
Received January 17, 2021, accepted February 8, 2021, date of publication February 22, 2021, date of current version April 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3060778

Multilayer Framework for Botnet Detection
Using Machine Learning Algorithms
WAN NUR HIDAYAH IBRAHIM1, (Member, IEEE), SYAHID ANUAR2,
ALI SELAMAT 1,3,4, (Member, IEEE), ONDREJ KREJCAR 4,
RUBÉN GONZÁLEZ CRESPO 5, (Senior Member, IEEE),
ENRIQUE HERRERA-VIEDMA 6,7, (Fellow, IEEE),
AND HAMIDO FUJITA 8, (Life Senior Member, IEEE)
1School of Computing, Faculty of Engineering, Game Innovation Centre of Excellence (MaGICX), Universiti Teknologi Malaysia and Media, Universiti
Teknologi Malaysia, Johor Baharu 81310, Malaysia
2Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
3Malaysia Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
4Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
5Department of Computer Science and Technology, Universidad Internacional de La Rioja (UNIR), 26006 Logroño, Spain
6Andalusian Research Institute DaSCI Data Science and Computational Intelligence, University of Granada, 18071 Granada, Spain
7Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
8Faculty of Software and Information Science, Iwate Prefectural University, 152-52 Sugo, Takizawa 020-0693, Iwate, Japan

Corresponding author: Ali Selamat (aselamat@utm.my)

This work was supported in part by Universiti Teknologi Malaysia (UTM) through the Research University Grant under Grant Vot-20H04,
in part by the Malaysia Research University Network (MRUN) under Grant Vot4L876, in part by the Ministry of Higher Education through
the Fundamental Research Grant Scheme under Grant FRGS/1/2018/ICT04/UTM/01/1, in part by the Specific Research Project (SPEV) by
the Faculty of Informatics and Management, University of Hradec Kralove, Czech Republic, under Grant 2102–2021, and in part by the
Hadiah Latihan Persekutuan (HLP) Scholarship through the Ministry of Education Malaysia.

ABSTRACT A botnet is a malware program that a hacker remotely controls called a botmaster. Botnet
can perform massive cyber-attacks such as DDOS, SPAM, click-fraud, information, and identity stealing.
The botnet also can avoid being detected by a security system. The traditional method of detecting botnets
commonly used signature-based analysis unable to detect unseen botnets. The behavior-based analysis seems
like a promising solution to the current trends of botnets that keep evolving. This paper proposes a multilayer
framework for botnet detection using machine learning algorithms that consist of a filtering module and
classification module to detect the botnet’s command and control server. We highlighted several criteria for
our framework, such as it must be structure-independent, protocol-independent, and able to detect botnet
in encapsulated technique. We used behavior-based analysis through flow-based features that analyzed
the packet header by aggregating it to a 1-s time. This type of analysis enables detection if the packet is
encapsulated, such as using a VPN tunnel. We also extend the experiment using different time intervals, but
a 1-s time interval shows the most impressive results. The result shows that our botnet detection method can
detect up to 92% of the f-score, and the lowest false-negative rate was 1.5%.

INDEX TERMS Behavior-based analysis, botnet, flow-based feature selection, k-nearest neighbor, structure
independent.

I. INTRODUCTION
Botnet is a term referring to infected devices that a hacker
remotely controls called a botmaster. The term botnet is a
combination of robot and network, where the botnet acts
as a foot soldier for its botmaster. The task of the botnet
is to launch attacks based on the instructions given by its
botmaster.

The associate editor coordinating the review of this manuscript and

approving it for publication was Aniello Castiglione .

Botnet attacks are a serious issue and have become a
significant threat to information security [1], [2]. The arms
races between botmasters and botnet defenders (researchers)
are ongoing. Each party keeps improving its skills to try
to win the battle. The botnet’s strength lies in the massive
number of bots, which increases the strength of attacks.
Also, botmasters’ ability to hide the bots from detection by
a security system becomes a significant factor strengthen-
ing the bots. One of the most popular botnets that shocked
the world with the number of infected devices is the

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 48753

https://orcid.org/0000-0001-9746-8459
https://orcid.org/0000-0002-5992-2574
https://orcid.org/0000-0001-5541-6319
https://orcid.org/0000-0002-7922-4984
https://orcid.org/0000-0001-5256-210X
https://orcid.org/0000-0003-0571-1074

W. N. H. Ibrahim et al.: Multilayer Framework for Botnet Detection Using Machine Learning Algorithms

TABLE 1. Comparison of the different detection model.

Mirai Botnet. The Mirai botnet spread through Trojans and
exploited Internet-of-Things (IoT) devices such as closed-
circuit television cameras (CCTV), web cameras, and other
devices with low-security measures. The most significant
Mirai attack involved 100,000 IoT devices that caused an
attack of 1.2 Tbps [3].

The existing botnet detection methods are signature-based
approaches that do well at detecting the same types of bot-
nets or known botnets but become ineffective when faced
with an unknown or evolved botnet [4]–[7]. Currently, bot-
nets keep evolving to avoid detection by security systems.
One of the strategies is to make sure no one can access
the packet data, for example, by using a concealment tech-
nique such as encryption, obfuscation, or a virtual private
network.

The limitation of signature-based detection, as stated in [8],
and network-based IDS, as stated in [9], is that the current
detection models are unable to detect malware when there
are obfuscation techniques in use. Hence, researchers are
moving forward to design a malware detection model without
accessing the packet’s content.

Other than that, the packet’s content that may cause
harm to individuals is the reason for the limited updated
attacks dataset for research. One of the methods for analyz-
ing network traffic without accessing the content is through
behavior-based analysis. The behavior-based analysis uses
the packet header instead of the payload not to interrupt
the privacy of sensitive content in the packet data. The
behavior-based analysis within the network traffic has the
advantage of detecting malware with an encryption or obfus-
cation strategy such as a VPN. However, behavior-based
malware detection commonly produces a high false-positive
rate (FPR) [6], [10], [11] and an increased scanning time
(time interval).

Due to the limitation of the signature-based analysis and
the potential of improvement in several research areas on
malware behavior [7], [12]–[15], we designed our detection
model based on the behavior-based analysis. This research

examines the features useful for creating a behavior-based
analysis method for detecting botnets in network traffic that
quickly produces good results. The main contributions of this
research are as follows:

• This article presents the multilayer framework that can
detect the Command and Control (C&C) server’s botnet
in hiding techniques such as obfuscation or encryption
for both layers.

• Ourworks highlight the criteria of structure-independent
and protocol-independent frameworks.

• Other than the framework’s performance, our work also
presents a short time interval (1 s) for aggregating the
botnet behavior for both layers.

• The first layer of this framework is for filtering regular
traffic. This layer can reduce the processing time and
power by selecting suspicious groups for the second
phase.

• The accuracy of both layers is more than 90%, and the
false-negative rate is less than 2.5%.

The structure-independent and protocol-independent
frameworks (second contribution) are based on [10], [16]
where the analysis is not limited to a particular protocol
and specific structure. Since that botnet is very flexible
and evolves through multiple protocols and structures, this
criterion is also included in designing the detection model.
The highlight of these criteria can be seen in Section 4.1 and
TABLE 1. In Section 4.1, we briefly explain the dataset that
we used in TABLE 1. We make a comparison of these two
criteria with another researcher’s approach.

This work is organized as follows: we explain the botnet
and related works in Section 2, including the current botnet
behavior analysis in Section 2.1 and machine learning and
oversampling technique in Section 2.2. Section 3 briefly
explains the proposed framework, while Section 4 describes
the experiment starting with data source and distribution,
the evaluation and the result. The article ends with a
discussion and conclusion in Section 5.

48754 VOLUME 9, 2021

W. N. H. Ibrahim et al.: Multilayer Framework for Botnet Detection Using Machine Learning Algorithms

FIGURE 1. Botnet component and communication between component.

II. RELATED WORKS
A. TERMS AND DEFINITION
There are several terms used in the whole article that are not
layman’s terms. This first section will briefly give definitions
of these terms.
• BOTMASTER This term refers to the mastermind that
owns, instructs, and is responsible for launching the
attacks. S/he is also the person that will keep communi-
cating with the bots through the Command-and-Control
server

• BOTNET. It is a group of infected devices that will send
reports on the device and system vulnerabilities and
exploit the information to perform attacks.

• COMMAND & CONTROL (C&C) SERVER. This term
refers to the medium that acts as the bridge between the
botmaster and the botnet. This C&C server is the main
component in the botnet environment because, without
the C&C server, the botmaster cannot control or send
instructions to the bots. The structure of this server can
be either centralized or decentralized.

• STRUCTURE-INDEPENDENT &
PROTOCOL-INDEPENDENT.
Structure-independent is a term that referring to the
dataset that contains multiple structures. For this study,
structure-independent means that the dataset consists
of a centralized structure and a decentralized struc-
ture. In comparison, protocol-independent refers to the
dataset containing multiple types of protocols such as
IRC, HTTP, and P2P.

B. BOTNET COMPONENT AND LIFE-CYCLE
The botnet consists of four main components: the bots,
botmaster, command and control (C&C) server, and the
victims/target, as shown in FIGURE 1. To make it easier
to understand, we can imagine the bots as soldiers in a

troop (botnet) following the general’s commands (botmaster)
from afar, where the commands are transferred through a
Command-and-Control Server.

The basic botnet life cycle contains four phases, as illus-
trated in II. The first phase is the Injection (I) phase. The
injection phase is a spreading phase. There are many spread-
ingmethods, such as through drive-by-download, email, web-
based, and online social media networks. In this phase,
the hacker will maximize the number of army or bots by
infecting other devices. Once the bots are downloaded and
executed, the device/host becomes a bot and can be controlled
by the botmaster.

The second phase is the Command and Control (C&C)
phase, the phase we are currently studying. In this phase,
the botmaster secures the botnet by requesting an information
report, and the botnet will send an updated vulnerability
report on the infected device. The botmaster communicates
with the bots through the Command-and-Control Server to
either direct an attack, receive a report, or send updated codes,
as illustrated in FIGURE 1. This is the secret of how the
botnet is robust and unable to be detected. This is also why
the botnet has unique abilities to discover unknown devices’
vulnerabilities and evolve autonomously [20], [21]. During
the Command-and-Control phase, there is a situation where
there is no communication between the bots and botmaster.
This situation is called the waiting stage and happens either
because the botmaster is still gathering the bots, or the attack
time is not suitable yet. This situation makes it quite tricky
to detect the bots, and it becomes a new criterion for the
researcher.

The third phase is the Attack (A) phase. Once the bots’
quantity is large enough to launch an attack, the botmaster’s
instruction will be sent to all the bots. Each of the bots will
aim at the same victim. For example, in the DDOS (Dis-
tributed Denial of Service) attack in February 2018, a massive

VOLUME 9, 2021 48755

W. N. H. Ibrahim et al.: Multilayer Framework for Botnet Detection Using Machine Learning Algorithms

FIGURE 2. The life cycle and structure of the botnet.

botnet flooded the network by sending simultaneous requests
(peaked at 1.35 Tbps) to the same target, GitHub; due to
that, the GitHub service was offline for 10 min [19]. The
most significant DDOS attack launched by bots was theMirai
attack in October 2016. Hundreds of websites such as Twitter,
Netflix, Reddit, and GitHubwere affected several hours when
service provider Dyn has attacked 400,000 IoT devices as
bots [19], [20].

The last phase is the Release (R) phase. In this phase,
the botmaster decides to leave the bots because s/he is
not needed or avoided by the authorities. Some botmasters
decide to release their bot’s source code to the public and
remove their footprints [15] to confuse the authorities search-
ing for the person responsible for the attacks. For example,
the botnet’s source codes were made publicly available in
Bashlite and Mirai [21]. The best time for detecting the
botnet is when they are in the Command-and-Control phase
because, in the infection phase, it can spread in multiple
ways. Therefore, it is quite difficult to stop during the infec-
tion phase, but it will be too late to stop in the attack
phase.

C. CURRENT BOTNET BEHAVIOR ANALYSIS
The unique feature of the botnet is its ability to hide from
a security system. A botnet can hide in many ways; for
example, as stated below: -
• Concealment packet data. Concealment is a strategy to
hide the content of the packet data in network traf-
fic. As mentioned in Section 1, concealment exam-
ples include obfuscation, code encryption, oligomor-
phic strategy, polymorphic strategy, and metamorphic
strategy. Research on the botnet detection model that
highlights the concealment packet data include studies
such as [7], [13], [17], [18].

• Mimicking regular traffic. This can either replicate nor-
mal traffic, which is usually more random than that
produced by a botnet—research on the botnet detec-
tion model highlights mimicking benign behaviors in
[14], [19].

• Botnet in the waiting stage. As explained in Section 1.2,
the waiting stage is when the devices are already infected
and are a part of the bots, but the attack’s source code
has not been launched yet. So, in this phase, commu-
nication between the bots and the botmaster is rare,
so bots are quite challenging to detect. Research on the
botnet detection model that highlights the waiting stage
includes studies such as [14], [20], [21].

• Imbalanced class data. During the machine learning
training session, if the class data are highly imbalanced,
it will affect the classification. Research highlights the
imbalance in studies such as [22], [23].

Due to the bot’s hiding ability, an analysis that requires
payload data such as deep packet inspection (DPI) cannot
effectively function. The behavior-based study seems like
a promising solution for detecting malware’s current trends
because this technique only requires the packets’ header. The
behavior-based analysis observes the pattern, connection, and
action that are captured from the communication between the
bots and the botmaster.

Themalware behavior-based analysis has advantages com-
pared to signature-based analysis in terms of processing time
and power due to the need for examining each packet in
the signature-based analysis [24]–[26]. Since behavior-based
analysis is not content-based, it can also be implemented with
network traffic that uses a VPN tunnel.

In trying to understand the botnet’s behavior, we have
extracted the frequency of communication-based on time.

48756 VOLUME 9, 2021

W. N. H. Ibrahim et al.: Multilayer Framework for Botnet Detection Using Machine Learning Algorithms

TABLE 2. Comparison of features and time window used for detecting a botnet in the network.

FIGURE 3. Histogram of normal and botnet traffic time in CTU13.

FIGURE 3 shows a histogram of botnet and regular traffic
that we have extracted through the combination of 13 files
in the CTU-13 dataset. From the histogram, we can see the
botnet traffic and the standard traffic curve. The curves show
that the highest peak from regular and botnet traffic is in
the same range of time. The botmaster used the busiest time
for normal traffic to connect with the bots to mimic normal
communication. FIGURE 3 shows the bots replicating the
peak time of reasonable traffic from 8h to 18h.

Although the malware behavior-based analysis has advan-
tages over the signature-based analysis, most of the behavior-
detectionmodel is limited to a particular protocol and specific
botnet structure. In TABLE 1, we compare related research
on the detection of botnets with the three criteria that we
highlight: protocol-independent, structure-independent, and
the function of network traffic in situations such as encryp-
tion. Zhuang and Chang [14] focused on peer-to-peer appli-
cation and peer-to-peer botnet only. In [27], the detection
model is structure-independent; the authors mixed the types
of the botnet, peer-to-peer (P2P), Internet-Relay-Chat (IRC),
and Hypertext Transfer Protocol (HTTP), such that the bot-
net consisted of both centralized and decentralized struc-
tures. IRC and HTTP are examples of a botnet in a cen-
tralized structure. However, they used their capturing dataset
and limited it to TCP protocol only. Other than that, the

behavior-based analysis also required a significant time inter-
val to capture the communication pattern effectively. For
example, in [25], the author used to extract the periodic
pattern was 33.3 min or 49 min. Since we aim to design
a detection model in a short time interval, we found an
article by Bezerra et al. [28] that uses a 1-s time interval.
These authors believe that faster botnet identification can be
achieved by using a smaller time interval.

However, Bezerra et al. [28] did not focus on botnet
detection using network traffic; their focus was on botnet
detection utilizing the device’s CPU utilization and temper-
ature, memory consumption, and several running tasks. The
highest F-score for their experiment using a 1-s time interval
was 83.85%. We preprocessed the dataset with a 1-s time
interval to test botnet network traffic and regular traffic for
our experiment.

The most challenging part of designing a behavior-based
detection model is the feature selection. It is not straight-
forward to know which features should be used and how to
extract the pattern [29]. Botnet communication is very differ-
ent from regular human traffic, and the features selected to be
aggregated must be representative of it. TABLE 2 shows the
features and the observing time window used by researchers
in designing the botnet detectionmodel. The features selected
by the researchers in TABLE 2 became our reference for
choosing our botnet behavior features. The process of feature
selection for our experiment is explained in Section 3.1.

Based on [30], the botnet is about malware and the
technology of communication between devices. Other
good botnets use the same technology for communicat-
ing, sharing computer resources, and storage, such as the
BOINC Project. BOINC (Berkeley Open Infrastructure for
Network Computing) is a volunteer project whereby partici-
pants share their computer resources and storage to support
a specific project in the list [31]. According to the author,
the biggest BOINC project is the seti@home project, which
has 1,648,000 users and 4,059,000 hosts. In a BOINC project,
the participant needs to install the software so the primary
server can access their storage and computing resources. The
BOINC project and botnet’s communicationmethod are quite

VOLUME 9, 2021 48757

W. N. H. Ibrahim et al.: Multilayer Framework for Botnet Detection Using Machine Learning Algorithms

TABLE 3. Research on the botnet using machine learning and oversampling.

similar, but the BOINC project was not developed for an
inappropriate reason.

D. MACHINE LEARNING AND OVERSAMPLING
TECHNIQUE IN BOTNET DETECTION MODEL
The implementation of machine learning in malware identifi-
cation led to impressive performance. The need for machine
learning in malware identification is due to the complex and
sophisticated [37] patterns that require time-consuming pro-
cesses through humanmonitoring [38].Machine learningwas
able to learn the sample data pattern and recognized a simi-
lar pattern, although it was intricate [39]. Machine learning
techniques can be divided into supervised, semi-supervised,
and unsupervised techniques. The supervised technique uses
labeled data to train the algorithm to predict the class; this is
called classification. The unsupervised technique uses unla-
beled data, and the algorithm will plot a similar pattern into
clusters; this is called clustering.

The oversampling technique is a supervised resam-
pling technique that uses a k-Nearest Neighbor (k-NN) to
generate new synthetic data based on the best location.
TABLE 3 shows the combination of classifiers with oversam-
pling used by other researchers and the best combination for
each publication. In Pajouh et al. [32] and Alam and Vuong
[33], the authors used the Synthetic Minority Oversampling
Technique (SMOTE), combining several classifiers such as
Naive Bayes, Support Vector Machine, Multilayer Percep-
tron, and Decision Tree j48 to detect malware. SMOTE was
used to double, triple, or quintuple the original size. The best
combination was using a Support Vector Machine (SVM)
with a Radial Base Function (RBF) kernel; this achieved 91%
success with a false alarm rate of 3.9%. If using Decision
tree-J48 with SMOTE-5x, the accuracy was 96.62%, and the
false alarm rate is 4.0. In Fiore et al. [35], the experiment
compared SMOTE and GAN, which were combined with a
deep neural network. Their results show that GAN’s f-score
was higher than that for SMOTE, but GANwasmore complex
than SMOTE. In Kudugunta and Ferrara [36], the model’s
performance increased with the combination of contextual

LSTM with SMOTE compared to the results that only use
contextual LSTM. The combination of oversampling tech-
niques and classifiers in TABLE 3 led to an increase in the
detection model’s performance.

III. PROPOSED MULTILAYER FRAMEWORK FOR BOTNET
DETECTION
The proposedmethod consisted of twomainmodules, namely
the Filtering Module and Detecting C&C Server Module,
as shown in FIGURE 4. Both modules used flow-based fea-
tures and are behavior-based. The first module’s purpose was
to filter and reduce network traffic for the secondmodule. The
filtering module used a semi-supervised concept whereby
we used partly labeled datasets to determine a similar pat-
tern of other unlabeled data. The unsupervised algorithm
clustered the uncertain network traffic with the labeled data
(normal and botnet). Since the purpose is to filter the network
traffic, we minimized the number of features and grouped
the network traffic in the minimum time interval (1-s time
interval).

Once the module clustered the uncertain data in the bot-
net cluster, the network traffic from this cluster transferred
to the second module to detect the Command-and-Control
server.

Meanwhile, the purpose of the second module was to
detect the botnet C&C server to take down the botnet by
blocking the source IP from entering the network. In this
module, the network traffic was extracted and aggregated
based on the Source Address (Sip) within the observ-
ing time (t). This module used supervised labeled data for
classification.

A. FEATURE SELECTION
The first and second modules used different feature selec-
tion, but both used flow-based features. Due to botnet trends
that used the concealment technique, where the payload is
inaccessible, we opted to use flow-based features that ana-
lyzed the packet header. Flow-based features do not use the
content or payload of the data; therefore, if the packet is

48758 VOLUME 9, 2021

W. N. H. Ibrahim et al.: Multilayer Framework for Botnet Detection Using Machine Learning Algorithms

FIGURE 4. Block diagram for the proposed multilayer framework for botnet detection using machine learning algorithms.

encrypted [40]–[42] or uses a VPN tunnel, the performance is
not decreased. The features selected in this experiment were
derived based on the botnet’s communication pattern and its
botmaster during the C&C stage. As mentioned in Section
2.2, during the C&C stage, the bots communicate with the
botmaster periodically [43], [44]. While communicating,
their behavior is consistent, and the requested and updated
sessions result in many uniformly sized, small packets that
occur continuously.

B. CLASSIFICATION & OVERSAMPLING
After selecting features, the data were aggregated to be the
input in the following process, which for the first module
was clustering, and for the second was classification. For this
study, we used a k-means algorithm. The clustering was done
through Weka, a machine learning tool and library, and the
results proceeded to the evaluation process.

The second module is the classification module to detect
the Command-and-Control server through the source IP.
To find the best classifier for our features, we compared three
classifiers, k-NN, SVM, and Multilayer Perceptron. These
three classifiers use very different approaches. The k-NN is
a distance-based supervised algorithm that classifies an input
based on the distance to the nearest number of k, while SVM
is an algorithm that classifies data based on a hyperplane.
The SVM algorithm calculates the optimal hyper-plane to
separate each class. The SVM is versatile and can be set based
on the kernel; for this research, the kernel chosen was a radial
basis function (RBF). Multilayer Perceptron is a technique
that combines input and output with at least one hidden layer
with learning rules to update the weight.

The second module performed the classification process
using the Python language, Scikit-learn (Python library).
The dataset was split along a 70-30 ratio, where 70% was
the training set and 30% was the testing set. The evalu-
ation and prediction were run on the testing dataset only.
The second module is a binary classification (‘‘Normal’’ or

‘‘‘Botnet’’), shown in Equation 1. In this experiment,
we compared several classifiers: Multilayer Perceptron
(MLP), k-Nearest Neighbor (k-NN), and Support Vector
Machine (SVM). The classifier is combined with an oversam-
pling technique to explorewhether oversampling can improve
the classifiers’ performance.

x =

{
Normal, if x = 0
Botnet, if x = 1

(1)

1) DETERMINING THE K-VALUE
Since the algorithm that we chose included the k-algorithm,
k-means, and k-NN, we needed to determine the k-value first.
Several techniques can be used to find the optimal value of k;
we have tried two techniques that used the dendrogram and
elbow method. The dendrogram is a visualization tree that
shows the data as a point, and the points are plotted based
on the distance from each other. The dendrogram involves
bottom-to-top plotting, and from it we can decide the distance
(y-axis) that we set for points. For example, in FIGURE 5,
a distance point of 100 was selected, and four was the optimal
number of clusters. Unfortunately, when we increased the
number of samples, the dendrogram could not plot due to
memory error.

The elbow method is a technique that helps to determine
the optimal number of k in either k-means or the k-NN
algorithm. The elbow method for plotting a graph is where
the whole graph is called the arm, and the point of inflection
on the curve is the elbow. The elbow method is calculated by
using the metric of Within Cluster Sum of Squares (WCSS),
which calculates the sum of squared distances from each
point to its assigned center. Algorithm 1 shows the Python
code for generating the elbow method using the Scikit-learn
(Python library). In contrast, FIGURE 6 is an example of
the elbow method for Experiment B, where the x-axis is
the number of the cluster, while the y-axis is the average
of WCSS. So, based on this elbow method, the k-value was
decided to be 4.

VOLUME 9, 2021 48759

W. N. H. Ibrahim et al.: Multilayer Framework for Botnet Detection Using Machine Learning Algorithms

FIGURE 5. The dendogram for determining the k-value.

Algorithm 1 :Python Code for WCSS Elbow Method
from sklearn.cluster import kMeans
Wcss = []
for i in Range (1,11):

Kmeans = kMeans (n_cluster =i, Init = ‘k-means ++’,
max_iter = 300, n_init = 10,random_state = 0)

Kmeans. fit(X)
wcss.append(kmeans.inertia_)

FIGURE 6. An example of the elbow method to determine k-value.

2) OVERSAMPLING TECHNIQUE
The oversampling technique is a technique to duplicate data,
commonly used for a highly imbalanced dataset so that all
classes have a similar amount of data. In the meantime,
undersampling will reduce the majority class percentage until
the amount is equivalent to the minority class.

Although the data distribution in this research was not
highly imbalanced, we wanted to explore how oversampling
and undersampling or generating synthetic data can con-
tribute to the classifiers’ performance. Since we used Scikit-
learn, the Python library, the oversampling/undersampling
technique that we choose is the Synthetic Minority Over-
sampling Technique (SMOTE), a combination of SMOTE,

Edited Nearest Neighbors (SMOTEENN), and random
oversampling (ROS).

SMOTE, is a distance-based algorithm where these algo-
rithms identify objects as determined by distance measure
via the dissimilarity between them. A random example of the
minority class is chosen first. For that case, k of the nearest
neighbors is then found. A random neighbor is selected, and
a synthetic example is generated between the two examples
in the feature space at a randomly selected point.

While SMOTEENN is a combination of oversampling and
undersampling, the oversampling of SMOTE combine with
undersampling, Edited Nearest Neighbours (ENN) for clean-
ing. ENN excludes any example whose class mark varies
from that of at least two of its three closest neighbors.

ROS is the most straightforward oversampling technique
where it was randomly picking, deleting, and adding to
the training dataset examples from the minority class. This
experiment explores the effectiveness of the oversampling
technique in three different oversampling approaches, the
simplest one, the basic, and the combination of over &
under-sampling.

IV. EXPERIMENTAL
The experiment for this research used Python and Scikit-learn
(python library) for the whole process. The experiment ran in
Anaconda (Python prepackaged distribution), consisting of
Jupyter Notebook, an open-sourceweb application. Processes
such as feature selection and aggregation of the dataset occur
through the first module and second module.

The feature selection and the aggregation process are pre-
processing to prepare the dataset for the experiment. Before
we explain this experiment’s process, the next subsection
details the dataset used in this experiment and why we chose
to use it.

A. DATA RESOURCES
The dataset that we used in this experiment was from the
CTU-13 dataset [30]. CTU-13 is a dataset of network traf-
fic that was captured at CTU University, Czech Republic,
in 2011 and stored in. pcap files. The CTU-13 dataset is a
labeled dataset that contains 13 scenarios labeled Normal,
Attack, or Background. The 13 files contain different botnet
types, as shown in TABLE 5, including centralized or decen-
tralized structures and various protocols. This study focused
on designing botnet detection that is structure-independent
and protocol-independent, this dataset suited our purpose.

In the first module, we aimed to explore the unsupervised
algorithm that can cluster the data group that can differentiate
benign and botnet groups. The algorithm also needed to
be robust to noise or uncertain data because uncertain data
are more prevalent in real network traffic than regular and
botnet traffic [40], [43]. We tested four types of the botnet,
Neris, Virut, Murlo, and NSIS, where the combination of
these botnets consisted of both structures, centralized, and
decentralized. Each of these botnet types was combined with
the uncertain data or not to produce a comparison. The expla-

48760 VOLUME 9, 2021

W. N. H. Ibrahim et al.: Multilayer Framework for Botnet Detection Using Machine Learning Algorithms

TABLE 4. Feature description for the experiment.

TABLE 5. Distribution of botnet name, structure in CTU-13.

nation for the distribution of data is shown in TABLE 6.
Experiments A, C, E, and G were the experiments without
uncertain data.

In contrast, Experiments B, D, F, and H were the experi-
ments where the input was a combination of a regular, botnet,
and uncertain network traffic. In TABLE 6, we show the
distribution and the ratio of Normal, Botnet, and Uncertain
for each experiment. We kept the real network traffic ratio,
which was highly imbalanced, where the uncertain data had
the highest percentage and the botnet traffic the lowest.

The second module was the classification module using
labeled data. For this module, we used a combination of
normal and botnet network traffic. TABLE 7 shows the
distribution of data and the combination of files for the train-
ing and testing process. Once again, these files consisted of
centralized and decentralized structured botnets.

B. FEATURE SELECTION
The features selected for this study are listed in
TABLE 4. In TABLE 4. The features for both modules are

TABLE 6. The percentage of distribution data for the filtering module.

listed and these features are represented as X in Equation (2)
and Equation (3).

The features used in the first module were source address
(Sip), destination address (Dip), and destination port (Dport).
Since the data for these three features are categorical data,
the analysis is performed by calculating each feature’s dis-
tinct number in the time interval.

The second module used five main features. The main
features are then extended to several features for considering
the communication pattern in two ways, either the source
address is sending or receiving packets. We believe that the
communication between the botnet and its botmaster can
be detected within a short time, so the default time for this
experiment was t = 1 s. The feature description is shown in
TABLE 4. The aggregation of the first module and second
module can be represented by Equations (2) and (3) where
X1, X2 until Xn are the features that form an array:

[t(1s)] = [Xi,X2 ,, Xn] (2)

VOLUME 9, 2021 48761

W. N. H. Ibrahim et al.: Multilayer Framework for Botnet Detection Using Machine Learning Algorithms

FIGURE 7. The pseudo-code and the flow chart for second module.

TABLE 7. The data distribution for the second module.

[Sip, t] = [Xi,X2 ,, Xn] (3)

In TABLE 4, at the column 4 that shows the description
of the aggregation features, we marked the word of Distinct
with ∗. In this study, a distinct number equal to the number of
unique elements in the set or in the time interval. The distinct
number also can represent as shown in Equation (4), where X
is the features and n(x) is the distinct number: -

n (x) =
{
Xi,Xj, ,Xn |Xi 6= Xj, i 6= j,

i ≥ 0, j = 1, , n} (4)

C. CLASSIFICATION
After preprocessing, the data are ready to insert into
the machine learning algorithm. The first module used
K-means in WEKA, while the second module used three
classifiers from Scikit-Learn for the classification process.
The classifiers used are k-Nearest Neighbor (k-NN), Support
Vector Machine (SVM), and Multilayer Perceptron (MLP).

In both layers, the aggregated data were then rescaled using
Standard Scaler from Scikit Learn. The data were rescaled to
ensure the mean value was zero and the standard deviation
is equal to 1. The equation for rescaling the data is shown in
Equation (4) where µ is the data mean, and s is the standard

FIGURE 8. Step-by-step data changes in the first module.

deviation.

z = (x − µ)/
s (5)

For the first layer, FIGURE 8a-c) shows the sample data
in the step-by-step process. FIGURE 8a gives the aggre-
gated data after preprocessing. FIGURE 8 has the data
after the rescaling process, and FIGURE 8c provides the
result extracted from WEKA. As shown in FIGURE 8,
the class/label attribute was removed and not rescaled with
the other three features. The data in FIGURE 8b are the data
inserted into WEKA. After WEKA clustered the data, the
class/label feature that was removed earlier was combined
with the data and the cluster number (WEKA result) to make
it ready for evaluation.

For the second layer, the rescaled data then go through
the pipeline process from Scikit Learn. The pipeline pro-
cess is a process that is sticking multiple processes together
into a single estimator. After the data were pipelined, they

48762 VOLUME 9, 2021

W. N. H. Ibrahim et al.: Multilayer Framework for Botnet Detection Using Machine Learning Algorithms

TABLE 8. Determining cluster based on the percentage of majority (botnet, normal & uncertain data).

were classified and oversampled according to the classifier
and oversampling technique mentioned in Section 3.2. The
classification process and the oversampling process were in a
confusion matrix and ready for evaluation. FIGURE 7 shows
the flow chart of the process in the second module with the
pseudo-code as well.

V. EVALUATION AND RESULT
The evaluation of this study was based on a confusion matrix
for both modules. Although the first module used a clustering
algorithm, we evaluated it as a semi-supervised technique and
evaluated the botnet and normal labels. The uncertain data
were not calculated in the evaluation because the insertion
of uncertain data was considered to create noise. Before
we generated the confusion matrix, we needed to determine
whether it was a botnet cluster or a normal cluster based
on the majority, as shown in TABLE 8. TABLE 8 is an
example of the calculations used for determining the clusters
for the experiment with and without uncertain data. As shown
in TABLE 8, the number of uncertain data points was not
calculated when determining the cluster.

Confusion Matrix is the most common metric used in
evaluating the performance of the machine learning model.
By generating a confusion matrix from the model, the dis-
tribution of the results can be seen clearly. Both modules
evaluated only two (2) classes, so, the confusion matrix con-
sisted of a specific two-dimensional table layout with the
classes ‘‘Actual’’ and ‘‘Cluster/Prediction’’ in one dimension.
In contrast, the other dimension had ‘‘Botnet’’ as positive and
‘‘Normal’’ as negative. The instances were categorized into
four fractions, namely False Positive, False Negative, True
Positive, and True Negative, as shown in TABLE 9, while the
explanation of each fraction is given in TABLE 10.

The essential criterion for evaluating theMachine Learning
Models is that they must suit the business impact and goal.
Hence, from the confusion matrix, we expanded the perfor-
mance evaluation. For this study, the prediction of binary
classification was either the network traffic containing botnet
attempts (positive) in the network or not.

The most common necessary measure is accuracy. Still,
according toMuller and Guido [46], accuracy is not sufficient
to assess classifiers’ performance, so we also included other
performance parameters in our evaluation, such as Precision,
Recall, False Negative Rate (FNR), and f-score.

The equation for each performance parameter is in
Equation 4 until Equation 8, and the description of the

TABLE 9. Confusion matrix.

TABLE 10. The fraction of the confusion matrix for the botnet
classification.

evaluation parameter is listed in TABLE 12:

Accuracy =
TP+ TN∑

data
(6)

Precision =
TP

TP+ FP
(7)

Recall (TPR) =
TP

TP+ FN
(8)

F_score = 2 ∗
Precision∗Recall
Precisin+ Recall

(9)

FNR =
FN

FN + TP
(10)

In this experiment, the prediction classes included either
positive or negative for botnet traffic or normal traffic. The
precision is the percentage of true positives compared to all
the positive predictions. This shows how well the classifier
predicts the positive botnet traffic as positive. Recall, also
called Sensitivity or True Positive Rate (TPR), is the percent-
age of positive predictions from overall positive instances.
F-score is a harmonic combination between precision and

VOLUME 9, 2021 48763

W. N. H. Ibrahim et al.: Multilayer Framework for Botnet Detection Using Machine Learning Algorithms

TABLE 11. The k-means result for the botnet behavior.

TABLE 12. Description of evaluation term.

TABLE 13. Confusion matrix for experiment G.

recall. It is the simplest way to measure use one evaluation
and compare it to the two used values. Other than that,
since this study seeks to minimize Type II error, the False
Negative Rate was also included in the evaluation. Among all
these parameters, we highlight the F-score and FNR because
F-score is a harmonic combination between Recall and
Precision.

TABLE 11 shows the results for the first module that used
the k-means algorithm with all the measurement parameters.
Based on TABLE 11, we see that the accuracy of all the
experiments, from A to H, was in the range of 99% and
100% for all types of the botnet. However, we can see that
the F-score for theNsis botnet, whichwas a decentralized P2P
botnet, was 0% for experiment G (without uncertain data) and
62% for experiment H. If we compared the results of FNR,
the same would be true: in experiments G and H, the FNR
was higher than in the other experiments. We highlighted in
red the Precision, Recall, and F-score that showed a 0 value.
TABLE 13 shows the confusion matrix for experiment G;
based on this table, the reason why Precision, Recall, and
F-score became 0% was that the True Positive was 0.

TABLE 14 shows the results for the secondmodule. All the
highest scores for each of the measurement parameters are
highlighted in bold. Referring to this table, we can see that
this experiment’s overall accuracy performance varied from
83% to 92%, while the f-score for the classifier varied from
82% to 92%. The highest accuracy and f-score used k-NN
without any oversampling technique. However, the lowest
FNR used a combination of k-NN with SMOTE.

FIGURE 9 is a graph representing TABLE 14. In
FIGURE 10, we extract the results of accuracy and f-score of
each classifier, with and without oversampling. Among these
three classifiers, k-NN showed consistent values for accuracy
and f-score, with or without the oversampling technique.

The performance for SVM increased when it was com-
bined with SMOTEENN compared to SVM with other over-
sampling techniques. However, the performance of MLP
in this experiment showed the lowest results and did not
significantly change when combined with an oversampling
technique.

Based on TABLE 14, the highest f-score is obtained by
using the k-NN algorithm without any oversampling tech-
nique with a 1-s time interval. We extend the experiment
to explore the changes that result if we use a different time
interval. We test the k-NN algorithm with five-time intervals
(1, 30, 60, 90, or 120 s). Changing the dataset’s time interval
means that we need to re-aggregate the CTU13 dataset before
the classification process and evaluation. The result for k-NN
using different time intervals is shown in TABLE 15. Based
on TABLE 15, the highest f-score is still from using k-NN
without any oversampling technique and a 1-s interval.

VI. DISCUSSION
The behavior-based analysis focuses on selecting features
based on a particular concept or pattern that can extract
different behavior patterns over time. In this case, we chose
the flow-based features based on the theoretical relationship
between the command and control server that is used by the
botmaster with the botnet. The time interval for our experi-
ment was 1 s.We chose 1 s becausewewanted to test whether,
within a short period, the pattern of the behavior can be
differentiated. Through the botnet’s life cycle, we understood
that the command and control server is the most important

48764 VOLUME 9, 2021

W. N. H. Ibrahim et al.: Multilayer Framework for Botnet Detection Using Machine Learning Algorithms

TABLE 14. The classification result for the botnet behavior model.

TABLE 15. The classification result for the k-NN with a different time interval (second).

thing for a botnet to function. The current trends of botnets
are changes in structure and the obfuscation technique on
the packet data, which creates challenges for researchers
designing detection models. Several research pieces show
that traditional signature-based or content-based methods
are unable to detect botnets. Still, with behavior-based and
flow-based methods, it may be possible to solve the problem.
The imbalanced distribution of normal and botnet traffic can
also contribute to the failure to detect botnet traffic. The
meager amount of botnet data compared to the very high
amount of benign packet data means that the botnet traffic
often goes unseen.

The comparison made with other research on botnet detec-
tion shows that researchers tend to design botnet detection
only for a particular structure and protocol. Hence, for our
study, we have highlighted criteria independent of structure
and protocol by selecting the CTU-13 dataset, consisting of
both types of structure, centralized and decentralized, and a
combination of the protocols. CTU-13 also represents real-
time traffic and contains a highly imbalanced distribution of
botnet and benign data.

Based on the results, our method, starting with the selec-
tion of features and continuing through the preprocessing,
the chosen time interval, and the algorithm, achieved impres-

VOLUME 9, 2021 48765

W. N. H. Ibrahim et al.: Multilayer Framework for Botnet Detection Using Machine Learning Algorithms

FIGURE 9. Comparison of accuracy and F-score of the classifiers.

sive results. This proves that behavior-based analysis and
flow-based features without accessing the payload can deter-
mine the botnet traffic, even for an imbalanced class dataset.

VII. CONCLUSION
As mention in the literature review referring to TABLE 3,
our outcome is in total contrast with the previous researcher’s
result. TABLE 3 shows that oversampling improves the result
that produces by the classifier. However, surprisingly, over-
sampling in our research did not show any significant change.
The k-NN algorithm alone has a result that overcomes the
result produce by combining k-NN with oversampling. This
result determines our next steps to extends the experiment
where we will use k-NN without oversampling technique.

Since we aimed to maximize the f-score, the highest result
obtained for the f-score was through the k-NN without any
oversampling technique, which was 91.51% with a 1-s time
interval. Although we changed the time interval to 1, 30, 60,
90, or 120 s, the highest f-score was still obtained by using the
1-s time interval. Although we used a behavior-based method
to analyze the botnet in network traffic, this proved that we do
not need a longer time interval to observe the communication
pattern among bots and its botmaster.

There are still some issues that need to be addressed in
a future study. As we can see, the performance decreased
while clustering the decentralized botnet (experiment G
with the NSIS botnet). In the future, we would like to
expand our method to test novel types of botnets and eval-
uate them based on performance and time (processing and
detecting time). We would like to create a dynamic frame-
work that would predict future botnet behavior and test it with
several benchmark botnet datasets.

ACKNOWLEDGMENT
The authors wish to thank Universiti Teknologi Malaysia
(UTM) for its support under Research University Grant Vot-
20H04, Malaysia Research University Network (MRUN)
Vot 4L876. The authors would like to acknowledge that

this work was supported/funded by the Ministry of Higher
Education under the Fundamental Research Grant Scheme
(FRGS/1/2018/ICT04/UTM/01/1). The work was also par-
tially supported by the Specific Research project (SPEV) at
the Faculty of Informatics and Management, University of
Hradec Kralove, Czech Republic, under Grant 2102-2021.
The authors are grateful for the support of student Sebastien
Mambou in consultations regarding application aspects. The
authors alsowish to thank theMinistry of EducationMalaysia
for the Hadiah Latihan Persekutuan (HLP) scholarship to
complete the research.

REFERENCES
[1] X. D. Hoang, ‘‘Botnet detection based on machine learning techniques

using DNS query data,’’ Future Internet, vol. 10, no. 5, pp. 1–11, 2018.
[2] P. Wainwright and H. Kettani, ‘‘An analysis of botnet models,’’ in Proc.

3rd Int. Conf. Compute Data Anal., New York, NY, USA, Mar. 2019,
pp. 116–121.

[3] J. Johnson, ‘‘Lost your data in the flood? 5 tips to data recover in a flash!
Antara WhatsApp & Telegram: Komunikasi alaf baru yang digemari,’’
CyberSecurity, Kuala Lumpur, Malaysia, Tech. Rep., Feb. 2017, vol. 43.

[4] J. A. Cid-Fuentes, C. Szabo, and K. Falkner, ‘‘Adaptive performance
anomaly detection in distributed systems using online SVMs,’’ IEEETrans.
Dependable Secure Comput., vol. 17, no. 5, pp. 928–941, Sep./Oct. 2018.

[5] E. Bou-Harb, M. Debbabi, and C. Assi, ‘‘Big data behavioral analytics
meet graph theory: On effective botnet takedowns,’’ IEEE Netw., vol. 31,
no. 1, pp. 18–26, Jan. 2017.

[6] R. Chen,W. Niu, X. Zhang, Z. Zhuo, and F. Lv, ‘‘An effective conversation-
based botnet detection method,’’Math. Problems Eng., vol. 2017, pp. 1–9,
Apr. 2017.

[7] D. Zhao, I. Traore, B. Sayed, W. Lu, S. Saad, A. Ghorbani, and D. Garant,
‘‘Botnet detection based on traffic behavior analysis and flow intervals,’’
Comput. Secur., vol. 39, pp. 2–16, Nov. 2013.

[8] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, ‘‘A survey
on heuristic malware detection techniques,’’ in Proc. 5th Conf. Inf. Knowl.
Technol., May 2013, pp. 113–120.

[9] J. A. Caicedo-Muñoz, A. L. Espino, J. C. Corrales, and A. Rendón, ‘‘QoS-
classifier for VPN and non-VPN traffic based on time-related features,’’
Comput. Netw., vol. 144, pp. 271–279, Oct. 2018.

[10] S. Alrabaee, M. Debbabi, and L. Wang, ‘‘On the feasibility of binary
authorship characterization,’’Digit. Invest., vol. 28, pp. S3–S11, Apr. 2019.

[11] R. Rapuzzi and M. Repetto, ‘‘Building situational awareness for network
threats in fog/edge computing: Emerging paradigms beyond the security
perimeter model,’’ Future Gener. Comput. Syst., vol. 85, pp. 235–249,
Aug. 2018.

48766 VOLUME 9, 2021

W. N. H. Ibrahim et al.: Multilayer Framework for Botnet Detection Using Machine Learning Algorithms

[12] P. Sun, J. Li, M. Z. A. Bhuiyan, L. Wang, and B. Li, ‘‘Modeling and
clustering attacker activities in IoT through machine learning techniques,’’
Inf. Sci., vol. 479, pp. 456–471, Apr. 2019.

[13] S.-H. Li, Y.-C. Kao, Z.-C. Zhang, Y.-P. Chuang, and D. C. Yen, ‘‘A network
behavior-based botnet detection mechanism using PSO and K-means,’’
ACM Trans. Manage. Inf. Syst., vol. 6, no. 1, pp. 1–30, Apr. 2015.

[14] D. Zhuang and J. M. Chang, ‘‘Enhanced PeerHunter: Detecting peer-
to-peer botnets through network-flow level community behavior analy-
sis,’’ IEEE Trans. Inf. Forensics Security, vol. 14, no. 6, pp. 1485–1500,
Jun. 2019.

[15] K. Ehsan and R. S. Hamid, ‘‘BotRevealer: Behavioral detection of botnets
based on botnet life-cycle,’’ Int. J. Inf. Secur., vol. 10, no. 1, pp. 55–61,
2018.

[16] N. Moustafa, J. Hu, and J. Slay, ‘‘A holistic review of network anomaly
detection systems: A comprehensive survey,’’ J. Netw. Comput. Appl.,
vol. 128, pp. 33–55, Feb. 2019.

[17] L. Mathur, M. Raheja, and P. Ahlawat, ‘‘Botnet detection via mining of
network traffic flow,’’ Procedia Comput. Sci., vol. 132, pp. 1668–1677,
Jan. 2018.

[18] N. B. Said, F. Biondi, V. Bontchev, O. Decourbe, T. Given-Wilson,
A. Legay, and J. Quilbeuf, ‘‘Detection of mirai by syntactic and behav-
ioral analysis,’’ in Proc. IEEE 29th Int. Symp. Softw. Rel. Eng. (ISSRE),
Oct. 2018, pp. 224–235.

[19] Z. Wang, M. Tian, and C. Jia, ‘‘An active and dynamic botnet
detection approach to track hidden concept drift,’’ in Proc. Int.
Conf. Inf. Commun. Secur., in Lecture Notes in Computer Science:
Including Subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics, vol. 10631, Berlin, Germany, 2018
pp. 646–660.

[20] K. M. Prasad, A. R. M. Reddy, and K. V. Rao, ‘‘BARTD: Bio-inspired
anomaly based real time detection of under rated app-DDoS attack on
Web,’’ J. King Saud Univ.-Comput. Inf. Sci., vol. 32, no. 1, pp. 73–87,
Jan. 2020.

[21] I. Sreeram and V. P. K. Vuppala, ‘‘HTTP flood attack detection in applica-
tion layer using machine learning metrics and bio inspired bat algorithm,’’
Appl. Comput. Informat., vol. 15, no. 1, pp. 59–66, Jan. 2019.

[22] D. Tran, H. Mac, V. Tong, H. A. Tran, and L. G. Nguyen, ‘‘A LSTM based
framework for handling multiclass imbalance in DGA botnet detection,’’
Neurocomputing, vol. 275, pp. 2401–2413, Jan. 2018.

[23] M. Pawlicki, M. Choraś, and R. Kozik, ‘‘Defending network intrusion
detection systems against adversarial evasion attacks,’’FutureGener. Com-
put. Syst., vol. 110, pp. 148–154, Sep. 2020.

[24] Z. Berkay Celik, R. J. Walls, P. McDaniel, and A. Swami, ‘‘Malware traffic
detection using tamper resistant features,’’ in Proc. IEEE Mil. Commun.
Conf. (MILCOM), Oct. 2015, pp. 330–335.

[25] D. Santana, S. Suthaharan, and S. Mohanty, ‘‘What we learn from
learning—Understanding capabilities and limitations of machine learn-
ing in botnet attacks,’’ 2018, arXiv:1805.01333. [Online]. Available:
https://arxiv.org/abs/1805.01333

[26] M. F. Umer, M. Sher, and Y. Bi, ‘‘Flow-based intrusion detection: Tech-
niques and challenges,’’ Comput. Secur., vol. 70, pp. 238–254, Sep. 2017.

[27] B. AsSadhan, A. Bashaiwth, J. Al-Muhtadi, and S. Alshebeili, ‘‘Analysis of
P2P, IRC and HTTP traffic for botnets detection,’’ Peer-Peer Netw. Appl.,
vol. 11, no. 5, pp. 848–861, Sep. 2018.

[28] V. H. Bezerra, V. G. T. da Costa, S. B. Junior, R. S. Miani, and
B. B. Zarpelão, ‘‘IoTDS: A one-class classification approach to detect
botnets in Internet of Things devices,’’ Sensors, vol. 19, no. 14, p. 3188,
Jul. 2019.

[29] L. F. Maimo, A. L. P. Gomez, F. J. G. Clemente, M. G. Perez, and
G. M. Perez, ‘‘A self-adaptive deep learning-based system for anomaly
detection in 5G networks,’’ IEEE Access, vol. 6, pp. 7700–7712, 2018.

[30] S. García, M. Grill, J. Stiborek, and A. Zunino, ‘‘An empirical compari-
son of botnet detection methods,’’ Comput. Secur., vol. 45, pp. 100–123,
Sep. 2014.

[31] I. Kurochkin and A. Saevskiy, ‘‘BOINC forks, issues and directions of
development,’’ Procedia Comput. Sci., vol. 101, pp. 369–378, Jan. 2016.

[32] H. H. Pajouh, A. Dehghantanha, R. Khayami, and K.-K.-R. Choo, ‘‘Intel-
ligent OS X malware threat detection with code inspection,’’ J. Comput.
Virol. Hacking Techn., vol. 14, no. 3, pp. 213–223, Aug. 2018.

[33] M. S. Alam and S. T. Vuong, ‘‘Random forest classification for detecting
Android malware,’’ in Proc. IEEE Int. Conf. Green Comput. Commun.,
IEEE Internet Things, IEEE Cyber, Phys. Social Comput., Aug. 2013,
pp. 663–669.

[34] M. Sewak, S. K. Sahay, and H. Rathore, ‘‘Comparison of deep learning
and the classical machine learning algorithm for the malware detection,’’
in Proc. 19th IEEE/ACIS Int. Conf. Softw. Eng., Artif. Intell., Netw. Paral-
lel/Distrib. Comput. (SNPD), Jun. 2018, pp. 293–296.

[35] U. Fiore, A. De Santis, F. Perla, P. Zanetti, and F. Palmieri, ‘‘Using
generative adversarial networks for improving classification effectiveness
in credit card fraud detection,’’ Inf. Sci., vol. 479, pp. 448–455, Apr. 2019.

[36] S. Kudugunta and E. Ferrara, ‘‘Deep neural networks for bot detection,’’
Inf. Sci., vol. 467, pp. 312–322, Oct. 2018.

[37] M. Aamir and S. M. A. Zaidi, ‘‘Clustering-based semi-supervised machine
learning for DDoS attack classification,’’ J. King Saud Univ.-Comput. Inf.
Sci., 2019, doi: 10.1016/j.jksuci.2019.02.003.

[38] K. Alieyan, A. ALmomani, A. Manasrah, and M. M. Kadhum, ‘‘A survey
of botnet detection based on DNS,’’ Neural Comput. Appl., vol. 28, no. 7,
pp. 1541–1558, Jul. 2017.

[39] M. Stevanovic and J. M. Pedersen, ‘‘On the use of machine learning
for identifying botnet network traffic,’’ J. Cyber Secur. Mobility, vol. 4,
nos. 2–3, pp. 1–32, 2015.

[40] R. U. Khan, X. Zhang, R. Kumar, A. Sharif, N. A. Golilarz, andM. Alazab,
‘‘An adaptive multi-layer botnet detection technique using machine learn-
ing classifiers,’’ Appl. Sci., vol. 9, no. 11, p. 2375, Jun. 2019.

[41] A. Gezer, G. Warner, C. Wilson, and P. Shrestha, ‘‘A flow-based
approach for trickbot banking trojan detection,’’ Comput. Secur., vol. 84,
pp. 179–192, Jul. 2019.

[42] L. Chen, Y. Ye, and T. Bourlai, ‘‘Adversarial machine learning in malware
detection: Arms race between evasion attack and defense,’’ in Proc. Eur.
Intell. Secur. Informat. Conf. (EISIC), Sep. 2017, pp. 99–106.

[43] C.-Y. Wang, C.-L. Ou, Y.-E. Zhang, F.-M. Cho, P.-H. Chen, J.-B. Chang,
and C.-K. Shieh, ‘‘BotCluster: A session-based P2P botnet clustering
system on NetFlow,’’ Comput. Netw., vol. 145, pp. 175–189, Nov. 2018.

[44] D. Ucci, L. Aniello, and R. Baldoni, ‘‘Survey of machine learning tech-
niques for malware analysis,’’ Comput. Secur., vol. 81, pp. 123–147,
Mar. 2019.

[45] A. C.Müller and S. Guido, Introduction toMachine LearningWith Python:
A Guide for Data Scientists, 1st ed. Newton, MA, USA: O’Reilly Media,
2016.

[46] M. Debashi and P. Vickers, ‘‘Sonification of network traffic for detecting
and learning about botnet behavior,’’ IEEE Access, vol. 6, pp. 33826–
33839, 2018.

[47] S. Garg, S. K. Peddoju, and A. K. Sarje, ‘‘Scalable P2P bot detection
system based on network data stream,’’ Peer-to-Peer Netw. Appl., vol. 9,
no. 6, pp. 1209–1225, 2016.

WAN NUR HIDAYAH IBRAHIM (Member,
IEEE) received the B.S. degree in engineer-
ing (electrical) and the master’s degree in techni-
cal education (TVET) from Universiti Teknologi
Tun Hussein Onn (UTHM), in 2006 and 2008,
respectively. She is currently pursuing the Ph.D.
degree with Universiti Teknologi Malaysia, Sku-
dai. Her thesis focuses on detecting botnet in net-
work traffic. From 2009 until 2015, she was a
Senior Lecturer with the Department of Electri-

cal Engineering, Polytechnic Sultan Idris Shah, Selangor, Malaysia, where
she was teaching in Information and Communication Technology, from
2015 until 2017. Her research interests include machine learning, data
analytics, malware, network security and generative adversarial network
(GAN).

SYAHID ANUAR is currently a Senior Lec-
turer with Universiti Teknologi Malaysia Kuala
Lumpur, under Razak Faculty of Technology and
Informatics. His research interests include teach-
ing machine learning, data mining, and cloud com-
puting subjects. He is also as a Leader in a research
project named the IoT and machine learning to
detect driving behavior. He is a Team Member
of research project named machine learning in
cybersecurity for botnet prediction.

VOLUME 9, 2021 48767

http://dx.doi.org/10.1016/j.jksuci.2019.02.003

W. N. H. Ibrahim et al.: Multilayer Framework for Botnet Detection Using Machine Learning Algorithms

ALI SELAMAT (Member, IEEE) has also been the
Dean of the Malaysia Japan International Institute
of Technology (MJIIT), UTM, since 2018. An aca-
demic institution established under the cooper-
ation of the Japanese International Cooperation
Agency (JICA) and the Ministry of Education
Malaysia (MOE) to provide the Japanese style of
education in Malaysia. He is currently a Full Pro-
fessor with Universiti Teknologi Malaysia (UTM),
Malaysia, where he is also a Professor with the

Software Engineering Department, Faculty of Computing. He has published
more than 60 IF research papers. His H-index is 20, and his number of
citations in WoS is more than 800. His research interests include software
engineering, software process improvement, software agents, Web engineer-
ing, information retrievals, pattern recognition, genetic algorithms, neural
networks, soft computing, computational collective intelligence, strategic
management, key performance indicator, and knowledge management. He is
on the Editorial Board of the Journal Knowledge-Based Systems (Elsevier).
He has been serving as the Chair for the IEEE Computer Society Malaysia,
since 2018.

ONDREJ KREJCAR is a full professor in sys-
tems engineering and informatics at the Univer-
sity of Hradec Kralove, Faculty of Informatics
and Management, Center for Basic and Applied
Research, Czech Republic; and Research Fellow
at Malaysia-Japan International Institute of Tech-
nology, University Technology Malaysia, Kuala
Lumpur, Malaysia. In 2008 he received his Ph.D.
title in technical cybernetics at Technical Univer-
sity of Ostrava, Czech Republic. He is currently

a vice-rector for science and creative activities of the University of Hradec
Kralove from June 2020.

At present, he is also a director of the Center for Basic and Applied
Research at the University of Hradec Kralove. In years 2016-2020 he was
vice-dean for science and research at Faculty of Informatics and Manage-
ment, UHK. His h-index is 19, with more than 1300 citations received
in the Web of Science. In 2018, he was the 14th top peer reviewer in
Multidisciplinary in the World according to Publons and a Top Reviewer
in the Global Peer Review Awards 2019 by Publons. Currently, he is on
the editorial board of the MDPI Sensors IF journal (Q1/Q2 at JCR), and
several other ESCI indexed journals. He is a Vice-leader and Management
Committee member at WG4 at project COST CA17136, since 2018. He has
also been a Management Committee member substitute at project COST
CA16226 since 2017. Since 2019, he has been Chairman of the Program
Committee of the KAPPA Program, Technological Agency of the Czech
Republic as a regulator of the EEA/Norwegian Financial Mechanism in the
Czech Republic (2019-2024). Since 2020, he has been Chairman of the
Panel 1 (Computer, Physical and Chemical Sciences) of the ZETA Program,
Technological Agency of the Czech Republic. Since 2014 until 2019, he has
been Deputy Chairman of the Panel 7 (Processing Industry, Robotics, and
Electrical Engineering) of the Epsilon Program, Technological Agency of
the Czech Republic. At the University of Hradec Kralove, he is a guarantee
of the doctoral study program inApplied Informatics, where he is focusing on
lecturing on Smart Approaches to the Development of Information Systems
and Applications in Ubiquitous Computing Environments.

His research interests include Control Systems, Smart Sensors, Ubiqui-
tous Computing, Manufacturing, Wireless Technology, Portable Devices,
biomedicine, image segmentation and recognition, biometrics, technical
cybernetics, and ubiquitous computing. His second area of interest is in
Biomedicine (image analysis), as well as Biotelemetric System Architecture
(portable device architecture, wireless biosensors), development of applica-
tions for mobile devices with use of remote or embedded biomedical sensors.

RUBÉN GONZÁLEZ CRESPO (Senior Member,
IEEE) received the Ph.D. degree in computer sci-
ence engineering. He is currently the Dean of the
Higher School of Engineering, Universidad Inter-
nacional de La Rioja (UNIR), and the Director
of the AENOR (Spanish Association for Stan-
dardization and Certification) Chair of Certifica-
tion, Quality and Technology Standards. He is also
a member of different committees with the ISO
Organization. He is also an Advisory Board Mem-

ber of theMinistry of Education at Colombia and an Evaluator of theNational
Agency for Quality Evaluation and Accreditation of Spain (ANECA).

ENRIQUE HERRERA-VIEDMA (Fellow, IEEE)
received the M.Sc. and Ph.D. degrees in computer
science from the University of Granada, Granada,
Spain, in 1993 and 1996, respectively.

He is currently a Professor of computer science
and A. I, and the Vice-President of Research and
Knowledge Transfer, University of Granada. His
H-index is 69, with more than 17 000 citations
received in the Web of Science and 85 in Google
Scholar, with more than 29 000 cites received. He

has been identified as one of the World’s most influential researchers by the
Shanghai Centre and Thomson Reuters/Clarivate Analytics in both the scien-
tific categories of computer science and engineering, from 2014 to 2018. His
current research interests include group decision making, consensus models,
linguistic modeling, aggregation of information, information retrieval, bib-
liometric, digital libraries, Web quality evaluation, recommender systems,
block chain, smart cities, and social media. He is the Vice-President of
Publications of the SMC Society and an Associate Editor of several JCR
journals, such as IEEE TRANSACTIONS ON FUZZY SYSTEMS, IEEE TRANSACTIONS

ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, Information Sciences, Applied
Soft Computing, Soft Computing, Fuzzy Optimization and Decision Mak-
ing, Journal of Intelligent and Fuzzy Systems, International Journal of
Fuzzy Systems, Engineering Applications of Artificial Intelligence, Journal
of Ambient Intelligence and Humanized Computing, International Journal
of Machine Learning and Cybernetics, and Knowledge-Based Systems. He
is also the Editor-in-Chief of the Journal Frontiers in Artificial Intelligence
(Section Fuzzy Systems).

HAMIDO FUJITA (Life Senior Member, IEEE)
received the B.S. degree in electrical engineering
from the University of Manchester, Manchester,
U.K., in 1979, and the master’s and Ph.D. degrees
in information engineering from Tohoku Univer-
sity, Sendai, Japan, in 1985 and 1988, respectively.
He is currently a Professor of artificial intelli-
gencewith Iwate Prefectural University, Takizawa,
Japan, as the Director of intelligent software sys-
tems. He is an Adjunct Professor of computer

science and artificial intelligence with Stockholm University, Stockholm,
Sweden; the University of Technology Sydney, Ultimo, NSW, Australia; the
National Taiwan Ocean University, Keelung, Taiwan, and others. He has
supervised Ph.D. students jointly with the University of Laval, Quebec City,
QC, Canada; the University of Technology Sydney; Oregon State University,
Corvallis, OR, USA; the University of Paris 1 Pantheon–Sorbonne, Paris,
France; and the University of Genoa, Genoa, Italy. He is also a Highly
Cited Researcher in Cross-field for the year 2019 by Clarivate Analytics.
He has given many keynotes in many prestigious international conferences
on intelligent system and subjective intelligence. He headed a number of
projects including intelligent HCI, a project related to mental cloning for
healthcare system as an intelligent user interface between human users
and computers, and SCOPE project on virtual doctor systems for medical
applications. He is the recipient of the Honorary Scholar Award from the
University of Technology Sydney, in 2012. He has four international patents
in software system and several research projects with Japanese industry and
partners. He is the Editor-in-Chief for Knowledge-Based Systems. He is the
Vice President of International Society of Applied Intelligence, and currently
the Editor-in-Chief of Applied Intelligence (Springer).

48768 VOLUME 9, 2021

