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Abstract

Embryonated eggs are the infectious developmental stage of Trichuris trichiura and are the

primary stimulus for the immune system of the definitive host. The intestinal-dwelling T. tri-

chiura affects an estimated 465 million people worldwide with an estimated global burden of

disease of 640 000 DALYs (Disability Adjusted Life Years). In Latin America and the Carib-

bean, trichuriasis is the most prevalent soil transmitted helminthiasis in the region (12.3%;

95% CI). The adverse health consequences impair childhood school performance and

reduce school attendance resulting in lower future wage-earning capacity. The accumula-

tion of the long-term effects translates into poverty promoting sequelae and a cycle of

impoverishment. Each infective T. trichiura egg carries the antigens needed to face the

immune system with a wide variety of proteins present in the shell, larvae’s surface, and the

accompanying fluid that contains their excretions/secretions. We used a proteomic

approach with tandem mass spectrometry to investigate the proteome of soluble non-

embryonated egg extracts of T. trichiura obtained from naturally infected African green mon-

keys (Chlorocebus sabaeus). A total of 231 proteins were identified, 168 of them with known

molecular functions. The proteome revealed common proteins families which are known to

play roles in energy and metabolism; the cytoskeleton, muscle and motility; proteolysis; sig-

naling; the stress response and detoxification; transcription and translation; and lipid binding

and transport. In addition to the study of the T. trichiura non-embryonated egg proteome,

the antigenic profile of the T. trichiura non-embryonated egg and female soluble proteins

against serum antibodies from C. sabaeus naturally infected with trichuriasis was investi-

gated. We used an immunoproteomic approach by Western blot and tandem mass spec-

trometry from the corresponding SDS-PAGE gels. Vitellogenin N and VWD and DUF1943

domain containing protein, poly-cysteine and histidine tailed protein isoform 2, heat shock

protein 70, glyceraldehyde-3-phosphate dehydrogenase, actin, and enolase, were among

the potential immunoactive proteins. To our knowledge, this is the first study on the T. tri-

chiura non-embryonated egg proteome as a novel source of information on potential targets
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for immunodiagnostics and immunomodulators from a neglected tropical disease. This initial

list of T. trichiura non-embryonated egg proteins (proteome and antigenic profile) can be

used in future research on the immunobiology and pathogenesis of human trichuriasis and

the treatment of human intestinal immune-related diseases.

Author summary

Who came first the worm or its egg? In the case of whipworm, we know it is the egg. The

infective life cycle stage of the human whipworm (Trichuris trichiura) is the primary stim-

ulus for the immune system of the definitive host. Each infective whipworm egg carries

the information needed to face the immune system of the host with a wide variety of pro-

teins present in the shell, larvae’s surface, and the accompanying fluid that contains their

excretions/secretions. We investigated the soluble proteins of the non-embryonated egg

using an immunoproteomic approach and then selected the top five proteins using a series

of bioinformatic analysis. We used these top five proteins to recognize potential targets

for immunodiagnostics and immunomodulation while comparing them to known female

worm proteins. We found that the proteins we selected were involved in lipid transport,

energy and metabolism, and muscle and motility. One protein has unknown function.

Introduction

Trichuris trichiura is one of the major soil-transmitted helminths, along with roundworms

(Ascaris lumbricoides) and hookworms (Necator americanus and Ancylostoma duodenale). It

affects 465 million people worldwide with an estimated global burden of disease of 640,000

DALYs (Disability Adjusted Life Years) [1] and 337,000 YLDs (Years Lost to Disability) [2].

Following the accidental ingestion of the embryonated egg, larvae hatch in the proximal small

bowel and migrate aborally to the colon and cecum, where they remain attached to the

mucosa. They mature to adults in 30–120 days and can survive for 1 to 8 years [3,4]. After

copulation, the females lay eggs 50–60 μm in length and 20–30 μm wide that are expelled in

the feces in the non-infective form. They do not develop in direct sunlight and perish below

9˚C but when exposed to appropriate environmental conditions of temperature and humidity

[3,5] larvae develop over 20–30 days [3] and the eggs become the infectious life stage.

Trichuriasis in people is often asymptomatic, but it can manifest with abdominal pain, diar-

rhea, and in severe cases, a dysentery syndrome. Children are more commonly affected; heavy

infections can result in rectal prolapse, severe anemia, stunted growth and poor school perfor-

mance [5–8]. The severity of the symptoms not only depends on the parasite load but also on

co-infections, immune-competence and past infections [4,9].

Diagnosis of infections is usually based on the detection of eggs through coprological analy-

ses, but such techniques lack sensitivity and do not predict true parasite loads or real time

infection status due to the dynamic events inherit in the life cycle of the nematode [9–11].

False negative results can occur during the prepatent period, in single sex infections, low level

infections, and when females are not releasing eggs at the time of sample collection [4,9,12].

There is thus an important need for an alternative indirect diagnostic method with greater

sensitivity.

While somatic and excretion/secretion products from adult T. trichiura have been studied

in depth and shown to elicit protective immune responses which could be useful in immuno-

diagnostics [13–16], immunogens of other life-cycle stages of the parasite, such as the eggs,
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have not been thoroughly investigated. Eggs contain the first antigens of T. trichiura that are

presented to a naïve host’s immune system and would thus seem to be the most important in

the development of an early and effective immune response to limit infection. In the few

reports that are available on egg antigens of other parasites, evidence has been presented that

eggs may be sources of diagnostic antigens and modulators of the immune system [17,18]. For

example, the S.mansoni egg secretome revealed the identification of proteins actively secreted

by live schistosome eggs providing novel information to improve the understanding of

immune modulation and the pathology of infections [17]. Interestingly, the administration of

embryonated eggs from the animal species Trichuris suis or Trichuris muris as immunotherapy

to humans have been described to downregulate aberrant intestinal inflammation and poten-

tially be of use in immune-related intestinal conditions such as chronic intestinal inflamma-

tory diseases [6,19–22]. Their immunomodulatory capacity continues to be investigated with

some studies trying to identify the molecules responsible for those effects [14,22–25].

To characterize the proteins in non-embryonated (NE) eggs of T. trichiura which might be

used for new immunodiagnostic techniques or in immunomodulation therapies we studied

the soluble NE egg extract proteome using a stage-specific proteomic approach with

SDS-PAGE, Western blot and Liquid Chromatography with Tandem Mass Spectrometry

(LC-MS/MS). Detailed information about the specific proteins and functional analysis of the

molecules within the trichuris NE egg provide the first insight into their intricate role within

the life cycle and the interaction with the host. Our characterization of the NE egg-derived pro-

teins complement work with T. suis [6,21] and T.muris [26,27] models that focus on the pre-

vention of autoimmune diseases and the development of new immunodiagnostic techniques.

The African Green monkey (AGMs) as a naturally infected host accurately predicts the

evaluation of parasitic diseases due to the similarities in antigen species to those affecting

humans [28,29]. Being naturally infected with T. trichiura, the St. Kitts green monkey serves as

a predictive disease modeling test system and facilitates preclinical evaluation having similar

immunological responses as humans.

Methods

Ethics statements

Samples were collected from AGMs enrolled in other studies approved by the Institutional

Animal Care and Use Committee of the Biomedical Research Foundation and Virscio on Feb-

ruary 26, 2018 (approval number: AC18175).

Sera samples

Whole blood samples were collected from 10 AGMs naturally infected with T. trichiura
[28,29] as part of other studies and transferred to 5 mL vacutainers (Covidien Monoject, Mas-

sachusetts, USA). Sera were separated immediately by centrifugation at 2,000 g for 15 min at

4˚C and stored at -80˚C until thawed at room temperature and pooled for analysis as below.

T. trichiura adults

Adult worms were obtained at necropsy from the large intestine of naturally infected animals

humanely euthanized as part of other IACUC approved studies. The large intestine was placed in

0.9% saline solution for around 2 h at room temperature (30–32˚C) to allow the T. trichiura to

detach from the mucosa. Thereafter, the large intestine was opened and washed over a 100 μm

sieve before trapped contents were examined under a stereomicroscope (7x – 10x magnification)

for the presence of T. trichiura adults, which were isolated, sexed and preserved at—80˚C.
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T. trichiura non-embryonated (NE) egg extract

Uteri were removed from 50 T. trichiura females using a 30G ½” needle (BD Microlance,

Fraga, Huesca, Spain) (10x – 30x magnification) and placed in phosphate buffered saline (PBS;

pH 7.4). The uteri were opened with a longitudinal incision to facilitate the release of non-

embryonated eggs which were pooled. After five washes in PBS (10,000 g; 1 min) the superna-

tant was removed and a 1% protease inhibitors cocktail (Complete mini EDTA-free, Roche,

Berlin, Germany) with 1% Triton X-100 (Sigma-Aldrich, Steinheim, Germany) in PBS added

to the egg pellet which was homogenized as described previously [30]. To ensure disruption of

Trichuris eggshells, the homogenate was sonicated while frozen at -20˚C using ten cycles of

10x 1-second pulses at maximum intensity with a Microson Ultrasonic Cell Disruptor XL

(Misonix, Farmingdale, NY, USA). Homogenates were checked for egg disruption under a ste-

reomicroscope, centrifuged (10,000 g; 10 min at 4˚C), and the supernatant containing the solu-

ble NE egg proteins recovered (the T. trichiuraNE egg extract—EE). The EE total protein

concentration was determined by a commercial Protein Assay (Bio-Rad, Hercules, USA)

based on the Bradford method of quantification of soluble proteins [31] and stored frozen at

-20˚C until further analysis.

T. trichiura female extract (FE)

As part of the comparative study, the T. trichiura female extract (FE) was analyzed in parallel.

Fifty female adults were obtained from the intestines of naturally infected AGMs, washed five

times in PBS and homogenized with a Teflon homogenizer in PBS containing a 1% protease

inhibitors cocktail (Complete mini EDTA-free, Roche) with 1% Triton X-100 (Sigma-Aldrich,

Steinheim, Germany) in PBS. After initial centrifugation at a low speed to remove larger parti-

cles, the homogenate was centrifuged again (15,000 g; 30 min at 4˚C), and the supernatant col-

lected and stored frozen at -20˚C until further analysis. The protein content was measured in

the same way as the EE.

One dimensional SDS-PAGE

T. trichiura EE (10 μg/well) and FE (10 μg/well) were diluted in Laemmli buffer (4X) (Bio-Rad)

(1:1), denatured at 100˚C for 5 min and separated by one dimensional gel electrophoresis

(1-DE) in Mini-Protean TGX precast acrylamide gels (4–15% gradient, 10 well comb, 50 μL/

well) (Bio-Rad) under reducing conditions with 80–120 V in a Mini-PROTEAN Tetra System

electrophoresis system (Bio-Rad) as previously described [32]. Samples were run simultaneously

with molecular weight markers (4 μL) (Precision Plus Protein Dual Color Standards, Bio-Rad).

The gels were stained with Coomassie brilliant blue to analyze the protein patterns and the

most prominent bands excised for proteomic analysis. Before staining, the gels were fixed

(50% methanol and 10% glacial acetic acid) overnight with gentle agitation (solution changed

once after 1 h). Gels were stained (0.1% Coomassie brilliant blue R-250, 50% methanol and,

10% glacial acetic acid) for 20 min with gentle shaking before destaining (40% methanol and

10% glacial acetic acid) with repeated changes of the solution until the gel background was

clear. Gels were stored at 4˚C in 5% glacial acetic acid.

Western blot

For immunoblotting, following one dimensional electrophoresis, proteins were transferred

onto nitrocellulose paper using a Trans-Blot Turbo transfer system (Bio-Rad) for 7 min. The

blotted membrane was blocked with 5% skimmed milk in 0.05% PBS-Tween 20 (PBST) for 2 h

at room temperature and, after successive washes in PBST, incubated overnight at 4˚C with a
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pool of AGMs serum samples diluted 1:500 in PBST. After three washes for 30 min in PBST,

the membranes were incubated for 4 h at room temperature with the secondary antibody (per-

oxidase-labeled goat anti-primate IgG (Novusbio, Colorado, USA) (1: 5,000 in PBST). Finally,

membranes were washed three times in PBST for 30 min each and the assay developed using

Clarity Western ECL substrate (Bio-Rad) mixed in a 1:1 ratio. The positive reactions were

determined by the appearance of clearly defined protein bands detected by chemiluminescence

with an Amersham Imager 600 (GE Healthcare, New Jersey, USA). The relative molecular

masses of the recognized protein fractions were determined by comparison with molecular

weight markers (kDa), and data analysis was completed as previously described [33].

Proteomic analysis of the T. trichiura egg extract (EE)

Sample preparation. Following electrophoresis and staining, a complete gel strip of EE

was cut and digested with 500 ng of sequencing grade trypsin (Promega, Wisconsin, USA) in

200 μL of ammonium bicarbonate solution as described elsewhere [34]. The selected EE and

FE bands from other gels (egg and female extracts) were manually excised and digested with

100 ng of sequencing grade trypsin (Promega) in 100 μL of ammonium bicarbonate as

described elsewhere [34]. Digestion was stopped with 1% trifluoracetic acid (TFA), and a dou-

ble extraction with acetonitrile (ACN) was performed. The final peptide solutions were vac-

uum-dried and resuspended with 25 μL of 2% ACN and 0.1% TFA (pH 2.0) for the EE and

9 μL of 2% ACN and 0.1% TFA (pH 2.0) for the individual EE and FE bands as previously

described [32].

Liquid chromatography and tandem mass spectrometry (LC-MS/MS). Liquid chroma-

tography and tandem mass spectrometry were performed at the Proteomics facility of Servei

Central de Suport a la Investigació Experimental (SCSIE) of Universitat de València (Burjassot,

Spain).

To initiate the elution process, 5 μL of the final peptide solution was loaded onto a trap col-

umn (Nano-LC Column, 3 μm C18-CL, 350 μm x 0.5 mm, Eksigen, AB Sciex, California,

USA) and desalted with 0.1% TFA at 3 μL / min for 5 min. The peptides were loaded onto an

analytical column (LC Column, 3 μm C18-CL, 75 μm x 12 cm, Nikkyo, Nikkyo Technos Co.,

Ltd. Tokyo, Japan) equilibrated in 5% acetonitrile, 0.1% formic acid (FA) and eluted using a

linear gradient (5–35%) of solvent B (0.1% FA in ACN) in A (0.1% FA) for 120 min for the EE

and 30 min for the individual FE bands at a flow rate of 300 nL/min. The eluted peptides were

analyzed with a nanoESI-Q-TOF mass spectrometer (5600 TripleTOF, AB Sciex) in an infor-

mation dependent acquisition mode (IDA). The eluted sample was ionized applying 2.8 kV to

the spray emitter, and survey MS1 scans were acquired from 350 to 1250 m/z for 250 ms. The

quadruple resolution was set to ‘UNIT’ for MS2 experiments, which were acquired from 100

to 1,500 m/z for 50 ms in ‘high sensitivity’ mode. The following switch criterion was used:

charge 2+ to 5+, minimum intensity, 70 counts per second (cps). Up to 50 ions were selected

for fragmentation after each survey scan. Dynamic exclusion was set to 15 s. The system sensi-

tivity was controlled with 2 fmol of 6 proteins (LC Packings, A Dionex Company, Amsterdam,

Netherlands).

Bioinformatics

ProteinPilot Software 4.5.1 revision 2768 (AB Sciex) utilizing the Paragon algorithm 4.5.1.0

revision 2765 (AB Sciex) with default parameters was used to generate a peak list directly from

5600 TripleTof.wiff files. All.wiff files from the samples were combined in a single search. The

Paragon Algorithm included in ProteinPilot software was used for searching the NCBI protein

database (version 01–2016) with the following parameters: tryptic specificity, cys-alkylation,
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Metazoa, Nematoda, and T. trichiura protein taxonomy restrictions. These are typical parame-

ters used for baseline proteomic analysis adjusted to the specific species of interest.

Protein grouping was done by Pro Group algorithm (a set of proteins that share physical

evidence guided by observed peptides only) and identification was considered accurate when

the ProteinPilot unused score was> 1.3 corresponding to a 95% confidence according to the

following equation: ProtScore = -log (1-(percent confidence/100)).

Protein identification was conducted against the T. trichiura adult proteome on the Parasite

WormBase (version of 2017–262 05—WormBase - www.parasite.wormbase.org). All identi-

fied proteins were subsequently assigned to the UniProt database and classified in Gene Ontol-

ogy (GO) (https://www.uniprot.org) according to their molecular function and biological

processes.

Results

Our results are the first report of the proteome of soluble egg extracts of T. trichiura from

AGMs (C. sabaeus) and describe the potential immunomodulators and antigens recognized by

sera of naturally infected animals.

Proteomic characterization of the T. trichiura egg extract (EE)

With the spectrometric data obtained using ProteinPilot software v4.5 we identified 246 pro-

teins. The unique peptide sequence transcript identification code obtained from the spectro-

metric data and their respective accession number from WormBase (https://parasite.

wormbase.org) enabled us to characterize 231 of the 246 proteins found (S1 Table): 212 had

significant homologies with known T. trichiura adult stage proteins and 19 were novel unchar-

acterized proteins with unknown ontology. The remaining 15 proteins generated a unique

peptide sequence transcript identification code but yielded no accession number from https://

parasite.wormbase.org and were thus excluded from further study as no further information

could be obtained based on the current genome available.

Gene ontology (GO)

When the proteins were categorized according to their molecular function described in the

Gene Ontology (GO) database (UNIPROT; https://www.uniprot.org), 168 were found to have

known functions (S1 Table). The different functional groups and biological processes of the

most representative proteins of our analysis (with 10 or more distinct peptides) are shown in

Table 1 and Fig 1. Only a single annotation was assigned to a given protein. Functional annota-

tion of the identified proteins was assigned using GO, which revealed functionally diverse mol-

ecules of the common protein families or groups: energy and metabolism; cytoskeleton,

motility and muscle; proteolysis; signaling; stress and detoxification; transcription and transla-

tion; and lipid binding and transport (Table 1). Their specific molecular functions range from

molecules involved in ATP, actin, carbohydrate, chitin, lipid and magnesium ion binding, as

well as molecules that take part in oxidoreductase, aminopeptidase, glycogen phosphorylase

and metallopeptidase activity (Table 1). Others include lipid transporter, motor and protein

disulfide isomerase activity, together with structural constituents of the ribosome or proteins

associated with the elongation phase of protein synthesis. Proteins with kinase and intracellu-

lar cholesterol transport functions were also identified (Table 1). The most abundant category

for the biological process assigned to the egg proteins were protein folding, translation, gluco-

neogenesis, and glycolytic process all equally represented (13%), followed by cell redox homeo-

stasis (12%), chitin metabolic function (12%), and to a lesser extent metabolic processes,

carbohydrate metabolic processes, protein biosynthesis and stress responses (Fig 1).
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Table 1. Main proteins identified in the EE (10 or more distinct peptides) organized by functional annotation. Only a single annotation was assigned to a given

protein.

Functional annotation Molecular function� Acc. No.

Wormbase

%

Cov.

Peptides

(95%)

MW

(KDa)

Signal

peptide

Biological process�

Energy and metabolism

Alpha-1,4 glucan phosphorylase Glycogen phosphorylase

activity

A0A077YWK8 20.29 14 101.447 - carbohydrate metabolic

process

ECH domain containing protein Catalytic activity A0A077Z1N9 44.83 17 31.202 - metabolic process

Enolase Magnesium ion binding A0A077YX57 44.49 27 49.513 - glycolytic process

Glyceraldehyde-3-phosphate

dehydrogenase

Oxidoreductase A0A077ZHV3 56.10 66 37.536 - glycolytic process

Malic enzyme Oxidoreductase A0A077Z5U2 28.04 13 62.847 - Unknown

Phosphoenolpyruvate carboxykinase

GTP

Kinase A0A077Z7M0 29.04 20 70.975 - gluconeogenesis

Triosephosphate isomerase Isomerase A0A077ZC84 57.26 10 27.399 - gluconeogenesis

Cytoskeleton, motility and muscle

Actin ATP binding A0A077ZE37 55.59 35 41.838 - unknown

Actin 5C ATP binding A0A077YWW9 53.66 29 41.036 - unknown

Epididymal secretory protein E1 Intracellular cholesterol

transport

A0A077Z0I4 43.44 28 45.783 1 to 23 unknown

Intermediate filament protein IFA 1 Unknown function A0A077Z6U0 23.39 14 70.711 - unknown

Moesin-ezrin-radixin 1 Actin binding A0A077ZIT0 25.97 12 55.989 - unknown

Paramyosin Motor activity A0A077Z8E1 38.61 30 101.488 - unknown

Tropomyosin Unknown function A0A077ZIM1 41.20 38 87.298 - unknown

Proteolysis

Cytosol aminopeptidase Aminopeptidase activity A0A077Z3I7 23.80 10 54.409 - unknown

Peptidase M13 and Peptidase M13 N

domain containing protein

Metalloendopeptidase

activity

A0A077ZJE5 24.05 14 81.361 - unknown

Signaling

78 kDa glucose regulated protein ATP binding A0A077Z8G8 22.58 12 72.784 1 to 18 unknown

CBM 14 domain containing protein Chitin binding A0A077Z111 46.72 38 95.908 - chitin metabolic function

CBM 14 domain containing protein Chitin binding A0A077Z8B3 28.37 18 78.597 - chitin metabolic process

Galectin Carbohydrate binding A0A077YZM7 50.72 27 31.967 - unknown

Galectin Carbohydrate binding A0A077ZG03 39.64 25 32.25 - unknown

Stress and detoxification

Chaperonin protein heat shock protein

60

ATP binding A0A077ZIE8 28.00 11 62.806 - protein folding

Heat shock protein 70 L-malate dehydrogenase

activity

A0A077Z8E4 20.07 21 130.299 - stress response

Heat shock protein 90 ATP binding A0A077Z1F6 17.08 12 82.924 - protein folding

Protein disulfide-isomerase Protein disulfide isomerase

activity

A0A077ZJZ3 35.03 14 55.125 1 to 18 cell redox homeostasis

Protein disulfide-isomerase Protein disulfide isomerase

activity

A0A077ZLF1 35.95 15 55.73 1 to 16 cell redox homeostasis

Superoxide dismutase [Cu-Zn] Oxidoreductase A0A077Z345 69.86 12 15.274 - unknown

Transcription and Translation

40S ribosomal protein SA Structural constituent of

ribosome

A0A077YZD4 42.57 13 34.141 - ribosomal small subunit

assembly, translation

Elongation factor 1-alpha Elongation factor A0A077YYL7 33.48 12 51.086 - protein biosynthesis

Mediator of RNA polymerase II

transcription subunit 22

Protein disulfide isomerase

activity

A0A077Z2H0 69.06 17 15.485 1 to 19 cell redox homeostasis

Ribosomal L18p and L18 c domain

containing protein

Structural constituent of

ribosome

A0A077ZPB6 42.67 13 35.744 - translation

(Continued)
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1-DE and immunoblot analysis of T. trichiura EE and FE

To identify the species-specific parasite antigens, 1-DE SDS-PAGE and Western blots were

performed on EE and FE with serum from naturally infected AGMs.

For the EE, the possible identity of the antigens revealed in Western blots (Fig 2, Lane 1)

was investigated by matching the molecular weights of the bands seen with those of proteins

identified in the EE proteome and are presented in Table 2. In addition, the same specific areas

on SDS-PAGE gels (1G and 2G) (Fig 2, Lane 2) corresponding to the bands in the Western

blots were excised and used for confirmatory proteomic analysis by LC-MS/MS and presented

in Table 3.

Table 1. (Continued)

Functional annotation Molecular function� Acc. No.

Wormbase

%

Cov.

Peptides

(95%)

MW

(KDa)

Signal

peptide

Biological process�

Lipid binding and transport

Vitellogenin N and VWD and DUF1943

domain containing protein

Lipid transporter activity A0A077ZE83 56.35 205 198.527 1 to 19 unknown

Uncharacterized protein Lipid binding A0A077ZMT5 14.14 20 84.314 - unknown

Others

DUF290 domain containing protein Unknown function A0A077Z8H2 43.67 20 17.876 1 to 19 Unknown

Poly-cysteine and histidine tailed protein

isoform 2

Unknown function A0A077Z5Q5 50.79 109 50.494 - Unknown

Protein asteroid Unknown function A0A077Z2C7 63.64 34 30.674 1 to 23 Unknown

Transthyretin-like protein 46 Unknown function A0A077Z9N4 42.57 12 16.458 1 to 18 Unknown

Uncharacterized protein Unknown function A0A077YXT2 16.08 10 69.581 1 to 18 unknown

Uncharacterized protein Unknown function A0A077YX18 20.42 10 32.73 1 to 18 unknown

Uncharacterized protein Unknown function A0A077Z544 48.83 19 33.553 1 to 23 unknown

� Molecular function and biological process was obtained from the Gene Ontology (GO) database.

https://doi.org/10.1371/journal.pntd.0009221.t001

Fig 1. Main biological processes of the identified proteins in the non-embryonated egg extract proteome (EE) of

T. trichiura according to information obtained from the Gene Ontology (GO) database https://www.uniprot.org.

https://doi.org/10.1371/journal.pntd.0009221.g001
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The immune-complexes identified by Western blot with the EE as antigen ranged from 37

to 200 kDa with the most immunogenic in two distinct bands, band 1W (� 170 kDa) and

band 2W (� 37 kDa) (Fig 2, Lane 1).

Fig 2. Major immunogenic proteins detected in T. trichiura extracts. Western blot showing AGMs sera antibodies

response to T. trichiura egg extract (EE) (Lane 1) and female extract (FE) (Lane 3) (10 μg/lane). Bands 1W-2W and

3W-4W indicate the regions containing antigens recognized most strongly by sera antibodies in EE and FE,

respectively. Corresponding SDS-PAGE of EE (Lane 2) and FE (Lane 4), stained with Coomassie Brilliant Blue R-250

and excised areas of each, 1G-2G and 3G-4.1G-4.2G, containing the most immunogenic peptides for proteomic

analysis. Molecular weight in kDa is lane labeled as MW.

https://doi.org/10.1371/journal.pntd.0009221.g002

Table 2. Potential identity of the EE proteins targeted by serum antibodies based on the MW data of the EE proteome.

Accession number Annotation MW (kDa) Peptides� (95%)

Band 1W (� 170 kDa)

A0A077ZE83 Vitellogenin N and VWD and DUF1943 domain containing protein 198.527 205

A0A077Z8E4 Heat shock protein 70 130.299 21

Band 2W (� 37 kDa)

A0A077Z5Q5 Poly-cysteine and histidine tailed protein isoform 2 50.494 109

A0A077ZHV3 Glyceraldehyde-3-phosphate dehydrogenase 37.536 66

A0A077ZE37 Actin 41.838 35

A0A077YWW9 Actin 5C 41.036 29

A0A077YX57 Enolase 49.513 27

A0A077Z0I4 Epididymal secretory protein E1 45.783 28

�The number of distinct peptides having at least 95% confidence.

https://doi.org/10.1371/journal.pntd.0009221.t002
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For the FE, the comparative study for the specific immune-complexes identified by Western

blot (Fig 2, Lane 3) and areas matched on SDS-PAGE gels (Fig 2, Lane 4) were also excised

and analyzed by LC-MS/MS and presented in Table 4. With the FE as antigen these ranged

from 33 to 70 kDa with the most immunogenic in two distinct bands, band 3W (� 60–70

kDa) (Fig 2, Lane 4) and band 4W (� 37 kDa) (Fig 2, Lane 3).

Based on corresponding molecular weights in the EE proteome, band 1W contained vitello-

genin N and VWD and DUF1943 domain containing protein (VgNVD) with 205 distinct pep-

tides and heat shock protein 70 (HSP-70) with 21 distinct peptides (Table 2). Confirmatory

LC-MS/MS of the corresponding Coomassie-stained band confirmed that VgNVD, with 241

distinct peptides, was the most representative protein within the 1W area (Table 3).

Table 3. Protein identities, in decreasing abundance, in immunodominant bands 1W and 2W in Western blots with EE as antigen. Proteins were identified by

LC-MS/MS of corresponding areas in SDS-PAGE gels, 1G and 2G.

Accession number Annotation MW (kDa) Peptides� (95%)

Area 1G (� 150–200 kDa)

A0A077ZE83 Vitellogenin N and VWD and DUF1943 domain containing protein 198.527 241

A0A077Z8E4 Heat shock protein 70 130.299 3

Area 2G (� 37–45 kDa)

A0A077Z5Q5 Poly-cysteine and histidine tailed protein isoform 2 50.940 66

A0A077YX57 Enolase 49.513 18

A0A077ZHV3 Glyceraldehyde-3-phosphate dehydrogenase 37.536 15

A0A077ZE37 Actin 41.838 14

A0A077Z3K7 Phosphoglycerate kinase 44.724 12

A0A077Z8X2 Dolichyl- diphosphooligosaccharide-protein glycosyltransferase 48 kDa subunit 48.787 12

A0A077ZF21 Adenosylhomocysteinase 47.827 10

A0A077Z3H9 Tubulointerstitial nephritis antigen 50.458 9

A0A077YXR0 Calponin domain containing protein 40.694 7

A0A077ZJA3 3 ketoacyl coenzyme A thiolase 43.402 6

A0A077YYL7 Elongation factor 1-alpha 51.086 6

A0A077Z1Z4 Serpin domain containing protein 43.328 6

�The number of distinct peptides having at least 95% confidence.

https://doi.org/10.1371/journal.pntd.0009221.t003

Table 4. Protein identities, in decreasing abundance within FE excised gel areas (3G, 4.1G, 4.2G) with suitable MW matching Western blot band areas 3W and 4W.

Accession number Annotation MW (kDa) Peptides (95%)

Area 3G (� 60–70 kDa)

A0A077ZIM1 Tropomyosin 87.298 19

A0A077ZIM7 Papilin 80.804 6

A0A077ZEY0 Calsequestrin 49.211 5

A0A077YX57 Enolase 40.513 5

Area 4.1G (� 37–45 kDa)

A0A077Z5Q5 Poly-cysteine and histidine tailed protein isoform 2 50.494 65

A0A077ZE37 Actin 41.838 7

A0A077ZHV3 Glyceraldehyde-3-phosphate dehydrogenase 37.536 5

A0A077ZEY0 Calsequestrin 49.211 5

Area 4.2G (� 33–37 kDa)

A0A077Z0I4 Epididymal secretory protein E1 45.783 8

A0A077Z0N1 Actin-depolymerizing factor 2, isoform c 35.411 4

A0A077Z5Q5 Poly-cysteine and histidine tailed protein isoform 2 50.494 4

https://doi.org/10.1371/journal.pntd.0009221.t004
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Analysis of band 2W identified poly-cysteine and histidine-tailed protein isoform 2

(PCHTP-2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin, actin 5C, enolase,

and epididymal secretory protein E1 (Table 2) and confirmatory analysis with LC-MS/MS also

indicating there were other proteins present such as phosphoglycerate kinase, the dolichyl-

diphosphooligosaccharide-protein glycosyltransferase 48 kDa subunit, adenosylhomocystei-

nase, tubulointerstitial nephritis antigen, calponin domain containing protein, 3 ketoacyl

coenzyme A thiolase, elongation factor 1-alpha and serpin domain containing protein

(Table 3) while actin 5C and epididymal secretory protein E1 were not confirmed.

Regarding the comparative proteomic analysis of reactive areas displayed in FE Western

blot, the analysis of the band 3G (� 60–70 kDa) (Fig 2, Lane 4), which corresponded to band

3W, revealed again PCHTP-2 as one of the proteins identified with the highest number of

matching peptides. This protein was also identified in bands, 4.1G and 4.2G (Table 4). The

proteomic results of both sections of the band 4W showed some proteins shared between the

EE and FE, such as PCHTP-2, Actin and GAPDH, suggesting they are likely to be the major

ones in both samples. This finding is not surprising, since most of the EE antigens are also

present in FE (eggs contained in the uterus).

In comparing the Western blots with EE and FE as antigen, highly reactive bands were seen

in both with a molecular weight of around 37 kDa (2W and 4W) (Fig 2, Lanes 1 and 3). There

were intensely staining protein bands in the corresponding SDS-PAGE gels. The other two

prominent bands seen in the Western blots of the EE and FE antigens, 1W and 3W, were of

different molecular weights and thus seemed to be stage-specific to the different life stages (Fig

2). Antigenic band 1W was barely detected in the corresponding SDS-PAGE indicating a low

concentration of protein, while band 3W corresponded to a prominent band on the corre-

sponding SDS-PAGE gel indicating a high concentration (1G) (Fig 2, Lane 2). Although the

2W and 4W major antigenic bands of the EE and FE, respectively, both had a molecular weight

of 37 kDa and shared several proteins (PCHTP-2, Actin and GAPDH), there were also specific

proteins which appeared in only the egg or adult female stage. Dolichyl-diphosphooligosac-

charide-protein glycosyltransferase 48kDa subunit, adenosylhomocysteinase, tubulointerstitial

nephritis antigen, calponin domain containing protein, 3 ketoacyl coenzyme A thiolase, elon-

gation factor 1-alpha and serpin domain containing protein appeared as typical of EE

(Table 3). Meanwhile, Calsequestrin, Epididymal secretory protein E1, and Actin-depolymer-

izing factor 2-isoform c were only present in FE (Table 4).

Discussion

T. trichiura non-embryonated egg proteome

Diagnostic challenges to overcome. Recent reports confirm that most cases of T. tri-
chiura infections remain undiagnosed [9], and chronic infections can remain undetected for

years [4]. This is because diagnosis of infections is based on the detection of eggs through

coprological analyses that do not predict true parasite loads or real-time infection status. Early

diagnosis of trichuriasis and diagnostic methods that do not rely on inconsistent clinical signs

or fecal analysis are crucial to detect the infections following accidental ingestion and during

the prolonged prepatent period of the parasite. At present, there are only limited data on T. tri-
chiura antigens that can be used in serological diagnostic tests and the purpose of this study is

to present the first description of the T. trichiura non-embryonated egg proteome and the

immunodominant proteins present in both EE and FE. We also consider that the method

described for T. trichiura egg isolation would be suitable for isolating large amounts of eggs

from a more sterile and practical environment than the feces and, although the in-uteri eggs

are not yet embryonated, they do present somatic and excretory/secretory proteins of the egg
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shell and those of dividing embryonic cells. We are demonstrating that their immunoproteo-

mic analysis provides valuable information that warrants further study.

T. trichiura genome and other helminths provide insights into the egg proteome. In T.

trichiura, the parasite-host interactions are poorly understood and are highly influenced by the

parasite’s life cycle. Limited information on stage-specific antigens, immune evasion strategies

and immunomodulatory effects have been described in animal models of T.muris and T. suis
[21,26,27]. Foth and collaborators [15] described the whole-genome of the human-infective

adult T. trichiura and we can now compare the T. trichiura egg proteome to their findings;

they also identified numerous genes that are differentially expressed in a sex- or stage-specific

manner. The most abundant transcripts found in this extensive study included proteins we

have now definitively identified in the EE proteome, such as two WAP domain containing

SLP-like proteins, protease inhibitors such as cystatin-domain containing protein and nema-

tode cuticle collagen N-terminal domain containing proteins and chitin binding domain con-

taining proteins such as CBM14 domain containing proteins (Tables 1 and S1).

Furthermore, with more or less representation, but of particular interest within the context

of the present work, we have found Trichuris egg proteins with known immunomodulatory

properties such as macrophage migration inhibitory factor homolog (MIF) (S1 Table), previ-

ously identified in T. trichiura adult [14], and 14-3-3 protein (S1 Table) which has also been

identified in several developmental stages of other nematodes, Trichinella britovi [35] and Tri-
chinella spiralis [36] and trematodes, Schistosoma japonicum [37]. Both proteins are consid-

ered as enhancers of humoral and cellular immune responses [38]. Although their function

and biological process in T. trichiura remains unknown we are confirming the presence in the

EE proteome and highlighting the potential role in the initial stages of the parasite-host

interaction.

EE proteome proteins with the largest numbers of distinct peptides. Lipid transporter
and major secreted protein with unknown function. Interestingly, two of the proteins identified

with the largest numbers of distinct peptides in the EE proteome presented in this study,

VgNVD and PCHTP-2 (Table 1), were also among the top 25 most abundant transcripts found

by Foth and collaborators [15]. Vitellogenins are a lipid transfer proteins, they play a significant

role in embryonic development and are extensively conserved amongst nematodes [39]. They

provide the growing embryo with amino acids [40], therefore VgNVD being the most abundant

protein in the EE proteome represents an important antigenic target that can be consistently

identified in eggs and adult females. The detection of PCHTP-2 in the EE proteome as the sec-

ond most frequently detected protein is in accordance with Shears and collaborators [26] who

found it to be the most abundant protein in the T.muris adult secretome. Even though a specific

function has not been assigned yet for T. trichiura, Bancroft and collaborators [27] identified

PCHTP-2 as the most abundant protein in cecal mucus from chronically infected mice with T.

muris and confirmed its expression in all developmental stages confirming PCHTP-2 as the

major secreted protein of the whipworm despite not presenting signal peptide.

Energy and metabolism. One of the most represented groups of proteins we found in the

egg proteome were those related to energy and metabolism and included proteins associated

with glycolysis (enolase and glyceraldehyde-3-phosphate dehydrogenase (GADPH), gluconeo-

genesis (triosephosphate isomerase and phosphoenolpyruvate carboxykinase GTP) and other

metabolic enzymes such as alpha-1,4 glucan phosphorylase and malic enzyme (S1 Table). This

fact is consistent with previous studies in which these metabolic enzymes were described on

the surface of the helminths, nematodes, and trematodes, found to participate in oxidative pro-

cesses, parasite invasion and migration processes within the host [32,33,41–44].

Muscle,motility and cytoskeleton. The ensuing functional group with the largest number of

representatives was related to the cytoskeleton, muscle and motility. Actin, tropomyosin,
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paramyosin, intermediate filament protein IFA 1 and epididymal secretory protein E1 were

found with a high number of distinct peptides (S1 Table). These proteins are essential to

enhance the motility of nematodes and have also been recorded in many helminthic prote-

omes: somatic extract of adults of T. spiralis [45], T. britovi [35], Syphacia muris [44], and Echi-
nostoma caproni [46]; and in egg secretions of Schistosoma mansoni [17]. Specifically,

intermediate filament protein IFA1 has been studied in Caenorhabditis elegans, demonstrating

that in nematodes and potentially similar for T. trichiura, they allow epidermal elongation in

the larval stages to grow into adults [47].

Survival: antioxidants and chaperones. We also found proteins essential for the survival of

the nematode within its host, in the hostile conditions of the cecum, during stress and for

detoxifying processes including antioxidants and chaperones. The Cu/Zn superoxide dismut-

ase (Cu/Zn-SOD) was found in the EE proteome (S1 Table) and has also been identified on

the adult surface and larval extracts (secreted and somatic) of Toxocara canis [38], in the

somatic extract of adults of Fasciola hepatica, and the S.mansoni egg secretome [17,48]. This

essential enzyme antagonizes the host’s inflammatory responses by regulating the free radical

balance and reactive oxygen species in cells protecting helminths against cell death [49]. Heat

shock proteins (HSP90, HSP70, HSP60) are inducible conserved proteins widely described in

parasite proteomes and secretomes, and we have confirmed their presence in the EE proteome.

They act as molecular chaperones which fold, assemble and translocate other proteins to

ensure the survival of the parasite by defending it against stressful situations being important

in stress tolerance [50]. Small heat shock proteins HSP20 and HSP20 domain containing pro-

tein were also identified in EE proteome (S1 Table), which are known to aid parasite survival

under hostile conditions such as heat or nutritional stress [51].

Signaling. Within the proteins implicated in signaling pathways, we identified galectin in

the EE proteome, a type of lectin found in different extracts of nematodes such as adults and

larvae of T. canis [38] and extract of infective larvae (L3) ofHaemonchus contortus [52] with a

role in immune signaling pathways. Nematode galectins are believed to be immunological

mediators with implications in survival and interaction with the host [53] and modulate a

range of immune responses, including the cellular immune response, inflammatory processes

and immune regulation [54] all essential for prolonged survival of T. trichiura in the host.

Antigenic profile of T. trichiura EE and FE extracts and identification of

the top 5 immunodominant proteins

Previous studies have used an immunoproteomic approach to determine the antigenic pro-

teins of helminths at different developmental stages (larvae and adults) and the serological

responses to soluble protein extracts of Ascaris lumbricoides [55], T. britovi [35], Schistosoma
japonicum [56] and Taenia solium [57].

Parasitic worms, like T. trichiura have a remarkable ability to modulate the host immune

response through several mechanisms; specific parasite-derived proteins can modulate

immune functions playing an essential role in the parasite-host interaction. Excretion/secre-

tion proteins from larvae and adults of the porcine whipworm, T. suis, closely related to the

human T. trichiura, were investigated by Leroux et al. [21], who identified a subset of proteins

that promote specific anti-inflammatory functions and immunomodulatory properties. Here

we present the combination of proteomic techniques, such as one-dimensional gel electropho-

resis and tandem mass spectrometry as a comprehensive approach to identify T. trichiura pro-

teins of immunodiagnostic value.

Vitellogenin N and VWD and DUF1943 domain containing protein. Our findings of

VgNVD being a major protein in the EE proteome (Table 1) and having immunogenic value
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in our naturally infected monkeys (Table 3) is significant as Shears and collaborators [26] iden-

tified VgNVD in extracellular vesicles (EVs) of T.muris as a potential immunogenic candidate.

Antigenic homologs of VgNVD have been identified in free-living nematodes such as C. ele-
gans, and adult parasites secretomes of Ascaris suum, Nippostrongylus brasiliensis,Heligmoso-
moides polygyrus and Litomosoides sigmodontis [58–61] and also inH. polygyrus eggs [62]

which confirms the significance of our results in the context of current efforts to identify

potential diagnostic, vaccine or drug targets. The VgNVD was not a distinct immune complex

of interest identified in the FE alone when compared to other nematode banding patterns,

therefore its presence in the FE was not identified.

Heat shock protein 70. HSP70 and heat shock proteins, in general, have caught the atten-

tion of researchers for acting typically as immunodominant antigens eliciting strong humoral

responses as major targets of host immune responses, suggesting them out as possible candi-

dates for antiparasitic, allergic and autoimmune diseases treatments [63,64]. Our findings that

HSP70 is present in the EE in low abundance is in contrast to other work where the HSP70 is

amongst the most highly abundant protein identified in egg secretions of S.mansoni andH.

polygyrus [17,62]. HSP70 is also heavily represented in E. caproni, F. hepatica,H. polygyrus,
Schistosoma bovis, T. trichiura, T. britovi, and Zygocotyle lunata adult worms extract

[14,35,43,46,65,66] which highlights that for the EE this can be a less abundant target. How-

ever, the contrasting finding of low prevalence may be due to the NE stage of the Trichuris
eggs used in the study. Further studies are warranted to stablish this comparison. Others have

reported on their immunogenicity linked to stimulation of IgG and IgM responses [41,67,68],

and they have been suggested as possible vaccine targets [69].

Poly-cysteine and histidine tailed protein isoform 2. PCHTP-2 was the second most

abundant in the EE and also present in the FE. This protein was identified as a strong immu-

nogen of Trichinella pseudospiralis adult secretome [70]. Another protein of the same family,

poly-cysteine and histidine-tailed metalloprotein, implicated in metal storage and/or trans-

port, was the first member of the nematode poly-cysteine protein family described in T. spira-
lis. Since these proteins are unique for parasites of the Superfamily Trichinelloidea, their

potential applications in diagnostics and treatment could be exploited in the future [71] and

we show here that in the case of T. trichiura PCHTP-2 has a strong presence. Recent work by

Bancroft [27] hypothesized that the unique structural features of the homolog protein allows

binding to IL-13, which is considered the key effector cytokine responsible for T.muris expul-

sion, able to inhibit IL-13 function both in vitro and in vivo. Our finding that PCHTP-2 is

equally abundant in EE and FE as well as a strong immunogen in our naturally infected AGMs

is significant as we can confirm that this protein has a strong presence in both life cycle stages

and in accordance with Bancroft [27] in the T.murismodel. Our results are in agreement with

presenting PCHTP-2 as a Trichuris-derived immunomodulatory molecule that could serve as

a key target for the development of immunodiagnostics, vaccination or drug-based

therapeutics.

Enolase and glyceraldehyde-3-phosphate dehydrogenase. We identified certain glyco-

lytic enzymes such as enolase and GAPDH, as immunoactive components of the T. trichiura
EE and FE. Both of them are present on the surface of helminths interacting with the host sur-

face as is the case of the delicate interaction between T. trichiura and the enteric cells of the

cecum. Furthermore, enolase plays a vital role in the degradation of the intracellular matrix

through the activation of plasminogen facilitating the invasion, migration, and fixation in the

host [15,17,33,44] all essential mechanisms to ensure T. trichiura prolonged survival. In T. spir-
alis [41] and T. britovi [35], this enzyme has been confirmed as immunodominant, suggesting

that it may assist in tissue migration of the larvae a critical task that T. trichiuramust accom-

plish shortly after the hatching from the egg. Enolase and heat shock proteins have also been
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classified as exosome markers [26,72] in accordance with our findings of enolase lacking signal

peptide. Likewise, GAPDH has been previously linked to fibronectin, laminin, entactin, and

collagen binding [73] and Cass and collaborators [17] suggested that in the case of S.mansoni
this protein could be involved in the attachment of the eggs to host tissues or aid the passage of

live eggs across host tissues to the external environment. Our results suggest GAPDH as having

a relative abundance in both EE and FE that could align with Cass [17] findings and warrant

further study.

The present study seeks to identify and characterize the soluble protein extracts of T. tri-
chiuraNE eggs by proteomic and immunoproteomic approaches. The T. trichiura life cycle

inside the host starts with the egg hatching and the release of the larva. This period of time

remains as an undiagnosed stage, while the proteins described here are directly exposed to the

immune system, and as we demonstrate herein, can elicit anti-Trichuris antibodies by the host.

Our study is the first effort to identify the proteome of the NE T. trichiura eggs as a novel

source of potential targets and provides details which might serve for improved diagnostics

and immunomodulators and facilitate treatment and control of this neglected disease.

Eggs, as the infective developmental stage of the nematode, signal the host interface with

their shell surface antigens and the subsequent release of larvae and associated fluids are the

first stimuli to the host’s immune system. Later in infections, the NE eggs released by the

females into the cecum and their secretomes would also be expected to stimulate the hosts’

immune system. The NE egg proteome we studied revealed common families of proteins

which are known to play roles in energy and metabolism; the cytoskeleton, muscle and motil-

ity; proteolysis; signaling; the stress response and detoxification; transcription and translation;

and lipid binding and transport. Further studies using embryonated eggs are underway in our

laboratory in order to compare antigenic profiles of NE and embryonated Trichuris eggs and

to continue identifying relevant antigenic and structural proteins. This initial list of NE T. tri-
chiura egg proteins (proteome and antigenic profile) can be used in future research into the

immunobiology and pathogenesis of human trichuriasis and the treatment of human intestinal

immune-related diseases.
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