)/2

lcune
iξlcun = − i

N

∂

∂ξ

(N−1)/2∑
n=−(N−1)/2

eiξlcun =

= − i

N

∂

∂ξ
e−

iξ(N−1)lcu
2

N−1∑
n=0

eiξlcun = − i

N

∂

∂ξ

1− eiξNlcu

1− e iξlcu2

e−
iξ(N−1)lcu

2 =

= − i

N

∂

∂ξ

sin

(
ξlcuN

2

)
sin

(
ξlcu

2

) ≡ − i

N

∂

∂ξ
F (ξ) =

= −F (ξ)

N

{
lcuN

2
cot

(
ξlcuN

2

)
− lcu

2
cot

(
ξlcu

2

)}
≡ G(ξ) (4.21)

To understand the functions F (ξ) and G(ξ) we have plotted them in figure

4.5 for different values of N. We can see that as N grows the function G(ξ) tends
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to behave as the Dirac delta, δ(ξ), while the function G(ξ) tends to the Dirac

delta derivative.

In agreement with previously presented results, these functions show that in

the limit of large N , i.e. a periodic system, the absorption coefficient will peak

at very low energies.

There is a reason why these low energy peaks do not show in the 2D periodic

systems with no stacking. While the summation of equation 4.21 is non-zero, the

bracket
〈
Uf,qf |Ui,qi

〉
is equal to zero whenever i = f i.e. the transition occurs

between states in the same miniband. Thus, the only transitions that are possible

given the usual Fermi energy levels are those from photons with energy grater

than the band gap. There is a thorough discussion on section 5.6.2 about how

absorption is affected when using 2D periodic stacks.
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Figure 4.5: F (ξ) and G(ξ) against different values of ξ. It can be seen that for
low values of N the term in equation 4.21 is non-zero for values of ξ different than
zero, which means that for small molecules the crystal momentum conservation is not
exactly fulfilled. The orange crosses indicates the allowed ξ for a molecule of N quantum
dots. To simplify our analysis the allowed ξ have been calculated using figure 4.4 with
qi = 0. When N tends to infinite G(ξ) tends to an infinitely peaked function, with peaks
infinitely close to zero. Thus, transitions that do not exactly conserve momentum are
still allowed, but at infinitesimal photon energies
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5.1. Results outline

We have divided our results by published articles [65, 75, 76, 87], in chro-

nological order of publication. These articles, along with the unpublished work,

represent the overall results produced during this thesis.

5.2. Nanoscale, 10 20 9679-9690 (2018)

In this article we calculated the electron mobility dependence with tempera-

ture for 2D periodic superlattices for four different CdSe quantum dots. These

are two wurtzite CdSe of 1.84 nm and 1.26 nm radius forming an hexagonal

superlattice and two having zincblende crystal structure with 1.22 nm radius and

opposite stoichiometry, Se and Cd rich surfaces, forming a square superlattice.

We also analysed the simulator for numerical stability and obtained useful

insights and predictions for experimentalists who wish to synthesize these types

of QDs.

In figure 5.1 we show a 3D representation of the 1.84 nm wurtzite QD. It can

be seen that the 2D superlattice is hexagonal in this case.

5.2.1. Introduction and numerical stability analysis

Before publishing our mobility results we wanted to analyse the numerical

stability of the simulation, specifically the numerical solutions for equation 3.2.

These are very important, since the material is deemed to be ohmic, thus its

mobility has to be independent of the electric field strength. Equation 3.2 has

an implicit fraction, expressed as a gradient. In a simplified picture of this

calculation, we have a variation in energy divided by a variation in superlattice

crystal momentum. The change in superlattice crystal momentum q is given

by equation 3.8 which depends on the electric field. The variation in energy

also depends indirectly on the variation of the crystal momentum. Thus, if the

electric field is very low the gradient is essentially the result of a fraction of two

very small values. Computations like this one can be very noisy because of the
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Figure 5.1: 3D representation of wurtzite CdSe 1.84 nm quantum dot minibands de-
rived from the conduction band states.

limited numerical resolution of computers. On the other hand, if the electric

field is too high, the change in crystal momentum would break the ohmic regime

assumptions.

By representing electronic mobility with varying electric fields we found a

plateau as shown in figure 5.2. Thus we chose 100 V/m as our electric field

intensity since around this value electric mobility is kept constant.
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Figure 5.2: Mobility eigenvalues of the first energetic interval of the miniband as a
function of electric field intensity. It can be seen that the simulation shows the expected
ohmic behaviour one order of magnitude around 100V/m.

Another interesting aspect to assess was the noisiness of the mobility versus

the energetic interval curve. We found in equation 3.11 that this value depends

strongly on the number of states per energetic interval ni. This value is very

fluctuating from one energetic interval to the other, which could be due to a poor

Brillouin zone discretization, that do not distribute smoothly the reciprocal space

sampling between energetic intervals. This is important because it can introduce

a mobility dependence with reciprocal space discretization, which would not have

physical meaning. This could be solved by using a less coarse discretization, but

that would increment the algorithmic time complexity resulting in large simu-

lation times. We chose another strategy. We used a thinner discretization but

instead of using it to calculate the mobility we used it only to obtain a more

precise DOS and as a result better ni values which do not depend on the discre-

tization used to make the calculations. Figure 5.3 shows two mobility eigenvalues

as a function of energy without density of states correction (black diamonds) and
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Figure 5.3: Comparison of mobilities with and without correction. We premultiply

each ni in equation 3.11 by
n′i
ni

Qs
Qs′ where n′i and Q′s are the number of states per energetic

interval and total reciprocal space vectors of a less coarse discretization, respectively.

the same calculation with the corrected DOS (red lines). This correction affects

mostly to the edges of the miniband. This is specially important since we usually

choose the Fermi level to be on the lower edge of the lowest energy miniband (in

this work the minibands are all above the bulk bandgap) so the first energetic

intervals are the most important to the mobility values.

There are four quantities affecting the superlattice that are important to study

i.e. Fermi level, temperature, superlattice constant and impurity concentration.

In this paper we studied the four of them and proposed compact models to extend

our calculations beyond the simulation.

5.2.2. Mobility as a function of Fermi level

In figure 5.4 we show the mobility dependence with temperature and Fermi

level for the wurtzite CdSe with 1.84 nm radius in a superlattice with minimum
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Figure 5.4: Electronic mobility as a function of temperature for different Fermi levels.

lattice constant. QDs are one bond length (1 bl) apart from one another. It is

noticeable that Fermi level affects mobility dramatically as long as it is not below

the miniband minimum by a large margin. We were not interested in analysing

very high Fermi levels since that configuration would be difficult to produce in an

experimental setting. As the Fermi level is lowered below the miniband minima,

the Fermi statistics tend to the Boltzmann distribution and mobility becomes

independent of the Fermi level position. We chose the latter scenario, with a

Fermi level 1.5 eV below the lowest energy miniband minimum, in the CdSe

bandgap (5 eV below vacuum level).

5.2.3. Mobility as a function of the superlattice constant

Figures 5.5 and 5.6 show the mobility as a function of temperature for

the two wurtzite crystalline structure QDs for different superlattice constants.

It can be seen in both figures that the mobility is abruptly reduced as the

superlattice constant grows. This is due to the exponential decay of the strongly

confining nature of the quantum dot which makes wavefunction overlaps to
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change strongly with dot-to-dot separation. The distance between the QDs’ walls

are ranging between 1 and 2 bond lengths, which is achievable experimentally

[3], and the mobility changes in three orders of magnitude. This also happens

because in our simulations the quantum dot is surrounded by vacuum. In the

real case, quantum dots would be surrounded by ligands providing coupling for

varying distances. Thus, our mobility calculations are a worst case scenario.

We also observe the different mobility eigenvalues between the 1.84 nm QD

radius and the smaller 1.26 nm radius one. In figure 5.7 we can see why. The

figure represents both systems’ minibands at a particular energetic interval,

5 meV above the miniband minima. It can be seen that the bigger quantum

dot shows a clear miniband anisotropy while the smaller is isotropic. This

is another example of the size dependent properties of quantum dots. The

smaller QD superlattice shows higher mobility. This seems to be a rule of

thumb for quantum dots: the overlap between QDs tends to grow with de-

creasing quantum dot radius, and as a consequence the carrier mobility increases.

In the case of CdSe 1.84 nm radius quantum dots we chose the impurity

quantum dot to be 1.7nm radius in 1 % concentration (one in a hundred are

impurities in the superlattice) which corresponds to a size dispersion of about

7 %. In the case of CdSe 1.26 nm quantum dots, the chosen impurity is of 1.1

nm radius, which, when it is in 1 % concentration, represents a size distribution

of 10.4 %.

We also simulated the two zincblenda CdSe QDs with a Cd and a Se rich sur-

face, both in square superlattices. In figures 5.8 and 5.9 we show their mobility

curves. In the square superlattice case we have a decrease in the maximum mobi-

lities of one order of magnitude when compared to their hexagonal counterpart.

This is because the nearest neighbours are reduced from six to four, which redu-

ces overall coupling. We can see that stoichiometry also has an effect in mobility,

being Se rich the system with a higher value of this magnitude.

It can be seen in some of the last figures that mobility tends to plunge to low
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Figure 5.5: Absolute value of electron mobility curves for wurtzite CdSe 1.84 nm
radius, with different dot to dot separations. The distances are measured from QD
center to center.

values at certain temperatures and then tends to grow again. This is due to

the fact that we are representing the mobility’s absolute value. Actually, the

mobility changes sign at a certain temperature. This phenomenon is explained

in figure 3.4, and it is related to the miniband curvature. At low temperatures

only the lowest energetic intervals of the miniband are populated thus affecting

mobility. When temperature increases, higher energy levels are being populated.

When the temperature is high enough a point is reached in which there is the

same population above and below the energy where effective masses change sign

and mobility reaches its lowest point. At higher temperatures, mobility raises

again but with opposite sign. We cannot see these changes in any of the figures

represented here because we chose to represent the absolute value of mobility.

This mobility decrease with temperature is a feature of band-like transport.

Nevertheless, our model attributes this decrease to the QD superlattice electro-

nic structure and its electronic occupation rather than the higher relevance of
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Figure 5.6: Absolute value of electron mobility curves for wurtzite CdSe 1.26 nm
radius for different dot to dot separation. The distances are measured from QD center
to center.

carrier-phonon scattering at higher temperatures.

Model for dot-to-dot separation

It has been shown that mobility changes drastically with dot-to-dot separa-

tion i.e. superlattice constant. We tried to capture this behaviour in a suitable

model.

The overlap values show a roughly exponential dependence with superlattice

constant. Mobility is dependent on the overlap quantities but in a complex,

nonlinear way. At lower temperatures where only the lowest miniband states

participate in transport the exponential dependence is clearer than at higher

temperatures, where the presence of different energetic states create a more

complex relationship with overlapping values.
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Figure 5.7: Representation of both energy minibands at a particular energy (5 meV
above miniband minimum) for the CdSe 1.84 (blue) and CdSe 1.26 nm (red) radius
wurtzite QDs. It can be observed a change in anisotropy with QD radius.

We proposed the following model

µi(T,∆) = si(T )e∆η(T ) (5.1)

where subscript i = 1, 2 is the eigenvalue index, si(T ) is the mobility for the

minimum possible superlattice vector (QD in “contact” with first neighbours),

∆ = d−d0 is the difference between actual interdot distance d and the minimum

possible dot-to-dot separation d0 and η(T ) is a parameter that modulates the

exponential behaviour at higher temperatures.

Fitting curves for the model are shown in figure 5.10. As explained above,

we found a much higher steep dependency with superlattice vector value at low

temperatures than at higher ones, as shown in relation 5.2

µ(300,∆) = µ(300, d0)

(
µ(50,∆)

µ(50, d0)

)5/4

(5.2)
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Figure 5.8: Absolute value of electron mobility curves for Cd-rich surface 1.22nm ra-
dius zincblenda CdSe QD for different dot to dot separation. The distances are measured
from QD center to center.

5.2.4. Mobility as a function of impurity concentration

The dependence of mobility with impurity concentration is simpler. As

seen in equation 3.4, the scattering rate is linearly proportional to the rate

of impurities. The scattering rates are similar to each other and thus is the

scattering probability. This allows all reciprocal space states to have a similar

probability of being populated after scattering. All this means that if we multiply

by some factor the concentration of impurities then all TOFs will be reduced

by a similar quantity. Thus, the whole mobility is approximately inversely

proportional to the impurity concentration ν. Figure 5.11 shows the effect of

changing the concentration in the CdSe 1.86 nm radius QD hexagonal array.
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Figure 5.9: Absolute value of electron mobility curves for Se-rich surface 1.22nm radius
zincblenda CdSe QD for different dot to dot separation. The distances are measured
from QD center to center.

5.2.5. Comparison with the hopping model and real data

We have used real data from [3] and [4] where a FET device with CdSe

quantum dots was built using different capping ligands. There are two major

differences between our simulated systems and the ones used in the experimental

set: i) in the experiment, the quantum dots are sandwiched between two

dielectrics and ii) the QD ligands in the real systems affect to the wavefunction

overlap because they fill the space between nanoparticles. In our case, the 2D

periodic superlattice is surrounded by vacuum. Thus, our results represent a

lower limit for superlattice mobility.

The hopping model used for comparison [64] is the one of equation 3.1. We

also compare with a model for ordered nanocrystal films proposed by Efros

and Shabaev [69] µ = α/T 1/2, which is valid when the Fermi level is below

the miniband minima, as it is our case. The former system was used with an
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Figure 5.10: Mobility eigenvalues for 50 K (upper panel) and 300 K (lower panel)
for the wurtzite CdSe 1.86 nm radius QD with 1 % impurity concentration. Solid lines
represent the analytical fitting of equation 5.1.

activation energy Ea = 25meV and α = 9.3 in the second one.

We used our mobility simulation results and a toy model (curves labeled as

“TM”) where we set all the scattering rates to a particular constant value re-

gardless the initial and final state. Results are shown in figure 5.12. They suggest

that our model is the best fit to the experimental data, with a concentration of

1 % impurities (5 % size distribution) at 1 bond length separation.

5.2.6. Conclusions

In this article we explained our computational electron transport model,

its approximations, its limits of validity, and proved to have a consistent,

numerically stable simulator, in the ohmic regime for QD periodic superlattices.
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Figure 5.11: Mobility curves of CdSe 1.86 nm radius QD superlattice for different
impurity ratios.

We calculated the electron mobility for four different QD superlattices with

accuracy and in a wide range of physical variables avoiding a costly Monte Carlo

process, thus allowing to speed up the computation by a large margin.

We also improved on aspects of mobility fluctuation that can arise from

a finite discretization smoothing the fluctuations in the DOS obtained with a

coarse reciprocal space adding a correcting factor that accounts for the real

density of states.

We compared our results with experimental data, obtaining a good agree-

ment with these. This suggests that our model could properly describe the ca-

rrier dynamics in QD superlattices, meaning that band-like transport scattering

mechanisms could be dominated by size-variation scattering mechanisms around

room temperature, and electron-phonon scattering having a secondary role as a

thermalising agent.
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Figure 5.12: Comparison with experimental work from Talapin’s et al FET in linear
and saturation regime (orange and red triangles respectively), Kagan’s experimental set
(blue squares) the hopping models and our full model’s mobilities eigenvector for the
hexagonal superlattice of CdSe 1.86 nm radius and the toy model for different scattering
ratios. It can be observed that our models capture the behaviour better, proving the
utility of this work.

5.3. J. Chem. Phys. 151, 154101 (2019)

In this paper we reviewed a novel way to build intermediate band solar

cells (IBSC) using quantum dots as the active material. IBSCs are a promising

path to achieve an efficiency higher than the Shockley-Queisser limit (S-Q)

[89–91, 95] by taking advantage of an intermediate band (IB). Two photons

are involved in the process of generating a carrier. One promotes the electron

from the valence band (VB) to the IB and another promotes it from the IB to

the conduction band (CB). In this manner, the cell can convert photons into

electric carriers using two different paths, depending on the photon energy: i)

if the photon has an energy greater than the bandgap a VB-CB transition will

happen, as in regular solar cells or ii) the photon has greater energy than the

difference between intermediate and valence bands energetic separation thus the

carrier will promote to the intermediate band (VB-IB transition) and then it
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will absorb another photon with greater energy than the difference between the

intermediate and conduction bands (IB-CB transition). Carrier extraction will

happen as usual, extracting only carriers from the VB and CB only, being the

intermediate band a carrier reservoir where electrons await to promote to the CB.

Using the detailed balance framework as in the S-Q model, one can explore

different values for the energy differences EIB − EV B and ECB − EIB to yield

maximum conversion efficiency [96, 97] as a starting point strategy to search for

materials, stoichiometry, QD radius, etc.

IBSCs are not only restricted to quantum dot based structures. Anyway, the

tunable properties of QDs makes them ideal to be used to create intermediate

bands without having to use highly doped materials or heterojunctions, which

have their particular problems in real devices as lattice strain or high synthesis

difficulty [35]. In the field of QDs, epitaxial QDs made of InAs have been used in

combination with a matrix of GaAsX[95]. The bulk GaAsX would provide the

VB and CB bands while one of the states of the InAs QDs would be used as IB.

Unfortunately these devices performed poorly compared to expectations.

A novel way to produce an IB with colloidal QDs as active material is

described in [98]. In this case, intra-gap states (IGS) are created in the QD

due to structural relaxation, according to DFT calculations. The IGS, as the

name suggests, is an eigenstate with an energy inside the bandgap. Thus, a QD

array with such IGS would contain the VB, IB and CB, so there is no need to

embed it in another device as in p-i-n structures [99]. In the case of an IBSC,

it is desirable the intermediate band to be as narrow as possible (no energy

dispersion) and thus as a consequence the IGS should be very localized, having

no overlap with any other wavefunction.

In [98] the calculations were made for CdSe QDs of R ∼ 0.6 nm, which are

not commonly synthesized. Also, CdSe has a large bulk bandgap which is not

the most efficient option from the IBSC perspective. Lastly, the intra-gap state

in that system showed a high degree of delocalization. A delocalized state would
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have overlapping wavefunctions in the array, thus creating a wide miniband.

This is a problem for IBSCs since once the electron promotes to the IB it rapidly

decays to its minimum energy state via thermalisation, loosing its excess energy

and limiting the energetic spectrum otherwise available for the IB-CB transition.

In our work we have used two schemes to build an IBSC:

• Scheme I: We created an IB by inducing an IGS in the form of a surface

trap. To do this we chose a site to remove a passivating bond to create

a surface electron trap modeled according to [100]. This creates a highly

localized state around the dangling bond site, and we chose in all examples

a surface trap that is energetically distant from both VB maxima (VBM)

and CB minima (CBM) states. When creating the superlattice these IGS

create an IB that is distant from VBM and CBM. These IGS have been

extensively documented [101–104]. In figure 5.13 whe show these states in

the three InAs QDs used in this scheme. The selected radius are 0.6 nm,

0.8 nm and 1.0 nm.

• Scheme II: Taking advantage of the energetic difference between the CBM

miniband (s-type orbital) and the next CB minibands (p-type orbitals) that

exist in InAs QDs we decided to analyse the use of the CBM as an IB. For

this reason we selected two bigger QDs, with 1.2 nm and 2 nm radius, where

this effect is more prominent.

InAs is a good candidate for IBSC since its 0.4 eV bulk bandgap provides a good

starting point matching the solar spectrum.

5.3.1. Results

In this section, for the sake of clarity, we have separated the results obtained

within schemes I and II

Scheme I: Using IGS

There are two conditions required for an IGS to be a good candidate for

IBSCs: i) it has to be separated by a zero density of states from VB and CB.
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Figure 5.13: Charge density representations. In columns from left to right: 0.6nm,
0.8 nm and 1 nm quantum dots. In rows from up to down: Minimum energy conduction
band eigenstate, intra-gap state and valence band maximum energy eigenstate. These
are the quantum dots used in scheme I of this work.

This provides to each level its own quasi-Fermi level and, if separated enough

energetically, non-radiative recombination will not be important since the energy

difference EIB−EV B and ECB−EIB is much greater than the phonon energies,

and ii) there have to be a high number of VB-IB and IB-CB transitions, since a

great portion of the spectrum is converted into carriers through the IB path.

We can see in figure 5.14 that in the case of the isolated QDs proposed for

scheme I both conditions are fulfilled. The three coloured curves indicate which

type of transition is being represented, being VB-IB black, IB-CB red and VB-

CB green. Solid vertical lines are the transition probability between the different
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states of the isolated QD, and the dashed and solid curves are a lorentzian broa-

dening of 50 meV and 100 meV respectively, used to create a preview of how

suitable the QDs are when used in a superlattice.

Not any value of transition probabilities makes a good candidate for IBSCs.

If for example IB-CB is very low compared to VB-IB transitions, the IB states

will fill up, and will severely limit VB-IB absorption. If the opposite happens,

the IB will have no carriers to promote to the CB. Thus, a low transition ra-

te in one of the two processes will be a bottleneck for the whole conversion process.

We can see from the solar spectrum in figure 5.15 that most of light energy

is in the form of low energy photons. This has to be taken into account when

evaluating if the relationship between transition probabilities is convenient.

Generally, the lowest energetic process should have the biggest absorption rate,

since it is in the lower part of the spectrum (near infrared and infrared) where

the majority of photons exist.

We can see in figure 5.14 VB-IB and IB-CB transitions are reduced as

the radius increases. There is also another property that has to be taken into

account, which is IB width. On one hand the IGS-derived miniband should

have some width. This would help the IB to be partially full, facilitating the

IBSC operation. On the other hand, too much width would produce a high

energy loss due to phonon interaction. It has to be taken into account that the

thermalisation scattering rates in the case of QDs are normally slower than in

the bulk case [72].

Figure 5.16 shows the miniband structure and absorption for superlattices

built with QDs following scheme I. Both the IB curvature and intragap transition

rates increase with decreasing QD radius. This means that there is no easy way

to select the ideal QD when it comes to the QD radius: too small will have high

intragap transition rates (i.e. transitions between valence band and intraband

or intraband and conduction band) as seen in figure 5.14 but will likely have

an IB band width too high and thus a higher energy loss in the IB. A bigger
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Figure 5.14: Absorption spectra of InAs isolated QDs used on scheme I. Green,
black and red colours represent VB-CB, VB-IB and IB-CB, respectively. Vertical lines
represent transition rates between the discrete energetic states of the QD. Doted and
dashed lines represent the same states’ transitions broadened by 50 meV and 100 meV
respectively, to show a glimpse of how a superlattice made out of these QDs would
behave.



100 5. Results

Figure 5.15: Solar spectral energy density at sea level.

QD would have lower intraband transition rates but a smaller IB curvature. In

CdSe QDs, for example, it has been observed [105] an IB width proportional to

D−2 where D is the QD diameter. Lastly, a CBM lowering has been observed

in 0.6 nm and 0.8 nm radius QDs, which suggests that the superlattice pro-

perties, such as light absorption, cannot be simply deduced from the isolated QDs.

In this work we chose to place the Fermi energy in the middle of the IB, thus

providing the partial filling needed to guarantee that there will be both VB-IB

and IB-CB transitions.

It is also important to underline that this is a best case scenario since our

superlattices are perfectly periodic. In a real system there will be size dispersion

and superlattice dislocations which will broaden the absorption range but will

affect mobility in a negative way.
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Figure 5.16: Absorption spectra (doted lines are the isolated QDs for comparisson
with superlattice, in solid lines) and minibands for the three quantum dots used for
scheme I. It can be seen how miniband structure is strongly affected by the selected
QD. It is also clear that the QD absorption is more redshifted the smaller the QD.
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Figure 5.17: Absorption spectra of InAs isolated QDs used on scheme II. Green,
black and red colours represent VB-CB, VB-IB and IB-CB respectively. Vertical lines
represent transition rates between the discrete energetic states of the QD. Doted and
dashed lines represent the same states’ transitions broadened by 50 meV and 100 meV,
to show a glimpse of how a superlattice made out of these QDs would behave.

Scheme II: Using CB lowest energy miniband

In our second scheme we take advantage from the energy difference between

the s and p orbitals, from which the first to the fourth miniband come from. The

system still accomplishes the above conditions, namely a 0 DOS between VB-IB

and IB-CB and there is a high transition rate between all minibands. To avoid

confusion between the first and the rest of conduction band minibands, we refer

to the lowest energy miniband from the CB (which is now used as IB) as M1

and the p-states derived minibands as M2,3,4.
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Figure 5.18: Absorption spectra (dotted lines are the isolated QDs for comparison
with the superlattice, in solid lines) and minibands for the three quantum dots used for
scheme II. We observed a redshift in the R=1.2 nm absorption. We also observed that
with 1.2 nm radius, M1 and M2 are very near in the limits of the Brilloin zone, which
could yield high recombination rates yet this is compensated with a lower transition
rate in that region of reciprocal space.

We found that 1.2 nm and 2.0 nm radius QDs are good candidates to achieve

a QD superlattice that surpasses S-Q efficiency because of their energetic levels

position and because of their good balance between VB-IB and IB-CB processes,

as shown in figure 5.17.

In figure 5.18 we can see specially for the 1.2 nm case that M2,3,4 are wide

enough as to provide good electron transport. Apart from the energetic shift

observed (specially) in the R=1.2 nm case the minibands’ relative position still

offers a good chance to overcome the S-Q limiting efficiency.
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Table 5.1: IBSC efficiency limit calculations for the InAs QDs used in this work, for
1 sun and 100 sun concentration, and for the isolated QD and in array arrangement
(film) cases. Estimations are based on Bremner, Levy, and Honsberg [97] and Krishna
and Krich [96].

5.3.2. Assessing real efficiencies

As it has been said before, our case of study is a best case scenario for the

efficiency estimation since in table 5.1 we are assuming a) carrier mobilities to

be infinite, b) no non-radiative recombination and c) complete absorption of all

energies compatible with the miniband positions.

For assumption a) we refer to [105] where we found that R=1.2 nm and

R=2.0 nm QDs have mobilities of the order 2.6 and 0.4 cm2V−1s−1 respectively.

Assuming the mobility to be dependent on the miniband width, we can assume

mobilities of the same order of magnitude for the five QDs used in this work.

For assumption b), in a recent work [106] it was found that recombination is

proportional to mobility, since the carrier is more capable of finding paths to low

energy states via diffusion to electron traps. Thus high mobility, while increasing

short circuit current (Jsc) can yield a lower open circuit voltage (Voc), thus

affecting overall efficiency. In agreement with our work, the mobility is inversely

dependent on QD radius. To summarize, smaller QDs can yield better mobility
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and, counterintuitively reduce the operation efficiency. This is another balance

to do when choosing a QD candidate for solar cells. In [106] they concluded

that the best mobilities were in the range of 10−3-10−2 cm2V−1s−1, although

this margin could be different if the quality of the superlattice improves i.e. has

less carrier trap density. Finally, for assumption c) quantum dots superlattice

have a separation from the first CB miniband to the rest that reduces as

the QD size increases. This makes bigger QDs superlattices to have smaller

absorptionless windows in the IB-CB transitions, which makes them preferable

over the smaller ones, from the spectrum absorption point of view. In the case

of the absorptionless window in the VB-IB transitions, these are because of

the lack of valence band minibands included in the simulations. The 0.8 nm

radius QD is the better candidate from this point of view. Also, molar extinction

coefficient (the light extinction per unit QD) is greater in bigger QDs, which,

for limited QD stacking can tip the balance of choice to the bigger QDs[107–113] .

Taking into account the previous reasoning, we concluded that for scheme I

the best QD is the one of R=0.8 nm while for scheme II we could be interested in

bigger QDs since the M1 −M2,3,4 curvatures are lower and thus thermalisation

would have less effect on conversion losses in the IB-CB transitions. Also in the 2

nm radius case there is a nearly constant energetic difference between minibands.

Anyway, there is an upper limit for viable candidates. Over R=3.5 nm the gap

(energetic difference between M2,3,4 and VB) would be too small. So we deem as

reasonable to consider QDs of 2 < R < 3.5 nm.

5.3.3. Final comment

To end the discussion on quantum dot based IBSCs we make the following

remarks on other properties apart from conversion efficiency that are necessary

to have a working solar cell.

Charge extraction Once generated, carriers have to be extracted from the

solar cell in order to be used as energy source. In the case of an IBSC we have

an intermediate band from which carriers have not to be extracted. This can

be done in two ways: i) by using selective contacts that will not accept carriers
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with the IB energy or by blocking the IB in the regions near to the contacts e.g.

materials such as ITO or LiF/Al/Ag for PbS QDs [106] and TiO for CdSe ones

[114]. The particular path for selecting only carriers from the VB and CB is out

of the scope of this work. However this inconvenience could be compensated by

the fabrication simplicity that these devices suggest, specially when compared to

more proven concepts such as the tandem solar cell which is difficult to build[115].

IB occupation As said before, the intermediate band has to be partially

occupied to maintain a continuous flow from VB to CB via the IB. In epitaxial

QD systems maintaining this condition has been proved to be challenging[116].

To overcome this it has been proposed to make use of smaller QDs in more

compact and lower impurity concentration superlattices, and to use doping

(either photodoping or electrical) to position the Fermi level in the middle of the

IB. Colloidal QDs are a promising pathway to achieve this, since they can be

synthesized in very small sizes, and with low size dispersion. Also, passivation

allows them to build highly dense and ordered arrays. In the field of epitaxial

quantum dots this has been difficult because lattice strain increases when the

QD is smaller, creating surface traps.

Excitonic nature of spectrum absorption The discreteness of the electro-

nic states and the ensuing discrete character of the excitonic optical transitions

in QDs may significantly reduce the single junction conversion efficiency, by re-

ducing the photogenerated current[115]. The main origin of this effect is the

transparency of the QD absorption spectrum between sets of absorption peaks,

which is more pronounced for R=1.0 nm and 2.0 nm but is also present in all

other sizes (see figures 5.16 and 5.18). However, CQD-based IBSCs have two

additional advantages: minibands with a finite width and absorption rates that

increase with increasing energy. Both properties are crucial to achieve conversion

efficiencies beyond the S-Q limit as they ensure the participation of photons of the

lowest possible energy in the available absorption processes, avoiding the loss of

photon energy in excess of the energy gap[115]. When high and low energy absor-

ption processes compete, the required photon selectivity is “naturally” achieved

in CQD-based IBSCs, where higher energy processes are more strongly absorbing
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compared to lower ones as apparent from figures 5.16 and 5.18. The finite mini-

band width introduces, however, an upper bound on the energy of the absorbed

photons, which in practice is not likely to lead to significant losses, considering

that such photons are already filtered by the atmosphere or by the use of ul-

traviolet absorbers (protecting the cell encapsulation), providing a similar high

energy cutoff[117].

5.3.4. Conclusions

We reviewed a novel path to produce QD based IBSCs by using two

different IB schemes. One using an IGS as IB and the other using the lowest

energy miniband of the CB. These devices can surpass the S-Q efficiency limit

and, in the case of InAs, we came to the conclusion that the best candida-

tes for an experimental setup are the 0.8 nm radius when using IGS as IB

and for completely passivated QDs the radius should be between 2 < R < 3.5 nm.

5.4. Phys. Chem. Chem. Phys., 2019, 21, 25872

(2019)

In our previous mobility work [65] we investigated QD arrays having one type

of impurity. This is an approximation since real systems have a size distribution

instead of only one sized impurity.

In this article we showed our results when using various impurities i.e.

more than one differently sized QD. We used this to calculate the electron

mobility of an InSb R=13Å 2D periodic superlattice in a more realistic way.

Then we showed some theoretical results that allow us to build a model

that can describe transport for any size distribution while avoiding a great

amount of computation, and we used these findings in a reversed manner to esti-

mate the size distribution of an experimental set based on the measured mobility.
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Figure 5.19: Miniband structure for the 2D square periodic array of 13 Å radius InSb
QD, at minimum superlattice vector i.e. one bond length separation from dot to dot

5.4.1. Mobility calculation with various impurity QDs

After the already described process of using the pseudopotential and tight

binding model, we obtained the miniband structure for the system we chose in

this case, InSb R=13 Å QD, which is shown in figure 5.19. We chose three different

impurities: 11.94 Å and 11.2 Å radius InSb QD and the vacancies, which are

“quantum dots” with zero-valued potential (vacuum). Figure 5.20 shows a cross

section of the potential energy difference (∆V (r)) of the three impurities with

the periodic InSb QD, which is a central quantity when evaluating the scattering

rates and thus the mobility. We also simulated CdSe 20Å radius with various

impurity sizes to compare results with the InSb case.

With three impurities we have to specify three different concentrations. In

order not to be confusing with notation, we add a superscript to the scattering
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Figure 5.20: Impurities used in this work. a) a sample of the superlattice where the
semitransparent QD is replaced by an impurity. b), c), d) comparison between periodic
(semitransparent) and impurity (solid) QD atomic arrangements for 11.94Å, 11.2Å and
0Å radius respectively. e), f), g) represent a cross section of the potential difference
between the periodic QD and the three impurities in the same order.

rates and concentrations throughout this work. For example, the scattering ratio

and concentrations of the 11.94 Å QD will be expressed as Γ(11.9) and ν(11.9)

respectively.

In figure 5.21 we can see the mobility per energetic interval for different im-

purity concentrations and QD impurity sizes. It is noticeable that, for a given

energetic interval, mobilities are inversely proportional to impurity concentra-

tion; we noted this earlier in our works by stating the inverse relationship µ ∝ 1
ν .

One important finding in this article is that mobilities for different impurities are
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Figure 5.21: Mobility as a function of energetic interval for different impurity con-
centrations. The three impurities were used separately in each simulation. When con-
centration is changed the curves vary inversely proportional to the concentration value.
However, when the impurity is changed, the whole curve is changed as if it were multi-
plied by a constant value, which is represented as f in the y-axis. We used f = 1 for the
11.94 Å radius impurity, f ≈ 1.6 for the 11.2 Å one and f ≈ 8 for the vacancy to make
all impurity curves coincide at each of the concentrations shown in the legend. This is
a consequence of the relationship of equation 5.3.

proportional:

µriEi
µ
rj
Ei

= constant (5.3)

Relation 5.3 shows the paramount importance of the miniband curvature.

In order to understand this relation, it is important to remark that there are

two factors that affect mobility the most. One is the TOF, which depends on

scattering rates, which depends on the impurity QD. When the impurity QD

is changed and the mobilities are compared, they show the above relation.

The other factor is the energy gradient or miniband curvature. We showed our

theoretical breakthrough on this matter in the next subsection.
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Figure 5.22: Mobility as a function of temperature (Fermi level at 100 meV below
the minimum of the lowest energy miniband) for different combination of impurity
concentrations. It can be seen that the vacancy governs the overall value, since the
lowest mobility curves are the ones with highest vacancy values, regardless to the values
of the similar impurities.

There is also another expected behaviour, which is that the more similar the

impurity is to the periodic QD size, the lower the scattering rates it produces

and the higher the mobility for the same concentration and conditions. Figure

5.22 shows the mobility calculations when all three impurities are present with

different concentrations profiles. It can be seen that the most important impurity

in terms of how it affects mobility is the vacancy, since this yields the greatest

values when equation 3.15 is applied.

5.4.2. Mobility dynamics extraction

The theoretical work in this article is explained in section 3.6.1. It can be

synthesised as follows:

• It is possible to calculate the scattering rates of the unphysical impurity
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concentration of ν = 1 (all QDs are impurities) and average the scattering

rates for all the miniband states, as shown in equation 3.16, noted as Γ̃(r).

• Then, the mobility tensor for each energetic interval, µ
(r)
Ei

can be calculated.

The superscript r denotes that this is calculated for a particular impurity,

the same that is used in the scattering calculation above.

• Plugging this results into equation 3.11 and multiplying by the scattering

rate Γ̃(r) we obtain equation 3.17. It can be proved that this quantity, Θ̂,

only depends on the miniband features, and is completely independent of

the particular impurity used for its calculation.

• To obtain a quite accurate mobility value for a particular set of QD impu-

rities with varying concentration rates, we calculate all Γ̃(r) to interpolate

a continuous function and use it with equation 3.18 as below

µ̂(Ef , T ) =
Θ̂(Ef , T )∑
r ν

(r)Γ̃(r)
(5.4)

It has to be taken into account that this is an approximation, since we

averaged all the scattering rates to be able to factor them out of the whole

Markov chain, which would be impossible if scattering rates are different from

one another.

In figure 5.23 we showed the Γ̃(r) for different QD impurities placed at perio-

dic InSb 13 Å and CdSe 20 Å QD radius 2D periodic superlattices. Both models

were fitted with a second order polynomial, Γ̃(r) = a × (R − r)2 + b × (R − r)
where R is the periodic QD radius and r is the impurity radius. The values (a,b)

in the InSb case were (0.0248 Å
−2
s−1, 1.041Å

−1
s−1) and in the CdSe case (0.046

Å
−2
s−1, 0.0147Å

−1
s−1), which, as shown in the figure, reflects very distinctive

behaviours with radius impurity. We concluded that this behaviour depends on

many factors and we cannot draw conclusions for a particular QD beforehand.

According to these fittings, we suggested to interpolate Γ̃(r) in order to obtain

information for these impurities in the ensemble whose mobilities have not been

explicitly computed, avoiding the whole mobility calculation process for them.
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Figure 5.23: Γ̃(r) representation as a function of the periodic and impurity radius
difference for InSb R=13 Å (left) and CdSe R=20Å (right). Several impurities were
used in each case in order to obtain a good interpolation. In both interpolations the
vacancy has been excluded. Both models were fitted with a second order polynomial,
Γ̃(r) = a× (R− r)2 + b× (R− r) where R is the periodic QD and r the impurity radius.

The values, (a,b) in the InSb case were (0.0248 Å
−2
s−1, 1.041Å

−1
s−1) and in the CdSe

case (0.046 Å
−2
s−1, 0.0147Å

−1
s−1).

5.4.3. Size dispersion estimation

Based on the above results we concluded that we can calculate a mobility for

a QD impurity distribution profile given precalculated scattering ratios from a

set of impurities.

There exists an infinite number of concentration profiles that would yield a

particular mobility value. Instead of guessing separately each concentration value,

we assume in this section the most realistic case, a gaussian size distribution. To

this end, we propose that concentrations follow the equation below

ν(r) =
e−( r−Rσ )

2

1 +
∑
r e
−( r−Rσ )

2 (5.5)

where σ is the standard deviation of the Gaussian distribution, a measure of

size dispersion.
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Figure 5.24: Fitted Gaussian distribution of sizes for experimental results of Kagan
et al. [3, 118] and Talapin et al. (shown as J. Lee et al. in the legend) [4]. Hopping model
mobilities are included to compare.

Figure 5.24 shows the fitted standard deviation of the assumed Gaussian

profile for size distribution for the experimental results of Kagan et al. [3, 118] and

Talapin’s group results (shown as J. Lee et al. in the legend) [4]. It can be observed

a good agreement between our model and experimental data, highlighting the

viability of our model as a tool to predict size distributions in QD superlattices

from mobility measurements and, conversely, carrier mobilities in superlattice

for particular QD size profiles. The fitted values where in agreement with the

experimental samples (< 5 % size standard deviation).

5.4.4. Conclusions

We presented our mobility model applied to an impurity size distribution

to achieve more realistic results. After the theoretical derivations conducing to

this possibility, we studied the relationship between the electron mobility and
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changing impurity size and used the fact that changes in mobility with impurity

size can be used to build a continuous model. We concluded that, given scattering

rates that are similar across the first Brillouin zone, the miniband characteristics

are responsible for the mobility behaviour, rendering the impurity size dispersion

as the factor responsible for the actual values of electron mobility. Finally, we

used this theoretical breakthrough to predict mobilities for two types of QD

superlattices, for which a Gaussian distribution for QD size dispersion is assumed.

5.5. Nanoscale Adv., 2, 384 (2020)

In this article we analysed the absorption coefficient dependency on the

different properties of a 2D film. These are, namely, QD size, superlattice

constant (sometimes referred as dot to dot separation), surface stoichiometry,

morphology, temperature, Fermi level and light polarization.

We have observed a blue shift in intra-band transitions, i.e. the energy

difference between minibands of the conduction band are bigger than the ones

of the diluted/isolated QDs albeit we also observed the expected [119–122] red

shifts for transitions from the valence band to the conduction band. All the

parameters we vary along the paper have strong repercussions over these effects,

which translates into not only a variable absorption strength but also on a

variable absorption spectra.

We found that these energetic shifts are closely related to the miniband

structure, the miniband shape and width being the most important features.

These, in turn, as often noted throughout this work, are dependent on the

QD wavefunction overlaps. Overlaps are highly affected by surface morphology,

stoichiometry and QD radius.

The absorption shifts are greater at (in order of importance): i) sma-

ller QDs, ii) smaller superlattice constants, iii) anion-rich surfaces and iv)

morphologies allowing interlocking. We call interlocking to the possibility of
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placing the dots closer due to features in their surface; as shown below, in

the case of the spherical quantum dot the superlattice constant can be less

than its radius. These effects leads us to the conclusion that it is not possi-

ble to predict the collective superlattice behaviour from the isolated/diluted QDs.

5.5.1. Theoretical method

As usual, we begin with the potential and eigenfunctions of the isolated QDs

obtained via pseudopotential method. We then use these results to obtain the

superlattice miniband structure. In this work, we used a denser discretization

of the Brillouin zone, Qs = 501 × 501. This helps to obtain better quality

results in the absorption curve. We have observed during our research that for a

sparser discretization the absorption curve was too noisy. Therefore, we chose to

compute on a denser one.

The index of refraction has been set to 1 in this work for simplicity.

5.5.2. Results

In order to observe how the different physical properties affect to absorption

we used four different types of QDs or systems

• A) InAs 1.2 nm radius cation centered QD

• B) InAs 1.2 nm radius anion centered QD

• C) InAs 2 nm radius spherical QD

• D) InAs 2 nm radius rough-faceted QD

Type A and B QDs are of the same size and shape, with the only difference

being that their atoms are interchanged, which allows us to observe the effects

when only surface stoichiometry is changed, A-type and B-type being anion and

cation rich respectively. System C is also cation rich thus comparisons between B

and C can be used to study the effects of changing the QD size. Systems C and
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D are also closely related. The QD in C is the same as in D but it has two extra

As atoms in each of its six faces. These extra atoms are placed in a way that

allows inter-locking between type C QDs, like two Lego™ pieces. The differences

between systems C and D allows us to observe how morphology affects the system.

Figure 5.25 shows the four types of QDs and their respective miniband

structures. All the eigenstates considered for the tight binding expansion are

above the QD bandgap. We have considered 7 QD eigenstates for systems A,C

and D, and 8 for system B.

In this work we noted the different minibands Mi where i is the miniband

index in order of increasing energy. We observe that in all cases the lowest energy

miniband is very distant from the rest and has its lowest energy at the Γ point.

Also, the maximum and minimum energetic separation between M1 and M2 is

at the Γ point an the Brillouin zone boundaries respectively.

It is clear that system A is the one with the widest M1 which is a sign that

it has the most overlapping wavefunctions. We also observed blue shifts in the

absorptions, in contrast to what is usually expected from [119–122]. We have to

recall that this is not in disagreement with experimental results since what we

are simulating are absorptions between minibands inside the conduction band,

not across the bandgap as observed in those works. In fact, figure 5.26 shows

a comparison between transitions of the isolated QD and the nanocrystal film.

Transitions are separated into interband (across de gap) and intraband (inside

the conduction band) and it can be seen that the interband transitions are red

shifted in accordance with experimental data. In table 5.2 we show the energetic

difference between the first and the next four states, along the Γ point for the

superlattice and the isolated dot. It can be seen that these quantities are always

greater in the periodic case than in the isolated one.
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Figure 5.25: The four types of QDs used as building blocks for the superlattices
throughout this article. Letters in the upper-left corners of each panel correspond with
the systems labelling. Here is visually represented how systems A and B have the same
QD but interchanging indium and arsenide atoms, green and yellow respectively. It can
also be observed how the D system is faceted and that spherical system C is identical
with the exception of the two extra As atoms in each face. It is also evident from this
representations that system A stands out in terms of miniband width and curvature.
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Figure 5.26: Comparison between isolated QD and the superlattice at minimum super-
lattice constant absorption curves for system A. The interband absorption (transitions
across the gap) is included as the red curve along with the intraband (inside the conduc-
tion band) as the blue one. The dotted curves correspond with the absorptions of the
isolated/diluted QD (including some peak broadening). It can be observed that while
the absorptions investigated in this article (intraband) are blue shifted, the interband
transitions are red shifted in accordance with the experimental data [119–122].

Absorption coefficient

We have calculated the absorption coefficient for two different temperatures

and Fermi levels and 7 linear combinations of linear light polarization. Figures

5.27 and 5.28 show the absorption coefficient curves for the four systems at the

two different temperatures and Fermi levels and all polarizations. The cases

shown in these figures are superlattices with minimum dot-to-dot separation, i.e.

1 bond length (BL) ≈ 0.26 nm for systems A, B, D and 0.25 BL ≈ 0.05 nm for

system C, due to inter-locking.

The temperatures we simulated are 77 K and 300 K. The former allows us

to simulate a situation where the Fermi level governs occupation and the latter

temperature allows us to study room temperature behaviour. We also chose two
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Figure 5.27: Absorption curves for superlattices made with system A (left panel)
and system B (right panel) QDs at minimum dot-to-dot distance. There are four pa-
nels for the combination of the two Fermi levels (M1 minimum and middle) and two
temperatures (77 K and 300 K).

Fermi levels, EF1 and EF2. EF1 is at the M1 minima when the system has its

lowest dot-to-dot separation i.e. minimum superlattice constant. And we used

the same value with all dot-to-dot separations. We maintain this value across dif-

ferent superlattice constants. On the other hand, EF2 is situated in the middle of

M1 and is changed as the minibands shift with changing dot-to-dot separations,

to simulate a relatively similar doping level. The position of the Fermi level with

respect to minibands in systems A and B is illustrated for clarification in figure

5.29. As shown in that figure, as the superlattice constant increases EF1 penetra-

tes deeper into the gap while EF2 gets closer to the M1 energy of the isolated QD.

When the dot-to-dot distance increases, the miniband structure flattens.

This is due to a decrease in overlap between QD wavefunctions. The overlap

integral and the first miniband M1 width are represented for the four systems in
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Figure 5.28: Absorption curves for superlattices made with system C (left panel) and
system D (right panel) QDs at minimum dot-to-dot distance. There are four panels for
the combination of the two Fermi levels (M1 minimum and middle) and two tempera-
tures (77 K and 300 K).

figure 5.30.

What follows is our findings in the system’s behaviour with each of the chan-

ging parameters.

Light polarization

Absorption curve features show no dependence with light polarization.

Figures 5.27 and 5.28 show the absorption for all light polarizations used in

this paper. It can be seen that all the curves have roughly the same shape but

different heights depending on polarization. Polarization does not change the

absorption coefficient in more than an order of magnitude (our absorptions are

between 105m−1 - 106m−1, in accordance with InAs/GaAs epitaxial QDs [123]).

Light polarization affects differently depending on the system. For example,
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Figure 5.29: Illustration of the effects of superlattice constant i.e. dot-to-dot separa-
tion of the quantum dots A (left panel) and B (right panel) over the miniband curvature
and position. Fermi level is represented to better explain how their values change. It
can be seen that while EF1 is not varied and is maintained at the minimum of M1

at minimum superlattice constant, EF2 is shifted in order to be always placed at the
middle of M1.

light polarized along [110] shows the highest peak in system A, but produces the

curve with minimum values in systems B and D.

Temperature and Fermi level

EF = EF1 at low temperature (77 K): the only importantly populated

states are the ones closest to the Γ point. In this case it is noticeable that the

absorption peaks are located very closely to the energies shown in table 5.2. This

is because the only transitions happening are from states near the centre of the

first Brillouin zone.

EF = EF1 at room temperature (300 K): The absorption peaks widen for

system A and there is some change in the overall shape of the curve at systems

B,C,D. In all four cases the temperature increase leads to occupation at states
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Figure 5.30: Overlap integral 〈ψ1(r)|V (r)|ψ1(r−R)〉 change with dot-to-dot distance
(left panel) and M1 miniband width as a function of dot-to-dot separation (right panel).
It can be shown in this figure the strong correlation between overlap and miniband
width, as well as the steep changes that the superlattice constant produces to the
system behaviour.

Table 5.2: Energetic difference between minibands at the Γ point and energetic diffe-
rence between the isolated QD states, all values are in meV.
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with higher energy than the M1 minimum. The flatter M1 is, the further from

the Γ point those states are. This means for system A that these newly occupied

states are still very close to the centre of the Brillouin zone thus the absorption

curves show no change in features, the peaks just widen and overlap some more.

In systems B,C,D M1 is flat enough as to produce new small absorption peaks

because regions that are far from the Γ point take part in the absorption process

and they have different absorption energies.

EF = EF2 at low temperature (77 K): In this case, EF2 changes with the

M1 miniband position and curvature. Thus, the wider the miniband, the greater

the observed change in absorption. System A is the most affected by the change

in Fermi energy. It can be observed that with this Fermi energy level absorption

peaks are all at lower energies with respect the dominant peaks at EF1 and

low temperature, because of the opposing curvatures of M1 and the rest of the

miniband structure.

EF = EF2 at room temperature (300 K): Due to the fact that the Fermi

level is in the middle of the miniband the systems with flat minibands have all

their states participating in the absorption process. Temperature change has

little effect, since all the M1 states are highly occupied and since M1 is far

energetically from the rest of the miniband structures, the other minibands are

highly unoccupied thus the occupation difference is very similar. However for

system A, there is room for occupation to be affected by temperature and a

dependence with temperature can be observed in this case.

In conclusion, all systems are more affected by the Fermi level than tempera-

ture. Both Fermi level and temperature have greater impact on results the lower

the other parameter is. As a rule of thumb, temperature affects the flatter the

minibands are (or the lower the overlaps) and Fermi level has a greater effect

when minibands are wider.
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Figure 5.31: Energetic difference between M1 and M2 along the Γ point as a function
of inter-dot separation (upper panel) and absorption peak maxima for the same inter-
dot separation for polarizations producing highest and lowest absorption peaks (lower
panel).

Inter-dot distance

The dot-to-dot distance affects primarily to the wavefunction overlaps,

which in turn affect the miniband width and position. Figure 5.31 shows the

dependency of minibands width and absorption peak width on dot-to-dot

separation. The steepest curve is for system A, which suggests that the wider

the miniband the stronger the effect.

The most noticeable effects when increasing the superlattice constant are

i) the absorption values generally decrease if Fermi level remains unchanged,
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because as the miniband flattens, the miniband energetic minimum increases and

ii) the absorption spectrum is redshifted as the miniband position moves closer

to the isolated QD energetic states.

Oscillator strength

The oscillator strength (equation 5.6) is a quantity that is proportional to the

absorption and captures the dependency with the reciprocal vector and photon

energy.

os =
2m0ω

~KiqKfq

∣∣〈ufq| ê r |uiq〉Ω
∣∣2 (5.6)

The oscillator strength is represented in figures 5.32 and 5.33. It can be

seen that its average value changes slightly with light polarization (roughly

the same change as in the absorption curves since the dependency with light

polarization relies on the oscillator strength) but it is highly affected by

superlattice constant, not only in its average value, but also changing the

dependency on the reciprocal vector. When superlattice constant increases

not only the minibands flatten and more reciprocal vectors participate in

absorption but also their transition rates are higher. Therefore, there are

two effects at play that make states in the Brillouin boundaries to participa-

te in the absorption process i) enhanced occupation due to the proximity of

the Fermi level and ii) higher oscillator strength at the Brillouin zone boundaries.

In figure 5.33 we show the oscillator strength for all transitions for system A. It

can be seen that transitions M1 →M2,3,4 are similar. This is due to the s-orbital

nature of the first state and the p-orbital nature of the three next minibands, in

accordance with the spherical symmetry of the QD. Transition from M1 to the

higher energy states (d-orbital) are much lower making high energy absorptions

have lower absorption coefficient.
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Figure 5.32: Oscillator strength for transitions M1 to M2 from system A, for all the
q vectors of the Brillouin zone. For representational purposes the discretization has
been reduced to 51 × 51. On the left panel the system has 1 bl separation between
QDs and on the right one we have 2 bl separations. On the upper panel polarization is
yielding maximum absorption, as opposed to the lower panel where we have minimum
absorption. It can be seen, firstly, that the overall oscillator strength is higher for the 2
bl and, secondly, that the relative values between Γ point and Brillouin zone boundaries
have changed, being the values close to the Γ point not so dominant for the 2 bl case.

5.5.3. Conclusions

We investigated the photon absorption characteristics and miniband structure

of 2D superlattices of 4 different types of InAs QDs, varying superlattice constant,

temperature, Fermi level, light polarization, surface stoichiometry and QD size.

We found great blue shifts in the intraband transitions inside the conduction edge

along with the usual red shift for transitions across the band gap. We found this

effect to be independent of light polarization, which has less effect on absorption

profile. Superlattice constant on the other hand, plays a significant role in the red

and blue shifts, thus making possible to tune the absorption energies via lattice

engineering. This might be done by choosing the right ligands.
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Figure 5.33: Oscillator strength for transition M1 to M2,M3, M4, M5, M6, M7, for
system A. It can be seen that for cases a), b) and c) (s→ p transitions) the oscillator
strength is much higher than for cases d) e) and f) (pertaining to the s→ d) transitions.

5.6. Unpublished work

Our recently published work has been constrained to two-dimensional QD

superlattices being one QD thickness (system d in figure 1.4). We have referred

to these systems as 2D periodic superlattices. In this section we present other

QD based device configurations that go beyond this scope. With the purpose to

avoid any confusion, we refer to the description of the terminology used to refer

these novel device configurations that was made on section 1.6.

The QD molecule and the 2D stack superlattice are two examples of systems

that were possible to model by combining the periodic and finite tight binding

models in section 2.1.2 and 2.1.3. There are many more combinations to cover

that we decided to left out of our study because of the widespread possibilities

of this research field.

The 1D and 3D configurations are used to study how finite systems behave

when their structures grow and tend to their periodic counterparts. In the case

of the QD stack, if the stack is made long enough, this should tend to behave

as the 1D periodic system. For the 2D stack superlattice, if the stack is thick

enough we should observe a behaviour that approaches the 3D periodic system.
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Figure 5.34: . Comparison between different stacks obtained for the two different
approaches. a) The quantum dot stack energy spectrum for different numbers of QDs
in the stack in the asymmetric approach (from 1 to 8 QDs in the stack) and b) the
same example for the symmetric approach. We can see the energy hybridization when
more QDs interact. It can be seen, comparing a) and b), that the two approaches yield
similar, but differently distributed eigenergies. Energies are referred to vacuum level.

5.6.1. Current results

In this section we showcase the results we have obtained and the results

that led us to the theoretical development of section 4.7. We start by the

energetic description of the systems, using the energetic miniband structure

where applicable.

When solving the finite tight binding Schrödinger equation for a molecule

the resulting number of eigenstates is the same as the sum of eigenstates in the

QD molecule constituents (e.g. a molecule of seven QDs using 8 eigenfunctions

each would have 7 × 8 = 56 different eigenstates and eigenergies). In figure 5.34

we show how the energetic states evolve when increasing the number of QDs,

compared to the isolated InAs QD. As said in chapter 1, we focused on one type

of QD molecule arrangement which consists on stacking QDs along the z-axis.

There is an ongoing discussion about how to numerically model the QD stacks.
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We use two different approaches.

• Asymmetric approach: A finite system, with its boundary effects.

• Symmetric approach: In this case we use a “virtual”quantum dot at the

boundaries whose wavefunctions overlap with the real boundaries of the

stack.

The two approaches handle the tight binding Hamiltonian in two distinct

ways. In the first approach, we obtain the Hamiltonian matrix as in equation

2.12 and solve it directly, obtaining the corresponding eigenstates. In the second

approach we introduce an intermediate step before solving the Hamiltonian. If

we want to solve a stack of M quantum dots in the symmetric approach, we

obtain the Hamiltonian matrix for a stack of (M + 2) QDs, where two virtual

quantum dots are added to the stack boundaries. Before solving the Hamiltonian

we manipulate the matrices to eliminate the eigenstates of the two extra QDs,

thus representing a system with M QDs. This will change the overlaps in the

boundaries, because there are the effects of a virtual QD. We call it a virtual

QD because it will not contribute to the stack spectrum adding extra eigenstates

but will affect the original ones in terms of overlapping. In order to avoid the

localized wavefunction states we took the decission to do the calculation using

the latter approach. However the convenience of using the asymmetric or the

symmetric approach is a subject that is currently under debate. Figure 5.35

illustrates the operation we performed. The figures show the component moduli

of one of the Hamiltonian matrices (matrix A in equation 2.12).

The symmetric approach might be understood as the equivalent to mole-

cular passivation. In regular passivation the QD dangling bonds are usually

saturated by means of a surface hidrogen-like atom, removing highly reactive

surface states which would result in unphysical results. In spite of the obvious

differences between regular passivation and the symmetric approach, both

procedures remove the surface states in the systems. Figure 5.34 shows how

the energies of a passivated stack change with increasing QD number in the stack.

Both approaches are interesting. The symmetric approach was developed to
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Figure 5.35: Visual representation of the Hamiltonian matrix for the antisymmetric
and symmetric approaches. a) Hamiltonian representation of a 6 QD stack in the asym-
metric approach and b) Hamiltonian representation of a 4 QD stack in the symmetric
approach. Each plotted square is a numerical value of the Hamiltonian matrix A (equa-
tion 2.12) for a stack of six QDs, which has been turned to its modulus and coloured
as a function of numerical value (the diagonal terms of the matrix have been turned to
zero since these are much larger than the off-diagonal terms, thus blinding the numerical
values of the rest of the matrix). It can be seen that the matrix is divided into patterns,
which we call submatrices. Submatrices along the diagonal are sums of wavefunctions
overlaps of a particular quantum dot in the stack. The off-diagonal submatrices are
interactions between wavefunctions of different QDs. The submatrices form a tridia-
gonal system because of the nearest neighbours approximation. The diagonal consists
on repeating submatrices. This periodicity is broken at the boundary QDs, since the-
se quantum dots have overlapping from one side but there is no overlapping from the
opposite.
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Figure 5.36: Comparison between stack energies and a 1D periodic system using InAs
12Å radius QD. Coloured lines represent the periodic system minibands and black lines
represent the stack energy spectrum. We can see that in the asymmetric approach (a)
the stack energies are greater than the maximum energies of the periodic system while
in the symmetric approach (b) all stack energies lay inside the energetic width of the
periodic system.

see if the low energy absorption peaks in 2D periodic stacks (discussed later

in this chapter) were derived from the existence of boundary conditions at

the stack. We ultimately saw that this was not the case (we understood the

low energy peaks as shown in section 4.7) but when comparing 1D periodic

system energies with the stacks (figure 5.36), the symmetric approach was more

convincing in terms of eigenenergies and wavefunction behavior. Therefore we

decided to use QD stacks in the symmetric approach framework throughout this

investigation.

In order to calculate 2D periodic stacks we firstly obtain the stack eigenstates

and then we use these as the unit cell of an otherwise regular 2D periodic

system. This has a direct consequence in the miniband structure. If we solve a

stack of M QDs using N wavefunctions per quantum dot we obtain a M × N
dimension matrix to diagonalize eigenstates. This system, when used as the 2D

periodic stack unit cell, yields a M × N miniband structure. These minibands

are similar to the original N minibands of the 2D periodic array, as shown

in figure 5.37, where we compare a 2D periodic InAs 12Å radius QD with a
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Figure 5.37: Miniband structure of 2D periodic InAs QDs R=12 Å (red) and 2D pe-
riodic stack of four InAs QDs R=12 Å (green). It is remarkable how the 2D periodic
stack shares common features with the 2D periodic superlattice. In this chapter we
maintain a consistent miniband structure representation, in which we choose the 3D
reciprocal space to represent minibands (figure 2.2). The rightmost panel has flat mi-
nibands since it is representing states through qz direction, in which the 2D structure
has no periodicity.

periodic 2D stack of four QDs of the same material and radius. In both cases,

all quantum dots are 1 bonding length from one another. The energetic distance

between the 2D periodic stack minibands and the original 2D system depend

on the overlapping quantities between QDs. In figure 5.38 we show the same

system as in figure 5.37 but with the QDs moved away by 2.1 bohrs from each

other along the perpendicular direction to the periodic plane (z-axis). This

reduces overlap and makes the 2D stack minibands closer to the one QD thick

2D periodic system. In the limit where there is no overlap between QDs at the

stack there would be a complete M-fold degeneracy. The physical interpretation

would be the consideration of M independent 2D periodic, one QD thick systems.
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Figure 5.38: Miniband structure of 2D periodic InAs QDs (red) and 2D periodic stack
of four InAs QDs taken apart 2.1 bohr (green). We can observe how the minibands
derived from the stack get closer to the 2D periodic miniband structure.

5.6.2. Low energy absorption peaks at 2D periodic stacks

There has been a great effort of theoretical research along this work in order

to explain the results we obtained when calculating the absorption coefficients.

The most striking feature about the absorption coefficient calculations of the

2D periodic stacks is the large low energy absorption peak we found in every

simulated system.

As it has been previously said, we thought that the existence of this peak

would be due to the boundary effect of the stack. After discarding this possibility

with the use of the symmetric approach, we observed no monotonous dependency

with the peak height and the number of QDs in the stack. This is a problem

since at a certain stack thickness we should observe a trend to the 3D behaviour.

Lastly, the other striking property of these peaks is that they only appear when

light polarization is along the z-axis.
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We scrutinized the periodic system absorption formalism and developed the

theory explained in section 4.7. We arrived to the conclusion that the low energy

peak approaches to a Dirac delta around zero photon energy, which is equivalent

to say that it vanishes when N tends to infinity. Nonetheless in our simulation

calculations it is visible for any number of QDs stack. This is because we use a

histogram to represent the absorption coefficient along the available energies on

the Qs discrete space. Thus, the lowermost bin of the histogram contains this

low energy peak.

This peak, nonetheless, is present, specially in small thickness 2D periodic

stacks. We suggest that the measurement of these low energy peaks can be

used by experimentalists to obtain insights on the coupling between layers of

a 2D stack superlattice. This will be the topic of future works on this research line.

Firstly, for comparison purposes, figure 5.39 shows the absorption coefficient

of a one InAs QD thick 2D periodic superlattice (no stacking). All lattices in

this section are periodic (infinite) along the xy-plane, the interdot distance

being one bond length. Separation along the perpendicular direction (z axis)

may vary. The figure shows the absorption coefficient for light polarized along

the three axis. Before starting our discussion, it is important to discuss on the

coefficient unit dimensions, noted as α̃ instead of the usual α. A 3D QD array

has a well defined unit cell given by the interdot distance between neighbours.

Nevertheless, as the system dimensionality reduces, some lengths are not well

defined. For example 2D QD or 2D stack QD arrays have well defined unit cell

sizes along the x and y directions because the interdot distances are well defined

along these directions. However the unit cell size has no well defined length along

the z direction. We could assume this length being the QD diameter, but there

is no perfectly defined boundaries along that direction. In the same manner QD

stacks and 1D QD arrays have no well defined cross section area. For this reason

the next discussion has to be considered.

In a 2D system the absorption coefficient can be measured as the fraction
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between emitted and transmitted light, I and I0 respectively[93]:

αL = ln(
I0
I

) (5.7)

where L is the distance travelled by the light in the material. Assuming light

travelling through the material along the z direction, L is the system thickness

which is not well defined as it has been previously explained. With this in mind,

we decided to modify the absorption coefficient formulation in equation 4.19.

Instead of introducing the unit cell volume in the denominator, we used the unit

cell surface in the xy plane (or the dot-to-dot distance in 1D arrays) which are

well defined quantities. This yields a dimensionless absorption coefficient for 2D

systems and a counter intuitive length dimension for 1D systems. Nevertheless,

the absorption features remain unchanged.

In order to find a correspondence between the absorption coefficient values

and experimental ones, the above factors should be considered.

Figure 5.40 shows the absorption coefficient obtained in a 2D periodic stack.

It can be seen how the low energy absorption peak is much higher than the rest

of the curve, yet we can see similar absorption quantities in the inset, which

shows that this system, having greater thickness, absorbs more light than the

one QD thick 2D periodic superlattice.

Finally, to demonstrate an important feature of our findings, we show in figure

5.41 a comparison between this 2D stack superlattice and one that has a greater

separation between QDs along the stack (2.1 bohrs more than the other stack).

We can observe that the low energy peak has decreased significantly, while the

higher energy transitions have remained similar (it is even higher for the greater

separation stack case). This can be explained by looking at equation 4.20. It can

be seen that the bracket overlaps multiply the whole derivation. When QDs are

taken apart in the stack, the overlaps reduce dramatically, reducing the peak by a

similar amount. There is not a linear relationship between overlap and low energy

peak value or position, since reducing overlap is done by moving the quantum
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Figure 5.39: Absorption coefficient for a 2D superlattice without stacking for a pe-
riodic superlattice with one bond length dot-to-dot separation between InAs R=12Å
QDs.

dots apart from each other, which in turn modifies R in the sum, changing the

F (ξ) and E(ξ) in equation 4.21 has complex dynamics.

5.6.3. Conclusions

This unpublished work will shed some light on the dynamics of finite width

superlattices (2D stack superlattices) of arbitrary stacks. For the sake of clarity

we have summarized in this section the main results we obtained on this topic.

There are many physical features that could be derived from a deeper study

applying the obtained procedure to different materials, different crystalline

structures and different QD arrangements.

We also predict a significant low energy peak that should be present in

stacked QDs films, whose intensity hints the degree of coupling between film

layers. More results about these systems are now on their way.
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Figure 5.40: Absorption coefficient of a 2D stack superlattice made of stacks of 4
QDs. It can be observed a low energy peak for light polarized along z-direction. It can
be seen that at higher energies (greater than the bandgap) α̃ modified coefficient is of
similar value than the 2D non stacked superlattice counterpart.



5.6. Unpublished work 139

Figure 5.41: Absorption coefficient comparison between two 2D stack superlattices.
Blue curve corresponds to a 2D stack superlattice whose layers are one bond length
apart from another (minimum distance) while the orange curve corresponds to a 2D
stack superlattice whose layers are separated by 2.1 bohrs, lowering the overlap between
quantum dots. The superlattice constant (distance between QDs across the xy-plane) is
the same. We can see how the low energy peak is reduced, due to the overlap decrease
in equation 4.20
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In this work we have investigated the optical absorption and electronic

mobility for periodic quantum dot systems (superlattices), taking into account

atomistic details of the quantum dots used. This allowed us to work with a

wide variety of system parameters such as QD radius, chemical compounds and

surface traps.

In order to do this, our methodology was divided into three basic steps:

i) Isolated QD empirical pseudopotential calculation ii) use of tight binding

formalism to calculate the properties of a periodic array (or QD molecule)

of a particular QD as shown in chapter 2 and iii) electronic mobility/photon

absorption calculation using the methodology explained in chapters 3 and 4.

We explained the two different approaches of the tight binding method we

used in this work, mainly the periodic and non-periodic ones. The periodic is

used to calculate properties such as energy dispersion (minibands) for the QD

arrays while the non-periodic is used to calculate the properties of QD molecules.

In the latter case, we used the periodic approach after the non-periodic one,

to calculate a periodic array made of QD molecules. We called this the 2D

periodic stack. There is a vast number of configurations we can study with this

research, and we had to limit ourselves to the 2D periodic stack, leaving other

configurations, such as the 1D periodic stack (or QD nanoribbon) for future work.

We shown a novel approach in which we use Markov chains instead of the

computationally more expensive Monte Carlo approach to calculate electric

mobility in QD periodic arrays. The limiting factor of electric mobility in this

work was assumed to be size dispersion. We assumed a perfectly periodic QD

array that is disturbed by the presence of differently sized QDs which we call

impurities, in analogy with semiconductor crystals. During this work we have

calculated electronic mobility values as a function of QD chemistry, morphology,

size (for both periodic and impurity QDs) superlattice constant, Fermi level

and temperature. We concluded that our model is suited as a complementary

tool to the better known hopping model, in the sense that when QD arrays are

sufficiently ordered, our model follows the real data better than the hopping
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model, and vice versa for highly disordered QD arrays. We developed our model

to the point where experimental researchers can use it as a hint to the size

distribution in their fabricated device, from macroscopic measurements such as

mobility dependence with temperature.

In the case of photon absorption, our theoretical approach was the se-

miclassical approximation. We have made a thorough study across the same

physical properties than in the mobility case i.e. QD chemistry, morphology,

size, array lattice constant, Fermi level and temperature. Nevertheless, in this

study we found a very unusual photon absorption result which, deemed as a

simulation bug, turned out to be a mathematically explainable phenomenon in

the semiclassical approximation when some assumptions on orthogonality are

dropped. These results are yet to be published.

To summarize, in this work we have developed a theoretical and computatio-

nal toolkit that will allow us to guide the experimental effort in the high quality,

highly ordered QD devices paradigm shift in the years to come.
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