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ranges as input variables — together with jet substructure observables — of a multivariate
tool. This approach not only provides a single efficient tagger for arbitrary ranges of
jet mass and transverse momentum, but also an optimal solution for the mass correlation
problem inherent to current taggers. By training neural networks, we build MUST-inspired
generic and multi-pronged jet taggers which, when tested with various new physics signals,
clearly outperform the variables commonly used by experiments to discriminate signal from
background. These taggers are also efficient to spot signals for which they have not been
trained. Taggers can also be built to determine, with a high degree of confidence, the
prongness of a jet, which would be of utmost importance in case a new physics signal is
discovered.
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1 Introduction

The high-energy frontier of particle physics has been and will continue to be explored in
the decades to come at the Large Hadron Collider (LHC), a machine designed to unveil the
intricate dynamics of the Standard Model (SM) and search for new physics signals. Being
a proton-proton collider, the LHC abundantly produces sprays of hadronised quarks and
gluons (jets), stemming mainly from pure Quantum Chromodynamics (QCD) processes.
When sufficiently boosted, the hadronic decay products of SM particles like the W , Z
and Higgs bosons and the top quark become highly collimated yielding single ‘fat’ jets.
This could also happen for new particles decaying hadronically. Actually, multi-jet signals
originated from direct or cascade decays of yet unseen particles are predicted in a plethora
of theoretical frameworks beyond the SM, ranging from left-right symmetric models [1]
to scenarios with warped extra dimensions [2, 3]. The complexity of the various possible
jet topologies, and the importance of their identification, fostered the development of dis-
crimination techniques to distinguish (signal) jets produced in collimated decays of heavy
particles, from the QCD ones (background). Those methods have been extensively used,
for instance, in searches for new gauge bosons, scalar and spin-2 particles [4–13], vector-like
quarks [14–17] and dark matter [18], as well as in SM measurements [19, 20].

Identification of jets requires (i) quantifying their mass mJ , usually after applying
some ‘grooming’ [21–24] to remove soft collinear radiation, and (ii) inferring the number of
quarks or gluons clustered inside them (prongs). The latter procedure, commonly known
as tagging, relies on either a single jet substructure variable like a N -subjettiness [25] or
energy correlation function [26, 27], or on a multivariate method that takes as input a set of
those variables [28] or jet images [29]. Since quark and gluon jet masses arise mostly from
soft radiation, which also modifies jet substructure, mass and substructure variables turn
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out to be correlated. Their decorrelation is crucial in several experimental searches, as it
prevents artificial peaks from appearing in the mJ distribution of the SM background after
imposing jet substructure constraints, and provides a way of improving its normalisation by
using sidebands. Moreover, mass decorrelation is a must in new physics searches looking for
bumps in jet mass spectra. Given the relevance of this matter, several mass decorrelation
methods have been proposed [30–32, 49] (see [33] for a comparison of different methods
and [34] for a review) and subsequently applied in a variety of experimental analyses [7, 10–
12, 18–20].

Beyond specific tools designed to identify a certain type of signal (e.g. weak or Higgs
bosons and top quarks), more generic ones can also be developed. Supervised taggers use
Monte Carlo (MC) simulations of two, three and four-pronged jets as signal, and QCD jets
as background. Taking a complete set of substructure variables [28] for both types of jets
within some range of mJ and transverse momentum pT , a multivariate tagging tool such as
a neural network (NN) [49] or a simpler logistic regression [35] can be designed, such that
the tagger learns to identify multi-pronged jets as well as new physics objects for which it
has not been trained. Alternative proposals focus on unsupervised or weakly-supervised
methods, trained directly on data rather than on simulation. Broadly, unsupervised tools
are able to distinguish multi-pronged jets from background either by training on samples
with different signal and background proportions [36–42], or by using autoencoders trained
on background regions [43–48]. Overall, supervised and unsupervised methods have differ-
ent strengths and weaknesses and, in particular, supervised methods depend on the details
of the parton shower simulation (see appendix F of ref. [49]). Still, supervised tools would
certainly be essential to claim a new physics discovery if a 5σ excess is found on data —
extraordinary claims require extraordinary evidence! Moreover, beyond the discovery of
a new physics signal, the identification of its origin obviously requires comparison with
Monte Carlo predictions.

Mass decorrelation, as implemented so far in supervised generic taggers, has the disad-
vantage of showing a residual dependence of the results on the mJ and pT training ranges.
This makes the tagger performance to drop when applied to kinematical regions different
from the ones used to train it, as will be explicitly shown later. To overcome this problem,
one could think of assembling an array of taggers in a two-dimensional grid of mJ and
pT to cover the whole kinematical region. But this ad-hoc solution, besides being quite
complex, could lead to potential problems with boundary effects.

Up to now, classifiers based on jet substructure have either not taken mJ as input
variable [25–28, 35, 49], or have fixed it around some value suitable to tag a specific particle
(e.g. a top quark [50]). In contrast, in this paper we place both mJ and pT on equal
footing as compared to substructure observables by considering the former as training
inputs varying over wide kinematical ranges. This novel approach, which we dub as Mass
Unspecific Supervised Tagging (MUST), not only removes the dependence of the tagger
efficiency on mJ and pT , but also solves the mass correlation problem in the best possible
way by preserving the shape of the mJ distribution after applying the tagger. The taggers
built upon MUST cover wide ranges of mJ and pT (in principle, as wide as wanted) with
excellent discrimination performances across all those ranges. The nontrivial challenge of
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such tools is generating signal multi-pronged jets with continuous mJ and pT distributions.
This will be accomplished by means of a dedicated MC generator. A powerful multivariate
method, such as the NN used here, is also required to correctly disentangle mass and pT
effects on jet substructure variables from differences between QCD background and the
various multi-pronged signals.

To further demonstrate the potential of MUST-based taggers, we test their perfor-
mance to identify complex jet topologies from signals for which they have not been trained.
In addition, we build a prongness selection tagger which takes as input jet substructure
variables, and could be used to identify new physics signals.

2 Building the generic taggers

The first step in order to build the supervised taggers is to generate signal and background
jets, which is done as follows. QCD jets are generated with MadGraph [51], in the
inclusive process pp→ jj. Event samples are generated in 100GeV bins from [200, 300]GeV
to [2.1, 2.2]TeV. This guarantees coverage of the entire pT range up to 2.2TeV (of course,
this arbitrarily chosen domain can be extended). Even though within each bin the events
mainly populate the lower end of the interval, the bins are narrow enough to provide a
smooth pT dependence. As for jet mass, the mJ distribution for QCD jets is continuous
and we select for our analysis the range [50, 250]GeV.

The signal generation is quite more demanding and is carried out with a dedicated
MC generator. We implement in Protos [52] the process pp → ZS, with Z → νν and S
a scalar, for which we consider the six decay modes

4-pronged (4P): S → uūuū , S → bb̄bb̄

3-pronged (3P): S → F ν ; F → udd , F → udb

2-pronged (2P): S → uū , S → bb̄ , (2.1)

to generate multi-pronged jets (F is a colour-singlet fermion). To remain as model-agnostic
as possible, the S and F decays are implemented with a flat matrix element, so that the
decay weight of the different kinematical configurations only corresponds to the four-, three-
or two-body phase space. These signal MC data are dubbed as Model Independent (MI),
being its use motivated by the need of sampling phase space without model prejudice [49].
Likewise for the background, signal jet samples are generated in 100GeV pT bins. To cover
different jet masses, the mass of S (and of F for 3-pronged decays) is randomly chosen
event by event within the interval [30, 400]GeV, and setting an upper limit MS ≤ pTR/2
to ensure that all decay products are contained in a jet of radius R = 0.8.1The parton-level
event samples generated with MadGraph and Protos are passed through Pythia [53]
for hadronisation and Delphes [54] for a fast detector simulation, using the CMS card.
Jets are reconstructed with FastJet [55] applying the anti-kT algorithm [56] with R = 0.8,
and groomed with Recursive Soft Drop [57].

1The MS interval [30, 400] GeV chosen for sample generation is enough for mJ ∈ [50, 250] GeV used in
the taggers. Should one wish to extend the mJ range, the selected MS interval can be extended by changing
the parameters in the Protos generator.
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The ‘model-agnostic’ signals in (2.1) allow building supervised generic taggers. In this
paper we develop

• a fully-generic tagger GenT using the full set of samples as signal;

• multi-pronged taggers GenT4P, GenT3P, GenT2P, which only take the four-, three- and
two-pronged jets as signal, respectively.

Jet substructure is characterised by the set of variables proposed in [28],{
τ

(1/2)
1 , τ

(1)
1 , τ

(2)
1 , . . . , τ

(1/2)
5 , τ

(1)
5 , τ

(2)
5 , τ

(1)
6 , τ

(2)
6

}
, (2.2)

computed for ungroomed jets. We have verified that including higher-order τ (β)
n does not

improve tagger discrimination.
The training set is obtained by splitting the considered mJ range [50, 250]GeV into

four 50GeV bins. For each of the six types of signal jets in (2.1) and simulated sample
(which, as aforementioned, correspond to different 100GeV slices of parton-level pT ) we
extract N0 = 5000 events from each of the four mJ bins. In the lower pT samples we drop
the higher mass bins, considering the full mJ range only for the pT bins above 800GeV.
For the GenT tagger we take 6N0 background events from each simulated sample and mJ

bin, while for the multi-pronged taggers we take 2N0, in order to train the NNs with a
balanced sample. We have also explored the possibility of using unbalanced samples with
more background than signal events, but we find no improvement in the discrimination
power. In total, the GenT and multi-pronged taggers contain N = 4.14 × 106 and N/3
events, respectively. The validation sets used to monitor the NN performances are similar
to the training ones.

As anticipated above, we follow a novel approach to train the NNs by considering mJ

and pT , varying over a very wide range, together with the 17 substructure observables as
inputs. By means of a PCA, we verified that the number of physically relevant combina-
tions is actually smaller; however, since the computational speed is not jeopardised, we
keep the full input set. A standardisation of the 19 inputs, based on the SM background
distributions, is performed. The NN for GenT contains two hidden layers of 2048 and 128
nodes, with Rectified Linear Unit (ReLU) activation for the hidden layers and a sigmoid
function for the output one. The NN optimisation relies on the binary cross-entropy loss
function, using the Adam [60] optimiser (other generalised loss functions such as the one
proposed in [61] do not lead to appreciable improvements). The NNs for the multi-pronged
taggers are similar but with hidden layers of 1024 and 64 nodes. We have found no relevant
performance improvements of either tagger when using more hidden layers or layers with
more nodes.

3 Tagger performance on multi-pronged jets

Our taggers are first tested with a variety of multi-pronged jet signals from W bosons,
top quarks and new scalars of various masses. (The performance for other types of jets
containing hard leptons or photons in addition to quarks is explored in section 5.) Namely,
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(i) two-pronged, with W → qq̄; new scalars A → bb̄, with MA = 80, 200GeV and
A→ uū with MA = 200GeV;

(ii) three-pronged, with t→Wb→ qq̄b;

(iii) four-pronged, with new scalars S → AA → bb̄bb̄ with (MS ,MA) = (80, 30),
(200, 80)GeV; S → WW → qq̄qq̄ with MS = 200GeV; S → AA → uūuū with
MS = 80GeV, MA = 30GeV [58, 59].

These particles are assumed to be produced with a high boost from the decay of a heavy
Z ′ resonance, for which we choose representative masses MZ′ = 1.1, 2.2, 3.3TeV.2 As
background, we use quark and gluon jets generated in pp → Zq, pp → Zg, with Z → νν,
in a 1 : 1 ratio. All these processes are generated with MadGraph, and passed through
the simulation and reconstruction chain described above. The tagger performances are
evaluated by comparing the efficiencies for signal (εsig) and background (εbkg) within a
narrow mJ interval and with a lower cut on pT , so as to isolate the jet substructure
discrimination power from that obtained with any other variable, such as mJ and pT . (An
upper cut on pT is not necessary since both signal and background concentrate towards
lower pT values.) In particular,

• For signals with MZ′ = 1.1, 2.2, 3.3TeV, we set pT ≥ 0.5, 1.0, 1.5TeV, respectively,
for both signal and background.

• For W bosons and scalars decaying as A→ bb̄, S → bb̄bb̄/uūuū with MA,S = 80GeV
we use mJ ∈ [60, 100]GeV, while for top quarks mJ ∈ [150, 200]GeV. When consid-
ering A→ bb̄/uū, S → qq̄qq̄ with MA,S = 200GeV, we take mJ ∈ [160, 240]GeV.

Besides explicitly showing the receiver operating characteristic (ROC) curve for each signal,
we use the area under the ROC curve (AUC) in the (εsig, εbkg) plane to quantify the
discriminant power with a single quantity. We also include in our plots vertical lines at
signal efficiency of 0.5 and horizontal lines at background rejection of 100, in order to
facilitate the visualisation of the intersection of the curves at these reference values. We
compare our results with those obtained with the commonly used ratios τmn ≡ τ (1)

m /τ
(1)
n .

Figure 1 shows the performances of GenT and GenT2P for two-pronged jets. We also
include the results obtained with τ21, often used as a discriminator by the CMS Collabo-
ration [5, 11, 14]. The top-left panel corresponds to W bosons with transverse momenta of
500, 1000 and 1500GeV. The performance for hadronically-decaying Z bosons is similar.
We observe that the performance of GenT and GenT2P is remarkable and improves with jet
pT , i.e. with increasing MZ′ , in contrast to τ21. Therefore, our taggers provide an excellent
alternative to those used, for example, in diboson resonance searches [11].

New scalars A decaying into bb̄ are also looked for at the LHC [8, 10]. The top-right
panel shows the performance for a new scalar A → bb̄ with MS = 80GeV. The bottom
panels show the results for heavier scalars withMS = 200GeV; on the left panel we consider
decays A → uū and on the right panel A → bb̄. The performance is very good across all
the mJ and pT range, also improving with pT .

2Parton-level MC samples are available at https://jaguilar.web.cern.ch/jaguilar/multiprong/
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Figure 1. ROC curves for two-pronged jet signals (for details see the self-explanatory legends and
the main text).

Figure 2. ROC curves for top quark jet signals (for details see the self-explanatory legends and
the main text).

The results for top quarks are shown in figure 2 for a couple of Z ′ masses, and compared
with the subjettiness ratio τ32 often used as discriminant [4, 15–17]. GenT and GenT3P

perform well on top quark jets, although fully-dedicated taggers [50] perform better (in
contrast with ref. [50], our ROCs do not include the additional signal discrimination from
mJ). Still, it is worth noting that generic searches using either of those taggers would not
miss top signals, which is precisely the point that we want to verify here.
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Figure 3. ROC curves for four-pronged jet signals (for details see the self-explanatory legends and
the main text).

In figure 3 the results for four-pronged jets are shown. For comparison we show τ42,
which happens to be the τ4n with highest AUC. The top panels correspond to signals
with MS = 80GeV, decaying via a pair of lighter scalars A into four u quarks (left) or
four b quarks (right). In the bottom panels we present the results for heavier scalars with
MS = 200GeV, either decaying into light quarks via a WW pair (left) or into four b
quarks (right) via an AA pair. Again, the GenT and GenT4P performances are excellent,
exhibiting, for instance, a background rejection better than that of τ42 by a factor of ten,
for εsig = 0.5. As expected, in all cases we observe that the multi-pronged taggers provide
a higher discrimination power than the generic one for their corresponding multi-pronged
signals, but of course they are less general.

We are now in position to compare our results with those obtained with taggers trained
on narrow mJ and pT intervals with PCA mass decorrelation [49]. We consider signals S →
AA→ bb̄bb̄ withMZ′ = 2.2TeV,MS = 80GeV and S →WW → qq̄qq̄ withMZ′ = 2.2TeV,
MS = 200GeV, as in figure 3. Following [49], we build the PCA-decorrelated taggers
pca100080 and pca1000200 for pT ≥ 1TeV and mJ ∈ [60, 100]GeV, mJ ∈ [160, 240]GeV,
respectively. The corresponding ROC curves are plotted in figure 4 (left). The taggers
trained on a narrow mass interval close to the signal mass perform slightly better, but are
much less efficient when applied to masses out of the training region.
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Figure 4. Left: comparison of the performances of GenT and taggers pca100080 and pca1000200
trained on narrow jet mass and pT intervals, for two examples of four-pronged jet signals. Right:
comparison of the performances of GenT and GenT2P with a tagger WT1000 specifically designed for
W bosons.

It is also interesting to compare the performance with a tagger specifically designed
for W bosons. We generate a second sample of Z ′ →WW with MZ′ = 2.2TeV and the W
bosons decaying hadronically. We train a PCA-decorrelated tagger WT1000 using W jets in
this sample as signal and QCD jets as background, with pT ≥ 1TeV andmJ ∈ [60, 100]GeV.
The architecture of the NN is the same used for the taggers in ref. [49]. This tagger is then
applied to the three Z ′ →WW signals with MZ′ = 1.1, 2.2, 3.3TeV previously considered.
The ROC curves are shown on the right of figure 4, together with the results for GenT and
GenT2P. From the comparison it is found that, as expected:

(i) WT1000 performs slightly better than GenT2P in the interval pT ≥ 1TeV and mJ ∈
[60, 100]GeV, in which the former is trained.

(ii) WT1000 performs slightly worse than GenT2P for other momenta pT ≥ 500GeV, pT ≥
1.5TeV.

A W tagger could also be built upon the MUST method to cover W jets with a wide range
of pT . But in this case we expect little differences with respect to GenT2P: such W tagger
would have a more uniform performance across all pT ranges, at the expense of some overall
degradation, as also observed in the comparisons of figure 4 (left).

4 Mass decorrelation

Since our taggers are sensitive to multi-pronged jet signals across the whole mJ and pT
ranges, the SM background shape can be preserved by the simple method of varying the
event selection threshold, as done by the CMS Collaboration e.g. in [10]. Let us show
this explicitly with an example using GenT with a two-pronged (W ) and a four-pronged
(S) signal. We define the variable ρ = 2 logmJ/pT and consider a two-dimensional grid
(ρ, pT ) with ρ ∈ [−9, 0] in bins of width 0.2, and pT ∈ [0.25, 2.2]TeV in bins of 50GeV.
Within each bin, we compute the 5%, 25% and 50% percentiles of the NN score X, which
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Figure 5. Left: jet mass distribution for the SM background plus two injected signals, after the
application of increasingly tighter cuts on the NN score. Right: normalised background distributions
before and after cuts (main plot), and ratios of distributions after/before cuts (inner plot) — see
the text.

we label as X0.05, X0.25 and X0.5, respectively. Figure 5 (left) shows the resulting jet-mass
distribution of the SM background for pT ≥ 1TeV plus the W and S injected signals
with MZ′ = 2.2TeV, after applying event selections X ≤ X0.5, X0.25, X0.05 (the uncut
distribution is labelled as X1.0). By construction, the varying-threshold scheme keeps
the background distribution after selection, and the injected signals show up when the
cut is sufficiently tight. The right panel shows the normalised background distributions
(main plot) as well as the ratios X0.5/X1.0, X0.25/X1.0 and X0.05/X1.0 (inner plot). Our
generic taggers therefore provide a perfect solution to the mass correlation problem of jet
substructure observables.

5 Tagger performance for other types of jets

We now address the question of whether the taggers designed to detect multi-pronged jets
containing two or more quarks are also able to identify as ‘signal’ other types of complex
jets not used in the NN training.3 Or whether, on the contrary, our taggers classify them
as background-like and reduce the significance of such potential signals. In this respect, it
is worth noting that the variable τ21 reduces the significance of signals with four-pronged
jets, as pointed out in ref. [58] and shown explicitly in figure 3. For our tests we consider

(i) jets containing two quarks and a hard electron, resulting from a heavy neutrino decay
N → eqq̄ mediated by an off-shell W ′ boson, with MN = 80, 200GeV;

(ii) jets containing two quarks and two hard photons [63], resulting from S → AA→ bb̄γγ

with (MS ,MA) = (80, 30) and (200, 80)GeV.

The cuts on jet mass and pT for the evaluation of the performance are the same described
in section 3. In the top panels of figure 6, we present the ROC curves for GenT and GenT3P,

3For non-complex non-SM jets, see e.g. ref. [62] our taggers are likely not sensitive.
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Figure 6. ROC curves for other complex jet signals (for details see the self-explanatory legends
and the main text).

as well as the ratio τ32, for neutrino jets. Both GenT and GenT3P perform quite well for this
type of signals, and their inclusion in experimental searches would improve the sensitivity to
new physics. As a side comment, in this case the AUC is not a proper measure of the tagger
performance, since it is dominated by the region with εsig ∼ 1 where the ratio τ32 performs
marginally better. On the bottom panels we show the results for GenT and GenT4P for jets
with hard photons, including also for comparison the ratio τ42, which performs quite well
for this type of complex jets (but not for true four-pronged jets, as observed in figure 3).

These results deserve some discussion. As we have stressed above, the goal of this
analysis was to test whether the taggers are able to identify other types of complex jets for
which they are not designed. Or if, on the contrary, they are classified as background-like.
The results presented show that our taggers can indeed detect these ‘unseen’ signals with a
good efficiency. Note, however, that simpler multivariate methods like a logistic regression
may have a better performance [35] and taggers including these types of complex jets in the
training would provide even better discrimination from the background. Furthermore, for
neutrino jets the presence of energetic leptons can be further used for background rejection,
as already proposed for top quarks [64], and likewise for jets with energetic photons [63].

– 10 –
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6 Identification of new physics signals

Let us assume that a new physics signal is discovered, involving a boosted particle with
multi-pronged jet signature. There are some cases in which the identity of this boosted par-
ticle can be easily established by its leptonic decays, e.g. for W bosons and top quarks. As
aforementioned, one can also gain insight on the identity of a new particle by the presence
of energetic leptons or photons inside the jet. The most difficult case for discrimination
then arises for purely hadronic decays yielding multi-pronged jets.

In order to pinpoint the type of particle that produces such jets, one can use a tagger
that identifies their prongness. We build such a tool which takes as input the N -subjettiness
variables in (2.2), using the 2P, 3P and 4P jet samples used for the training of GenT. We
do not include QCD background jets for simplicity since, from the results in section 3, it is
clear that multi-pronged jets can already be separated very well from the background. The
NN contains two hidden layers of 2048 and 128 nodes, with ReLU activation for the hidden
layers and Softmax activation for the three output layers corresponding to the three classes
(2P, 3P and 4P). The NN optimisation is performed using the categorical cross-entropy
loss function, with the Adam optimiser.

For each jet in the test samples, the output of the NN provides the relative probabilities
P2P, P3P, P4P that it corresponds to each of the three classes, that is, the probabilities
that the jet is two-, three- or four-pronged. The jet is naturally assigned to the class
with highest probability Psel = max(P2P, P3P, P4P). One can improve the accuracy of the
identification by the additional requirement that Psel is larger than some threshold value
Pmin, for example with Pmin = 0.5. The downside of this extra constraint is the fact that
some of the jets remain undefined, when neither of the three probabilities reach Pmin.

Let us study four benchmark examples,
1. A boosted 80GeV particle producing four-pronged jets: Z ′ → SS, S → AA → bb̄bb̄,

with MZ′ = 2.2TeV, MS = 80GeV, MA = 30GeV.

2. A boosted 80GeV particle producing two-pronged jets: Z ′ → AA, A → bb̄, with
MZ′ = 2.2TeV, MA = 80GeV.

3. A boosted 200GeV particle producing four-pronged jets: Z ′ → SS, S → WW →
qq̄qq̄, with MZ′ = 3.3TeV, MS = 200GeV.

4. A boosted 200GeV particle producing two-pronged jets: Z ′ → AA, A → uū, with
MZ′ = 3.3TeV, MA = 200GeV.

In benchmarks (1) and (2) we have 80GeV jets containing b quarks, whereas in benchmarks
(3) and (4) we have 200GeV jets with light quarks. The relative fraction of jets that is
classified as 2P, 3P and 4P, as well as the fraction of jets that remains undefined, is shown
for these four benchmarks in figure 7. The identification of four-pronged jets is excellent,
with an overwhelming fraction of jets correctly assigned and a minor fraction of jets for
which Psel ≥ Pmin is not verified. The identification of two-pronged jets is quite good as
well. Despite the larger percentage of jets that remain undefined, the fraction of correctly
identified jets is several times larger than that of misidentified ones. We have checked that
in all cases the mistag rates can be further reduced by raising the value of Pmin.
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Figure 7. Fraction of jets that are classified as 2P, 3P and 4P, or remain undefined, for the four
benchmark examples described in the text.

7 Concluding remarks

In this work we have introduced the novel method of mass unspecific supervised tagging
(MUST) for multi-pronged jets. This method avoids the need to build multiple taggers
for different jet mass and pT intervals. The taggers built upon MUST keep an excellent
performance across a very wide jet mass and pT range. In particular, a single generic tagger
GenT is able to simultaneously discriminate 2P, 3P and 4P jets from the background across
all the jet mass and pT range. Mass decorrelation, which is an issue for both supervised
and non-supervised tools, can easily be implemented by the varying-threshold method.

In addition, we have successfully verified the performance of our taggers on signals
for which they have not been trained, namely jets from heavy neutrinos (including a hard
electron) and jets with energetic photons. This broad tagger sensitivity is quite a desirable
bonus. Since the possible manifestations of new physics at colliders are yet unknown, tools
with a wide scope of usability — even sensitive to signals not used in the training — are
most valuable. And, of course, these and other types of complex jets may also be included
in the training too. Overall, the excellent discrimination power (which often increases
with jet pT ) and the simplicity of their implementation, make our taggers ideal for the
exploration of multi-TeV scales in a wide variety of LHC searches that rely on jet tagging.

Finally, in the best-case scenario that a new signal is found, uncovering its origin is
a must. In this sense, we have developed a selection tagger which is able to determine
the prongness of signal jets (2P, 3P, 4P) with a large likelihood. It is unlikely that such
discrimination tasks may be performed using unsupervised methods. Therefore, in this
respect, the MUST concept for jet tagging could (and hopefully will) play a leading role.
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