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Abstract

English

Understanding emergence, evolution and organization of natural sys-
tems is one of the main objective of science. Statisical physics has
played a prominent role shedding light on the processes underlying
order and complexity present in biological systems from a bottom-
up approach, i.e. recovering the observed collective properties from
our knowledge of the elementary components and their interactions.
These ideas revolutionized our conception of science during the 20th
century, and in the last decades they have become important in areas
such as biology or neuroscience, leading to some exciting discoveries
and hypotheses that are still in debate.

One of the most powerful conceptual ideas is the theory of self-
organized criticality proposed by Bak and collaborators in 1987, which
proposes that natural systems might be self tuned to the vicinity of a
critical point, which would allow them to take advantage of character-
istic critical properties such us long-range correlations, large suscepti-
bility, or increased capacity for computation and information process-
ing. Today there is experimental evidence that this the case for some
systems in biology.

In 2003 Beggs and Plenz observed, in an experimental break-
through, power-law distributed avalanches, which are usually
manifested by critical systems, suggesting that the brain could also
work at the edge of a critical phase transition in the universality
class of the unbiased branching process, where activity does not grow
nor shrink, on average. Almost twenty years later, there is still no
conclusive evidence to close the debate on whether the brain, or at
least some parts or it, are critical or not. The rich dynamical repertoire
of the brain (including bistability, oscillations in several spectral
ranges, large irregular outbursts...) has eluded a complete theoretical
description in terms of simple models, and even recent experimental
data is not completely conclusive on this respect.

It has been recently proposed that a way to bring together scale-free
avalanches with brain rhythms is to consider synchronization phase
transitions and their associated critical points. In this thesis, the criti-

1



CONTENTS

cality hypothesis in the brain is studied from the perspective of synchro-
nization phenomena, discussing under which circumstances synchro-
nization transitions can generate power-law distributed avalanches, as
well as their relation with other experimentally-observed aspects of
the cortical dynamics such as the balance between excitation and inhi-
bition or bistability. The thesis is organized in the following way:

Chapter 1 presents some basics concepts dynamical systems, and
critical phenomena, as well as a summary of the issue of criticality in
the brain and related philosophical aspects.

Chapter 2 is a review of theoretical models for neural and synaptic
dynamics, as well as mesoscopic models describing whole regions in
an effective way. Relevant concepts from synchronization theory are
also sketched here.

Chapter 3 introduces the concept of “Jensen’s force” by studying a
discrete model that sheds light on the role on inhibition and sparsity
in neural networks, and the effect of excitation-inhibition balance.

Chapter 4 presents the concept of hybrid synchronization, a novel
regime where both partial synchronization and scale-free avalanches
can be found together.

Chapter 5 presents a review of self-organization theory, including
the new concept of self-organized bistability. These concepts are later
applied to assess the relationship between self-organization and collec-
tive oscillations in cortical dynamics.

Chapter 6 sketches future work to develop from here on, including
preliminary analyses of more realistic systems.

Chapter 7 includes a discussion on the thesis’ results, as well as the
conclusions.

Italiano

Capire come emergono, evolvono, e si organizzano i sistemi naturali è
uno dei principali obiettivi della scienza. La fisica statistica ha svolto
un ruolo chiave in questo processo, chiarendo i processi che stanno
alla base della complessità e all’ordine presenti nei sistemi biologici
con un approccio “bottom-up”, che ricostruisce le proprietà collettive
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osservate a partire della nostra conoscenza dei componenti elementari
del sistema e delle sue interazioni. Tali idee hanno rivoluzionato la
nostra concezione della scienza nel secolo XX, e negli ultimi deceni
hanno diventato importanti in settori come biologia e neuroscienza,
portando a nuove scoperte e ipotesi che ancora sono in discussione.

Une delle idee concettualmente più interessanti è la teoria della
criticità auto-organizzata, proposta da Per Bak e collaboratori nel 1987,
che suggerisce che i sistemi naturali si possono organizzare in modo au-
tonomo nelle vicinanze di un punto critico, fatto che permetterebbe di
sfruttare le proprietà caratteristiche della criticità come le correlazioni
a lunga distanza, l’alta suscettibilità e una capacità maggiore di com-
putazione di processare informazione. Attualmente c’è evidenza sper-
imentale che questo accada davvero per alcuni sistemi biologici.

Nel 2003 Beggs e Plenz hanno osservato, in un esperimento
sorprendente, valanghe di attività cerebrali distribuite secondo leggi
di potenza, una caratteristica propria dei sistemi critici, suggerendo
quindi che il cervello potrebbe funzionare alla frontiera tra due fasi.
L’esperimento suggeriva che il cervello potrebbe appartenere alla
classe di universalità della directed percolation, dove l’ attività non
cresce né decresce, in media. Quasi venti anni dopo, il problema è
ancora aperto e non c’è ancora una evidenza conclusiva sulla criticità
del cervello. Il regime dinamico del cervello (che include bistabilità,
oscillazioni in diversi intervalli di frequenza, valanghe di attività
Irregolare) non è ancora completamente descritto in modo teorico a
partire da modelli semplici, e anche i dati sperimentali recenti non
sono conclusivi su questo aspetto.

Recentemente è stato proposto che un modo di spiegare contempo-
raneamente valanghe in un regime scale free e ritmi neuronali è con-
siderare per l’atttività cerebrale delle transizioni di fase di sincroniz-
zazione e corrispondenti punti critici associati. In questa tesi studier-
emo l’ ipotesi di criticità dal punto di vista dei fenomeni di sincroniz-
zazione, discutendo in quali circostanze le transizioni di sincroniz-
zazione possono generare valanghe distribuite come leggi a potenza, e
anche quale sia la relazione tra questa transizione e altri fenomeni os-
servati sperimentalmente come il bilancio tra eccitazione e inibizione
e la bistabilità. La tesi è organizzata nel modo seguente:

Il capitolo 1 presenta concetti di base su sistemi dinamici e fenomeni
critici, assieme ad una sintesi della ricerca attuale sulla criticità nel
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cervello e sui problemi filosofici associati.
Il capitolo 2 rivede alcuni modelli teorici per sistemi neuronali e

sinapsi, tra i quali i modelli mesoscopici per descrivere regioni estese
in modo effettivo. Alla fine sono inclusi anche concetti rilevanti sulla
teoria di sincronizzazione.

Il capitolo 3 introduce il concetto di “forza di Jensen”, studiando
un modello discreto che spiega il ruolo della inibizione in presenza
di reti sparse. Inoltre si studia l’effetto del bilancio tra eccitazione e
inibizione.

Il capitolo 4 presenta il concetto di sincronizzazione ibrida, una
nuova regione dove è possibile osservare conteporaneamente valanghe
scale free con sincronizzazione parziale.

Il capitolo 5 rivede la teoria dell’auto-organizzazione, compreso il
nuovo concetto di bistabilità auto-organizzata. In seguito questi con-
cetti sono applicati per capire la relazione tra auto-organizzazione e
oscillazioni collettive nella dinamica corticale.

Il capitolo 6 discute le prospettive future di questa tesi, compreso
una analisi preliminare di sistemi più realistici.

Il capitolo 7 include una discussione dei principali risultati della
tesi, e le conclusioni.

Español

Comprender cómo emergen, evolucionan, y se organizan los sistemas
naturales es uno de los principales objetivos de la ciencia. La física es-
tadística ha jugado un papel clave en este aspecto, iluminando algunos
de los los procesos que subyacen a la complejidad y el orden presentes
en sistemas biológicos desde un planteamiento “ascendente”, es decir,
que recupera las propiedades colectivas observadas a partir de nuestro
conocimiento de los componentes elementales del sistema y sus inter-
acciones. Estas ideas revolucionaron nuestra concepción de la ciencia
en el siglo XX, y en las últimas décadas han cobrado importancia en
áreas como la biología o la neurociencia, llevando a nuevos descubrim-
ientos e hipótesis que siguen en debate.

Una de las ideas conceptualmente más interesantes es la teoría de
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la criticidad auto-organizada, propuesta por Bak y sus colaboradores
en 1987, que sugiere que los sistemas naturales podrían organizarse de
forma autónoma a las inmediaciones de un punto crítico, lo que les per-
mitiría aprovechar las propiedades características de la criticidad como
correlaciones a largo alcance, alta susceptibilidad, o una mayor capaci-
dad de computación y procesado de la información. Actualmente hay
evidencia experimental de que este es realmente el caso para algunos
sistemas en biología.

En 2003 Beggs y Plenz observaron, en un experimento sorpren-
dente, avalanchas distribuidas según leyes de potencias, una carac-
terística propia de sistemas críticos, sugiriendo que el cerebro podría
funcionar en la frontera entre dos fases. Este pertenecería a la clase de
universalidad de percolación dirigida, donde la actividad no crece ni
decrece, en promedio. Casi veinte años después, aún no hay eviden-
cia lo suficientemente conclusiva como para cerrar el debate sobre si el
cerebro (o alguna de sus partes) es crítico o no. El régimen dinámico
del cerebro (que incluye biestabilidad, oscilaciones en diversos rangos
de frecuencia, avalanchas de actividad irregulares...) no ha podido ser
descrito completamente de manera teórica a partir de modelos sencil-
los, e incluso los datos experimentales recientes no son definitivos en
este aspecto.

Se ha propuesto recientemente que una forma de explicar de forma
conjunta las avalanchas libres de escala con los ritmos neuronales es
considerar transiciones de fase de sincronización y sus puntos críti-
cos asociados. A lo largo de esta tesis, se estudia la hipótesis de crit-
icidad desde el punto de vista de fenómenos de sincronización, dis-
cutiendo bajo qué circunstancias las transiciones de sincronización son
capaces de generar avalanchas distribuidas como leyes de potencias,
así como su su relación con otros fenómenos observados experimental-
mente tales como el balance entre excitación e inhibición y la biestabil-
idad. La tesis se organiza de la forma siguiente:

El capítulo 1 presenta conceptos básicos sobre sistemas dinámicos
y fenómenos críticos, así como un resumen de la investigación actual
sobre criticidad en el cerebro, y problemas filosóficos asociados.

El capítulo 2 revisa algunos modelos teóricos para sistemas neu-
ronales y sinapsis, así como modelos mesoscópicos para describir re-
giones completas de forma efectiva. Al final, se incluyen también con-
ceptos relevantes sobre teoría de la sincronización.
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El capítulo 3 introduce el concepto de “fuerza de Jensen”, estu-
diando un modelo discreto que explica el rol de la inhibición junto
con la baja densidad de conexiones, además de estudiar el efecto del
balance entre excitación e inhibición.

El capítulo 4 presenta el concepto de sincronización híbrida, una
nueva región donde es posible encontrar avalanchas libres de escala en
conjunción con sincronización parcial.

El capítulo 5 revisa la teoría de auto-organización, incluyendo el
nuevo concepto de biestabilidad auto-organizada. Después, estos con-
ceptos se aplican para entender la relación entre la auto-organización
y las oscilaciones colectivas en la dinámica cortical.

El capítulo 6 esboza el trabajo futuro por hacer a partir de ahora,
incluyendo análisis preliminares de sistemas más realistas.

El capítulo 7 incluye una discusión sobre los resultados de la tesis,
así como las conclusiones.
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Chapter 1

Statistical Physics and
Neuroscience: a brief overview

"Psychohistory dealt with no man, but with man-masses. [. . .]. The
reaction of one man could be forecast by no known mathematics; the
reaction of a billion is something else again. [. . .]. The laws of history
are as absolute as the laws of physics, and if the probabilities of error
are greater, it is only because history does not deal with as many humans
as physics does atoms, so individual variations count for more."
- Isaac Asimov, in Foundation and Empire, 1952.

The intense effort devoted to understand the brain since ancient
times is nothing but a reflect of the will to find out ourselves and our
position in the world. This endeavor lasts until our days when, despite
the astonishing advances in neuroscience during the last 50 years, a
unified framework that explains how the brain works as a whole is
still missing. Only disconnected pieces are available: the neuron doc-
trine initiated by Golgi and Ramon y Cajal in 1889 initiated an intense
research that culminated with the identification of the most impor-
tant parts of the building blocks that compose the brain, as well as
the interactions among them. Unfortunately, the inverse (bottom-up)
path –explaining high-level cortical function from the components–
remains largely unsuccessful. In last decades, modern neuroimag-
ing techniques, such as electroencephalography or functional magnetic
resonance have allowed another qualitative jump, paving the way to
connect structure and function in the brain. Although these are key
advances to understand it, they do not even completely solve the soft
problem in neuroscience: how the information provided by external
stimuli is received by the sensory system, processed, stored, and how it
evokes a response (Chalmers 1995). The hard problem, which involves
understanding high-level cognitive functions (such as feelings or con-
sciousness (Chalmers 1995)) remain unexplained at the neurological
level.

Given the amount of literature dedicated to physiology, develop-

7



ment, functioning and disease of the brain, one could think that at least
we have an extensive and systemic knowledge about our brain. Let me
introduce a counterintuitive, curious story which illustrates very well
that our knowledge of the brain as a whole is surprisingly limited, de-
spite our extensive mapping of its individual components and areas.

John Lorber (1915 – 1996) was a medical doctor and professor at
Sheffield. In 1979, a student told him that he often suffered from
headaches. Lorber observed that the student head diameter was larger
than usual, so he decided to run a scanner. The result was shocking: al-
most all his head was filled with cerebrospinal fluid. It was an extreme
case of hydrocephalus. A normal brain would weight around one kilo
and a half, and this one was less than 150g. Despite being almost brain-
less, this student always had a normal life, graduated with honours
in Mathematics, and even presented a high CI (126). This story was
published later by Lewin in Science, wondering if “Is your brain really
necessary?” (Lewin 1980). Although hydrocephalus usually limited the
cognitive capacity of the individuals, there are people that have almost
no brain and does not even notice it. Another extreme case was re-
ported in 2007, when Lionel Feuillet said from one of his patients that
the brain was “virtually absent” (Feuillet et al. 2007); again, the patient
had a normal life without complications. Despite it is known that the
brain is able to re-wire via synaptic plasticity in case of tissue damage,
this capacity to self-organize in order to function in these extreme cases
is absolutely amazing, and make us wonder: how could all our knowl-
edge about individual neurons, brain areas and brain topology explain
this? What do we really know about how brain function at the large
scale? The knowledge on brain basic building blocks or even on meso-
scopic regions is not able to explain how these extreme cases work as
a whole. The collective behaviour and the self-organization mechanisms
of the whole-brain is still far from being understood.

During the last century, the application of statistical physics tech-
niques and insights into the brain has helped to shed light on this prob-
lem. The novel criticality hypothesis –the idea that the brain obtains
functional benefits by working near a phase-transition– and related
concepts such complexity and self-organization have attracted a lot of
attention, gaining traction both from the experimental neuroscience
and physics communities. It has been already demonstrated that sev-
eral biological systems can evolve or self-organize to such critical states
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(Muñoz 2018), and it would serve to explain brain complexity and rich-
ness in an elegant, conceptual way. In this first chapter, we review some
of the fundamental aspects of philosophy, as well as the theory of crit-
ical phenomena and the state of the art of the criticality hypothesis in
the brain.

1.1 Philosophy, complex systems, and the brain

Physics has changed during the last century. To make ourselves an idea
of how deep this evolution has been in the last years, we could take the
clock back to one hundred years prior to this the writing of this the-
sis. In 1920, Rutherford just predicted the existence of the neutron;
Rosalind Franklin, whose experiments where decisive for the discov-
ery of DNA, was born this year; insulin was discovered by Banting and
Best, being announced on 1921, the same year when Keynes published
his Treatise on Probability, one of the fundamental pillars of Bayesian
statistics. Even if all these milestones feel very old now, the time be-
tween these and our times is literally just a pair of generations.

Most of remarkable success of science during the XX century has
been attributed to the advances in the natural sciences, as well as the
technology that lead to the construction and popularization of com-
puters. However, here I would like to insist on the -almost completely
overlooked- role that philosophy of science has played during this pe-
riod, helping researchers to make the great advances of the XX and
XXI centuries, and being a tool as powerful as computers in order
to make science. The philosophical approach can severely impact re-
search methodology, and, therefore, the research results. For this rea-
son, I will clearly state my philosophical posture during the realization
of the thesis. Although this choice shapes all methodology implicitly,
its consequences will be more evident at the discussion, in Chapter 6.
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1.1 Philosophy, complex systems, and the brain

1.1.1 Philosophical alignment

In a nutshell, there has historically been two great opposed schools
of thought: the realist view, and the instrumentalist one. The real-
ist assumes that the systems we study possess objective properties (so
for example, a body has mass, energy, or charge), which can be mea-
sured in a direct or indirect way. So, under the realist point of view,
the energy is a real property that exist, and not a mathematical ab-
straction (Miller 2019). For the realist, the goal is to understand the
properties that characterise the systems and their relations, in order to
understand reality. On the other hand, the instrumentalist view often
assumes that objects do not actually possess properties, or that we can-
not know them. Under the instrumentalist glasses, all that we can hope
for is to create theories or models that are able to predict the behaviour
of systems in an accurate way -but an instrumentalist would not care
about what actually the symbols represent in the equations, since they
do not resemble any “real” property –they could be just abstractions.

A recurrent example is the development of quantum mechanics,
which adopted the instrumentalist view at the Copenhaguen interpre-
tation: properties of the quantum systems do not really exist until
they are measured, just to cease its existence again. The difficulties
interpreting what the wave function is and how it collapses led to the
well-known mantra “Shut up and calculate!”1, meaning that the only
important results are the quantitative predictions obtained by solving
the equations -but the interpretation of what the symbols in the equa-
tion are, in the ontological sense, should be ignored. The philosophy
behind the development of quantum mechanics has greatly influenced
other fields of research, like the Bayesian view of statistics and machine
learning. The latest is the perfect example of modern instrumental-
ism: many applications of machine learning use “black boxes”, where
the researcher is not interested on how the underlying neural network
learns, stores information or makes decisions.

This could sound an unappealing philosophy for a scientist that
wants to understand the mechanisms underlying physical, chemical,
or biological processes. However, completely understanding the be-

1Very often attributed to Richard Feynmann, but actually coined by David Mer-
min in 1989 (Mermin 2004).
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haviour of a system turns out to be complicated, and making models
and theories able to explain all the causal relations can be a daunting
task. Often, physicists resort to oversimplified “toy models” where the
system can be easily understood, shedding light over the key features
of an observed phenomenon. But a simple model of the brain would
not satisfy a neurophysiologist, since such constructions are not able
to return exact quantitative results due to their underlying simplifica-
tions. Even worse, a medical doctor would find such a model useless
for any kind of clinical application. Here instrumentalism would be
of great help, and the instrumentalist’s predictions can be used a pos-
teriori in order to discern new phenomenology, even unveiling new,
unexplored phenomena for basic science.

In addition to the already discussed realist-instrumentalist di-
chotomy, in the last half of century we found an additional problem:
the difference between reductionism and holism. For many centuries,
the idea of science has been to isolate systems, and study them
separately, which makes easier to understand their components and
write general theories. This turned out to be a powerful method,
leading to many advances in fields such as biology or physics. Other
fields, such as sociology, have tended to be integrative and holistic,
arguing that is not possible to understand a system if we divide it
into parts -everything is connected and single individuals cannot be
explained without the whole (Bunge 2003). Both views, without an
adequate perspective, could lead to philosophical (and hence scien-
tific) problems. The case of holism is simpler to understand from the
traditional scientific perspective, since it is the argument commonly
employed by pseudoscience (as the “memory of water” in homeopathy
or the astrological view that position of celestial bodies influence our
lives), so I believe that it is now more important to argue against the
reductionist view. An example of a blatant reductionist misconception
is that unifying all the fundamental forces into a single theory would
lead to a “theory of everything”, since this theory would not explain
turbulence in the Navier-Stokes equations, nor how does a neuron
spike, or how random positive conditioning works in psychology.
Even if the Navier-Stokes equations could be explicitly derived from
the Standard Model, turbulence would have to be explained in terms
of typical fluid properties (density, speed, Reynolds number), since
connecting different levels of the description under a bottom-to-top
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approach necessarily takes statistical averages that lead to a loss of in-
formation about individuals (Bunge 2003). Therefore, understanding
how particles interact does not render knowledge on higher descrip-
tion levels. Reductionism seems to be good to find how components of
each system work, but the idea that having a complete knowledge of
the components will explain the full system is a naive -and many cases,
incorrect- assumption. Some degree of holism is necessary in order to
understand the system as a whole, re-connecting the pieces again. The
idea that having a complete knowledge of the individual portions of
the system does not render any knowledge of the system they form
was explicitly claimed by Anderson in his paper “More is different” in
1972 (Anderson 1972). From this time on, many researchers in areas
such as condensed matter physics, cosmology, biology or psychology
have remarked the importance of the interaction between individuals,
as well as the emergency of properties that are present in the collective
motion, but not in the individual behaviour. Bunge remarks that such
emergent, collective properties are ontological2 and actually belong to
the system (Bunge 2003), leading to the systemic material realism, the
philosophical principles I will adopt during this text.

1.1.2 Statistical mechanics and brain modelling

The brain is the perfect example of what is understood by a “complex
system”. It is composed by many relatively simple elements that inter-
act among themselves, organised in a hierarchical-modular structure.
In the brain, there is not a single “micro-macro” limit, but instead we
can find different description levels. Some of them are sketched in
Fig. 1.1. For example, the cortex is similar to a two-dimensional sheet
formed by cortical columns, which in turn are formed by several lay-
ers (Kandel et al. 2000; Breakspear 2017). Going up, we find different
brain regions, each one composed by different kind of neurons and
topology. Therefore, choosing an adequate description level for mod-

2This means that the usual definition of “emergent” as collective properties that
could not be predicted by just looking at the individual has no sense –this just consider
emergent properties those that are difficult to understand, but why should be emer-
gency conditioned to our (subjective) difficulties to understand it? This is epistemo-
logical, while the definition we provided is objective and ontological.
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Figure 1.1: Different scales at the brain. The study of the brain ranges
from the dynamics of the single neuron, synapses, ion channels or ge-
netic networks, to that of the whole brain. The drawing depicts some of
these explanation levels. Following the arrows: an ion channel, a neu-
ron, a cortical column, a set of columns in the cortex, and the whole
brain. Proper elaboration.

elling, as well as selecting the correct underlying assumptions for the
neuronal tissue under study is very important if we are to impose a
minimum level of realism into our models.

The first step is to understand its components and how they are or-
ganized. During the last century a vast amount of research has been
devoted to characterise, classify, and understand each of the compo-
nents of the brain. The pioneer work of Ramon y Cajal on the structure
of the individual neuron and the subsequent advances in neurophys-
iology have provided a very deep understanding on how individual
neurons work, and how they are connected, a field that still could re-
serve some surprises –as it was the discovery of the new rosehip neuron
in 2018 (Boldog et al. 2018). Moreover, modern neuroimaging tech-
niques have opened the door to study both structural and functional
connectivities, unveiling the topology of both structural and functional
neuronal circuits. At the current day, these technologies allow us for an
identification of activity both in-vitro and in-vivo with unprecedented
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spatial and temporal resolutions. All these achievements are key in
our current image of how the brain works and very helpful for clinical
practice. However, there are still many open questions, specially re-
garding how the brain works as a whole. For example, the processing
and storage of information in the brain, the study high level cognitive
function (consciousness, emotions, or creativity), the effect of the so-
cial environment of the subject in brain development and plasticity, or
degenerative brain diseases. During the last 50 years, the study of the
brain structure, function and dynamics has progressively integrated
more fields of knowledge as psychology, statistical physics, or artificial
intelligence, making it a science on its own. This is the modern con-
cept of neuroscience, and it has to be necessarily understood as an in-
terdisciplinary scientific field, if we want to have a complete, systemic,
description of the brain (Bunge 2003).

In this thesis, we approach the problem from the statistical physi-
cist point of view. Statistical mechanics provides a powerful set of tools
in order to connect different description levels, starting from the indi-
viduals components, to the whole-system collective properties. Our
aim is to shed light on the synchronization mechanisms that play an
important role in brain processes, and how they are linked with the
so called criticality hypothesis, which is described in detail below. To
do that, we studied very simplified mathematical models of systems of
coupled neurons and oscillators, that mimic, at the most possible ab-
stract level, real neuronal tissue function. The main advantage of these
models over the brute-force simulation of realistic models of neurons is
that the results are easier to interpret, leading to a deeper understand-
ing of the phenomena involved. The price we pay for the simplicity
and elegance of the conceptual explanation is that toy models have
little or no quantitative power, and could even miss qualitative fea-
tures, making it is difficult to directly link the results with real-world
experiments. Therefore, one must take this approach with (philosoph-
ical) care: models are not reality, and experimental evidence (as op-
posed to computational evidence) is always the one to judge whether
the theoretical framework is suitable to explain reality (Bunge 2003).
Studying computational models, making variations and adding ingre-
dients to them ad infinitum without checking if its conclusions were in
agreement with observations in the first place could lead to the auto-
matic disprove of many years of collective theoretical effort. Due to
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this problem, I will insist, during all the text, that results presented
here should be always taken as predictions for experiments that must be
tested, and that probably the way to dissipate incognita about critical-
ity in the brain should now be more data-driven than discussions just
over models. Of course, this theoretical-experimental dichotomy has
been for enough time in my head to think about possible experimental
links with the research we did, what the experimental loopholes could
be, and which would be the best way to at least rule out some of the
current theoretical proposals. I regret I had no time to evaluate every
detail with the depth I would like to, but at least I am convinced that
the theoretical advances we made during these years will certainly help
to close very soon one of the long-standing debates in computational
neuroscience: is the brain critical? Where does scale-free, power-law
like distributions of neural activity come from?

1.2 Dynamical systems and bifurcation theory

In many classical models of statistical physics, the macroscopic be-
haviour can be explained by just analysing the deterministic part of
the equations that govern the dynamics of the order parameters. In
“simple models”, the order parameter is just a scalar, meaning that a
simple linear stability analysis is usually enough to understand all the
system dynamics in mean-field. However, along this text we will face
more complicated situations, making necessary a more in-depth view
of bifurcation theory. Our discussion will be informal and not exhaus-
tive, with the aim of being a practical guide on basic bifurcation theory
of multidimensional, non-linear systems of differential equations. We
will follow the concepts introduced by Strogatz (Strogatz 1994) and
Kuznetsov (Kuznetsov 2004). The following section will not only serve
to fix the notation but it will also render useful in the next chapters.
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1.2.1 Stability of hyperbolic equilibria

A dynamical system can be written, in a general way, as

dx⃗
dt

= F⃗ (x⃗, c⃗) (1.1)

where x⃗ (t) represents our desired observable (for example, a multidi-
mensional order parameter) and c⃗ a set of control parameters. Note
that the dimension of both vectors is usually different, i.e., x⃗ ∈ Rn and
c⃗ ∈ Rm. The function F⃗ : Rn ×Rm → R

n is called the time evolution op-
erator (Kuznetsov 2004). The integer n is referred as the dimension of
the system, while m is usually called the co-dimension. We are inter-
ested in stationary states of the system eq. (1.1), and hence we start by
setting to derivative to zero, as F⃗ (x⃗∗, c⃗) = 0. A system posed at x⃗ = x⃗∗

will not evolve in time, since its temporal derivative vanishes. Hence,
the points x⃗∗ are called equilibria of the system, and, in general, they
depend on the value of the parameters c⃗. Let us start by fixing c⃗, so we
can forget about the constants for a while. It is possible to know what
is the behaviour of the system near the equilibria. If we evaluate the
system at x⃗0 = x⃗∗ + x⃗p, and expand around x⃗0 = x⃗∗, we can linearize the
system,

Fi (x⃗0, c⃗) ≃
n∑
j=1

∂Fi
∂xj

⏐⏐⏐⏐⏐⏐
xj=x∗j

x
p
i +O

(
ε2

)
. (1.2)

Therefore, the system (1.1) can be approximated as a simple matrix-
vector product, as the following linearization,

dx⃗p

dt
= Ĵ (x⃗∗, c⃗) x⃗p. (1.3)

where

Jij (y⃗, c⃗) =
∂Fi (x⃗, c⃗)
∂xj

⏐⏐⏐⏐⏐⏐
x⃗=y⃗

(1.4)

is the Jacobian matrix of the system. Knowing the dynamics near the
equilibrium points should be enough to construct a rough sketch of
the phase space. In many situations, this is just enough in order to
understand the dynamics of the system. Therefore, we only need to
understand how to solve a linear system of differential equations in
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order to estimate the dynamics of the non-linear one near the equilib-
rium points. Actually, if the Jacobian can be diagonalized, we can make
a change of basis to that where the Jacobian is diagonal, which would
allow us to solve the system in a straightforward way

dy
p
i

dt
= λiy

p
i → y

p
i (t) = eλit. (1.5)

where λi are the eigenvalues of the Jacobian, and y
p
i its eigenvectors.

If all eigenvalues are negative, the vector of perturbations y⃗p decays
to zero at infinite time. Since the original vector x⃗p is related to y⃗p

just by a change of basis, the limit y⃗p → 0 also means that x⃗p → 0.
For a given equilibrium, if all its associated eigenvalues are negative,
it is called stable, since it will always return to the equilibrium in ex-
ponential time. An equilibrium that has all its eigenvalues positive is
called unstable, while an equilibrium with mixed number of positive
and negative eigenvalues is called a saddle-node. Equilibria in which
λi , 0∀i are called hyperbolic. When an equilibrium is non-hyperbolic,
the linear analysis does not give information about the system dynam-
ics, and we are forced to analyse higher-corrections. Let us remark that
complex eigenvalues pose no threat to our analysis, since the dynamics
would obey ypj = ypj (0)etℜλjeiℑλj . The imaginary part just contributes
by adding oscillatory behaviour to the dynamics.

If we change our attention to eigenvectors, we can improve our
knowledge of the dynamics near the equilibrium. For example, let as-
sume that x⃗∗ is an equilibrium point with n+ positive eigenvalues and
n− negative ones. If we construct a linear combination of the n− eigen-
vectors corresponding to the negative eigenvalues, the iterative mul-
tiplication of the Jacobian matrix to this vector will lead to the equi-
librium. This means that the vector subspace spanned by the eigen-
vectors corresponding to the negative eigenvalues correspond to a local
stable manifold, while the subspace generated by the eigenvectors corre-
sponding to positive eigenvalues form the local unstable manifold. The
word local here is very important, because we are working with just an
approximation near equilibrium values (Kuznetsov 2004).
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1.2.2 Limit cycles

Although equilibrium points give key information about dynamical
systems, they are usually not enough in order to understand their com-
plete behaviour. An important phenomena that usually happens in
physical and biological systems, which is core to the study of synchro-
nization, is the appearance of limit cycles –oscillations in the system
that are isolated. The difficulty analysing limit cycles arises from the
fact that the derivative in cycle points is no longer zero, rendering use-
less our analysis above. We review now the basic standard formalism
–which is equivalent to that of the equilibrium for the limit cycles– but
considering that is of limit application in practice.

Let us assume that system eq. (1.1) has an isolated, periodical or-
bit, L. Assume that we take a point x⃗L ∈ L, and at this point we define
a cross-section Σ of the limit cycle, denoting its coordinates by ξ⃗. As-
sume that we take a perturbation near the limit cycle located inside the
cross section x⃗0 ≡ ξ⃗0 = x⃗L + x⃗p. Then, after one approximately period,
we will cross again the section Σ, this time at a different location, say
ξ⃗1. If we repeat this procedure many times, we will find ξ⃗k. If ξ⃗k→ x⃗L,
the limit cycle is stable (Kuznetsov 2004).

Formally, this construction is called a Poincaré map (Kuznetsov
2004; Strogatz 1994), ξ⃗k+1 = P

(
ξ⃗k

)
. As with continuous systems, maps

have equilibrium points (defined by ξ⃗∗ such that ξ⃗k+1 = ξ⃗k) and their
stability is governed by the behaviour of the Jacobian of the application
P : an equilibrium point is stable if all the corresponding eigenvalues
are inside the unit circle, i.e., |λi | < 1∀i. If the Poincaré map can be ex-
plicitly constructed, its analysis will lead to information about the lo-
cal stable manifolds of the cycle, giving all the topological information
that we need to create the phase space diagram. Therefore, the classifi-
cation of a limit cycle as stable or unstable is obtained from the classi-
fication of the corresponding equilibria of the Poincaré map. However,
in high dimensions, constructing such maps is very complicated, be-
cause it needs a priori information of the system trajectories, which
usually need the system to be integrated exactly. For example, in the
simplest two-dimensional case, the cross section is one-dimensional,
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and it can be shown that the map has only one eigenvalue,

λ = exp
[∫ T

0

(
∇⃗ · F⃗

)(
x⃗L (t)

)
dt

]
(1.6)

where T is the minimum orbit period (Kuznetsov 2004). The para-
metric equation of the cycle x⃗L (t) is not usually known, rendering this
method not very useful for most of analytical applications –but could
still be used with success to determine the eigenvalues if the cycle can
be determined numerically.

1.2.3 Bifurcations

Now that we have explored the basics of stability analysis and limit cy-
cles for fixed parameters c⃗, we now wonder what happens when these
parameters are changed. It is important to introduce the concept of
topological equivalence: two different dynamical systems are called
topologically equivalent if there exist a homeomorphism h that maps
the trajectories of the first system into the second when the direction
of time is preserved (Strogatz 1994; Kuznetsov 2004). Basically, h is a
function able to deform the trajectories of the dynamical system in any
way we wish, without making any two trajectories cross, or separating
them, thus preserving the topology. Such definition can be made local,
so two dynamical systems are locally topologically equivalent if there
is a homeomorphism able to map the trajectories for a small neigh-
bourhood around an equilibrium.

Then, it is possible to demonstrate the following theorem: two dy-
namical systems are locally topologically equivalent near their respec-
tive equilibrium points x⃗∗A and x⃗∗B if, and only if, the equilibria have the
same number of positive and negative eigenvalues (Kuznetsov 2004).
This theorem is very important because it tell us that, in practice, all
the systems are topologically equivalent when we are close enough to
an equilibrium, so it suffices to study them under the linearization
(1.3). If we have a complete classification of equilibrium points of the
linear system, we can apply such classification to any other dynamical
system.

A bifurcation is the appearance of a non-equivalent phase space
when the parameters c⃗ are changed. Bifurcations can appear in many
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ways. A simple one is the appearance of new equilibria: when solving
the equilibrium condition F⃗ (x⃗∗, c⃗) = 0, equilibria is a function of the
parameters, x⃗∗ = x⃗∗ (c⃗). It could be the case that a solution only exists
for some set of values of c⃗, but not for others. An example is the saddle-
node bifurcation, studied below in detail.

Another way at which a bifurcation can happen is by changing the
stability of the fixed points. Since also the associated eigenvalues of
equilibria depend on the parameters λi = λi (c⃗), a parameter change
can affect the stability of the equilibria leading to a non topological
equivalent diagram. Examples of these are pitchfork and transcritical
bifurcations, also explained below.

Another important difference is the concept of local versus global
bifurcations. A local bifurcation changes the phase space only at the
neighbourhood of an equilibrium, so it suffices to study the local prop-
erties of the stability around it. Global bifurcations change the shape
of whole regions in the phase space, making them difficult to analyse.

To conclude our small review on dynamical systems, we focus on
the problem: what are the methods to detect and classify such bifur-
cations in real systems? How is it possible to know where bifurcations
are, and how to classify them? Topological equivalency plays a very im-
portant role on the classification of bifurcations. Let us assume that we
have a dynamical system that undergoes a local bifurcation. Just before
and after the bifurcation, it is possible to construct a homeomorphism
that maps these phase portraits to the corresponding linearized sys-
tems. Therefore, any model having a particular local bifurcation could
be mapped to a simpler system that preserves all the key topological
features at the bifurcation. This is called a normal form of the bifur-
cation (Strogatz 1994; Kuznetsov 2004). All local bifurcations have an
associated normal form, as well as some global bifurcations. The study
of the normal form provides simple criteria in order to classify differ-
ent bifurcations, in terms of the values of F⃗ and its derivatives near
equilibria.

Finding the equilibria is sometimes the main practical problem.
The system F⃗ = 0 could be highly non-linear, or involve transcenden-
tal equations, meaning that equilibria cannot be explicitly obtained.
Without an analytical expression for equilibria, it seems that there is
nothing to do, since all the analysis presented above relies on the ex-
pression of x⃗∗. Despite of this, a very simple trick in dynamical systems
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consist in solving the equation F⃗ = 0 together with the conditions for
certain bifurcations; for example, for a saddle-node, this is det Ĵ = 0
(Strogatz 1994). If the variables we solve for are wisely chosen, it could
be possible to obtain the bifurcation curves eliminating x⃗∗. In some
cases, it is even convenient to write the bifurcations that depend on the
equilibria as parametric equations, i.e., c⃗ = c⃗ (x⃗∗). This method provides
the coordinates of the bifurcations in parameter space, without the
need to solve for the equilibria explicitly, and constitutes a powerful
practical tool for analytics. When even this is not possible, numerical
methods based on continuation analysis are still available (Kuznetsov
2004).

1.2.4 Potential dynamics

An useful way to characterise dynamical systems is defining a potential
function. In one dimension, it is always possible (at least, formally), to
define a potential function such that the general system (1.1) can be
written as

ẋ = F (x, c⃗) = −dV (x, c⃗)
dx

, (1.7)

where V (x, c⃗) is the potential function. Stationary states ẋ = 0 coincide
with extrema of the potential. Stable fixed points fulfill the condi-
tion ∂xF = −∂2

xV < 0 and hence correspond to minima of the potential.
Therefore, the use of the potential function could be beautifully linked
with the idea of minimization of energy in physical systems. In the
next this section, we will demonstrate that this link is deeper than just
a formal idea. For higher dimensions, it is not always possible to write
a potential for the dynamical system.

When looking at the potential function, bifurcations can be under-
stood as changes in the energy landscape. Hence, if moving a param-
eter, a minimum becomes flat, the system is forced to move until find-
ing a new minimum. We insist that not all systems have an associated
physical potential function –but when they do, it makes easier to iden-
tify the dynamics of the system in intuitive, physical terms. Also, po-
tential dynamics arise naturally in equilibrium statistical physics, as
we will see in a moment.
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1.2.5 Classification of bifurcations

For completeness, we include here a small classification of one and
two-dimensional bifurcations. The description is not aimed to be ex-
haustive, but at least to provide information about the basic types of
bifurcations, as well as the ones that will appear during this thesis.

In order to describe general conditions for the bifurcations, we can
assume we can assume that x⃗∗ = 0, since the system can be always
translated to new variables y⃗ = x⃗ − x⃗∗, and that the bifurcation takes
place at µc = 0. In practical applications, the conditions for bifurca-
tions have to be evaluated at x⃗∗, µ, or rescale parameters and equations
accordingly.

Saddle-Node Bifurcation

Also known as a fold bifurcation. Its normal form in one dimension is
given by

ẋ = µ+ σx2, (1.8)

with σ = sign∂2
xF (0,0). Any system with σ , 0 and ∂µF (0,0) , 0 can

be reduced to this normal form (Kuznetsov 2004). For µ < µc, a pair
of stable-unstable equilibria exist, which coalesce into a saddle-node
at the critical point µc = 0. This bifurcation is characterised, at any
dimensions, for having a zero eigenvalue at the Jacobian. In this case,
the center manifold (the subspace corresponding to the projection of
the critical λ = 0 eigenvalue) displays the normal form (1.8). Figure 1.2
depicts a saddle-node bifurcation.

Transcritical Bifurcation

The normal form for a transcritical bifurcation is given by

ẋ = µx+ σx2 (1.9)

with σ = ∂2
xF (0,0) /2. A necessary condition for reducing the system

to this normal form is that ∂xµF (0,0) , 03. In a transcritical bifurca-
tion, a pair of stable-unstable fixed points move linearly, collide at the

3This is because actually the linear term is actually given by aµx, and a is obtained
through the derivative. If a = 0, no bifurcation is possible. However, we impose the
condition and rescale the control parameter µ→ aµ without loss of generality.
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Figure 1.2: The saddle-node or fold bifurcation. Top, a schematic
view of the bifurcation diagram; continuous lines indicate stable equi-
libria, dashed lines unstable equilibria. Bottom, sketch of the one-
dimensional phase space for this bifurcation. Filled circles indicate
stable equilibria, empty circles unstable solutions, and semi-filled cir-
cles saddle-nodes.

critical point at µc = 0, and interchange their stabilities. This bifurca-
tion is typical of systems that present an equilibrium that exists for any
value of the parameters and does not depend on them, in contrast with
saddle-node bifurcation. It cannot appear in systems with odd sym-
metries (i.e., f (−x) = −f (x)), since σ = 0 in this case. Figure 1.3 depicts
a transcritical bifurcation.

Pitchfork bifurcation

In a pitchfork bifurcation, the normal form is given by

ẋ = µx+ σx3

where in this case σ = ∂3
xF (0,0) /6. The name of the pitchfork bifurca-

tion comes from the shape of its bifurcation diagram, that presents one
equilibrium µ < µc = 0 and bifurcates intro three equilibria for µ > µc.
If σ < 0, the transition is called supercritical, while σ > 0 is called sub-
critical. In supercritical bifurcations, the equilibrium x∗ = 0 for µ < µc
is stable, while for µ > µc only the states with x∗ , 0 are stable. Subcrit-
ical bifurcations are the opposite, so x (t) has the possibility to diverge
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Figure 1.3: The transcritical bifurcation. Symbols are as in Figure 1.2.

for any value of the control parameter µ, leading to unphysical results.
Therefore, subcritical bifurcations usually do not appear alone in phys-
ical systems. In this case stabilization is obtained by adding higher or-
der terms, such as −x5 (Strogatz 1994), but this does not correspond
with a normal form. As in the transcritical, it happens when a fixed
point exist for any value of the parameters, but for even symmetries.
Figure 1.4 depicts a supercritical pitchfork.

Hopf bifurcation

For a system to display a Hopf bifurcation, it needs to have a minimum
dimension of n ≥ 2. In polar coordinates, the normal form of a Hopf
bifurcation is given by

ρ̇ =ρ
(
µ+ σρ2

)
, (1.10a)

ϕ̇ =ω, (1.10b)

which can be written in a compact way using complex numbers,

ż = (µ+ iω)z+ σz |z|2 . (1.11)

In this case, σ is defined as the sign of the first Lyapunov coeffi-
cient, which can be computed via expanding up to third order F (x⃗,µ)

24



Statistical Physics and Neuroscience

Figure 1.4: The supercritical pitchfork bifurcation. Symbols are as in
figure 1.2.

and projecting over the center manifold (see the computational details
e.g. in Kuznetsov (Kuznetsov 2004)). If σ = −1, we find the supercrit-
ical normal form, while σ = +1 leads to the subcritical one. As with
the pitchfork, the subcritical form is usually not found alone in physi-
cal systems, due to the lack of stable states. A supercritical bifurcation
displays a stable spiral, that loses stability giving birth to a limit cycle
with constant angular speed ω and growing amplitude. The hallmark
of the Hopf bifurcation at the critical point µc = 0, is two eigenval-
ues becoming purely imaginary complex conjugates. The n = 2 system
then fulfills Tr Ĵ = 0. At higher dimensions, the projection of the cen-
ter manifold has also the normal form displayed by (1.11). Figure 1.5
depicts the phase space of the supercritical Hopf.

Homoclinic bifurcation

Homoclinic bifurcations are more involved, since they are global bifur-
cations, and hence normal forms cannot be explicitly constructed in
general. There exist, however, some theorems that help finding numer-
ically such bifurcations via continuation methods. The split function
β (µ) acts as a control parameter, having a homoclinic orbit (that starts
and end in a saddle equilibrium) when β (µc) = 0. A homoclinic orbit is
characterised by appearing with constant amplitude and growing pe-
riod, that scales as T ∝ log(µ−µc) (Strogatz 1994). Figure 1.6 shows a
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Figure 1.5: The supercritical Hopf bifurcation in two dimensions.
Light colours represent system trajectories, while the bold line at µ > µc
indicates a stable limit circle. At µ = µc, the stable fixed point loses
stability, creating a small limit circle.

Figure 1.6: The homoclinic bifurcation in two dimensions. Bold
curves indicate the existence of limit cycles, while light colours give
system trajectories.

homoclinic bifurcation.

Saddle node on invariant circle (SNIC)

Although the name SNIC (or SNIPER, for saddle-node infinite period)
is the most common name for this bifurcation, this is formally a saddle-
node homoclinic (Kuznetsov 2004). Here, a saddle-node bifurcation
happens, giving birth to a homoclinic cycle when the pair of fixed
points coalesce. As it happens in a typical homoclinic bifurcation,
the amplitude is constant and the angular speed grows with the con-
trol parameter. However, now the process dynamics is governed by
the speed at which both equilibria merge, making the period to scale

as T ∝
⏐⏐⏐µ−µc⏐⏐⏐−1/2

instead of the logarithmic scaling (Strogatz 1994;
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Kuznetsov 2004). Figure 1.7 shows a SNIC bifurcation.

Figure 1.7: The SNIC bifurcation in two dimensions. Bold curves
indicate the existence of limit cycles, while light colours give system
trajectories.

Cusp bifurcation

We leave codimension-1 bifurcations to focus on codimension-2 from
now on. Let us assume that we are near a saddle-node bifurcation,
and hence the center manifold of our system is described by the nor-
mal form (1.8) with µ = 0. While tracking the saddle-node bifurcation
curve, it might happen that σ = 0. This is known as a cusp bifurcation.
Since all the contributing orders of (1.8) become 0 at this point, it is
necessary to go to higher orders to obtain the normal form of the cusp
bifurcation,

ẋ = µ1 +µ2x+ σx3. (1.12)

where now σ = sign∂3
xf (0,0). Intuitively, the cusp is presented as the

point where two branches saddle-node intersect in a cusp. In one di-
mension, the branches have the shape of the semicubic parabola

4µ3
2 − 27µ2

1 = 0, (1.13)

which gives a curve in the parameter space (µ1,µ2), with the cusp at
(0,0). In high dimensions, computing σ needs of more refined methods
that we will not cover here (Kuznetsov 2004). A diagram of the cusp
bifurcation is shown in Fig. 1.8

Bogdanov-Takens (BT)

As we mentioned before, following the saddle-node entails several op-
tions. Another one, while keeping σ , 0 this time, is to find another
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Down Bistable
Up

Figure 1.8: A sketch of the cusp bifurcation. Surface of equilibria is
plotted, along with the projection of the saddle-node branches. The
surface is stable, except the bent sheet between the saddles, giving rise
to a bistable configuration with hysteresis.

eigenvalue λ2 = 0. This is the double-zero or Bogdanov-Takens bifur-
cation. Since we need at least two eigenvalues, this bifurcation only
appears in systems with dimensions n ≥ 2. For a two-dimensional sys-
tem, the normal form reads

ẋ =y (1.14a)

ẏ =µ1 +µ2x+ x2 + σx1x2 (1.14b)

and σ = ±1 depending on the Taylor expansion of f (x⃗, µ⃗). The
bifurcation lies at the origin of the parameter space, µ⃗c = 0. It is
possible to analyse the bifurcation diagram by obtaining the bifur-
cation curves. For example, φSN =

{
(µ1,µ2) : 4µ1 −µ2

2 = 0
}

is a curve
of saddle-node bifurcations, that displays two branches. It is also
easy to check that if µ1 = 0, the region µ2 < 0 corresponds to a line
of Hopf bifurcations. Finally, it is even possible to demonstrate
analytically the existence of a homoclinic bifurcation going out of
the BT point, φHom =

{
(µ1,µ2 < 0) : µ1 + 6µ2/25 +O

(
µ2

2

)
= 0

}
. Finding

Bogdanov-Takens bifurcations is easier than cusps, in practice, due
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BT
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Hopf

Stable

No equillibria

Single
saddle

Figure 1.9: Parameter space of the Bogdanov-Takens bifurcation.
This bifurcation presents four phase. A sketch of the phase space at
each phase, as well as at the bifurcations, is included.

to the double-zero condition, and doing so means that Hopf, saddle
nodes and homoclinic bifurcations are also involved (Kuznetsov
2004). In particular, if a Hopf and a saddle-node lines end, merging
tangentially, we have a Bogndanov-Takens. A complete view of the
phases and bifurcations surrounding this transition is shown in Fig.
1.9.

Saddle-node-loop (SNL)

The saddle-node-loop is another global bifurcation difficult to identify
in practice. Limit cycles can appear via common saddle-node bifurca-
tions, SNICs, and in homoclinic bifurcations, among others (Strogatz
1994; Kuznetsov 2004; Izhikevich 2006). The saddle-node-loop bifur-
cation acts as a separatrix between a saddle node bifurcation of cycles,
and a SNIC bifurcation. It happens when a homoclinic bifurcation in-
tersects a saddle-node curve. A complete view of the phases and bifur-
cations surrounding this transition is shown in Fig. 1.10.

Notice that, since Bogdanov-Takens bifurcations involve both ho-
moclinic and saddle-nodes, it is usual to see that the homoclinic later
intersects with the saddles, leading to a SNL bifurcation. We will see
this is often the case in neuronal systems (Borisyuk and Kirillov 1992;
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Hom

SNIC

SN

SNL

Stable 
Oscillations

Stable 
Equillibria

Bistability

Figure 1.10: Parameter space of the saddle-node-loop bifurcation.
This bifurcation presents three phases around it. A sketch of the phase
space at each phase, as well as at the bifurcations, is included.

Tsumoto et al. 2006; Hesse et al. 2017; Schleimer et al. 2019).

1.3 Statistical physics

The mathematical formalism of dynamical systems has demonstrated
to be a powerful tool to describe the behaviour of systems in fields
such as physics, chemistry, economics, or biology. This formalism is
adequate to model both the behaviour of either single elements or col-
lective variables, but, unfortunately, is not completely exhaustive: it
leaves outside stochastic systems, discrete models as cellular automata,
or equilibrium systems in physics. The concepts of statistical physics
complement and reinforce the ideas presented above for systemic mod-
elling, remarking the importance of the interactions among the indi-
viduals and with the environment.

In particular, fluctuations play a very important role in physical and
biological systems. The source of randomness in macroscopic systems
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are the microscopic (possibly chaotic) dynamics4. Statistical physics
gives a bottom-to-top approach, explaining macroscopic phenomena
that describes the phases of matter, as well as the behaviour of the sys-
tem at phase transitions, i.e., at the boundaries between such phases,
from microscopic interactions. But, unlike the usual phases of mat-
ter, biological systems are out of equilibrium, since they receive a non-
negligible amount of energy from the its interaction with the environ-
ment. Therefore, if we are to understand biology, we are forced to
extend the tools of equilibrium statistical physics to non-equilibrium
systems.

We now briefly review the classical theory of critical phenomena
in equilibrium statistical mechanics, which will allow us to introduce
useful concepts as critical exponents and universality classes, and then
jump to the study of non-equilibrium phase transitions. Although
long, our description will give an insight on the deep relationship be-
tween bifurcation theory and critical phenomena in physics.

1.3.1 Landau-Ginzburg theory of phase transitions

The basic ideas of equilibrium statistical mechanics were developed
in order to understand the phases of matter and the transitions be-
tween them. The simplest systems one can study are gases. The main
principles underlying the formalism of equilibrium statistical physics
are those of phase space and state counting. Given the Hamiltonian of
the system, it is possible to evaluate the volume that each possible
state takes in the phase space. A macroscopic property can arise from
many different microscopic configurations, so counting the number of
configurations compatible with each macroscopic state will give us its
probability distribution (Kardar 2007b; Pathria and Beale 2011).

The most important quantity in statistical physics is the partition
function of the system, called Z. Intuitively, the partition function

4For this reason, some philosophers consider that, when the underlying processes
are deterministic, the macroscopic system is not random at all and talking about
probabilities in this setting is formally wrong (Bunge 2003). I consider that in this
case, macroscopic randomness is an emergent property, hence it is ontological and
we are actually entitled to speak about true random events.
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is nothing but a (weighted5) sum over all the possible system states,
which leads to the volume of the system in the phase space. Its rele-
vance comes from the fact that all thermodynamics variables and ob-
servables can be derived if we know the partition function (Le Bellac
1991; Binney et al. 2001; Kardar 2007a; Pathria and Beale 2011). For
example, the Helmholtz free energy is given by

A = −1
β

logZ, (1.15)

with β = kT , being k the Boltzmann constant and T the temperature
(Pathria and Beale 2011). The main difficulty is obtaining a closed ex-
pression for the partition function Z. Let us use the paradigmatic Ising
model to illustrate the theory. This model is composed by spins, that
can either be “up” or “down”, and are able to interact among them.
Two spins will minimise their energy if they point to the same direc-
tion. The system can also interact with an external magnetic field, h,
which favors one of the two possible orientations. The well-known
Ising model Hamiltonian is given by

H = −
N∑
i,j=1

siJijsj + h
N∑
j=1

sj , (1.16)

where Jij > 0 is the coupling among the spins (Le Bellac 1991). Spins
can flip randomly due to the effect of temperatures, and the coupling
among them is the only thing that prevents the system to be completely
disordered and uncorrelated. We can set the matrix Jij in any network
topology we like, but the usual thing is to assume that spins are situ-
ated in a d-dimensional lattice, with d ≥ 2, and coupling Jij = J/ (2d) for
connected spins. This model is the paradigm for second-order critical
phase transitions: for low couplings, J ≤ Jc, the effect of noise domi-
nates, and the system is completely demagnetized. However, if J > Jc,
clusters of identically oriented spins emerge, leading to a net magne-
tization of the system (Le Bellac 1991; Binney et al. 2001; Pathria and
Beale 2011). The magnetization is called the order parameter, since it

5Depending on the ensemble chosen. Here we will work with the canonical en-
semble, so the weight factor for each macroscopical state is exp(−βH), that sup-
presses energies far away from the thermal energy kbT .
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gives a measure of how ordered are the spins, from completely uncor-
related to perfectly aligned (Binney et al. 2001). If we want to obtain
the thermodynamic observables of the Ising magnet, the only thing
that remains is the “easy” task of evaluating the partition function,

Z =
∑
{s}

exp(−βH) , (1.17)

where the sum is over all possible spin configurations {s}. Of course,
the problem here relies on computing all the possible system states
when the number of spins N →∞.

Hundreds of pages have been already devoted to the study of the
Ising system and similar models. I believe that no further discussion of
the model is necessary in this context, redirecting the interested reader
to textbooks such as (Le Bellac 1991; Binney et al. 2001; Kardar 2007a;
Pathria and Beale 2011). Despite of this, I believe that introducing all
these concepts will prove useful later.

In order to explain phenomenologically critical phase transition of
the Ising model, Landau assumed that the free energy of the system
could just be expanded in series of the order parameter around the
critical point. The discussion Landau does about phase transitions is
mostly in terms of the fundamental changes of symmetry (related with
changes in order in the system) at the phase transition, so the series
expansion is motivated by symmetries argument alone (Landau and
Lifshitz 1964). Further developments lead to a more formal way of ob-
taining those series expansion, in the so-called Landau-Ginzburg the-
ory (Binney et al. 2001; Kardar 2007a). Its basic idea is based on scatter-
ing experiments in gases: we would like to measure the magnetization
of small parts of the Ising ferromagnet, but our measure instrument
is not powerful enough in order to detect the orientation of individual
spins; it will necessarily average over a small region, composed by a
certain number of spins, large enough to make averages consistent, but
small compared with the whole system size (Binney et al. 2001; Kardar
2007a). Therefore, we would be measuring the magnetization at each
point in the lattice, φ (x⃗). It is possible to formally demonstrate (Bin-
ney et al. 2001) that the Ising partition function can be written near
the critical point in terms of this new variable as

Z =
∫
Dφexp(−βHLG) , (1.18)
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where

HLG [φ] =
∫
dx⃗

(µ
2
φ2 (x⃗) +

λ
4!
φ4 (x⃗) +

D
2

⏐⏐⏐⏐∇⃗φ (x⃗)
⏐⏐⏐⏐2 + hφ (x⃗)

)
(1.19)

is the Landau-Ginzburg Hamiltonian, with λ,D > 0, and where µ plays
the role of the distance to the critical temperature. Now we can work
with a continuous model, which should be easier to tackle. Notice
how the sum over configurations changed to an integral over all pos-
sible magnetization functions, or fields. From (1.18), it is clear that
configurations with large energy values are exponentially suppressed.
Then, we could take the field φ0 (x⃗) that minimizes the Hamiltonian
HLG, and it would be the largest contribution to the partition func-
tion. This approximation is often called the saddle point approxima-
tion, since it assumes that only the saddle-node of the energy surface
survives the procedure of exponentiating (Kardar 2007a). The field

that minimizes HLG has to be homogeneous, since D
⏐⏐⏐⏐∇⃗φ⏐⏐⏐⏐2 > 0 for any

value of φ, so φ0 (x⃗) ≡ φ0, and hence the partition function is given
by Z = exp(−βHLG [φ0]). The intensive6 free energy then can be easily
obtained as

A = hφ0 +
µ

2
φ2

0 −
λ
4!
φ4

0, (1.20)

which is nothing but a series expansion of the order parameter for the
free energy, the same Landau proposed in 1936 (Landau and Lifshitz
1964). Notice that φ0 can be considered the average magnetization of
the system, that has been homogeneously distributed over all the sys-
tem. Still, we have to minimize the free energy A in order to perform
the saddle-point integration. The result of this procedure will deter-
mine the value of the magnetization φ0 at equilibrium.

However, minimising an energy to find the stable states of a system
is something we already did: if we identify the free energy with the
potential function V (x) defined in Section 1.2.4, it is exactly the same
concept. Actually, the condition ∂φA (φ = φ0) = 0 leads to the find-
ing of the equilibria of the normal form of the pitchfork bifurcation
(see the previous discussion on normal forms). In equilibrium physi-
cal systems, following Landau theory, the free energy is written as the
minimum Taylor expansion of the order parameters to be minimized.

6Since the field φ0is constant, the integral over dx⃗ yields the volume of the system.
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As a consequence, the result is always potentials dynamics. However,
we will not necessarily arrive at the normal forms of bifurcations. For
example, the φ6-model leads to a 5th degree polynomial, which con-
tains a subcritical (destabilizing) pitchfork bifurcation, as well as two
stabilizing saddle-nodes (Strogatz 1994; Binney et al. 2001).

We have finally a formal link between statistical physics and dy-
namical systems theory. This will help us to classify the different na-
ture of each phase transitions. As we saw in the classification of bifur-
cations, these can happen either by creating new solutions discontin-
uously, or just changing the stability of the already existing equilibria.
This is the formal background of the phenomenological Ehrenfest cri-
terium of phase transitions: a phase transition is of order k if the free
energy is discontinuous in its k derivative (Binney et al. 2001; Pathria
and Beale 2011). Therefore, first order phase transitions are discon-
tinuous, since a discontinuity in the potential function means the ap-
pearance of a new equilibrium point. Second order phase transitions
are continuous, since in this case we only have a change of stability
of already-existing equilibria. Higher-order transitions are linked to
more exotic bifurcation conditions, but they have been also reported
in physical systems (Ma and Wang 2011; Cunden et al. 2017).

Let us come back to the Landau-Ginzburg model after this small
digression. We will continue exploring the links between the ideas of
statistical physics and dynamical systems very soon. Minimization of
the free energy at zero external field h = 0 leads to the existence of two
distinct phases,

∂φA = 0→

⎧⎪⎪⎨⎪⎪⎩ φ0 = 0,

φ0 = ±
√

6µ
λ .

(1.21)

The demagnetized phase is stable only for µ > 0, and unstable for
µ < 0. It is possible to check that the phase transition is of second or-
der, with a critical point at µ = 0 where the symmetries of both phases
are present at some extent (Landau and Lifshitz 1964). From the point
of view of statistical mechanics, we are now interested in the value of
macroscopic observables near criticality. Since µ already plays the role
of distance to criticality, equation 1.21 tell us that the magnetization
φ ∼ µ1/2. The number β = 1/2 is called a critical exponent, and it will al-
low us to classify different phase transitions (Binney et al. 2001; Kardar
2007a). It is possible compute critical exponents associated with more
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observables, as the specific heat capacity or the magnetic susceptibility
(Le Bellac 1991; Binney et al. 2001; Kardar 2007a) .

When analysing critical phenomena, we are particularly interested
in deriving the critical exponents of the system. The reason is that it
was experimentally observed that many different transitions display
the same set of critical exponents. Near criticality, all second order
transitions with the same set of exponents as the Ising ferromagnet
behave as the ferromagnetic-paramagnetic transition, which has deep
implications for the universality of symmetry changes that take place
during phase transitions (Landau and Lifshitz 1964; Binney et al. 2001;
Kardar 2007a). Although this is an amazing feature of criticality from
the point of view of physical phenomena, is no surprising from the
prism of bifurcation theory: near a critical point of a phase transition,
we are approaching a local bifurcation of an equilibrium. Since any
local bifurcation is topologically equivalent to its normal form, the be-
haviour at the critical point is governed by that of the normal form
(Kuznetsov 2004).

Formally speaking, alterations in microscopical symmetries at the
transition are responsible for topological changes in the phase space of
the macroscopic variables.

Another characteristic that will be important for the subsequent
analyses is the appearance of large fluctuations at criticality, as well
as diverging correlation lengths. Our mean-field analysis is able to
account for the existence of large fluctuations, for example by com-
puting the magnetic susceptibility to small external fields, that goes as
χ (h→ 0) ∼ µ−1, hence diverging at critical point. However, the mean-
field theory is unable to give answers for the large correlations found
in critical systems, since we assumed from the very beginning that the
magnetization field is homogeneous. Furthermore, the theory is valid
only for infinitely sized systems, while both experiments and simula-
tions are limited by a finite size.

The power law distributions at criticality have another important
implication, which is that the system presents scale invariance. Take,
for example, the correlation length at criticality, which scales as P (ξ) ∝
ξ−α (Kardar 2007a). If we scale the system length by a factor b, as
ξ ′ = bξ, then P (ξ ′) ∝ b−αP (ξ) ∝ ξ−α, leaving the distribution invariant
again. This means that at the critical point, there is no characteristic
correlation length (Binney et al. 2001; Muñoz 2018).
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1.3.2 Road to non-equilibrium: Langevin equations

Thus far, we have used the formalism of classical statistical physics
to study phase transitions. Despite its utility, it only describes sys-
tems at equilibrium. For this reason, time is absent in the formalism,
and there is no way to obtain dynamical properties. As it was already
pointed out, most biological systems are outside of equilibrium. In par-
ticular, in the brain, temporal dynamics play a very important role in
processes as information transmission and computation. Brain waves
and synchronization, which are fundamental aspects of neuroscience,
are intrinsically temporal phenomena. As a consequence, if we are to
understand how the brain works, we need to extend our tools in order
to be able to describe also non-equilibrium phenomena.

We will move to non-equilibrium demonstrating, in first place,
how to add dynamical properties to equilibrium problems, and
then making the bridge with microscopical stochastic processes that
present paradigmatic non-equilibrium phase transitions. When the
Landau-Ginzburg theory was introduced, the field φ (x⃗) was presented
as the magnetization of a small region of space. In equilibrium,
the properties of each “realization” or ensemble of the system are
completely equivalent, so time can be safely disregarded. However,
in a real system, the value of the magnetization would fluctuate with
time: the variable φ (x⃗, t) is stochastic (Hohenberg and Halperin 1977;
Binney et al. 2001). Let us assume that we perturb a small, isolated
region of the system, to a non-equilibrium state, and let it relax to
equilibrium. The relaxation would occur by minimizing the energy.
If we do not constrain the fields to be homogeneous as before, it is
possible to interpret the full HamiltonianHLG [φ] as a potential energy
to minimize and write dynamical equations for the magnetization
(Kardar 2007a). This fact is formalized assuming that the process is
mainly dissipative (so inertial terms can be neglected, O

(
∂2
t

)
∼ 0), that

the fluctuations in each site are Gaussian and uncorrelated, and that
the order parameter is not conserved, so

∂tφ (x⃗, t) = − δHLG
δφ (x⃗, t)

+ ση (x⃗, t) = −µφ− λ
6
φ3 +D∇⃗2φ+ ση (x⃗, t) . (1.22)
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where the white noise fulfills

⟨
φ (x⃗, t)

⟩
=0, (1.23a)⟨

φ (x⃗, t)φ (y⃗, t′)
⟩

=δ (x⃗ − y⃗)δ (t − t′) . (1.23b)

Notice that if the magnetization of the model is homogeneous, then
the potential coincides with the minimum of the free energy in the
saddle point integration. If we wanted the order parameter to be con-
served, the time evolution should be derived from the divergence of
a current, which is usually known as the Hohenberg-Halperin model
B (Hohenberg and Halperin 1977; Kardar 2007a). For our interests,
model A –no conservation– will suffice.

An interesting dynamical consequence of criticality is the so-called
critical slowing down. Writing eq. (1.22) in momentum space it is
possible to demonstrate that the dynamics at zeroth order (Gaussian
model, λ → 0) are governed by the momentum-dependent timescale
τq = 1/

(
µ+Dq2

)
, with φ ∝ exp

(
t/τq

)
. Since the correlation length di-

verges at the critical point µ = µc, then τq ∼ µ−1, and the time needed
to reach equilibrium diverges. Systems at criticality need infinite time
to relax! The relation between time and space scales in dynamical sys-
tems at criticality is very important, and it has its own critical expo-
nent, called z. The dynamical version of the Gaussian model has z = 2,
as can be easily checked (Kardar 2007a).

1.3.3 Stochastic processes on lattices

Let us finish with a fast glance at stochastic processes on lattices. Un-
til now, what we did was to extend the formalism of equilibrium be-
haviour to dynamical variables. However, many microscopic processes
are also intrinsically outside of equilibrium, and their study allow us to
understand and classify better the behaviour of non-equilibrium sys-
tems.

Microscopic dynamical processes are usually posed in terms of
stochastic reactions (Hinrichsen 2000; Gardiner 2009). In this case,
systems are modelled as a number of states (discrete or continuous)
and the possible transitions among them. In Markovian processes, the
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transition rates depend only on the initial and final states, and not on
system’s previous history (Gardiner 2009). Therefore, all the system
information can be stored in the stochastic matrix ωij that represents
the transition rates from state i to j. Equilibrium phenomena can
be also represented using this formalism. For example, the Ising
model can be simulated by just setting appropriate transition rates for
spin flips (like, for example, Glauber dynamics) (Binney et al. 2001).
We will, however, focus on the contact process (CP), a paradigmatic
non-equilibrium microscopic model with important implications
on neural criticality (Hinrichsen 2000). In the CP, we work with a
lattice or network, in which each site i can be either active (ni = 1) or
inactive (ni = 0). Active sites decay to inactive at a rate β, but they can
propagate their activity to neighbouring sites with rate λ. It is possible
to fix the timescale β = 1 so λ is the control parameter. The order
parameter is the number of active sites in the system, n (t) =

∑N
i=0ni (t).

At low transmission rates all active nodes will decay, leading the
system to an absorbing state, in which all the nodes in the lattice are
inactive. At this point, activity cannot propagate any longer and the
dynamics stops.

In order to study the macroscopic dynamics of the system, one
needs to obtain the transition rates of states from having n active sites
to n ± 1. In a lattice, in the thermodynamic limit (N → ∞) this is an
almost impossible task. The transition rate of the state with n parti-
cles to the state with n±1 heavily depends on the spatial configuration
of active and inactive sites, rendering an excessively high number of
configurations.

To tackle the problem, let us assume the simplest case, that
of mean-field theory, where all sites are mutually connected so
knowing which particle is active becomes irrelevant. Transition
rates can now be easily computed: the global inactivation rate is
given by β multiplied by the probability of picking an active site,
hence ω (n→ n− 1) = βn/N ≡ ω−, while the global activation rate
is given by the probability of finding a pair of active-inactive sites,
ω (n→ n+ 1) = λn (N −n) /N 2 ≡ ω+. Since the total number of active
sites at a given time is a stochastic variable, we can ask ourselves
for the probability distribution p (n,t). The model is Markovian (all
transition rates are independent of time), and hence this probability
depends only on the system state at the last timestep. In order to have
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n particles at time t, either

1. we had n− 1 active sites at t − dt and an activation occurred,

2. we had n+ 1 active sites and a site decayed, or

3. we had n and nothing happened.

This allow us to write a master equation for the probability,

∂tp (n,t) =ω (n+ 1→ n)p (n+ 1, t)−ω (n− 1→ n)p (n− 1, t)−
− [1−ω− −ω+]p (n,t) . (1.24)

Solving the master equation means obtaining a closed expression
for p (n,t), hence the ability to compute any statistical moment of the
variable n at any time. In general, analytical solutions to master equa-
tions are not available, and we have to jump to more sophisticated
methods. One possibility is to use the Van Kampen finite size expan-
sion (Gardiner 2009), that profits from the fact that all the rates ω that
appear in the master equation are functions of the system size, N . The
expansion assumes that the variance of the variable n scales as N 1/2

according with the central limit theorem. At first order in size, one
obtains a Fokker-Planck equation,

∂tp (n,t) = ∂n
[
−f (n)p(n,t) +

1
2
g (n)∂n [g (n)p (n,t)]

]
+ = −∂nJ (n,t) ,

(1.25)
where

f (n) =
∑
k

kω (n→ n− k) , (1.26a)

g (n) =
∑
k

k2ω (n→ n− k) . (1.26b)

and the J (n,t) is called the probability current. The Fokker-Planck equa-
tion gives a simplified version of the master equation, which is easier
to solve, since it is just a partial differential equation instead of a func-
tional equation (Gardiner 2009). Another advantage is that from the
Fokker-Planck it is possible to identify a Langevin equation, as

∂tn = f (n) + g (n)ξ (t) , (1.27)
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in the Îto sense7. Therefore, it is now possible to compare to equi-
librium processes. Before, we commented that equilibrium processes
usually have additive noise. The reason behind this is that the station-
ary solution of the Fokker-Planck, i.e., ∂tp (n,t) = 0, for a constant value
of noise, g (n) = σ , is given by

pst (n) = exp
[
− 2
σ2

∫
dtf (n,t)

]
≡ exp

(
2V (n)
σ2

)
, (1.28)

so the probability to find the system is higher at the minima of the asso-
ciated deterministic potential V (n). When the noise is multiplicative,
sometimes we can speak about an effective potential Ṽ (n) that con-
trol the stationary dynamics. Such potential may have different min-
ima than the deterministic potential, and hence noise could be able to
completely deform the phase space. Actually, many non-equilibrium
systems do not only display an “effective potential”, but also add a ro-
tational shear that cannot be described by any means in potential terms
(for an application in neuroscience read e.g. (di Santo et al. 2018b)). In
particular, neuronal dynamics seem to benefit noticeably from such
shear, as we will see in our study of the Wilson-Cowan model and hy-
brid type synchronization transitions (also c.f. santo2018JSM; (Buice
and Cowan 2007; Benayoun et al. 2010)). Returning to the CP, the as-
sociated mean-field Langevin equation is given by

∂tρ = (λ− 1)ρ −λρ2 +

√
(λ+ 1)ρ −λρ2

N
ξ (t) , (1.29)

where we wrote the equation for densities of active sites ρ = n/N . The
deterministic part of the equation corresponds to a simple transcritical
bifurcation, with a critical point λc = 1 which separates two possible
phases: the absorbing state ρ0 = 0, and the active state ρ∗ =

√
(λ− 1) /λ.

Hence, the critical exponent β = 1/2 in mean field. Since we are usually
interested in the properties of the system near criticality, we take λ ≃
λc, so ρ≪ 1 and the noise term can be approximated to

√
(λ+ 1)ρ/N ≡

σ
√
ρ. If order to have a full description of the contact process, the

7Langevin stochastic equations need to a criterium for the integration of the noise
in order to be fully determined. Since ξ (t) is a random Dirac-delta train, the inte-

gral
∫ t+∆t
t

ξ (s)ds is completely different depending if we take left, right, or centered
Riemann sums -or if we weight them in any mean (Gardiner 2009).

41



1.3 Statistical physics

easiest way now is to assume that the mean-field equation we derived
was for a very small region of the space, and connection among regions
is given in a diffusive way8. The result is the stochastic equation that
corresponds to Reggeon field theory (Hinrichsen 2000)

∂tρ (x⃗, t) = (λ− 1)ρ (x⃗, t)−λρ2 (x⃗, t)+D∇⃗2ρ (x⃗, t)+σ
√
ρ (x⃗, t)ξ (x⃗, t) , (1.30)

which is similar in spirit to the the Landau-Ginzburg theory: take the
continuum limit of the lattice, and study the evolution of the coarse-
grained density ρ (x⃗, t). It is easy to see that this equation still preserves
the absorbing state ρ (x⃗, t) = 0, due to the multiplicative noise, charac-
teristic of non-equilibrium dynamical process.

As we already commented, dynamical non-equilibrium processes
have also static critical exponents, such as β = 1/2 presented above.
Critical exponents for susceptibilities and correlations can be similarly
computed (Hinrichsen 2000). However, we will be more interested in
dynamical exponents, such as the ones that corresponds to avalanche
behaviour. Activity in the CP only survives for λ > λc, while any other
value λ ≤ λc will lead the system to the absorbing state. The time
that the system needs to reach the absorbing state is exponential in
the subcritical phase, but potential at criticality –another reflection of
the critical slowing down. Let us assume that we start the system at
the absorbing state, and slightly perturb it, activating one site (alterna-
tively, making ρ (x⃗0,0) = h≪ 1). At criticality, the system is dominated
by fluctuations, and propagation of activity is marginal, so the system
might increase a lot its activity before falling again to the absorbing
state, in an event called an avalanche. The duration of such avalanches
is defined by just the time at which the absorbing state is reached again,
ρ (x⃗,T ) = 0, while the avalanche sizes can be found by integrating the

total activity during the event S =
∫ T

0
dt

∫
V
dx⃗ρ (x⃗, t). The distribution

of sizes and times at criticality is distributed as a power law, meaning
that P (S) ∝ S−τ and P (T ) ∝ T −α, where τ = 3/2 and α = 2 in the case of
mean-field CP (Hinrichsen 2000). Notice that a power law distribution
means that avalanches are scale-free in the sense that there is no “typ-

8We could go back to the beginning of the derivation, computing the transition
rates taking in account spatial structure, and obtaining a master equation for n (x⃗, t).
The result is the same.
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ical size” or “typical duration” of avalanche, so the largest avalanche
values obtained are only limited by system sizes.

The contact-process belongs to a more general universality class,
that of directed percolation (DP), shared among many non-equilibrium
phenomena. The DP universality class is so robust that it has been con-
jectured that every non-equilibrium absorbing-active transition, with a
scalar order parameter, short range interactions, and no additional el-
ements such extra symmetries belong to this class. (Hinrichsen 2000).

Finally, let me state some conclusions about critical phenomena,
equilibrium vs non-equilibrium, and dynamical systems theory.
Both equilibrium and non-equilibrium processes can be described
by Langevin equations. In the case of systems at equilibrium, the
Hamiltonian provides a deterministic potential that rules the whole
dynamics. This potential is only disturbed by an additive noise, in
the case of non-conserved order parameters. On the other hand,
non-equilibrium phenomena are formally characterised by the lacking
of a potential function, either because the deterministic part cannot be
written in potential form, or because the multiplicative noise changes
the “effective” potential –even creating rotational contributions. At
criticality, both kinds of transitions have similarities: diverging cor-
relation lengths and susceptibilities, critical slowing down, scale-free
distributions... However, non-equilibrium phase transitions have their
own universality classes, characterised also by dynamical exponents of
scale-free events (avalanches) found at criticality (Muñoz et al. 1996;
Marro and Dickman 2005; Ódor 2008).

1.4 The criticality hypothesis: state of the art

In physics, we are used to find systems at a certain phase, just per-
fectly ordered, like solids, or disordered, like liquids or gases. In strik-
ing contrast with common physical systems, biology seems to often
display structures that are not completely ordered, neither random.
And the most surprising fact is that these structures are formed spon-
taneously, without any lead: ants coordinate to find resources, creating
long lines of hundreds of individuals and constructing complex nests
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in the soil, but all the individuals are equal; bacteria are able to make
collective decisions depending on their environment and population
density; each decision is just taken by a network of proteins that self-
regulate, without any apparent supervision, or design; and our brains
are just formed by an incredibly large number of neurons, which need
no leader to coordinate another incredibly complex amalgam of organs
and cells, generating not only simple responses to external physical
stimuli, but also high-level cognitive states such as “consciousness” or
“feelings”, so complex that until now have eluded all our attempts to
be linked with brain states and function, being just defined in psycho-
logical constructs.

The idea that collective phenomena in biology could arise from crit-
icality is recent, in scientific timescales. It has two basic roots: one is
the famous observation by Mandelbrot of fractal, scale-free spatial dis-
tributions in physical, geological and biological systems (Mandelbrot
1983). The other important realization was the ubiquity of 1/f noise
in many systems, i.e., noise whose power spectrum scales as a power
law. Basically, this is the lack of characteristic spatiotemporal scales,
as well as large spatial and temporal correlations, a phenomenon that
is known to happen at criticality, as previously mentioned. This moti-
vated Bak, Tang and Wiesenfeld in 1987 and 1988 to develop the the-
ory of self-organized criticality, an allegedly universal mechanism that
would “tune” many systems to a critical point of a second-order phase
transition (Bak 1996; Bak et al. 1987).

Since the proposal of this revolutionary idea, evidence in favor of
criticality has astonishingly increased. The arguments that support
that criticality and self-organization in biology are that critical points
allow the systems to enhance correlations, increase the response to
stimulus, and allows better information processing, among other
(Muñoz 2018). Although all these features could be clearly favoured
by natural selection, determining in experiments whether a biological
system is actually critical has proven to be a daunting task. One
problem is the choice of order and control parameters, as well as
studying the relationship between them. In this sense, biology is
similar to astrophysics, and regulating control parameters in some
systems can be challenging –so observation and simulation is the best
we can hope for in many cases. Another important complication is
that biological system sizes range from dozens to some hundreds of
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individuals, while the phase transition formalism is defined in the
thermodynamic limit of infinite individuals. Despite of the problems,
there are several systems that have proven to live at the edge between
order and disorder, while others are just suspected to, but no conclu-
sive experimental and theoretical evidence has been gathered (Muñoz
2018).

One of these elusive systems is the brain. Many features of the brain
could be easily understood under the umbrella of criticality: maxi-
mal information capacity and transfer (Shew et al. 2011), information
processing and computing (Denève and Machens 2016; Yu et al. 2017;
Michiels van Kessenich et al. 2019), large dynamical range (Kinouchi
and Copelli 2006; Shew et al. 2009), maximal synchronization vari-
ability (Yang et al. 2012), among others (Shew and Plenz 2013). In
2003, experiments by Beggs and Plenz were able to resolve the tem-
poral structure of activity bursts in EEG recordings (Beggs and Plenz
2003). The distribution of sizes and time of the burst, when measured
correctly (see Appendix A for details) follows a power-law distribution.
Surprisingly, the critical exponents coincided with the ones suggested
by the DP-conjecture (Beggs and Plenz 2003; Beggs and Plenz 2004).
If this was true, it would mean that the brain worked near a second-
order phase transition, between an absorbing and an active state, and
that the dynamics of the brain would be those of the critical branching
process9. This discovery generated a lot of interest in both the statis-
tical physics and neuroscience communities, that have been trying to
answer the question “Is the brain working near a critical transition?” un-
til today. We will try to shed light to this question during the thesis, at
least partially.

Let me remark some of the advances I consider to be relevant from
2003 to understand the current situation, and put the content of the
thesis in context. From the experimental side, many experiments have
replicated the observations of scale-free avalanches in cultures and in-
vitro slices (Shew et al. 2009; Pasquale et al. 2008; Yang et al. 2012;
Yaghoubi et al. 2018), as well as in vivo, obtaining scale-free burst in
many animal species both at rest (Petermann et al. 2009; Ribeiro et
al. 2010; Hahn et al. 2010; Bellay et al. 2015; Yu et al. 2014; Karimi-
panah et al. 2017) and during stimuli or task performing (Palva et al.

9For small review on the branching process, see (di Santo et al. 2017).
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2013; Karimipanah et al. 2017; Yu et al. 2017). Moreover, the results
seem to be consistent among the observations using different tech-
niques (Miller et al. 2009; Palva et al. 2013). The exact value of the
critical exponents, however, is a delicate matter. Many experiments
have found exponents compatible with the critical branching process
(Petermann et al. 2009; Klaus et al. 2011; Bellay et al. 2015; Karim-
ipanah et al. 2017) i.e., α = 1.5 and τ = 2, but most recent evidence
tends to consistently deviate to values α ∼ 1.65 and τ ∼ 1.9, as found in
(Pasquale et al. 2008; Hahn et al. 2010; Friedman et al. 2012; Yaghoubi
et al. 2018; Fontenele et al. 2019),. We would like to highlight the work
by Friedman (Friedman et al. 2012) and Fontenele et al. (Fontenele et
al. 2019) that found that even when the measurements of the size and
time critical exponents are different, the relationship between the size
of an avalanche and its duration is also a power law P (T |S) = T γ whose
exponent fulfills the hyperscaling relation

γ =
α − 1
τ − 1

, (1.31)

and demonstrated its validity along a large sets of experiments and
models. In particular, Fontenele et al. dismissed the hypothesis
of the critical branching process (Fontenele et al. 2019). Another
recent breakthrough is the finding of power-law distributed avalanche
behaviour in the complete nervous system of the zebrafish (Ponce-
Alvarez et al. 2018). It is the first time that the whole-brain is analysed
in this sense, and it presented scale-free avalanches with exponents
compatible with the 3D Ising random field model (Ponce-Alvarez et al.
2018). However, the hyperscaling relation (1.31) was still fulfilled.

From the modelling approach, there has been many attempts to re-
cover scale-free avalanche behaviour, to check what dynamical regimes
are compatible with experimental data, and possibly shed light on the
criticality hypothesis. Although no model is able to reproduce exactly
the behaviour of the whole brain, universality is expected to play an im-
portant role here, so a model with just the necessary ingredients should
also display the same critical exponents, as it happened one century
ago with phenomenological Landau theory.

On one hand, simple stochastic models have demonstrated to dis-
play neuronal avalanches (Benayoun et al. 2010; Larremore et al. 2014;
Brochini et al. 2016), but they have been also found in realistic real-
izations of simulated neurons, as in (Levina et al. 2007; Millman et
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al. 2010; Brochini et al. 2016; Choi et al. 2012; Scarpetta et al. 2018)
or even in mesoscopic and whole-brain models (Deco and Jirsa 2012;
Villegas et al. 2014; di Santo et al. 2018a). Models present different sce-
narios that could be compatible with criticality. One of the most com-
monly accepted is that of E/I balance, i.e., the idea that at each single
neuron excitatory and inhibitory inputs are compensated in average
(Vreeswijk and Sompolinsky 1996; Brunel 2000; Denève and Machens
2016). It has been claimed that such a balance contributes to the asyn-
chronous irregular state observed in the cortex (Denève and Machens
2016; Buendía et al. 2019), and that it provides a plethora of functional
advantages (Shew et al. 2011; Deco et al. 2014; Denève and Machens
2016; Sadeh and Clopath 2020). Many models present criticality at a
balanced state (Brunel 2000; Vogels et al. 2011; Poil et al. 2012; Denève
and Machens 2016; Politi et al. 2018; Ullner et al. 2018), which seems
to be correlated with the finding of power-law distributed avalanches
in experiments (Shew et al. 2011; Poil et al. 2012).

From the modelling point view, it has been recently proposed that
the universality class behind the neuronal avalanches might not be
the critical branching processes, but synchronization transitions. Syn-
chronization among neurons, or even complete regions in the brain,
manifest at a macroscopic level as brain waves or neuronal rhythms,
which were in fact one of the first collective phenomena ever observed
in neuroscience (Buzsáki 2006). The role and function of synchro-
nization in the brain has been extensively discussed in the literature,
both in experiments (Gray et al. 1989; Segev et al. 2001; Gireesh and
Plenz 2008; Yang et al. 2012; Palmigiano et al. 2017; Daffertshofer et
al. 2018b; Aguilar-Velázquez and Guzmán-Vargas 2019) as well as in
models (Corral et al. 1995; Brunel 2000; Cabral et al. 2011; di Santo
et al. 2018a; Porta and Copelli 2019). Although some of these mod-
els present synchronization jointly with critical balance, we would like
to highlight the breakthrough by di Santo and her collaborators (di
Santo et al. 2018a), that demonstrated explicitly for the first time (up
to my knowledge) that scale-free avalanches with critical exponents
compatible with experimental ones arise at the edge of a synchroniza-
tion transition. The main advantage the hypothesis of the synchro-
nization transition over the critical branching process is that we do
not need to suppose that the brain is arbitrarily near to an absorbing
state of “no activity”, which is not consistent with the constant chat-
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ting of neurons observed in experiments, and it reconciles the view of
critical phenomena with brain waves propagation, which needs the re-
cruiting of synchronous spiking of neurons or regions (Buzsáki 2006).
The interplay between criticality and synchronization has been also ex-
plicitly studied in other experiments (Gireesh and Plenz 2008; Yang et
al. 2012; Markram et al. 2015; Miller et al. 2019), as well as models
(Poil et al. 2012; Breakspear et al. 2010; Pittorino et al. 2017; Yang et
al. 2017; Daffertshofer et al. 2018a; Aguilar-Velázquez and Guzmán-
Vargas 2019; Porta and Copelli 2019). Moreover, hints of a synchro-
nization transition appear at the whole-cortex brute-force simulations
performed in the Blue Brain project (Markram 2006; Markram et al.
2015). However, synchronization transitions in the brain are still not
well understood. The universality class and the underlying statistical
physics of the Landau-Ginzburg model of di Santo et al. (di Santo et
al. 2018a) have not been completely explained, and other more com-
plicated models remain so. An important part of this thesis is to clas-
sify, understand, and shed light on the remaining mysteries of synchro-
nization phase transitions in neuronal models, obtaining general laws
for these phenomena and stating a new, thrilling hypothesis: synchro-
nization alone is not enough to explain critical-like behaviour, and ex-
citability is a necessary ingredient in order to observe such scale-free
phenomena in the brain, creating hybrid type synchronization transi-
tions. This hypothesis will be further explored and explained in detail
in Chapter 4.

It is important to remark that the criticality hypothesis in general
has also received strong and valid criticism from both the theoret-
ical and the experimental sides. For instance, Alain Destexhe and
Jonathan Touboul have pointed out that scale-free avalanches can be
obtained from uncorrelated Poisson processes (Touboul and Destexhe
2010; Touboul and Destexhe 2017). Moreover, they have measured
bursting activity of in vivo brains among different animal species,
and conducted very stringent statistical test power-law distributions
in recordings. Their results show that some data was more consis-
tent with exponential or lognormal distributions, when the data is
processed carefully (Clauset et al. 2009; Touboul and Destexhe 2010;
Dehghani et al. 2012). This remind us that fitting power laws is a deli-
cate matter, specially when the available data does not span for many
decades, as it usually happens with neuronal data. A similar proposal
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was suggested recently by Viola Priesemann and Oren Shriki, arguing
that external inputs may drive the system to distributions that are
critical-like, but not exactly power laws (Priesemann and Shriki 2018).
Priesemann has also insisted on the role of subsampling on critical
systems and how it affects power law observations (Priesemann et al.
2009; Levina and Priesemann 2017), remarking that real data is more
consistent with subcritical states10 (Priesemann et al. 2014). However,
if subsampling is taken in account, it could be corrected to discern
between critical and non-critical states (Levina and Priesemann 2017).
Even the father of the field, John Beggs, stated that the matter of
criticality in the brain should be taken with care, in an imagined
dialogue between two fictional scientists (Beggs and Timme 2012).
Hence skepticism of the criticality hypothesis is absolutely valid and
healthy, and reminds us that no definitive empirical and theoretical
evidence of critical processes in the brain has been collected so far.

Under my point of view, criticality in the brain still lacks some sup-
port from both theory and experimental sides, and even when most of
the evidence collected seems to be in favor of it, the reasons to remain
skeptical are strong still today. Let me sum up some of the observations
that would convince me that the brain is critical, or, conversely, what I
believe it remains to be done in order to gather conclusive evidences:

1. The measurements employed (see Appendix A for detail) depend
very strongly on the choice of the timebin width, which is arbi-
trarily taken to be the average of the inter-event interval. The
fact that firing rates must be measured via time-binning makes
comparisons difficult, and prevent measuring avalanches in time
series as we in non-equilibrium processes such as the contact pro-
cess. Being able of measuring avalanches on continuous mod-
els, or establishing a strong theoretical reason to use the current
method seems to be necessary in order to have a formal definition
of “avalanche”. We will suggest a solution through this thesis, in
Chapter 6.

2. Modelling evidence is sometimes contradictory, but there is no

10In my opinion, the obtained values of the branching parameters in these studies
are so close to criticality that it does not make really a difference for brain function-
ing. For example, (Priesemann et al. 2014) reports an estimation of m = 0.98, with
criticality being at m = 1.
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clear explanation on why. For example, there are models that
present scale-free avalanches as a consequence of excitation-
inhibition balance, but many classical models usually link
balance with asynchronous irregular regimes that present very
low correlations –in contrast with large critical correlations, and
in odds the idea of the with synchronization critical points. Is
something missing? Or are those different faces of the phenom-
ena and biases are preventing us from seeing what all those
models have in common?

3. We should define what is exactly criticality in the brain. It is not
the same to say that the brain as a whole is working near a critical
point, than to say that the cortex is, or that a layer of pyramidal
neurons inside the cortex shows critical-like phenomena. And
moreover, if both the cortex and the whole brain are working at
criticality, is this criticality the same? It is certainly different to
have a Hopf bifurcation, than to couple many oscillators near a
Hopf bifurcation. A Stuart-Landau oscillator just at the Hopf bi-
furcation is critical. A set of such oscillators display more bifur-
cations and transitions collectively, including chaotic dynamics,
and the boundaries of those critical bifurcations do not coincide
with those of the single oscillator (a more in-detail discussion can
be found in Chapter 7). Therefore, a different kind of critical-
ity might emerge from the coupling of already critical-systems,
while sometimes we talk about “criticality in the brain” without
specifying the scale at which we are looking at.

4. The final proof would be to have biological evidence that the
brain is able to self-organize to such states, maybe from the point
of view of evolutionary and developmental biology and not only
from plasticity mechanisms. The regulatory mechanisms that
lead the brain to criticality –or to any other dynamical state it
works– should be known if we want to have a complete image of
how the brain works. Additionally, knowing the pathways to the
healthy brain could help to diagnose and prevent disease in a fast
and accurate way, with its associated clinical benefits.
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Chapter 2

Neuronal models
and synchronization

"When you know about something, it stops being a nightmare.
When you know how to fight something, it stops being so threatening."
- Andrzej Sapkowski, in Blood of Elves, 1994.

After introducing the necessary tools of bifurcation theory and non-
equilibrium statistical physics, our objective is to give an overview on
neuronal models, both at microscopic and mesoscopic scales. We will
also discuss synchronization theory, which will be useful later to asses
collective behaviour in neuronal models.

2.1 Neuron Physiology

The neuron is one of the main building blocks of the brain. Its be-
haviour has been extensively studied, leading to a good understanding
of the biophysical mechanisms that govern the dynamics of spiking
and coupling to other neurons.

Neurons are composed by a cellular body (or soma), a set of fractal-
shaped branches called dendrites coming out of the soma, and a long
axon, that finishes in synapses connecting to other neuron dendrites.
The soma contains organelles such as the nucleus, mitochondria,
and the Golgi apparatus; axons, albeit growing as prolongations of
the soma, have their own cytoskeleton and are usually recovered by
myelin (Kandel et al. 2000). Not all neurons are identical: they dif-
ferent dendritic trees and axon lengths, depending on their particular
role; some neurons even display special genetic programs dedicated to
perform certain actions, as the circadian pacemakers of the suprachi-
asmatic nucleus (Golombek and Rosenstein 2010; Albrecht 2012).
Cellular diversity is important for correct brain functioning, though
often disregarded in computational neuroscience models.
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At rest, neurons present a non-zero potential, called the resting po-
tential, which is around -60 mV, but can be found in an interval be-
tween -40 mV and -90 mV (Kandel et al. 2000). Neurons generate this
potential by regulating the concentration of ions inside their cellular
membrane (Kandel et al. 2000; Izhikevich 2006). Permeability to ions
in the neuron is accomplished by ion channels, proteins in the mem-
brane that react to changes in the potential, “opening” and “closing”
and creating physical space for ions to cross the cellular membrane.
For example, the resting potential is due to the permeability to K+, but
when the membrane becomes permeable to Na+ due to channel open-
ing, the potential can rise about to +50mV. Channel opening happens
due to electrical currents arriving from neighbouring neurons and de-
polarizing the membrane. If the depolarization is strong enough, chan-
nels open and an action potential, also called a spike, is generated. Hy-
perpolarizing currents, on the other hand, do not usually trigger any
response, except on some special kinds of neurons (Izhikevich 2006).

The action potential travels through the axon until reaching the
synapse. This travel happens by the depolarization of the axon, but
the process is aided by the myelin that covers it. At the axon, the ac-
tion potential travels by opening and closing of ionic channels, not by
electric conduction; this process would be too slow to transmit infor-
mation efficiently. In contrast, the myelin sheath that covers the axon
is able to conduct the electrical signal quickly, but its potential tends
to immediately hyperpolarize again. As a result, myelin sheaths do
not cover the entire axon, and the signal travels by jumping between
the axon (where the membrane potential is actively depolarized) and
sheath (where the depolarized signal travel faster but the current de-
creases). This process reduces considerably the time needed for the
signal to reach the synapse. Depolarization of the synapse releases
neurotransmitters to the intracellular medium, increasing the perme-
ability of the neighbouring cell, and producing its depolarization. The
synapse needs some time to recover its neurotransmitters to be “used”
again (Kandel et al. 2000).

Permeability of the neuronal membrane, or equivalently, its con-
ductance, can be physically modelled. Hodgin and Huxley created an
accurate model of the dynamics of the membrane potential and its con-
ductance. The model, which consist in four coupled non-linear differ-
ential equations, was an important breakthrough due to its remarkable
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accuracy. More impressively, Hodgin and Huxley were not aware of the
existence of the ion channels themselves –whose dynamics allow to de-
rive the model in an easier way– but only of the membrane permeabil-
ity changes. Actually, they postulated some of the channel properties
(Kandel et al. 2000; Izhikevich 2006).

2.2 Deterministic neuron models

Although the Hodgin-Huxley model is able to reproduce very well dy-
namics of the action potentials, it is computationally expensive and
analytical computations are cumbersome. In practice, this limits the
number of neurons that can be simulated in a reasonable time. For this
reason, there is a plethora of neuronal models obtained by simplifying
or reducing the Hodgin-Huxley model, that are more amenable to ana-
lytical or numerical treatment. We review here some that I consider to
be relevant in our context, and that will help us to understand better
the contents of this thesis.

2.2.1 Integrate and fire

The integrate-and-fire neuron is one of the most popular set of mod-
els in neuroscience, due to its simplicity, that allows giving analyt-
ical treatments in some cases, as well as very fast numerical simu-
lations that allow for large system sizes. These models come from
the view of neurons as simplified electrical circuits. The most basic
model is the leaky integrate and fire, firstly introduced by Lapicque in
19071(Brunel and van Rossum 2007), that gives a single equation for
the potential membrane,

τmV̇ = − (V −Vr) +RmI (t) , (2.1)

where V is the potential membrane, Vr the resting potential, Rm is the
membrane electrical resistance, and τm a characteristic timescale of the

1Incredibly early considering that Ramon y Cajal started studying the neuron in
1887 and received the Nobel prize in 1906!
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equivalent RC circuit. Equation (2.1) is not complete by itself, and has
to be understood with a threshold and reset potential. If RmI > V , then
the membrane potential just diverges exponentially, so the solution has
to be reset to the resting potential, V = Vr , when V ≥ θT .

A more realistic integrate-and-fire model is the exponential inte-
grate and fire (Gerstner 2014), that includes a non-linear response of
the membrane potential to perturbations, as

τmV̇ = − (V −Vr) +∆T exp
(
V −VT
∆T

)
+RmI (t) , (2.2)

where the new parameters VT and ∆T control the initiation of the ac-
tion potential. When V ≥ VT , the exponential starts to grow very fast,
diverging and initiating the action potential. As before, this has to be
cut when V ≥ θT ≫ VT , resetting the membrane potential to Vr . Note
that in the limit ∆T → 0 the leaky integrate and fire model is recovered,
effectively setting θT ≃ VT . The exponential integrate and fire model
can be justified by several ways, such as directly reducing the Hodlin-
Huxley model, or just fitting the shape of the starting spike. From the
Hodgin-Huxley model, it suffices to reduce it to a one-dimensional sys-
tem by eliminating the slow timescales –situating all them at its equi-
librium values–, keeping just the equation for the membrane potential,
and noticing that at its equilibrium value, the opening of the sodium
channel m (V ) ∝ exp(V −VT ) (Gerstner 2014). Up to my knowledge,
of all the one-dimensional integrate and fire models available, the ex-
ponential integrate and fire is the most realistic one, making it very
suitable for numerical computation.

However, other options are possible. Let us assume a neuron close
to its threshold, so VT is not actually much larger than Vr . This could
happen, for example, if the neuron is subject to some external constant
input that depolarizes its membrane. Then, the exponential can be fur-
ther simplified by its Taylor series up to second order (Gerstner 2014).
In general, the result can be summarized as

τmV̇ = (V −Vr) (V −VT ) +RmI (t) , (2.3)

where Vr and VT are not formally the same as in the exponential model
before. As before, the model will be reset to Vr when V ≥ θT . This
is called the quadratic integrate-and-fire neuron, due to the quadratic
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term V 2 (Izhikevich 2006). A common choice to simplify this model
is just to take Vr = −VT , so the right-hand side simplifies to V 2 −V 2

r +
RmI (t). Taking in account that the height of sodium-induced action
potential is around +50 mV, VT should be just slightly positive, mak-
ing Vr close to 0; this model the behaviour of a neuron excited via an
external current, that has a very small or even no threshold so any ex-
ternal input would activate the neuron spiking. This last scenario is
exactly the “canonical type-I” model of the theta neuron (Izhikevich
2006), that will be explained in detail below.

2.2.2 Two dimensional systems

Let us now present two popular reductions of the Hodgin-Huxley:
the Fitzhugh-Nagumo and the Morris-Lecar models2. Both are two-
dimensional systems, more amenable to analytical treatment, and
often used as toy model to study neuronal dynamics. Their main
advantage over the integrate-and-fire models is that they are more
biologically plausible, and the threshold-reset rule is not necessary.
This rule, though easy to implement numerically, poses a number of
problems for purely theoretical study. FN and ML models present a
membrane potential and a slow adaptation variable, with a reduced
number of parameters with respect to the Hodgin-Huxley, so it is
possible to do phase plane and bifurcations analyses (Izhikevich
2006; Gerstner 2014). The study of these models has uncovered
many universal and essential features of neuronal dynamics, such as
excitability.

The Fitzhugh-Nagumo model is defined by

τmV̇ =V − 1
3
V 3 −W +RI (t) , (2.4a)

τwẆ =a+ bV −W, (2.4b)

2An important, non-written rule of neuronal modelling is that you need exactly
two scientists to develop a successful model: Hodgin-Huxley, Fitzhugh-Nagumo,
Morris-Lecar, Ermentrout-Kopell, Jansen-Rit, Hindmarsh-Rose, or Wilson-Cowan
are excellent examples of well-known models created by pairs. A popular Spanish
pun would be to include Ramon y Cajal in the list.
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Figure 2.1: Phase plane of the Fitzhugh-Nagumo model. From left to
right, the stable equilibrium becomes unstable through a Hopf bifurca-
tion. As the oscillations grow, the trajectory goes outside of the stable
manifold causing large amplitude oscillations (spikes). Initial condi-
tions marked with grey filled circles. Parameters: τm = 1, τw = 10,
a = 0.1. From left to right, b = 0.545, b = 0.795, and b = 0.995.

which should be familiar at this point: the membrane potential is a
perturbation to the normal form of the pitchfork bifurcation. Actually,
it is exactly the same dynamical equation as the Ising model with an
external field W , which adapts following the membrane potential. Al-
though the membrane potential is called V , note that our definition of
the Fitzhugh-Nagumo model (which is the standard) comes from sev-
eral changes of variables and rescaling, so it does not describe phys-
iologically accurate values of the membrane potential or adaptation
potential (Gerstner 2014). In this form, it is just a mathematical toy to
understand neuronal dynamics in a qualitative way. Figure 2.1 shows
the basic spiking dynamics of the Fitzhugh-Nagumo model.

Let us say a few words about this model, from which we can ex-
tract a few valuable analytical conclusions. When analysing a dynam-
ical system, one of the first steps is to compute the nullclines, i.e., the
curves V̇ = 0 and Ẇ = 0 (Strogatz 1994; Izhikevich 2006). This helps to
draw and understand the dynamics in the phase space. Let us assume
the simple case of no external current, I = 0. The nullcline V̇ = 0 is
W (V ) = V −V 3/3, a S-shaped cubic polynomial, which is a typical fea-
ture of excitable systems, as we will see shortly. The particularity of the
Fitzhugh-Nagumo model is that the shape of this polynomial does not
depend on the parameter choice, and hence the topology of the phase
space depend only on the Ẇ = 0 nullcline, which turns out to be sim-
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ply W (V ) = a+ bV . In order to determine the number of fixed points,
it suffices to see how much intersections the line has with the S-shaped
cubic polynomial, for example, by fixing a and using the slope b as a
control parameter. Hence, just one or three solutions are possible. Fig-
ure 2.1 shows the evolution of the system for low a. At the beginning,
there are three crossings in the S-shaped polynomial, where the one in
the centre is unstable, while the other are stable spirals. Note, how-
ever, that the stable manifold for the point is divided by the cubic, so
a point very near to the up equilibria might be attracted instead to the
left bottom part of the diagram, as depicted in Fig. 2.1a. Both stable
spirals will undergo a Hopf bifurcation at the extrema of the cubic,
leading to small amplitude oscillations. The amplitude of such oscilla-
tions increases as b grows, leading the trajectory outside of the stable
manifold, to large amplitude oscillations. This is possible because the
“up state” equilibrium, after the Hopf, disappeared through a saddle-
node bifurcation, when the line stop touching the upper branch.

The neuronal interpretation of this behaviour is the following one:
for (adequate3) low values of b, the only possible state is the fixed point
at the lower branch, that is identified as the membrane resting poten-
tial V ∗ < 0. The large excursions around the phase space corresponds
with spikes, while the small cycles generated by the Hopf bifurcation
are subthreshold oscillations. Of course, in the real neuron all these be-
haviours are triggered by changing the value of the external intensity,
I (t), as a control parameter.

This behaviour, which is common accross neuroscience models, is
called excitability. A excitable system is defined as a system at a sta-
ble equilibrium, but where perturbations in the adequate direction can
drive it into excursions that go around all the phase space (Izhikevich
2006; Lindner 2004; Prescott 2014). The mathematical reason behind
this phenomena is that the stable manifold of the equilibrium has a
small area in the direction of the perturbation. Many physical and bio-
logical systems exhibit excitability (Lindner 2004). When the external
intensity changes, neuronal models might start spiking from the Hopf

3For a < b, there is a set of b values for which only the lower branch is stable.
For our example (see parameters in Fig. 2.1), the Hopf bifurcation cycle appears
at b = 0.805, while the saddle-node that destroys stability in the upper branch takes
place before, at b = 0.718. So, for b ∈ [0.718,0.805], the only stable point is the resting
potential.
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Figure 2.2: Comparison of excitability classes I and II. The compari-
son is done through representative bifurcations corresponding to each
excitability class. Note that the firing rate is directly related with fre-
quency of oscillations: vanishingly-small firing rates correspond to ar-
bitrarily large firing frequencies. (Buendía et al. 2020b)

or saddle-node bifurcations (among others), which have a very differ-
ent behaviour, as explained in Chapter 1. The Hopf presents a finite
period and growing amplitude, while the saddle node has finite ampli-
tude and growing period, as illustrated in Fig. 2.2.

The differences in response to a constant input were previously ob-
served in real neurons, which lead to a classification into “excitability
classes” by Hodgkin (Hodgkin 1948; Izhikevich 2006). The classifica-
tion goes as follows,

1. Type I excitability corresponds to neurons that start spiking with
constant amplitude and infinite period when they are fed with
an external, constant current I . In this case, the minimum cur-
rent able to elicit a response at infinite time is called the rheobase
current.

2. Type II excitability corresponds to neurons that start spiking with
fixed frequency, regardless of the input current.

3. Type III excitability when the input current generates a single
spike. Regular spiking happens only for very high input currents.
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In models, in order to have a certain excitability class, it suffices
to cross a bifurcation generating large-amplitude limit cycles in an
excitable system. Two representative examples of bifurcations corre-
sponding to classes I and II are the creation of cycles through saddle
nodes, and Hopf bifurcation, respectively, as sketched in Fig. 2.2.
The homoclinic bifurcation is common in neuronal models (Schleimer
et al. 2019), and belongs to class I neuronal excitability, as the SNIC
bifurcation.

Let us move towards a more realistic, two-dimensional neuronal
model, the Morris-Lecar neuron, defined as

CV̇ =− gNam∞ (V ) (V −VNa)− gKW (V −VK )− gL (V −VL) + I (t) ,
(2.5a)

Ẇ =τ−1 (V ) [W∞ (V )−W ] , (2.5b)

where VNa and VK are the equilibrium reversal potentials of sodium
and potassium, and the functions m∞ (V ) and W∞ (V ) control ionic
channel activations and are given by sigmoids. The adaptation variable
W is actually representing the dynamics of potassium gating, while
the dynamics of the sodium variable are faster and approach the value
m∞ (V ) immediately. When both ions are considered, we have the INa−
IK model (see for example Izhikevich (Izhikevich 2006)). The timescale
that controls the adaptation dynamics depends on the membrane po-
tential, as

τ (V ) =
τw

cosh
(
V−a
b

) , (2.6)

although a constant value for τ (V ) is commonly used for simplicity. If
its parameters are fit correctly, the Morris-Lecar model is able to de-
scribe realistic neuronal behaviour, making it popular for applications
and theoretical studies (Cabrera et al. 2013; Ditlevsen and Greenwood
2013; Montejo et al. 2005; Wang et al. 2013). However, as can be seen
in Fig. 2.3, the nullcline shapes are very similar to the ones presented
by the Fitzhugh-Nagumo model, meaning that the dynamics of the
model can be understood in a similar way. This Figure displays the
behaviour of the Morris-Lecar model for sodium and potassium chan-
nels for different values of the external current, showing how spiking
activity start at low frequencies, being an example of a type I excitabil-
ity class.
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Figure 2.3: Type I excitability at the Morris-Lecar model under ex-
ternal constant current. The Morris-Lecar for a set of realistic param-
eters, subject to a constant external current. The spikes start at low
frequency, which increases with I . All insets are drawn for a fixed time
of 60 ms. Parameters were obtained from Izhikevich (Izhikevich 2006):
VL = −80 mV, VK = −60 mV, VNa = 60 mV, gL = 8, gK = 10, and gNa = 20.
Both timescale constants C = 1 and τ (V ) = 1 ms. Sigmoids are given
by S (V ) = 1/ {1 + exp[(V1/2 −V ) /k]}, with V1/2 = −20 mV, k = 15 for m∞
and V1/2 = −25 mV and k = 5 for W∞.

Although here the Morris-Lecar model is shown to have a type I
excitability, it is also able to display type II behaviours, as well as more
complex firing patterns (Liu et al. 2014). Moreover, type I spikes can
start either from saddle-node or homoclinic bifurcations, whose firing
rate have a different dependence on the input current (Tsumoto et al.
2006; Liu et al. 2014).

Finally, let us remark that for the sake of modelling, thousands
of variations can be done in already-existing models, easily con-
verting integrate and fire neurons to computationally convenient
higher-dimensional models. For example, Izhikevich complemented
a quadratic integrate-and-fire neuron with a linear leakage, and used
an adaptive variable to account for ionic channels opening (Izhikevich
2003). The result, known as the Izhikevich neuron, is a mixture
between an integrate-and-fire model, and the two-dimensional models
discussed in this section. The Izhikevich neuron has plethora of
possible spiking behaviours that are found in real neuronal systems
(see Fig. 2.4), and its main advantage is its computational simplicity.
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regular spiking (RS) intrinsically bursting (IB) chattering (CH) fast spiking (FS)
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v(t)

I(t)

Figure 2.4: Real neuronal behaviours reproduced by Izhikevich
model. Reproduced with permission of the author. Electronic ver-
sion of the figure and reproduction permissions are freely available
at www.izhikevich.com.

The model is defined by

V̇ =0.04V 2 + 5V + 140−W +RI (t) , (2.7a)

Ẇ =a (bV −W ) , (2.7b)

in conjunction with a reset rule V = Vr , W = W +Wr when V ≥ θT .
The coefficients of the membrane potential are already fitted in order
to capture the dynamics of real neurons, so the only free parameters
are a and b.

2.2.3 Synaptic dynamics

The models described above are just for single neurons, which receive
an external current denoted just by I (t). In order to understand neu-
ronal networks, it is very important to discuss the dynamics of the
interaction among neighbours. As discussed above, when a neuron
spikes, the action potential reaches the synapses, releasing neurotrans-
mitters to the medium. These neurotransmitters bind to the post-
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synaptic neuron’s neuronal membrane, facilitating the flux of ions that
lead to changes in membrane potentials.

It is possible to build detailed models of this process, by studying
the dynamics of neurotransmitter release and binding, as well as treat-
ing the neuron as a spatially distributed system (Gerstner 2014). How-
ever, here we consider the simplest and popular case of the point-like
neuron that receives an input current from the spike of neighbouring
cells. Under this assumption, electrical intensity effectively felt by a
neuron is given by the sum of all the presynaptic action potentials,

I (t) =
k∑
i=1

∑
{tim}

∫ t

−∞
dt′G

(
tim − t′,V

)
δ
(
tim − t′

)
, (2.8)

where k is the number of neurons whose axon points to the individual
considered,

{
tim

}
are the set of times at which the i-th neuron spiked,

and G (t,V ) is a kernel that returns the strength of the interaction af-
ter a spike. Note that integrate-and-fire models usually have a very
well-defined “spike-time”, which is estimated just by computing the
time needed for the membrane potential to diverge after reaching the
threshold θT (Montbrió et al. 2015; Börgers and Kopell 2005). Models
such as the Fitzhugh-Nagumo, which do not present any divergence
at all, define the spike at its maximum membrane potential. This is
an important difference because in such models we retain information
about the membrane voltage of the action potential, which cannot be
described by integrate-and-fire models. For this reason, integrate-and-
fire models usually employ eq. (2.8) directly, which is a current in-
put to the neuron, while models with no divergences often add a term
V − V i

s into the sum in eq. (2.8), converting it into a synaptic input
(Börgers et al. 2010; Izhikevich 2006). The voltage V i

s is the reversal
membrane potential of the i-th neuron synapsis, which is large and
positive for excitatory interactions, and below the resting potential for
inhibitory synapses. The difference between current input and synap-
tic inputs is usually not relevant qualitatively (Börgers et al. 2010), so
in the computational neuroscience literature they are used commonly
interchangeably. We will stick for simplicity to input currents.

The dynamics of the synapse are then dominated by the behaviour
of the kernel G (t,V ). This is usually written as separate variables, as
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G (t,V ) = gsα (t)β (V ), with gs the maximum conductance of the mem-
brane potential at spike time, which is assumed to be at t = 0. The
kernel can be interpreted in the biological sense as the permeability
dynamics on the postsynaptic neuron after the arrival of the spike. A
common choice is to let α (t ≥ 0) = exp(−t/τ) /τ , being τ the typical de-
cay time (Rothman 2013). However, this leads the spike strength to
be directly one at t = 0. A more realistic option, with finite rise time,
is given by a double exponential function (Rothman 2013; Gerstner
2014). Usually, the dependence on the membrane potential is not used,
so β (V ) = 1.

Finally, the number of neurotransmitters in the vesicles is gener-
ally reduced after each spike, hence reducing the effectiveness of the
synapse for some time. This short-term plasticity of the synapsis is
usually taken in account by adding dynamics to the maximum con-
ductance gs, with a charge-discharge mechanism following fast-slow
time dynamics (Rothman 2013; Gerstner 2014). Adaptation will be
discussed in more detail in Chapter 5.

Despite not modelling explicitly all the physiological processes, the
synapse equation (2.8) is still complicated, and hence further assump-
tions are usually made. A typical one is to assume that synapses are
fast, so the neuron is only affected by spikes in a small time window
[t − τ, t]. This is equivalent to set G (0 ≤ t ≤ τ) = 1/τ , for τ ≪ 1 (Brunel
2000; Montbrió et al. 2015). Given these assumptions, the neuron only
feels the spikes that take place at recent times, leading to

I (t) =
1
τ

k∑
i=1

∫ t

t−τ
dt′δ

(
ti − t′

)
, (2.9)

which is nothing but the average number of action potentials that took
place in a small, recent time window. This is a very common way of
coupling integrate and fire models, due to its extreme computational
simplicity (see for example (Brunel 2000; Montbrió et al. 2015; Borges
et al. 2020)).

As another practical variation, we can take the model by Brunel
(Brunel 2000), a network of simple leaky integrate-and-fire neurons,
where a delay D is added to mimic the time needed by the action po-
tential to affect the post-synaptic neuron, changing the Dirac delta to
δ
(
tim − t −D

)
and selecting a unit kernel in order to make spikes affect
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instantaneously. Therefore, it can be seen that eq. (2.8) is a rather gen-
eral and robust way to write chemical synapses. “Electrical synapses”,
which are formally called gap junctions, are just mutually connected by
diffusive interaction of the membrane potential of the different neu-
rons. Their qualitative effect on neuronal coupling is completely dif-
ferent; however, they are not very common in the brain4, except for
particular areas and functions (Izhikevich 2006; Kandel et al. 2000).

2.3 Neural mass models and stochastic effects

After describing models for single neurons, we go through a small re-
view of mathematical models for mesoscopic regions. These can be
postulated just phenomenologically, or derived by doing the large size
limit of the dynamics of single neuron models. To understand the be-
haviour of neural networks, we study simpler, stochastic toy models,
that will allow us to follow the bottom-up philosophy based on emer-
gent and universal properties, and then study one of the best-known
models of neural masses: the Wilson-Cowan model.

2.3.1 Stochastic models

Stochastic neuronal modelling benefits from simplifying physiological
details to the minimum, which allow us to perform analytical compu-
tations on neuron networks, both at mean-field and network topolo-
gies. The simplest approach to understand neuronal dynamics are bi-
nary neuron models (Vreeswijk and Sompolinsky 1996; Rubin et al.
2017; Buendía et al. 2019) such as the one proposed by Larremore et
al. (Larremore et al. 2014; Buendía et al. 2019). The model consists
in a network composed by nodes that evolve with time. At any given

4Although they are not common for synaptical connections, they constitute an ex-
cellent way to model the junction between the myelin sheath and the axon, making
them useful for compartmental models of the neuron (Gerstner 2014), in contrast
with our point-like models.
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(discrete5) time t, the i-th neuron can be either active, si (t) = 1 or in-
active, si (t) = 0. Each neuron integrates the activity of its neighbours,
becoming active with a probability pi given by

pi ≡ f

⎛⎜⎜⎜⎜⎜⎜⎝Λi =
1
k

∑
j

Aijsj (t)

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 Λi < 0
Λi 0 ≤Λi ≤ 1
1 Λi > 1

, (2.10)

and inactivating with probability 1− pi . The function f (Λi) is a trans-
fer function of the input, which takes in account the possible spiking
of the k neighbours; The matrix Aij is called the weighted adjacency
matrix, which controls the coupling between neurons. A fraction α of
the neurons is considered inhibitory, while the others are excitatory.
For simplicity, and the sake of comparison between models, let us take
Aij = ωe > 0 for excitatory connections and Aij = ωi < 0 for inhibitory
ones. (Buendía et al. 2019).

Let us consider the mean-field case, where all the individuals are
mutually connected. Let E and I be the total number of excitatory
and inhibitory active neurons at a given time. These quantities evolve
stochastically according to a master equation, in a similar way to the
contact process discussed in Chapter 1. Therefore it is possible to write
such a master equation by computing the global rates of activation and
inactivation of the model. Let us compute the rate at which excitation
is destroyed in the system. If we have E excitatory inactive neurons,
and each neuron has a rate 1− f (Λi) to become inactive, then the total
rate is given by its sum, Ω (E→ E − 1) =

∑E
i (1− f (Λi)). It is possible to

assume that in the macroscopic limit N →∞ all nodes are equivalent,
so the rate can be approximated to Ω (E→ E + 1) ≃ E (1− f (Λ)), where
we assumed that Λi ≃Λ. This reasoning can be applied to all stochastic

5Using a continuous time makes no qualitative difference, but the discrete version
makes analytics easier.
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reactions, to get

Ω (E→ E − 1) =E (1− f (Λ)) , (2.11a)
Ω (E→ E + 1) =[N (1−α)−E]f (Λ) , (2.11b)
Ω (I → I − 1) =I [1− f (Λ)] , (2.11c)
Ω (I → I + 1) =[Nα − I]f (Λ) , (2.11d)

that allow us to write a master equation, followed by a van Kampen
expansion. Now, we are interested in using just fractions of excitatory
and inhibitory particles, which are more useful in the thermodynamic
limit N →∞. There are two ways of defining this, either (1) the total
fraction over the total number of sites, x = E/N and y = I/N , or (2) the
fraction of E/I active neurons, x = E/ [(1−α)N ], y = I/ (Nα). Though
I find the former more natural, most of the literature tends to use the
latter. For this reason, the second option6 will be considered. Then,
the associated coupled Langevin equations are

ẋ =f (Λ)− x+
√
x+ f (Λ) (1− 2x)ξx (t) , (2.12a)

ẏ =f (Λ)− y +
√
y + f (Λ) (1− 2y)ξy (t) , (2.12b)

and they completely determine the system dynamics. Solving both
equations is still difficult, but its symmetry suggests using the change
of variables s = (x+ y) /2, and q = (x − y) /2, which leads to the simpler
system

ṡ =f (Λ)− s+ ξs (t) , (2.13a)
q̇ =− q+ ξq (t) , (2.13b)

where the noise terms have been defined by grouping the respective
noise terms. The first variable is proportional to the system activity7.
Finally, observe that if we take averages over these two equations, noise

6The analysis done in Chapter 3 uses the former.
7Using the “natural” option for x and y variables discussed earlier, s is formally

the total activity of the system, and the input depends only on q, although the math-
ematics are slightly more involved.
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vanishes and the evolution of ⟨ṡ⟩ does depends on q only through the
input Λ. Hence, solving

⟨ṡ⟩ =
⟨
f (Λ)

⟩
− ⟨s⟩ , (2.14a)⟨

q̇
⟩

=−
⟨
q
⟩
, (2.14b)

allow us to determine the most important order parameter, the aver-
age activity of the system. The detailed computations, along with their
results and discussion are the main topic of Chapter 3. For the mo-
ment, let us say that the Langevin equations (2.12) are not convenient
for mathematical analysis in real networks, since determining the ex-
act value of the neuronal input Λ from the stochastic variables is only
possible in fully connected, mean-field systems, as Λ = ωex − ωiy =
ω−s +ω+q, with ω± = (ωe ±ωi) /2. At this moment, we are just inter-
ested to see that

⟨
q
⟩

= 0 is a necessary condition in order to have a
fixed point, meaning that the same fraction of excitatory and inhibitory
neurons has to be active, i.e., that excitation and inhibition must be in
dynamical balance, a hypothesis that we used in our paper (Buendía
et al. 2019) just backed by numerical evidence. Let us compute the Ja-
cobian of the deterministic system (2.14), evaluated at the fixed point
⟨s∗⟩ = s0,

⟨
q
⟩

= 0.

Ĵ (s0,0) =
(
−1 +ω−

⟨
f ′ (Λ0)

⟩
ω+

⟨
f ′ (Λ0)

⟩
0 −1

)
. (2.15)

where
⟨
f ′ (Λ0)

⟩
≃ f ′ (⟨Λ0⟩) in mean-field systems, which can be easily

evaluated (Buendía et al. 2019). However, we do not need to assume
that fluctuations vanish in order to see that if ω− = 0 (the case we study
in Chapter 3), then all fixed points of the system are always stable.
However, the Jacobian matrix presented here is not diagonalizable, due
to the off-diagonal zero.

Let us compare these results with another remarkable model pro-
posed by Benayoun et al. (Benayoun et al. 2010). As the model by
Larremore et al., it presents binary state neurons, where inactive nodes
integrate neighbouring inputs Λ and activate with rate f (Λ). Active
nodes remain in that state for a typical time, decaying at a rate β. The
difference with the Larremore et al. model is that the inactivation pro-
cess does not depend on the neighbour’s state. This apparently inno-
cent variation between the models leads to great discrepancies in the
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macroscopic limit, remarking how small changes in individual cou-
plings can lead to completely different emergent macroscopic proper-
ties. The procedure for the analysis is the same we carried out before,
but now the rates are (slightly) modified to

Ω (E→ E − 1) =Eβ, (2.16a)
Ω (E→ E + 1) =[N (1−α)−E]f (Λ) , (2.16b)
Ω (I → I − 1) =Iβ, (2.16c)
Ω (I → I + 1) =[Nα − I]f (Λ) , (2.16d)

which leads to the Langevin equations

ẋ =− βx+ (1− x)f (Λ) +
√
βx+ (1− x)f (Λ)ξx (t) , (2.17a)

ẏ =− βy + (1− y)f (Λ) +
√
−βy + (1− y)f (Λ)ξy (t) , (2.17b)

which are actually very similar to the one derived for the Larremore et
al. model. There are just one key difference between the two, and it is
just the (1− x) term that multiplies the response function, annihilating
the second term at high activities. Making, as before, a change to the
variables s and q and taking averages we arrive to the deterministic
equations

⟨ṡ⟩ =− β ⟨s⟩+
⟨
(1− s)f (Λ)

⟩
, (2.18a)⟨

q̇
⟩

=− β
⟨
q
⟩

+
⟨
qf (Λ)

⟩
, (2.18b)

with a situation that is similar to the one at the Larremore model. Note
that for fully-connected, mean-field systems, higher order moments as⟨
qf (Λ)

⟩
≃

⟨
q
⟩
f (⟨Λ⟩). This condition constrain fixed points to lie in

⟨s∗⟩ = s0,
⟨
q
⟩

= 0 as before. The Jacobian for this deterministic system
is finally given by

Ĵ (s0,0) =
(
− [β + f (⟨Λ0⟩) + (1− s0)ω−f ′ (⟨Λ0⟩)] (1− s0)ω+

0 − (β + f (⟨Λ0⟩))

)
.

(2.19)
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As before, this system cannot be properly diagonalized, being again
a non-normal matrix. But in this case both eigenvalues can vanish,
leading to a saddle-node bifurcation, or a Bogdanov-Takens. What
Benayoun et al. (Benayoun et al. 2010) demonstrate is that collective
behaviour such as neuronal avalanches and large fluctuations can ap-
pear even without fine-tuning the system to critical bifurcations, just
by taking the balanced limit ω+ ≫ ω−. Note that, near a fixed point,
⟨Λ0⟩ = s0ω−/2, so if ω+ ≫ ω−, both diagonal entries of the Jacobian
are very small compared to the off-diagonal term. This means that any
fluctuation around the equilibrium will result into activity feedback,
a mechanism termed balanced amplification of fluctuations (Benayoun
et al. 2010). From the dynamical systems point of view, the balanced
amplification just brings Ĵ to be similar to a Bognadov-Takens normal
form (Benayoun et al. 2010; Cowan et al. 2016). For finite sizes, the am-
plification of fluctuations is able to drive the system out of the stable
manifold, generating large excursions around the phase plane. In the
limit N → ∞, fluctuations vanish, so the system (formally at a stable
fixed point) remains at equilibrium. In the thermodynamic limit the
only way to effectively generate critical dynamics is posing the system
at the Bogdanov-Takens bifurcation.

The balanced amplification of fluctuations is actually an explicit
manifestation of the non-potential shear that we mentioned in Chapter
1. Here it can be seen how shear, which results from the interplay
between balance and noise, can produce rich neuronal dynamics in the
Benayoun et al. model, and it has been shown to play an important role
in neuronal dynamics (Murphy and Miller 2009; Benayoun et al. 2010;
Hidalgo et al. 2012).

2.3.2 Wilson-Cowan model

The deterministic part of the model by Benayoun et al., under mean-
field assumptions, is called the Wilson-Cowan model. It was originally
derived by Wilson and Cowan in the early 70s (Wilson and Cowan
1972), and it has become one of the most relevant mesoscopic models
for mathematical neuroscience (Cowan et al. 2016).

The original derivation of the model is not based on stochastic mod-
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Figure 2.5: Dynamics of the Wilson-Cowan model. The Wilson-
Cowan equations display many different dynamical regimes. Here, a
single stable fixed point of no activity, stable oscillations, and bista-
bility between oscillations and a fixed point are shown –but there are
more possibilities. Parameters: ωee = 16, ωei = 12, ωii = 3, both
re = ri = 1, and Q = 0. The sigmoidal function used is S (x,x0, k) =
S̃ (x,x0, k)−S̃ (0,x0, k), with S (x,x0, k) = 1/ (1 + exp(−k (x − x0))). Sigmoid
parameters are x0e = 4, x0i = 3.7, ke = 1.3, ki = 2. From left to right, the
tuple (ωie, P ) is given by (15,0), (15,1.15), and (11.5,1) respectively.

els, but rather on arguments over some general dynamics of the neu-
rons and action potentials. No underlying physical models for the neu-
rons are necessary, which makes the equations a very general tool to
analyse mesoscopic neural regions. We reproduce here a very short,
conceptual derivation of the model, for completeness, redirecting the
interested reader to the seminal work of Wilson and Cowan (Wilson
and Cowan 1972).

Let us assume a population of neurons composed by both excita-
tory and inhibitory neurons. Suppose that all individuals have exactly
the same name of neighbours (in-degree k) pointing to them, and its
spiking threshold follows certain distribution. Then, under constant
excitatory input, the population fraction whose threshold is below the
input will spike. The response function of the system receiving an input
is given by

f (Λ) =
∫ Λ

0
Irh (ζ)dζ, (2.20)

where Irh (ζ) is the distribution of rheobase intensities8. Note that we

8The rheobase current is the minimum current that, applied for an infinite time,
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could have assumed, conversely, that all neurons have the same thresh-
old but a distribution of in-degrees, as long as the number of synaptic
inputs is large enough. Under adequate conditions for Irh (ζ), the re-
sponse function grows monotonically with the input, and it is usually
sigmoidal. Let us by x and y the proportion of cells that are instanta-
neously firing at a time t, as we did before, and assume that neurons
have a short refractory period, r. It is possible to obtain the number of
neurons that have already spiked and hence are not available for spik-
ing again until t + r, just by integrating x (t) from t − r to t. Therefore,
the fraction of active neurons at a time t+∆t is the product of the frac-
tion sensible to incoming spikes and their response function. For the
excitatory population,

x (t +∆t) =
[
1−

∫ t

t−r
x (t′)dt′

]
fe (Λe) , (2.21)

and an analogous equation holds for the inhibitory population. A
subindex e was added both to the sigmoid response function and its
input in order to be able to make differences among the populations.
When writing eq. (2.21), no correlation between the amount of
sensible neurons and fraction that responds to the input is assumed.
Although this includes in some sense equivalent the mean-field as-
sumption taken in the Benayoun et al. model above, these correlations
are more general and could be induced by also other mechanisms, as
adaptation regulating neuronal thresholds. The input to the neuron is
to be interpreted in the sense of (2.8), as

Λe (t) =
∫ t

−∞
dt′G (t − t′) [ceex (t′)− ceiy (t′) + P (t′)] , (2.22)

where cee and cei are the excitatory and inhibitory couplings to the
excitatory population, respectively, and P (t) is an external current.
We could stop here and use the equations in their current state, solv-
ing them numerically; however, further analytical progress is possible
by performing temporal coarse graining. The idea is to replace fast-
oscillating variables by their mean value, so a periodic function g (t)
with a period T ≪ r would be replaced by its average,

g (t) =
1
r

∫ t

t−r
g (t′)dt′. (2.23)

is able to elicit a response in the neuron at t→ +∞ (Izhikevich 2006).
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Coarse graining is applied in both equations (2.21) and (2.22). In
(2.21), this eliminates any oscillation faster than the timescale associ-
ated with the refractory period, changing

∫
x (t′)dt′→ rx (t). At the in-

put, we assume that the kernel G (t − t′) has a characteristic timescale,
so we can apply the same procedure. Examples of this are a pulse func-
tion (which leaves the integration between [t − τ, t]), or an exponential
decay with parameter τ . If, again, fast synapses are considered (τ ≪ 1)
it is possible to set

∫
G (t − t′)E (t′)dt′ → kx (t). The last step is to take

the left-hand side of equation (2.21), and Taylor expand to first order
around a small timestep,

x (t +∆t) = x (t) +∆t
dx
dt

+O
(
∆t2

)
. (2.24)

Putting all together we finally find the celebrated Wilson-Cowan
equations. Renaming x,y→ x,y again for clarity of notation,

ẋ =− x+ (1− rx)f (ωeex −ωeiy + pe) , (2.25a)
ẏ =− y + (1− ry)f (ωiex −ωiiy + pi) , (2.25b)

where all the parameters were rescaled as ωee = kcee, ωei = kcei , p = kP ,
and so on. The most remarkable feature of this derivation is that no un-
derlying model was assumed for the spiking neurons, and only simple
hypotheses about the behaviour of spiking dynamics were necessary.

The phase plane analysis of the model is more involved than in the
previous two-dimensional models, and a complete, formal bifurcation
diagram has been elusive for exactly 20 years since the publication by
Wilson and Cowan (Wilson and Cowan 1972), which was performed by
Borisyuk and Kirillov (Borisyuk and Kirillov 1992). The phase plane
for the Wilson-Cowan equations are two S-shaped nullclines, that can
intersect in different points. As it happens with other neuronal models,
the Wilson-Cowan equations are able to show excitability, hysteresis,
and oscillations, as depicted in Figure 2.5, but the Wilson-Cowan is
also able to exhibit more exotic behaviours. We reproduce, in Figure
2.6, the diagram by Borisyuk and Kirillov (Borisyuk and Kirillov 1992),
which displays a zoo of bifurcations, including some codimension 2
points. Among all the possible phases in the bifurcation diagram, the
authors found that a small particular region where stable fixed points
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Figure 2.6: Bifurcation diagram of the Wilson-Cowan model. Bifur-
cations are drawn by thick, coloured lines: blue, Hopf; red, saddle-
node; green, homoclinic. Different macroscopic regions are marked
with different colours: green, single stable limit cycle; red, bistability
between two stable equilibria; blue, a single stable equilibrium; and
purple, bistability between a limit cycle and a fixed point. The blue re-
gions are macroscopically very similar. Bogdanov-Takens bifurcations
are symbolized by empty circles, and a saddle-node-loop by an empty
square. Parameters are as in Figure 2.5. This figure was adapted from
(Borisyuk and Kirillov 1992).

and stable limit cycles coexist, stating that such a region “may be of
interest to neurophysiologists” (Borisyuk and Kirillov 1992). Almost
30 years later, one of the main results of this work is that this bifurca-
tion topology could be not only ubiquitous in many neuronal systems,
but indeed responsible for the critical avalanches and complex phe-
nomena in the brain. Although we will revisit and discuss this matter
in detail Chapter 4, let us remark that this is a theoretical hypothesis,
which needs to be studied in more models, as well as the necessary
experimental support.
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2.3.3 The “Landau-Ginzburg” approach

Another model which is of special relevance to this thesis is the recent
model proposed by di Santo, Villegas, Burioni and Muñoz (di Santo
et al. 2018a) in order to explicitly understand the role of critical
synchronization in the brain. The philosophy behind this approach is
to write the simplest possible parsimonious model that accounts for
activity and adaptation in the cortex. The idea is to write an equation
for the mesoscopic activity of the region in the same way Landau did
for equilibrium statistical physics, using just a low-order polynomial,
and complement this with an adaptation mechanism, that accounts for
the amount of neurotransmitters available to the region, which allow
the system to spike. The S-shape nullcline found in all these models,
including the Wilson-Cowan, suggest that a third-order expansion
for the activity is enough. Finally, the adaptation follows Tsodyks-
Markram short-term plasticity dynamics (Tsodyks and Markram
1997). The model for a single cortical region is

ρ̇ =(R− a)ρ+ bρ2 − ρ3 + σ
√
ρη (t) , (2.26a)

Ṙ =
1
τR

(ξ −R)− 1
τD
ρR, (2.26b)

where the only control parameter is ξ, the maximum allowed density
of calcium ions, and the noise has been chosen to be square root mul-
tiplicative noise, typical of non-equilibrium demographic processes
(Hinrichsen 2000). The system has an absorbing phase at ρ = 0, as well
as a fixed point ρ∗ , 0. The timescales τR and τD control the charge and
depletion dynamics, respectively. Let us focus now on the noiseless,
mean-field description of the model. In this case, the fixed points have
a complicated analytical form.

For ξ < a, the linear term of the activity equation is always negative.
This leads always to the absorbing phase ρ = 0 (as the linear term con-
trols the stability of points, see the pitchfork bifurcation in Chapter 1).
For ξ > a, the linear term can become positive for a while, allowing the
system to spike, discharge, and fall into the absorbing phase. While
in this phase, the resources will charge again, eventually moving the
system to the up branch again, re-starting the cycle. This can be seen
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Figure 2.7: Phase plane of the Landau–Ginzburg model. The meso-
scopic region presents both up and down states, as well as oscillations,
depending on the control parameter value. The oscillations turn to
bistability if the charge timescale is faster than depletion. Parameters:
a = 1, b = 1.5, τR = 103, τD = 102. From left to right, ξ = 0.8, ξ = 1.5,
and ξ = 5.0.

if we compute R∗ = τ−1
R ξ/

[
(τ−1
R + τ−1

D )ρ
]
. When the timescale separa-

tion is large enough, this becomes R∗ ≃ ∆ξ/ρ, with ∆ = τD /τR. If the
charge time is slower than the depletion, then R∗ ≃ 0, indicating that
the system will tend to deplete its resources. But when we are in the
absorbing state, ρ = 0, leading to R∗ = ξ/τR. Since ξ > a, the system
will be allowed to jump again into the active state, generating a limit
cycle. The cycle emerges at the bifurcation ξ = a, which is homoclinic9.
The limit cycle disappears through a Hopf bifurcation to a stable fixed
point in the up branch.

The main idea of the Landau-Ginzburg model was to couple many
of these units together through a simple diffusion mechanism. When
this is done, the collective dynamic of mesoscopic units change as a
function of the control parameter ξ. Di Santo et al. (di Santo et al.
2018a) demonstrated that single units, that behave as non-linear oscil-
lators, undergo a synchronization phase transition from synchronous
regular to asynchronous irregular states. At the critical point ξc, all
main features from criticality are recovered, as large susceptibilities in
the order parameter and scaling. When avalanches are measured mim-
icking the experimental protocol used in neuroscience (see Appendix
A), power-law distributed avalanches can be found, with critical expo-

9In (Buendía et al. 2020c) we said that this is a SNIC bifurcation, but a more
careful analysis revealed it was actually a homoclinic.
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nents compatible with the experimental observations (di Santo et al.
2018a).

2.4 Oscillations and phase reductions

The systems described above are written in terms of variables such as
membrane potentials, or collective neuronal activity. Although these
variables are very useful to understand the system dynamics, they do
not render much information about brain waves, i.e., about synchro-
nization of neurons.

Rhythmic oscillations found in neuronal images and EEG, as well
as spiking bursts in cultures, imply the recruiting of large numbers of
individuals spiking in consonance, meaning that the action potentials
of many individuals happen in a synchronous way (Buzsáki 2006). Sin-
gle neurons can spike periodically under a constant input current I (t)
(Izhikevich 2006; Kandel et al. 2000). If we couple many of these neu-
rons together, do their activity synchronize? But even at larger scales,
models are able to display this behaviour: limit-cycle oscillations in
the Wilson-Cowan model are a reflect of pulsating microscopic spik-
ing activity, regulated by inhibition; in the Landau-Ginzburg model,
the whole mesoscopic region displays periods of activity, followed by
quiescence when resources are depleted. If we couple several oscillat-
ing mesoscopic regions, under which conditions do they synchronize?

Our objective now is to review methods to reduce periodically spik-
ing neurons or regions to phase models, and then use the theory of
non-linear coupled oscillators to study synchronization phenomena in
the brain.

2.4.1 The theta-neuron

A very simple example to start the study of phase models is the
so-called “theta-neuron”, or the “canonical type-I Ermentrout-Kopell”
model (Ermentrout and Kopell 1986; Izhikevich 2006). We start, as
already discussed above, from the quadratic integrate-and-fire neuron,
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eq. (2.3), and assume that Vr = −θT ≃ 0. Then, the model reads

V̇ = V 2 + I (t) , (2.27)

with the additional reset rule V (t) = Vr when V (t) ≥ θT . If a constant
input current I (t) ≡ I is assumed, for I < 0 the membrane potential sta-
bilizes at V =

√
I , while if I ≥ 0, then V (t) spikes periodically. Solving

the differential equation, we see that V ∝ tan t, meaning that in absence
of the reset rule, the spike happens at V → +∞ and the potential grows
again from V → −∞. Therefore, the change of variables V = tan(ϕ/2)
is able to absorb the divergence and lead to

ϕ̇ = (1− cosϕ) + (1 + cosϕ) I (t) ≡ (I + 1) + (I − 1)cosϕ, (2.28)

which the canonical form of the SNIC bifurcation, with control pa-
rameter I . What Ermentrout and Kopell demonstrated in 1986 (Er-
mentrout and Kopell 1986) was that all neuronal systems close to the
spiking threshold could be approximated by this equation, in the spirit
of normal forms. The theta neuron has a clear advantage over the
quadratic integrate-and-fire neuron: the reset rule is not needed any-
more. The spike is produced exactly at ϕ = π. This also allow one
to perform analytical computations easily, such as the spiking period.
The equation can be readily integrated, obtaining an expression for
ϕ (t). Imposing ϕ (t) = ϕ (t + T ) it is possible to obtain the period T =
π/
√
I , following the expected scaling of the SNIC bifurcation.

If an additional leaky voltage −aV is introduced in the simplified
quadratic model, then (in a similar fashion to the membrane potential
of the Izhikevich model), the explicit expression for V (t) ∝ tan t can be
still obtained, so performing the same variable change we arrive at

ϕ̇ = (I + 1) + (I − 1)cosϕj − asinϕj , (2.29)

which is again a normal form for a SNIC transition, that takes place
at Ic ≃ a − 1. Therefore, for a > 1 we need larger currents to trigger a
spike. We could also wonder what would happen if we start from the
general equation of the non-linear oscillator ϕ̇ = ω + asinϕ and did
the reversal change of variables. The result is given by the equation
2V̇ =ω+2aV +ωV 2 where ω now makes the role of external input, but
it is also coupled to the quadratic term.
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2.4.2 More general phase reductions

The quadratic integrate-and-fire case is very simple, since it deals
with periodic signals in just one dimension, so an adequate change
of variable is able to render a phase reduction. However, for the
two-dimensional systems such as the Fithugh-Nagumo, the situation
gets more complicated. In general, one could be tempted to analyse
this problem just by changing the origin of coordinates to a point
inside the cycle10, and moving to polar coordinates. However, by
doing this we still have to retain both the amplitude and the angle,
which in many cases will not decouple; in higher dimensions, we
need all the equations to understand the behaviour of the system.
But a limit cycle is always a one-dimensional manifold, so a single
angular variable should be sufficient to describe the dynamics, once
we constrain ourselves to such a line. Once the system is posed at
limit cycle, angles can be chosen due to homeomorphism of the cycle
with a unit circle, so the phase corresponding to t = 0 is ϕ = 0 and the
phase corresponding to t = T is ϕ = 2π, linearly interpolating between
both values. It is possible to demonstrate that, if all the oscillators are
identical, then we can move a corotating frame of reference, so the
angular speed of each oscillator will be given by the fluctuation to the
global angular speed, ω. The procedure is done in detail in Appendix
B, and the result is given by

dϕj
dt

=ωj +
∑
i

cij sin
(
ϕi −ϕj +ψij

)
, (2.30)

which is nothing but the celebrated Kuramoto-Shinomoto model of
synchronization (Izhikevich 2006). Therefore, we see that this sim-
ple popular model arises from any general set of coupling limit cycles,
when the systems are assumed to interact weakly.

Another important remark that we could do at this point is that
phase-reduction procedure considered deals only with oscillators that
present a constant angular speed. This is because we just interpolated
linearly through the complete curve, completely ignoring that often
real oscillators tend to pass more time some parts of the cycle than

10Index theory can be used to demonstrate that at least one unstable equilibria
should be inside the cycle, which could be a good reference point.
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others. For example, the theta neuron for I ≳ 0 goes very fast near
ϕ = π, being very slow at ϕ = −π. The simplicity of this model al-
lowed us to obtain a variable change that is able to retain this non-
linear information. Although it could seem that the general method is
losing information, angular reductions are always one dimensional, so
a non-linear oscillator ϕ̇j = ω

(
ϕj

)
can be casted into a linear one with

arbitrary angular speed Ω by the chain rule

dϕ̃

dt
= Ω =

dϕ̃

dϕ
ϕ̇ =

dϕ̃

dϕ
ω (ϕ)→ ϕ̃ = Ω

∫
ω (ϕ)dϕ, (2.31)

paying the price of more complicated interaction terms Hij when per-
forming the changes of variables from ϕ to ϕ̃. Hence, there is no differ-
ence between using linear or non-linear phase models, and it reduces
to mathematical conveniences.

2.5 Synchronization of coupled oscillators

We finally review the mathematical background that will be used to
speak about synchronization dynamics in coupled neuronal systems.
We start by considering the classical Kuramoto model as an example to
develop the formalism, which will be applied later in Chapters 4 and
6 for more complicated, realistic cases.

2.5.1 The Kuramoto Model

We consider the classical Kuramoto model in mean-field in order to de-
velop our tools for studying coupled oscillators. This model presents a
synchronization transition, and its simplicity and generality has made
it the reference model for synchronizing behaviour in physics, biology
or chemistry (Pikovsky et al. 2003; Acebrón et al. 2005). The model
consists in a series of phase oscillators that move with a certain angu-
lar frequency, subject to (quenched or annealed) noise and modulated
by an attractive coupling. If the coupling is large enough, oscillators
may get together and synchronize, as sketched in Figure 2.8.
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We start by taking eq. (2.30) and setting ψij = 0, cij = J/N , and
obtaining the frequenciesωj from a distribution g (ω). Then, the model
we want to study is

ϕ̇j =ωj +
J
N

N∑
i=1

sin
(
ϕi −ϕj

)
. (2.32)

The oscillators become synchronized depending on the differences
in ωj due to the distribution g (ω) and the attractive coupling J . We
start its study by introducing the Kuramoto complex order parameter,

Z (t) = R (t)eiψ(t) =
1
N

N∑
j=1

eiϕj (t), (2.33)

which has R = 1 if all the oscillators are synchronized, and R = 0 if
all of them are completely asynchronous. The angle ψ is the average
global phase of the system –which is well-defined only for at least par-
tially synchronized systems. One could argue that Z = 0 not only on
desynchronized cases, but also when for example exactly half of the os-
cillators at a phase ϕ and the other half are at ϕ+π, but those cases are
usually unstable and can be analysed with the mathematical machin-
ery we review here. The coupling in equation (2.32) can be rewritten
using the order parameter, as

ϕ̇j =ωj + JRsin
(
ψ −ϕj

)
=ωj +

J
2i

(
Ze−iϕ +Zeiϕ

)
, (2.34)

where the bar stands for complex conjugate. The right-hand side of
the equation, despite looking more complicated, has the advantage of
retaining the order parameter in its complex form, a fact that we will
exploit shortly. Although some information can be obtained from this
change of variables, such as the existence of synchronous solutions,
it is not particularly useful for analytics. We consider then the ther-
modynamic limit N → +∞, and then study the density of oscillators
P (ϕ,ω,t), that is, the fraction of oscillators with angular speed ω with
phases in the interval [ϕ,ϕ + dϕ] at time t. This distribution fulfills∫ +∞

−∞
dω

∫ 2π

0
dϕP (ϕ,ω,t) =

∫ +∞

−∞
dωg (ω) = 1, (2.35)
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since at each time the total distribution of phases has to be g (ω), which
is normalized by definition. In the continuum, the complex order pa-
rameter can be computed as

Z (t) =
∫ +∞

−∞
dω

∫ 2π

0
dϕP (ϕ,ω)eiϕ. (2.36)

Note that in theory we should also modify eq. (2.32) in a similar
way, adding up all the integrals, but since the definition of the order
parameter has also changed equation (2.34) can be used just by omit-
ting its indices (Pikovsky et al. 2003). Now it remains to obtain an
equation for the density of oscillators. This is done through the conti-
nuity equation,

∂P
∂t

+
∂ (P ϕ̇)
∂ϕ

= 0, (2.37)

where ϕ̇ is given by eq. (2.34). After inserting ϕ̇ and simplifying, the
continuity equation for the Kuramoto model reads

∂tP = −ω∂ϕP −
J
2i

[
Ze−iϕ

(
∂ϕP − iP

)
+Zeiϕ

(
∂ϕP + iP

)]
. (2.38)

Solving the partial differential equation gives complete information
about the model. A particularly useful way to tackle this problem is
to expand the density P in Fourier series, which can be done since
P (ϕ,ω,t) = P (ϕ + 2π,ω,t) by definition. Writing

P (ϕ,ω,t) =
g (ω)
2π

+∞∑
k=−∞

pk (ω,t)eikϕ, (2.39)

and substituting into the continuity equation, it is possible to find an
equation for the evolution of each mode pk (ω,t). Note that Fourier
harmonics are given by

pk (ω,t) =
∫ 2π

0
dϕP (ϕ,ω,t)eikϕ, (2.40)

which reminds the definition of the Kuramoto order parameter. Ac-
tually, this suggests a generalization of the order parameter definition
to

Zk (t) =
∫ +∞

−∞
dω

∫ 2π

0
dϕP (ϕ,ω,t)eikϕ =

∫ +∞

−∞
dωpk (ω,t)g (ω) , (2.41)
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where we used the Fourier expansion and p−k = pk. These are known
as the Kuramoto-Daido order parameters (Pikovsky et al. 2003; Ott
and Antonsen 2008). Therefore, this relationship allow us to obtain Zk
from the harmonics pk. Ott and Antonsen observed in 2008 that the
ansatz

pk (ω,t) = [p1 (ω,t)]k , (2.42)

provides an exact solution to the Kuramoto model (Ott and Antonsen
2008). Later formal advances have shown that this is a solution of an
entire family of coupled oscillators, so for most cases the Ott-Antonsen
ansatz provides an exact, closed form for the distribution P (ϕ,ω,t) (Ott
and Antonsen 2008; Tyulkina et al. 2018; Goldobin et al. 2018; Mont-
brió et al. 2015).

If, additionally, we use the common assumption that g (ω) is a
Lorentzian distribution, then contour integration and the residue
theorem allow to explicitly integrate eq. (2.41) for k = 1,

Z (t) =
∫ +∞

−∞
dω

p1 (ω,t)σ

π
[
(ω −ω0)2 + σ2

] = p1 (ω0 − iσ , t) , (2.43)

as long as p1 (ω,t) is well-behaved. The only thing that remains is
to bring everything together and perform the long, boring computa-
tions. In summary, the method is as follows: we obtained the con-
tinuity equation, and expanded it using Fourier series, obtaining a
set of infinite differential equations ṗk, one per each mode; then, use
the Ott-Antonsen ansatz (2.42) to reduce the infinite set of differen-
tial equations to just a complex differential equation for p1 (ω,t), as
ṗk = kpk−1

1 ṗ1. And finally, assuming that g (ω) is Lorentzian, take com-
plex conjugates and set ω = ω0 − σi, to write equation for the usual
Kuramoto order parameter instead of the first harmonic. The resulting
(simple) equation for the Kuramoto order parameter is

Ż = iω0Z +
1
2

(J − 2σ )Z − JZ |Z |2 , (2.44)

which is the normal form of the Hopf bifurcation. As we discussed
in the first chapter, the equilibria corresponding to this normal form
are Z = 0, the asynchronous state, and a stable limit cycle with con-
stant amplitude, which is partial synchronization. The critical transi-
tion happens at Jc = 2σ . Note that the complex term iω0Z couples only
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Figure 2.8: The Kuramoto model. Oscillators move with angular fre-
quencies picked with a distribution with variance σ (or, conversely,
with homogeneous frequencies subject to white noise with variance σ ).
If the noise is large (left), the system will be synchronous. If the noise
is low (right), then the coupling starts to form synchronization clusters
that move together. At criticality (center) the mean synchronization is
zero, but fluctuations can still create clusters.

with the global phase, leading to ψ̇ = ω0, meaning that the synchro-
nized system rotates with the mean angular speed ω0.

2.5.2 Noisy oscillators

Although the analysis done above is very general, one could think that
it is unrealistic for our interest applications. Synaptic input is known
to be noisy by nature, and many neurons receive external inputs usu-
ally modelled as white noise. Therefore, reducing the study of syn-
chronization to deterministic systems does not seem to be useful. Let
us adapt the formalism also for stochastic systems. In order to do so,
we study a common noisy variant of the Kuramoto model (Acebrón et
al. 2005; Pikovsky et al. 2003),

ϕ̇j =ω0 +
J
N

N∑
i=1

sin
(
ϕi −ϕj

)
+
√

2σξj (t) , (2.45)

where all oscillators now share the same frequency ω0, subject to
white Gaussian noise

⟨
ξj

⟩
= 0,

⟨
ξi (t)ξj (t′)

⟩
= δijδ (t − t′) of strength σ .

The continuity equation is now given by the associated Fokker-Planck
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equation,
∂P
∂t

+
∂ (P ϕ̇)
∂ϕ

= σ
∂2P

∂ϕ2 , (2.46)

which is similar to the continuity equation above, but additive noise
enters as a diffusive term. We then can follow the procedure explained
above, expanding P in Fourier series and analysing the modes. This
case seems to be even easier than the preceding one, since the distribu-
tion g (ω) = δ (ω −ω0), and hence (2.41) automatically renders Zk = pk,
without the need of integration. Performing again all the whole proce-
dure as before leads again to (2.44).

At this point just could be tempted to think that the role of both
quenched and temporal noises is exactly the same, and that nothing
special happens in this case –just that the quenched noise was dis-
tributed by a long-tailed Lorentzian distribution, while here the noise
statistics are Gaussian.

However, numerical simulation will immediately point problems to
us. While in the deterministic system, the equation J = 2σ predicts the
location critical point with great accuracy, at the noisy system it fails
for large values of noise. This is because in the Kuramoto model, as in
any other deterministic system, the Ott-Antonsen is exact, but in noisy
system, it only renders an approximation which is correct up to order
O (σ ), which turn to be far away from the actual results when the noise
grows. Here we present some solutions for noisy systems (Tyulkina et
al. 2018; Goldobin et al. 2018).

First, one could wonder what the Ott-Antonsen ansatz means ex-
actly for the angle distribution. If we are to guess the functional form
of the solution, maybe it is just easier to try to write directly an ansatz
for P (ϕ,t) than for the Fourier harmonics. The most naive idea one can
think of is a Gaussian distribution, so the angle distribution could be
described using the global phase ψ (t) and its variance ∆ (t). In order
to fulfill periodicity in the angles, it becomes necessary to “wrap” the
distribution, by letting

P (ϕ,t) =
1

√
2π∆

+∞∑
k=−∞

exp
[
−

(ψ −ϕ + 2πk)2

2∆

]
, (2.47)

then we can use the definition of the Kuramoto-Daido parameters,
2.41, to obtain Zk, and then try to relate Zk recursively from lower
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harmonics. When we do this, we get

Zk = |Z |k
2−kZk , (2.48)

which is another possible ansatz for the oscillators, similar to the one
studied by Ott and Antonsen. The Ott-Antonsen ansatz, as Zk = Zk1
turns out to be nothing but the underlying assumption that the angles
are distributed in a Lorentzian, at any time11. The ansatz 2.48 was
(unwittingly) used by Zaks et al. (Zaks et al. 2003), to study a system
of non-linear oscillators, five years before Ott and Antonsen published
their method. Although the ansatz works better than the Ott-Antonsen
when the oscillators are very well synchronized, in general its results
are poorer.

So far, it seems that the best we can hope for is to get a clever ansatz
that allow us to get an approximate solution. Recently, a systematic
approach was derived by Tyulkina, Goldobin, Klimenko and Pikovsky
(Goldobin et al. 2018; Tyulkina et al. 2018), where they demonstrate
that the Ott-Antonsen ansatz is just the “first-order”, so we should look
for deviations from the manifold of Ott-Antonsen solutions. The way
to do this is defining a moment generating function,

F (k, t) =
⟨
exp

(
keiϕ

)⟩
=
∞∑
m=0

Zm (t)
km

m!
, (2.49)

so the Kuramoto-Daido parameter Zk =
⟨
eikϕ

⟩
can be obtained by mak-

ing derivatives, as

Zm =
∂mF
∂km

⏐⏐⏐⏐⏐
k=0

. (2.50)

Then, the infinite set of equations for the Kuramoto-Daido parameters
can be transformed into a partial differential equation for the moment-
generating function, F, analogously to the moment-generating func-
tion formalism studied in stochastic processes (Gardiner 2009). Al-
though this PDE is usually easier to tackle than the Fokker-Planck
equation directly, in most cases it does not turns out a very convenient

11Using the ansatz means that angles are Lorentzian-distributed regardless of the
g (ω).

85



2.5 Synchronization of coupled oscillators

approach. However, from the generating function it is possible to com-
pute the cumulants of the distribution, as

k
∂ logF
∂k

≡
+∞∑
m=1

ϑm (t)km. (2.51)

After a short computation, it is possible to see that the cumulants are
given by

ϑm = m
∂m logF
∂km

⏐⏐⏐⏐⏐
k=0

, (2.52)

which is the typical expression for the cumulants of a statistical dis-
tribution. Although it is difficult to find a closed expression for the
cumulants in terms of the derivatives of the generating function12, the
computation using the derivatives is easy –just tedious. The first cu-
mulants are given by

ϑ1 =Z1, (2.53a)

ϑ2 =Z2 −Z2
1 , (2.53b)

ϑ3 =Z3 − 3Z2Z1 + 2Z3
1 , (2.53c)

ϑ4 =Z4 − 4Z3Z1 − 3Z2
2 + 12Z2

1Z2 − 6Z4
1 . (2.53d)

Observe that when we choose the Ott-Antonsen solution, ϑ1 = Z1,
and all the other cumulants become zero. Note that even when the
ansatz gives a value for all orders in Zm, all of them contribute just to
first order in ϑm. Then, using the second approximation with ϑ1,ϑ2 , 0
does not mean to neglect from Z3 –since the Ott-Antonsen already
takes in account these orders– but to include corrections to the assump-
tion of Lorentzian distributed angles. Actually, it is possible to explic-
itly identify P (ϕ,t) = POA (ϕ,t) + PC (ϕ,t), where POA is the Lorentzian
distribution assumed for the Ott-Antonsen solution, and PC encodes
the corrections (Goldobin et al. 2018). In this thesis, we will test and
compare for the first time (up to my knowledge) the predictions ansatz
in different kind of bifurcations for a system noisy non-linear oscilla-
tors. This computations will be carried out in Appendix C.

12Which can be done using Faà di Bruno formula.
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Chapter 3

Neuronal inhibition:
the Jensen’s force

"A man will be imprisoned in a room with a door that’s unlocked and
opens inwards; as long as it does not occur to him to pull rather than
push."
- Ludwig Wittgenstein.

Our objective in this chapter is to shed light on the effect of in-
hibitory mechanisms in the brain, as well as their possible relations
with synchronization. In order to do it so, we study in detail a model
originally proposed by Larremore et al. (Larremore et al. 2014), con-
sisting in a network of excitatory and inhibitory units. By simplifying
some of the model assumptions, we uncover the roots of the the asyn-
chronous irregular state in balanced networks, a fluctuation-driven
mechanism we termed Jensen’s force. At the end, we argue why this
is an important concept for both theoretical and experimental future
research.

3.1 Inhibition, balance and synchrony

Many simple abstract models for activity propagation are built upon
networks of excitatory units. Paradigmatic example of spreading ac-
tivity include epidemic dynamics and information transmission on the
internet (Serazzi and Zanero 2004; Pastor-Satorras et al. 2015). How-
ever, there are many biological systems that cannot be modeled using
just excitatory units. Nodes that repress further activations are essen-
tial components of neuronal circuits in the cortex (Wilson and Cowan
1972; Isaacson and Scanziani 2011; Buendía et al. 2019), as well as
of gene-regulatory, signaling, and metabolic networks (Ozbudak et al.
2004; Davidson and Levin 2005).
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In general, systems where inhibition is present posses a richer dy-
namical behaviour, including the possibility of limit cycles and collec-
tive oscillations. An example is the Wilson-Cowan model reviewed in
the last chapter (Cowan et al. 2016). These regimes have been also
studied experimentally (Chen and Dzakpasu 2010; Poil et al. 2012;
Denève and Machens 2016). More in general, inhibition sheds light on
the problem of dynamical range in neuroscience: each neuron in the
cortex is connected to many others, but individual synapses are rela-
tively weak, so that each single neuron needs to integrate inputs from
many others to become active; for excitatory-only networks, this leads
to a first-order (discontinuous) phase transition between a quiescent
and an active phase (Isaacson and Scanziani 2011), so the network is ei-
ther quiescent or almost saturated (Buendía et al. 2019). The existence
of such a transition would severely constrain the set of possible net-
work dynamical regimes, and hence reducing the number of possible
responses to different inputs. The role of inhibition in allowing richer
dynamical ranges in the real cortex has been already empirically stud-
ied (e.g., in (Pouille et al. 2009; Liu et al. 2011)) where inhibition leads
to a continuous transition, allowing for smaller populations to become
active. This is consistent with the well-known empirical fact that neu-
rons in the cerebral cortex remain slightly active even in the absence
of stimuli (Softky and Koch 1993; Abeles 1991; Arieli et al. 1996). In
such a state of low self-sustained activity neurons fire in a steady but
highly-irregular fashion at a very low rate and with little correlations
among them. This is the so-called asynchronous state, which has been
argued to play an essential role for diverse computational tasks (Rubin
et al. 2017; Denève and Machens 2016; Sippy and Yuste 2013).

The current scientific consensus is that such an asynchronous ir-
regular state emerges from the interplay between excitation and in-
hibition, and, in particular, from a balance between both. Balanced
excitatory-inhibitory (E-I) networks present in average a very small
input to each individual node, and they have been first predicted by
models (Brunel 2000; Brunel and van Rossum 2007; Vreeswijk and
Sompolinsky 1996; Vreeswijk and Sompolinsky 1998) and later em-
pirically observed (Shu et al. 2003; Treviño 2016; Haider et al. 2006;
Dehghani et al. 2016; Barral and Reyes 2016).

In spite of solid theoretical and experimental advances, many as-
pects of the E-I asynchronous irregular networks are not still fully
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understood (Buendía et al. 2019). For instance, there has been con-
troversy regarding whether irregular, low activity can be sustained in
the absence of external inputs to the system. Although it has been ar-
gued that external inputs from stimuli or other brain areas are required
in order to sustain the asynchronous irregular phase (Destexhe 2009),
recent approaches have reported situations where the system spiking
alone is enough to maintain the activity (Borges et al. 2020). Further-
more, it is still not clear whether the asynchronous states can present
low levels of activity (Destexhe 2009; Kriener et al. 2014; Borges et al.
2020).

From the point of view of statistical physics, these problems can be
summarized in one question: is the asynchronous state a well-defined
macroscopic phase, as the quiescent and active phases? Or does need
external input in order to be stable? If it constitutes a novel phase, what
are the phase transitions at its boundaries? Models such as the classical
model by Brunel (Brunel 2000) predict phase boundaries between syn-
chronous regular and asynchronous irregular phases –under the pres-
ence of external stimuli. Understanding these boundaries could and
shed light on the criticality hypothesis, which is the main objective of
this thesis. In particular, we are interested in the interface between
synchronous and asynchronous transitions, so understanding how the
asynchronous irregular state emerges could be of great value for us.

In order to tackle this problem, we study a simple neuronal stochas-
tic model in an attempt to construct a parsimonious approach for E-
I networks. We demonstrate, both analytically and computationally,
that inhibitory interactions in combination with sparse networks lead
to a stable, self-sustained phase of low activities, which lies between
the conventional quiescent and active phases. Remarkably, this new
phase emerges from fluctuations into node inputs owing to the com-
bined effect of inhibition and network sparsity. The low-activity inter-
mediate phase (LAI phase) shares all its fundamental properties with
asynchronous states, so we argue that the model constitutes the sim-
plest possible statistical-mechanics representation of asynchronous en-
dogenous cortical activity (Buendía et al. 2019).
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3.2 Jensen’s force and asynchronous states

In an engaging paper by Larremore et al., it was argued that inhibi-
tion induces “ceaseless” activity in networks with excitation and inhi-
bition (Larremore et al. 2014). This is a counterintuitive result, since
inhibition does not “generate” activity. Though it was already briefly
discussed in Chapter 2, here we give all the detailed computations not
only under the mean-field approximation, but for any network topol-
ogy, shedding light on the dynamics of the asynchronous irregular
state, remarking the role of sparsity in neuronal systems.

3.2.1 Mean-field vs sparse networks

The simplest approach to capture the basic elements of E-I networks
are two-state neuron models (Vreeswijk and Sompolinsky 1996; Rubin
et al. 2017). We work here with a model recently proposed by Lar-
remore et al. (Larremore et al. 2014), but simplifying the ingredients
relative to network topology. The network has N nodes or neurons,
where a fraction α is inhibitory, and the rest are left as excitatory. In
simulations we take fixed α = 0.2, as observed in experiments (Sori-
ano et al. 2008; Barral and Reyes 2016). We consider the connectivity
graph to be an undirected hyperregular network, meaning that each
node will have exactly k neighbours, but also that each of them receives
exactly kα inhibitory connections and k (1−α) excitatory ones. A small
network is shown in Figure 3.1. The steps followed to construct such
networks are the following:

1. Two random regular networks, one purely excitatory and one
purely inhibitory are generated, with connectivities k (1−α) and
kα, respectively.

2. Then, the inhibitory nodes need still k (1−α) links in order to
have k in total. Therefore, for each inhibitory node, k (1−α) ex-
citatory nodes are randomly chosen. The inhibitory node is mu-
tually connected with the chosen excitatory ones. An excitatory
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Figure 3.1: An example of hyper-regular network. Hyper-regular net-
work with N = 20 nodes and connectivity k = 5. Orange nodes are
excitatory, while green ones are inhibitory. The out- and in- connectiv-
ity for a particular node are also displayed. Note that when the node
is mutually connected to five other neurons, the out-connection for the
inhibitory node is excitatory, while the in-connection is inhibitory.

node is susceptible to be picked if it has less than k links (so it still
needs inhibitory inputs), and the link is not repeated. This simple
procedure can get stuck at the end, meaning that it is sometimes
not possible to fulfill all the requirements. To avoid such a pit-
fall, the network is restarted after a large number of unsuccessful
attempts to generate the links.

The state of each neuron is modelled by a Boolean variable, being either
active when si = 1 and inactive when si = 0. For simplicity, time t is
chosen to advance in discrete steps. At each step, each node i integrates
the activity of its neighbours, becoming active at t+1 with a probability
Pi given by

Pi ≡ f

⎛⎜⎜⎜⎜⎜⎜⎝Λi =
1
k

N∑
j=1

Aijsj (t)

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 Λi < 0
Λi 0 ≤Λi ≤ 1
1 Λi > 1

, (3.1)

where f (Λi) is a transfer function of the input Λi received by the i-
th node, and Aij is the weighted adjacency matrix of the graph. For
simplicity, we set Aij = +γ for excitatory connections, and Aij = −γ
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Figure 3.2: A simple model for inhibition. A. Sketch of the network
dynamics. The yellow node receives (weighted) input from the active
neighbours (filled circles), and activates following the transfer function
shown below. B. Average activity in a mean-field network consisting of
N (1−α) excitatory nodes, exhibiting a first-order first transition be-
tween the quiescent and the fully active states at γec = 1/ (1−α). C. As
before, but now we add Nα inhibitory nodes. The phase transition is
displaced to the point γ = 1/ (1− 2α).

for inhibitory ones. Two disconnected nodes have Aij = 0, and self-
connections are not allowed. The model is kept purposely simple in an
attempt to reveal the basic mechanisms of its collective behavior, but
more complex possibilities will be explored later in order to verify the
robustness of the results (Buendía et al. 2019).

Let us start again by the simplest case, a mean-field approach. In
Chapter 2, the Langevin equations for the system were derived in de-
tail. Let us remark that in contrast with the notation chosen in Chap-
ter 2, the fraction of active excitatory and inhibitory neurons x = E/N
and y = I/N are used instead of the variables x = E/ [N (1−α)] and
y = I/ (Nα). In this way, the actual activity of the system is given just
by s = x + y. From the microscopic rates it is possible to obtain the
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Langevin equations for the fractions x,y, and then perform the change
of variables s = x + y and q = x − y, and average to eliminate the noise.
The mean-field equation for the average activity s ≡ ⟨s⟩, q ≡

⟨
q
⟩

is given
by

ṡ =
⟨
f (Λ)

⟩
− s, (3.2a)

q̇ =(1− 2α)
⟨
f (Λ)

⟩
− q. (3.2b)

As we argued in our introduction of the model in Chapter 2, in the
steady state excitation and inhibition become spontaneously balanced,
which lead to xα = y (1−α). As a consequence, in the fully-connected
the input to a neuron can be written as ⟨Λ⟩ = γq = γ (1− 2α)s. In the
thermodynamic limit, the mean-field assumption allows us to disre-
gard the fluctuating input,

⟨
Λ2

⟩
= ⟨Λ⟩2. In this regime, equation (3.2)

can be simplified and

ṡ = f (γ (1− 2α)s)− s (3.3)

is exact. If γ is low, then f (⟨Λ⟩) = ⟨Λ⟩ and the only fixed points are
the quiescent and saturated states, s∗ = 0 and s∗ = 1 respectively. If
γ is large enough, then f (⟨Λ⟩) = 1 and the saturated state is the only
stable equilibrium. The quiescent phase is stable below the critical
value γc = 1/ (1− 2α), while at the transition point γ = γc both states
are marginally stable. Therefore, the system experiences a first-order,
discontinuous phase transition at γc. Note that as we introduce inhibi-
tion in the system, the coupling γc needed to stabilise the active phase
grows, as one could have expected intuitively. The nature of the tran-
sition is, however, independent of the fraction α of inhibitory neurons.

Let us move from fully-connected, mean-field populations, to sim-
ulations of the model in large, sparse networks. These reveal a richer
phenomenology, in comparison with the mean-field case. Figure 3.3
shows the phase diagram obtained after averaging several runs, which
is richer in comparison with the mean-field analysis. As the network
connectivity k is reduced, the phase transition becomes progressively
smoother, and a novel phase where the overall phase activity is nei-
ther 0 or 1 emerges. This intermediate phase does not appear when
only excitatory nodes are considered, meaning that it has its roots in
inhibition.
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Figure 3.3: Phase diagram of the Larremore et al. model. The av-
erage value of activity (top) and its variance (bottom) across runs for
the E-I hyperregular network is plotted against the control parameter,
the coupling γ between nodes. The variance presents two peaks, in-
dicative of phase transitions: one comes from the mean-field transition
γc, while the other converges to the excitatory-only prediction γec as
we approach the thermodynamic limit (see inset). Between both tran-
sitions, we find a low-activity phase, not previously predicted by the
mean-field approach. Parameters: N = 16000, α = 0.2. Results were
averaged over 104 MonteCarlo steps, across 103 runs.

In order to assess the variability of the network, we measured the
ensemble variance σ2 across simulations. First, we compute the av-
erage activity over a long time window, obtaining an average value
s. We then compute averages and variance over the set of s obtained
in different realizations (see Fig. (3.3)). The variance displays two
marked peaks, which suggest the presence of two phase transitions
(Binney et al. 2001; Henkel et al. 2008). The first corresponds to an
absorbing-active transition from the quiescent to the LAI phase. The
exact location of this transition, denoted by γec , depends on the sys-
tem size. When the thermodynamic limit N → ∞ is taken, it ap-
proaches to the location of the excitatory-only mean-field transition
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with N (1−α) units, γec = 1/ (1−α) (see Fig. 3.2) , which justifies the
notation with superindex e. On the other hand, the second peak lies at
γc = 1/ (1− 2α), which is the same location of the mean-field disconti-
nuity for the fully connected networks. These two transitions delimit
the LAI phase (Buendía et al. 2019). It is also possible to analytically
locate the saturation point γsat, at which all network nodes become ac-
tive. When we approach the mean-field limit (as k → ∞) both points
γec ,γ

sat converge to γc making the transition discontinuous.
In order to understand the novel LAI phase, it is essential to realise

that in the sparse connectivity case, the input received by a given node
does not necessarily take its mean-value, being a stochastic variable,
and thus making necessary to consider eq. (3.2), rather than its mean-
field counterpart (Buendía et al. 2019). It turns out that to compute the
average

⟨
f (Λ)

⟩
, one only needs to determine the probability distribu-

tion of the inputs. Assuming that all nodes are statistically equivalent
(since we are in a hyperregular network), then one only has to focus
on the number of active neighbours of the node. If j is the number of
active excitatory neighbours and l is the number of active inhibitory
ones, then the input is just given by Λ = γ (j − l) /k. Therefore, in order
to obtain the distribution p

(
Λjl

)
it suffices to obtain the probability

of picking active neighbours. In the original work of Larremore et al.
(Larremore et al. 2014) the approach is to work with the network archi-
tecture, thus analysing the spectral properties of the adjacency matrix.
Instead of using the “quenched” architecture, we propose to simplify
even more the problem: consider that at each time step, the node ran-
domly selects k (1−α) excitatory nodes and kα inhibitory ones, i.e., an
“annealed” version of the original model. As it can be seen in Fig. 3.4,
numerical computations confirm that annealed and quenched (hyper-
regular) versions of the model are exactly equivalent, and can be used
interchangeably (Buendía et al. 2019).

The advantage of the annealed version is that it simplifies the ana-
lytical computations of the averages. Let us assume that of the k nodes
randomly chosen, n turn out to be inhibitory. Hence, if we denote by
p (j |k −n) the probability of finding j active excitatory nodes out of k−n
excitatory ones, and do the same with the inhibitory population, then
p
(
Λjl |n

)
= p (j |k −n)p (l|n). If the average activity of the network at

this time is s (t), then a random node will be active with probability
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Figure 3.4: Comparison between annealed and quenched networks.
The simulation results are marked with symbols, while the analytical
solution is drawn in a black line. The agreement between both sets of
data with analytical results is excellent. Parameters: k = 40,N = 16000.
Analytical solution was evaluated solving eq. (3.2), evaluating exactly⟨
f (Λ)

⟩
via the numerical computation of the sum eq. (3.5).

s (t), regardless of its type due to the balance condition. Therefore, the
probability p (l|n) is given by the binomial distribution,

p (l|n) =
(
n
l

)
sl (1− s)n−l , (3.4)

and the same goes for p (j |k −n). Finally, the probability to find an
arbitrary input can be readily written as

p
(
Λjl

)
=

k∑
n=0

δn,kαp
(
Λjl |n

)
=

(
kα
l

)(
k (1−α)

j

)
sj+l (1− s)k−j−l , (3.5)

where the first Kronecker delta is introduced because the number of in-
hibitory nodes that we pick in every timestep is fixed. Now we see that
the probability to obtain certain input at the microscopic level depends
only on the average activity of the network, so p

(
Λjl

)
≡ plj (s). Using

eq. (3.5) it is possible to evaluate any averages involving functions of
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the input. In particular,

⟨Λ⟩ =
k−n∑
j=0

n∑
l=0

plj(s)Λjl = γ̃ks(1− 2α) = γs(1− 2α), (3.6a)

⟨Λ2⟩ =γ̃2
[
ks2

(
(1− 2α)2k − 1

)
+ ks

]
, (3.6b)

where γ̃ = γ/k in order to make the notation simpler. Then, input
fluctuations can be analytically computed as

σ2 (Λ) = γ̃2ks(1− s). (3.7)

Note that the variance scales as σ2 (Λ) ∼ 1/k, meaning that fluctu-
ations in the input go to zero in the mean-field limit where k → +∞.
Actually, the standard deviation scales as k−1/2, as expected from the
central limit theorem, a result often found in the balanced network lit-
erature (Vreeswijk and Sompolinsky 1996; Barral and Reyes 2016). The
activity s = 1/2 maximizes fluctuations, coinciding with the mean-field
situation at γ = γc.

Given the probability eq. (3.5) it is possible to evaluate
⟨
f (Λ)

⟩
. In

this case, the non-linearity of the transfer function prevents us from
obtaining a closed form, although the sum can be numerically com-
puted with ease. The numerical solution to equation (3.2) is shown in
Fig. 3.4, and it fits exactly the simulation results. Therefore, this ap-
proach, taking in account all fluctuations, is able to solve exactly the
problem of the emergence of the novel LAI phase.

Moreover, the critical points can be obtained analytically, by Taylor
expanding eq. (3.2) in order to obtain information about the behaviour
of the system near s∗ = 0 and s∗ = 1. Let us start near the quiescent
phase. Equation (3.5) contains the term sj+l(1 − s)k−j−l , so for k large
enough and j + l ≥ 2 the term (1 + s)k−j−l ∼ O

(
s2

)
. Then, the only pairs

(j, l) that contribute to first order in activity are (0,0), (1,0), and (0,1).
Noting that f (Λ00) = f (Λ01) = 0, we get

⟨f (Λ)⟩ ≃ f (γ̃)
(
n
0

)(
k −n

1

)
s (1− s)k−1 ≃ ksf (γ̃)(1−α) +O

(
s2

)
. (3.8)

When this result is plugged into eq. (3.2), a simple bifurcation
analysis shows that the quiescent state loses its stability at γ = γec =
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1/ (1−α). After the bifurcation, the activity tends to increase, render-
ing the first-order analysis useless, except near γec . For values of the
coupling slightly larger than the critical point, the activity scales as
s ∼ 1/k, in accordance of what was observed by Larremore et al. (Lar-
remore et al. 2014).

For the saturation of the activity it is possible to follow the same
procedure near the point s∗ = 1. The pairs that contribute to first order
around this value are (k −n,n), (k −n− 1,n), and (k −n,n− 1). Observe
that f

(
Λjl

)
is non-vanishing for the three terms, so now we have to

deal with

⟨f (Λ)⟩ = f (Λ0) [1 + k(1− s)] + (1− s)(k −n)f (Λ−) +nf (Λ+) (3.9)

where we have defined f (Λ0) ≡ f [γ̃(k − 2n)] and f (Λ±) ≡ f [γ̃(k − 2n± 1)].
Thus, depending on the synaptic strength, some of the transfer func-
tion terms may saturate, becoming 1. If γ > γc, then always
f (Λ0) = f (Λ+) = 1, and the bifurcation analysis gives us the value at
which the fixed point s∗ = 1 loses stability,

γsat =
1− k(1−α)

(1−α)− k(1−α)(1− 2α)
, (3.10)

which coincides accurately with numerical results. Finally, if none of
the transfer functions saturate, we recover again the expression of γc.
Thus, in contrast with mean-field expectations there exists a whole in-
termediate region, γec < γ < γsat, where activity does not vanish nor
saturate. Such a region emerges as a consequence of input fluctuations
and, hence, stems from network sparsity (Buendía et al. 2019). When
inhibition is not present, i.e., when α = 0, then γec = γsat and the inter-
mediate region vanishes.

3.2.2 Jensen’s force

If we want to understand the origin of the LAI phase beyond the per-
turbative analysis, we must notice that the difference between the exact
result and the mean approximation is just that

⟨
f (Λ)

⟩
, f (⟨Λ⟩). Then,

the non-trivial effects in the sparse network stem from the difference
between both, as

F(γ̃ , s) ≡ ⟨f (Λ)⟩ − f (⟨Λ⟩) . (3.11)
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Figure 3.5: Phase diagram as a function of the connectivity. Horizon-
tal dashed lines indicate the position of the discontinuous transition in
mean-field, both for only excitatory populations and for E-I systems.
Background colour codes average simulated activity. The curve γsat (k)
is obtained from eq. (3.10), while points are simulation-obtained val-
ues for comparison. The curve γec (k,N ) is obtained by interpolating
simulation values, and it gives the transition from the quiescent to LAI
phases. Note that formally γec (k,N →∞) = γec , but as we approach the
mean-field limit larger sizes are needed to appreciate this effect. Sys-
tem size for all simulations was N = 16000.

Since the terms in the right hand are functions of the activity s, then
F (γ̃ , s) can be interpreted as a stochastic force. We showed above that
the fluctuations of inputs to any given node scale as σ ∼ k−1/2, as ex-
pected by the central limit theorem. If the transfer function f was lin-
ear, then we would have ⟨f (Λ)⟩ = f (⟨Λ⟩), but if f was a convex1 func-
tion, then Jensen’s inequality of statistics implies that ⟨f (Λ)⟩ > f (⟨Λ⟩).
Note that indeed the transfer function f is convex near the origin, due
to its definition as a piecewise function where f (Λ ≤ 0) = 0, and con-
cave near Λ = 1, since it saturates as f (Λ ≥ 1) = 1. Then, for low inputs,

1Here “convex” means with the positive second derivative, as in y = x2.
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(for convex functions)

Figure 3.6: Origin of the Jensen’s force. The input received by a node
in the network is a random variable distributed with mean ⟨Λ⟩ and
standard deviation σ (Λ) ∼ 1/

√
k, sketched below the axes. The distri-

bution is mapped through the transfer function f (Λ); since the trans-
fer function is convex at the origin, the mapping for low inputs fulfills
Jensen’s inequality –so f (⟨Λ⟩) (blue) is mapped below

⟨
f (Λ)

⟩
(red), due

to negative inputs mapping all to zero. The inset shows the Jensen’s
force F(γ = γc, s) for different connectivity values.

it is clear that F (γ̃ , s) > 0, while for large inputs, F (γ̃ , s) < 0.
For this reason, we propose to call F (γ̃ , s) Jensen’s force. This force is

positive for low values of the inputs, and hence responsible for desta-
bilizing the quiescent state, pushing activity to grow, and generating
the LAI phase. On the other hand, when the input is high and the
transfer function is near saturation, then the concavity of f causes a
negative Jensen’s force that decreases the activity, justifying the reduc-
tion of the activity near γc with respect to the mean-field predictions
(see Figure 3.6). However, note that both phases, s = 0 and s = 1, are
absorbing when stable, so the system will stay in them without fluctu-
ations if they are reached. In general, Jensen’s force can be computed
numerically, as in Fig. 3.6, where it can be seen how its magnitude de-
creases as the connectivity grows. In some cases, it is possible to obtain
an analytical closed form for F (γ̃ , s). We will show an example later,
generalising our results for different shapes of the transfer functions.
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Figure 3.7: Avalanche size and durations for 2D systems. The expo-
nents are those predicted by the directed percolation universality class.
Avalanches present excellent finite size scaling. Lattice construction is
as shown in the leftmost inset, with excitatory neurons being orange,
and inhibitory neurons being green.

Summing up, the sparsity-induced Jensen’s force is responsible for
the emergence of a LAI phase in E/I networks below the mean-field
critical point, γc as well as for a reduction in the overall level of activity
with respect to the mean-field limit in a region above γc (Buendía et al.
2019).

3.2.3 The boundaries of the LAI phase

The LAI phase is surrounded by two phase transitions, as demon-
strated by the variance peaks in Figure 3.3. At the leftmost one, γec ,
an absorbing-active transition takes place. We performed standard
avalanche analysis for non-equillibrium systems, as explained in the
first chapter and Appendix A: the absorbing state was perturbed
with a small amount of activity –making active just one excitatory
node– and analysed the statistics of duration and size to return to the
quiescent phase.

Numerical experiments reveal that at the quiescent-active critical
point γec , the system displays scale-free distributed avalanches, with
exponents compatible with those of the unbiased branching process
(Henkel et al. 2008; di Santo et al. 2017). Actually, the critical expo-
nents obtained at this transition in lower dimensional networks (such
as the two-dimensional lattice) are compatible with those of directed
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percolation universality class (Hinrichsen 2000; Henkel et al. 2008).
However, the model does not present correlation among different
avalanches, which is typical of experimental settings (Bellay et al.
2015). On the other hand, no sign of scale-free critical avalanches
could be found at the second point γc; this could be explained from the
fact that this second transition becomes discontinuous in mean-field.

It is important to remark that the analysis performed here was the
formal one employed in non-equillibrium physical systems, while in
neuroscience the experimental procedure is different (see Appendix
A). Therefore, comparing both procedures is essential in order to un-
derstand avalanche dynamics, and rule out any actual link with the
experiments.

3.2.4 The asynchronous irregular state

It is possible to demonstrate that the novel LAI phase represents the
so-called asynchronous irregular state in cortical networks. This state
is characterised by several key features, which include the following:
large variability, as measured by the coefficient of variation (see Ap-
pendix A) (Softky and Koch 1993); the average Pearson correlation
among pairs of neurons decays with the system size, reflecting a lack
of coherent behaviour (Destexhe 2009; Renart et al. 2010; Harris and
Thiele 2011); and there is a short time lag between the temporal se-
ries of excitation and inhibition, usually known as E-I lag. This lag
happens because excitation tends to increase activity, just to be rapidly
compensated by inhibition. In this way, inhibition acts as a regulatory
mechanism, actively decorrelating neuronal populations and stabiliz-
ing the activity, as it was first theoretically predicted (Ginzburg and
Sompolinsky 1994; Brunel and Wang 2003; El Boustani and Destexhe
2009; Renart et al. 2010) and later confirmed by experiments (Okun
and Lampl 2008; Sippy and Yuste 2013).

The LAI phase displays all these key features, as shown in Figure
3.8. In particular, the coefficient of variation is slightly over unity at
the LAI phase, but vanishes both in the quiescent and active phases.
More complex network topologies or transfers functions could help to
obtain larger values of the CV, close to those observed in experiments
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Figure 3.8: Features of the asynchronous irregular state. (A) Tempo-
ral series of the activity of both excitatory and inhibitory populations.
The zoom shows how excitation slightly precedes inhibition. (B) Co-
efficient of variation as function of the coupling strength; high values
(CV ∼ 1) are obtained only in the LAI phase. (C) Cross-correlation
CC (τ) of the excitatory and inhibitory time series. Maximum corre-
lation, which is close to unity, is reached at τ = −1, showing that the
inhibitory population lags behind the excitatory one. (D) Average pair-
wise correlations are very small and tend to decrease with system size,
as shown in the inset. Computations were performed for a network
withN = 16000 nodes, during 104 time steps; pairwise correlations are
computed sampling 500 random pairs, averaging over 1000 different
networks.

(Bellay et al. 2015). As demonstrated by the cross-correlation, there
is also an excitation-inhibition lag of just one timestep, so inhibitory
neurons tend to follow excitatory activity delayed by just one step. Fi-
nally, average correlation between any pair of neurons in the system is
measured is very small, and tends to decrease with the system size as
P C ∼ 1/N , implying that at the thermodynamic limit neuronal spiking
is completely decorrelated.

Moreover, in agreement with the original claim for asynchronous
states (Vreeswijk and Sompolinsky 1996; Vreeswijk and Sompolinsky
1998), we verified that the dynamics is chaotic exclusively at the LAI
phase (Buendía et al. 2019). In order to do that, we analysed the dy-
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Figure 3.9: Damage spreading experiment. (a) The branching pa-
rameter B > 1 only in the LAI phase, meaning that the intermediate
phase has chaotic dynamics. (b) The average Hamming distance used
to obtain the branching parameter. Remarkably, maximum distance is
reached at with the maximum situated at γc, while both quiescent and
active phases have a distance close to zero.

namics of a damage spreading process. Two replicas of the model
are created, and one of them is slightly perturbed. Both are simu-
lated at the same time, computing the Hamming distance H between
them2. The Hamming distance is averaged over many realizations of
the model, allowing us to obtain the branching parameter B. If B > 1,
perturbations tend to grow, meaning that the network is posed at a
chaotic state, while if B < 1 the network tends to eliminate the pertur-
bations with time. The value B = 1 is a critical point. The result of
these measures is shown in Figure 3.9, where indeed a value B > 1 is
obtained all across the LAI phase. Therefore, we find chaotic behaviour
as suggested for the asynchronous irregular states. The Hamming dis-
tance at the LAI phase has values compatible with those of the net-
work activity s, meaning that after some time the system decorrelates
completely. Thus, in synthesis, all the chief features of cortical asyn-
chronous states are also distinctive and exclusive characteristics of the
LAI phase (Buendía et al. 2019).

2Given two strings, the Hamming distance is the number of positions at which
both strings have different symbols.
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3.3 Model Generality

3.3.1 Network balance

Is it possible to maximize the span of the LAI phase? If so, asyn-
chronous irregular states would emerge without any need for fine tun-
ing parameters, just by increasing the width of the interval [γec ,γc]. We
discovered that a possibility to achieve this is using tightly balanced
networks, also known as detailed balanced networks (Vogels and Ab-
bott 2009; Denève and Machens 2016). In these networks, the mean in-
put received by each neuron is ⟨Λ⟩ ≃ 0, so excitation and inhibition are
almost perfectly compensated. To achieve it, we set different strength
for excitatory and inhibitory synapses, ωe and ωi , as we did in Chapter
2. This shifts the critical points, being γec = 1/ (ωe(1−α)) and

γc =
1

(ωe(1−α)−ωiα)
. (3.12)

Here γec only depends on ωe, so it is fixed, while ωi can be tuned in
order to change γc→ +∞. Let us remark that making the denominator
vanish also leads to ⟨Λ⟩ = γ (ωex −ωiy) = γs (ωe (1−α)−ωiα) = 0, i.e.,
to the tightly balanced state. Thus, tightly balanced networks maxi-
mize the span of the LAI phase.

It is important to observe that two different, alternative concepts
of balance appear here simultaneously. The first one, dynamical bal-
ance, leads to xα = y (1−α) so x = (1−α)s and y = αs, and it is always
reached after some simulation time, independently of ωe and ωi . This
corresponds to the necessary condition to have a fixed point discussed
earlier in Chapter 2, and it is related with the fact that activity does not
distinguish between excitatory and inhibitory nodes; however, dynam-
ical balance is compatible with an input ⟨Λ⟩ , 0 –which has been the
case during the whole text so far. Tight balance is a stronger constrain
that forces the average input to vanish (Denève and Machens 2016).
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3.3.2 Non-linear transfer functions

One could argue that the effect of the Jensen’s force could be due to the
piecewise linear shape of the transfer function, or the discontinuous
nature of the transition induced by this choice. Here we demonstrate
that the effects discussed above are largely independent of the transfer
function choice, as long as Jensen’s inequality holds.

In order to do so, let us return for a moment to the mean-field
approximation, so

⟨
f (Λ)

⟩
= f (⟨Λ⟩) with ⟨Λ⟩ = γ (1− 2α)s. Then, the

equation for the activity reads ṡ = f (⟨Λ⟩) − s, whose bifurcation di-
agram strongly depends on the choice of the transfer function. Fol-
lowing again the basic ideas of statistical mechanics and dynamical
systems, we could just expand the transfer function for low inputs, ob-
taining then a “Landau expansion”. From the point of view of dynam-
ical systems, this give us different normal forms of bifurcations near
the quiescent state, allowing us to shape the mean-field phase diagram
at our will. Then, we set

f (Λ) = aΛ+ bΛ2 + cΛ3 + . . . , (3.13)

where a, b and c are free parameters. Note that, since we are letting
Λ = ⟨Λ⟩ ∝ s, the linear term a can absorb the linear term of the mean-
field equation (3.3). The choice of signs of the free parameters will
determine the behaviour of the stable equillibria of our system. For ex-
ample, the original (linear) piecewise function corresponds to b = c = 0,
and has a discontinuous transition at ac = 0. Figure 3.10 shows differ-
ent mean-field phase diagrams corresponding to different parameter
choices. In the Figure, the terms kept in the expansion are odd poly-
nomial powers, to resemble the Taylor expansion of the usual sigmoid
function f (Λ ≥ 0) = tanhΛ.

In all the cases shown in Figure 3.10, the LAI phase is still present
when the model is studied in sparse E-I networks, as we demonstrate
in Figures 3.11 and 3.12. Let us focus first on the continuous tran-
sition. In this case, one could wonder if the low-activity in the LAI
phase is dynamically different from the arbitrary low activity that the
system presents near a continuous transition. This question is equiva-
lent to asking whether the active phase emerging after a second-order,
continuous transition, is also an asynchronous irregular regime. The

106



Inhibition and the Jensen’s force
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Figure 3.10: Mean-field phase diagrams with different non-linear
transfer functions. (Left) The linear term is the choice used during
the analysis (Center) Keeping the first term and adding a negative cu-
bic for stabilization leads to a continuous transition (pitchfork bifurca-
tion). (Right) If we make both terms positive and add −Λ5 to stabilise,
we find bistability around a hysteretic cycle. Discontinuous blue line
shows unstable equillibria.

answer is given by the computation of the CV and CC, which are il-
lustrated in Figure 3.11. During the LAI phase, both the coefficient of
variation and the cross-correlation among populations are fairly high.
When we enter into the active phase, both observables start to decrease
immediately, indicating that the dynamical regime of the active phase
is not an asynchronous state. Therefore, the dynamical properties of
the LAI phase cannot be found in a regular active phase, even when
this also displays relatively low activity (Buendía et al. 2019).

Moreover, following the Landau approach, it is possible to analyti-
cally estimate the value of the Jensen’s force. When the transfer func-
tion is expanded in Taylor series, we can obtain Jensen’s force by com-
puting the infinite series

F (Λ) =
+∞∑
n=0

f (n)(0)
n!

(⟨Λn⟩ − ⟨Λ⟩n) , (3.14)

for positive inputs. As we saw before, it is possible to evaluate the
moments of the distribution ⟨Λn⟩ using eq. (3.5), and then obtain an
analytic approximation to any order. If we use, for example, f (Λ ≥ 0) =
tanhΛ, we get, up to third order, that

F(Λ) ≡ F(s) ≃
γ3

3
α(1−α)(1− 2α)ks(1− s)(1− 2s), (3.15)
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Figure 3.11: The LAI phase is different from active phases. Left,
phase diagram obtained in a sparse hyperregular network, using
f (Λ ≥ 0) = tanhΛ, which induces a continuous phase transition. Ob-
serve that the LAI phase still emerges between the quiescent and the
active phases. At right, the coefficient of variation (top) and cross-
correlations (bottom) at selected coupling values –marked in the left
phase diagram. The CV is larger than one only in the LAI phase, de-
creasing fast; the correlations decrease as we go into the active phase.
Parameters: N = 16000, k = 40.

which tell us that Jensen’s force vanishes at s = 0, s = 1, and s = 1/2, as
obtained in Fig. 3.6 for the linear piecewise function3. Note that the
first term contributing to F (s) is the third moment. In the tightly bal-
anced case, the mean-field equation is given just by ṡ = F (s), which
turns out to be of the form ṡ = as − bs2, that displays a continuous
quiescent-active transition only.

Now we move to the case where the response function has bista-
bility and hysteresis. Does the LAI phase coexist with the active or

3Note, however, that the piecewise definition prevents the hyperbolic tangent
function to be derived at Λ = 0. Although it is possible to assume that the expan-
sion formally holds for larger input values, it does not give all the contribution to
Jensen’s force: If we apply this procedure to the piecewise linear function, we get
F = 0 exactly, so all Jensen’s force is coming from the discontinuity in the derivative.
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Figure 3.12: Bistability between the LAI and the active phase. Phase
diagram using the transfer function f (Λ ≥ 0) = Λ + Λ3 −Λ5. Simula-
tions were run using different initial conditions on the activity s (0), in
order to detect the hysteresis cycle. There is bistability between the LAI
phase and the active phase in a large interval couplings. Parameters:
N = 128000 and k = 15.

quiescent phases? Considering f (Λ) = Λ + Λ3 −Λ5/2, we run simu-
lations for different initial conditions, obtaining the results shown in
Figure 3.12: the quiescent phase destabilises first to the LAI phase. As
we keep increasing γ , a stable active branch appears, coexisting with
the LAI phase. This continues for a while, until the LAI phase becomes
unstable, leaving only the active phase. Therefore, there is a bistable
region between the active and LAI phases.

3.3.3 Network structure

As it was discussed earlier, the simulations for annealed and quenched
hyperregular networks give the same computational results, which co-
incide with analytics predictions. Therefore, the essence of Jensen’s
force mechanism is not related at all with network topology. However,
we computationally verified our results in networks different from the
hyperregular model. In particular, Erdös-Rényi random networks also
reveal the emergence of the LAI phase, as well as using heterogeneity
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Figure 3.13: Phase diagram for Erdös-Rényi networks. The LAI phase
emerges also on more heterogeneous networks topologies. (Left) Un-
weighted Erdös-Rényi network with k = 40. (Right) Gaussian weight
distribution with k = 20. System size is N = 16000.

in the weight distribution. The results are displayed in Fig. 3.13.
From the analytical point of view, it is also possible to bring net-

work structure into the equation. Note that in equation (3.5) we as-
sumed that the number of inhibitory neighbours is fixed, as it happens
in the hyperregular network. In a similar way, we can introduce the de-
gree distribution g (k) of the network by letting k itself to be a random
variable. This generalization changes eq. (3.5) to

p(Λjl) =
+∞∑
k=1

k∑
n=0

(
n
l

)(
k −n
j

)
g(k)h(n|k)sj+l (1− s)k−j−l (3.16)

where h (n|k) is the probability of having a total number of n inhibitory
neighbours, given a degree k. This sum cannot be worked out analyt-
ically, but is still possible to obtain numerical results from it. For the
simple case of Erdös-Rényi networks, then g (k) should be a Poisson
distribution, and h (n|k) a binomial with probability α.

3.3.4 Experimental measurements

We have discussed ways of directly observing the effect of Jensen’s
forces in experimental setups. A tentative protocol for doing so would
be the following:
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1. Make measurements of the network firing rate s (t) as a function
of time. Since the firing rate has to be measured in finite time bins
(see Appendix A), the activity would already be in “discrete” time
steps. The next step is to compute s (t + 1) as a function of s (t) for
all times observed, and average in order to obtain good statistics.
This will be an empirical estimation of the transfer function, s(t+
1) =

⟨
f (Λ)

⟩
exp.

2. Extract individual neurons from the tissue under study, and ob-
tain its associated transfer function fexp. This is currently feasible
(Wolfart et al. 2005; La Camera et al. 2006). Heterogeneity among
neuronal populations should be averaged. fexp (Λ).

3. Using patch-clamp techniques, it should be possible to estimate
the input received by a neuron in the network. Therefore, us-
ing the function fexp previously determined, one could compute
fexp (⟨Λ⟩) by averaging over the input. Then, Jensen’s force F (Λ) =⟨
f (Λ)

⟩
exp − fexp (⟨Λ⟩) can be computed.

Actually, an alternative and easier procedure to estimate the Jensen’s
force would be to just obtain fexp, and include this realistic transfer
function into simulations, which would allow us to make a numeri-
cal, rough estimation of F (Λ). For experimental low activity states,
we would expect Jensen’s force to be positive, pushing the fluctuating
activity to larger values.

Although we are conscious that this program is very likely to need
changes and present a number of pitfalls, the experimental determi-
nation of Jensen’s forces in neuronal tissues could bring new light to
the study of balanced states and asynchronous irregular, low activity
regimes.

3.4 Discussion

As it has been already discussed in the thesis, cortical regions present
diverse levels of synchronization (Latham et al. 2000; Brunel 2000). Al-
though the role of collective, synchronous spiking has been long stud-
ied (Buzsáki 2006) the function of the background asynchronous ac-
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tivity has remained more elusive (Renart et al. 2010). Now, scientific
consensus is that such a state emerges from an interplay of (balanced)
excitation and inhibition, which is essential for stability and computa-
tional capabilities (Sippy and Yuste 2013; Rubin et al. 2017; Sadeh and
Clopath 2020).

The main goal of this chapter was to elucidate the origin of low-
activity regimes in simple E-I networks, through the statistical me-
chanics approach. The idea was to make the model as simple as possi-
ble, containing the minimum ingredients able to generate stable low-
activity phases in the thermodynamic limit. In order to do so, we em-
ployed a model proposed by Larremore et al. (Larremore et al. 2014),
that was later simplified. Their original approach used an Erdös-Rényi
directed network, with uniform distributed weights. We eliminated
all these heterogeneities, moving to the fixed-coupling, hyperregular
network approach.

The study of this minimal model reveals a non-trivial low-activity
phase that emerges between the standard quiescent and active phases.
The necessary ingredients for the LAI phase to emerge are network
sparsity, and dynamical balance between the excitatory and inhibitory
populations. These are enough in order to produce fluctuations in the
inputs received by the neurons, even in an extremely homogeneous
setup. The fact that heterogeneity is not necessary to generate the
LAI phase rules out underlying phenomena such as Griffiths phases
to be an explanation its emergence. Griffiths phases are similar, ap-
pearing in the middle between quiescent and active phases, and it has
been claimed that they could play a relevant role in cortical dynamics
(Moretti and Muñoz 2013). However, Griffiths phases emerge only due
to structural heterogeneity, so it they are not related with the new LAI
phase. Still, it would be worth to study the effect of heterogeneities
in the asynchronous irregular states, an issue that could unveil new
phenomena (Litwin-Kumar and Doiron 2012).

Another important issue to remark is the effect of neuronal thresh-
old. The nodes do not have any spiking threshold, since a single active
excitatory neighbour is able elicit activation, even when the probabil-
ity γ/k is low. Near γec , the activity is of order s ∼ 1/k. Therefore,
for large connectivities, very large system sizes are needed in order
to see the LAI phase, specially near γec . Thresholds imply that there
a minimum amount of activity is required to cause an activation. As
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a consequence, large neuronal thresholds hinder the asynchronous ir-
regular phase. For example, if we let f (Λ <ΛT ) = 0, being ΛT > 0 but
small, we need some active neighbours in order to become active, so
the LAI phase does not start at γec , needing larger couplings. If the
threshold ΛT is large enough, the transition will become discontinu-
ous again. There are several ways of overcoming this problem. One
is using an external firing rate to each neuron, that counters the effect
of the threshold. Other is also explored in classical works on E-I bal-
ance, as the seminal work of van Vreeswijk and Sompolinski (Vreeswijk
and Sompolinsky 1996), where the synaptic couplings are not constant
but grow as

√
k, therefore scaling the fluctuations of the input, making

them to be of the order of the neuronal threshold.
In order to verify that more realistic ingredients such as this thresh-

old do not rule out the possibility of finding the LAI phase, we re-
viewed the recent literature, finding at least two recent computational
analyses of E/I networks of integrate-and fire neurons confirming the
emerge of similar regimes with high variability (Kriener et al. 2014;
Borges et al. 2020). Furthermore, a careful analysis of dynamics in
the original Brunel model (Brunel 2000), as well as integrate-and-fire
neurons with leaky synapses have revealed that synchronization dy-
namics is strongly influenced by input fluctuations in the individual
neurons, revealing that “up” and “down” neuronal states are nothing
but a reflect of (balanced) stochastic fluctuations. We discuss this more
in detail in Chapter 6.

To close this chapter, let us go back to our main objective in this the-
sis: the problem of the “criticality hypothesis”, from the perspective of
synchronization. Shockingly, (balanced) asynchronous states and crit-
icality, which have been both proposed to explain the background cor-
tex activity, have almost opposite features. In particular, criticality is
characterised by long range correlations, in blatant contrast with the
decorrelation produced by inhibition in balanced systems. It is neces-
sary to clarify which is the interplay between both interpretations, in
order to have a complete view of neuronal activity (Stepp et al. 2015;
Wilting and Priesemann 2019). A possibility to obtain synchroniza-
tion is using synaptic plasticity (as in the work of di Santo et al. (di
Santo et al. 2018b)) to create oscillations in the system, letting it to
self-organize. In this direction, Recio and Torres studied a similar ver-
sion of the model including also long-term plasticity mechanisms. In
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this case, it is possible to induce memory states into the system (Recio
and Torres 2016), which reflects the flexibility of the model to account
for new phenomena if the adequate ingredients are considered.
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Chapter 4

Hybrid Type Synchronization:
Avalanches and Synchronization

"It matters little who first arrives at an idea, rather what is significant is
how far that idea can go."
- Sophie Germain.

The model previously studied shed light on the dynamics of inhibi-
tion on sparse networks, as well as on the origin of the asynchronous ir-
regular state of the cortex. However, the phase transitions surrounding
the LAI phase turned out to be not new: the quiescent-LAI transition
belongs to the directed percolation universality class, while the LAI-
active transition does not present scale free distributed avalanches.
Moreover, synchronous states, one of the most robust experimental ev-
idences in neural data (Buzsáki 2006), are missing from the simple Lar-
remore et al. model. Therefore, we decided to move to a more complex
approach, with the objective of unveiling the properties of the synchro-
nization transition observed, for example, in di Santo et al. (di Santo
et al. 2018a). This quest will lead us to formulate an exciting new hy-
pothesis regarding criticality in the brain.

4.1 Avalanches and Synchronization

As we discussed in the previous chapter, neurons in the cerebral cor-
tex fire in an irregular, sparse, self-sustained manner (Softky and Koch
1993; Arieli et al. 1996; Abeles 1991), in which is regarded as the rest-
ing state of the brain. At the end of the day, our goal is to understand
how does such background activity engages in cortical information
processing (Latham et al. 2000; Deco et al. 2008; Breakspear 2017).

Spontaneous neuronal activity presents (at least) two distinctive
faces: synchronization and scale-free avalanches. Although we have al-
ready discussed both in detail in Chapter 1, performing also a small

115



4.1 Avalanches and Synchronization

literature review, let us do a short summary to situate ourselves. Syn-
chronization is the microscopic process underlying brain waves, which
are characterised by different frequency ranges, depending on func-
tional state and region. Such waves are crucial in order to share in-
formation between distant brain regions (Buzsáki 2006; Buehlmann
and Deco 2010; Muller et al. 2018), while asynchronous states play
an important role in information coding (Renart et al. 2010; Denève
and Machens 2016; Sadeh and Clopath 2020). We also discussed the
possibility of the brain to work at the edge of a synchronization phase
transition, half-way between a perfect synchronization and irregular
states, allowing for more complex dynamical regimes (Cabral et al.
2011; Markram et al. 2015; Breakspear 2017), as well as more flexibility
to explore the synchronous-asynchronous spectrum. From the clinical
point of view, abnormal synchronization levels have been linked with
pathological functioning (Kandel et al. 2000).

We also discussed in detail the phenomenon termed neuronal
avalanches, outbursts detected over the background activity, following
scale-free distributions for both their sizes and durations. Moreover,
the exponents characterising such distributions are power laws
P (S) ∼ S−τ , P (T ) ∼ T −α whose exponents are not independent but
fulfill the hyperscaling relation (1.31), γ = (α − 1)/(τ − 1), that links
the average avalanche size with avalanche duration, ⟨S(T )⟩ ∼ T γ , and
it is typical of critical systems. (Muñoz et al. 1999; Friedman et al.
2012). Although the values of the critical exponents are very similar
to the ones of the critical branching process (Beggs and Plenz 2003;
Petermann et al. 2009; Bellay et al. 2015; di Santo et al. 2017), we have
discussed that recent observations seem to agree that the universality
class in indeed different (Friedman et al. 2012; Ponce-Alvarez et al.
2018; Yaghoubi et al. 2018; Fontenele et al. 2019; Porta and Copelli
2019).

The Landau-Ginzburg model of the brain brought together
synchronization and critical avalanches, suggesting that the cortex
operates near to a synchronization phase transition. At this point,
both scale-free avalanches and marginal synchronization occur in
concomitance (di Santo et al. 2018a), a proposal backed by both
theoretical and experimental evidence (Gireesh and Plenz 2008; Poil
et al. 2012; Markram et al. 2015; Porta and Copelli 2019). But the
Landau-Ginzburg model does not solve many important questions
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regarding criticality: which is the minimal model able to display a
synchronization transition compatible with experimental observa-
tions? What is its universality class? We dedicate this chapter to find
detailed answers to those questions.

4.1.1 Avalanche distribution in the Kuramoto model

In Chapter 2, we derived the canonical model for phase synchroniza-
tion, i.e., the Kuramoto model, from very general phase reduction prin-
ciples. The Kuramoto model has been widely employed, usually being
the go-to option to understand synchronization behaviours in many ar-
eas, including neuroscience (Breakspear et al. 2010; Cabral et al. 2011;
Villegas et al. 2014; Ferrari et al. 2015). Therefore, it seems the perfect
candidate to explore in a simple way the critical synchronization dy-
namics proposed by di Santo et al. (di Santo et al. 2018a). In other
words, we are interested to know if the Kuramoto model is able to
display scale-free neuronal avalanches with the observed critical ex-
ponents at the synchronization phase transition. We consider here the
“stochastic Kuramoto” counterpart (eq. (2.45)), assuming that all fre-
quencies are the same, since heterogeneity is not essential for observing
avalanches1:

ϕ̇j(t) = ω+
J
N

N∑
i=0

sin
(
ϕi(t)−ϕj(t)

)
+ σηj(t), (4.1)

where the phase ϕj(t) describes the dynamical state of the j-th oscil-
latory unit, with j = 1,2, . . . ,N , ω is the common intrinsic frequency,
ηj(t) a zero-mean unit-variance Gaussian white noise with amplitude
σ , and J is the coupling strength with all the neighbors (Strogatz 2000;
Pikovsky et al. 2003; Acebrón et al. 2005). As we discussed in Chapter
2, equation (4.1) exhibits a synchronization phase transition at J = σ2

according to the Ott-Antonsen ansatz, where the Kuramoto order pa-
rameter Z =

⟨
eiϕ

⟩
experiences a Hopf bifurcation from a fixed point to

a limit cycle, revealing the emergence of collective oscillations (Ace-
brón et al. 2005).

1For example, the model by di Santo et al. that we want to understand is com-
pletely homogeneous.
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Avalanche events are measured following the standard protocol in
neuroscience (Beggs and Plenz 2003; Plenz and Niebur 2014) (see also
Appendix A). This measure works with events at the raster plot, so first
we have to define what constitutes such events in an oscillator model.
We set a spike each time an oscillator crosses the phase value ϕ = π,
following the convention for other phase models such as e.g. theta-
neurons (see Chapter 2), and in analogy to the active rotators defined
below. The resulting raster plots are shown in Figure 4.1.

It is possible now to fix parameters J = 1 and ω = 1 without loss
of generality, leaving σ as the control parameter. According to the
Ott-Antonsen ansatz, the mean-field critical transition happens near
σc = 1. However, the actual value of the critical point could be affected
by higher order corrections2, as well as finite size effects, so it has to be
estimated through numerical methods. In order to determine numeri-
cally σc, we take the point at which the variance of the Kuramoto order
parameter is maximum (Acebrón et al. 2005; Pikovsky et al. 2003; di
Santo et al. 2018a). The result of this analysis is shown in Fig. 4.1a
and b. At criticality, one should strictly have R = 0, but this requires
many averages and very large sizes, so in our simulations a finite value
of R is approached. Avalanche analyses reveal no scale-free distributed
events at any of the studied points (subcritical, critical and supercriti-
cal). Surprisingly, all the three values present an exponential decay of
avalanche sizes and durations, as seen in Fig. 4.1. A possible explana-
tion for this could be that the Kuramoto order parameter experiences
a Hopf bifurcation, where (regular) oscillations emerge with a fixed
frequency (Strogatz 1994). This could induce a strong characteristic
timescale in the system, which is not compatible with the scale invari-
ance displayed by critical avalanches.

Note, however, that the lack of scale-free avalanches measured in
this way does not go against criticality itself in the stochastic Kuramoto
model’s synchronization transition. If we take the order parameter R,
and analyse its temporal behaviour (see Appendix A), we find that R
experiences scale-free avalanches with exponents τ ∼ 4/3 and α ∼ 3/2,
which are typical for random walks (di Santo et al. 2017), and in accor-
dance with recent results (Ódor and Kelling 2019).

2Remember that in stochastic systems, the Ott-Antonsen gives the result correct
up to O

(
σ2

)
.

118



Hybrid Type Synchronization

(b)(a)

(c)

(d) (e)

Figure 4.1: Avalanche statistics in the stochastic Kuramoto model
on fully connected networks. (a) Kuramoto order parameter (R) as
a function of the noise intensity σ for a finite size N = 500. (b) The
Kuramoto critical point is defined as the point of maximum variance
of the order parameter, χ, which occurs at σc = 0.98 (vertical dashed
line). (c) Raster plots of the Kuramoto model at the synchronous phase
(σ = 0.95, left plot), the critical point (σc = 0.98, central plot) and the
asynchronous phase (σ = 1.1, right plot). (d) Distributions of size
events in the three phases for the same representative values of σ as
above. (e) Distribution of time events in all the three phases for the
same parameter values. Let us underline the lack of power-law distri-
butions at criticality, i.e., when the system undergoes a collective Hopf
bifurcation. Parameter values: ω = 1 and J = 1.
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Finally, let us remark that avalanche measures are very sensible to
time binning and related problems. When we integrate the differential
equations, the integration step ∆t needs sufficient time resolution. If
we let ∆t to be large enough, it will affect as a “time binning” itself,
thus affecting avalanche measures. In particular, at the asynchronous
phase, in the limit N → +∞ the interevent interval ⟨IEI⟩ → 0, where
avalanches are pathologically defined. Since the raster gets “denser” as
we increase N , the timestep ∆t should be decreased as 1/

√
N in order

to avoid ill-defined results.

4.2 The active rotator model

4.2.1 Model analysis

From the above analysis, it is therefore clear that the Kuramoto model
alone is not rich enough in order to explain the observed scale-free
avalanches in the cortex, as well as to understand the universality class
of the synchronization transition in the Landau-Ginzburg model. But
if this transition is not explained by the usual Kuramoto universality
class, then what could it possibly be?
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Figure 4.2: Mean-field phase diagram and bifurcations of the ac-
tive rotator model. (a) Sketch of the phase diagram obtained solv-
ing eqs. (4.5) using the Ott-Antonsen ansatz; it reveals the existence
of synchronous and asynchronous states, as well as a collectively-
excitable regime. The central triangular-shaped region (green) de-
scribes a regime of bistability; its vertices correspond to codimension-2
bifurcations. (b) Sketch of the different regimes represented in terms
of the complex Kuramoto order parameter. Each regime is represented
by a point in the unit circle (since |Z1| ≤ 1) with filled circles describ-
ing stable fixed points, open circles standing for unstable fixed points,
and mixed-color circles describing saddles. Bifurcations between dif-
ferent regimes are indicated as arrows, labeled with capital characters
as in panel (a). (c) Phase diagram computed using direct simulations
of a fully-connected system with N = 5000 oscillators. Collective os-
cillations are computationally detected with the Shinomoto-Kuramoto
order parameter. The location of the bistability region (inset zoom)
was established by numerically solving eqs. (4.5) for the first k = 50
harmonics (imposing Z51 = 0), which is very accurate in the thermody-
namic limit. The three segments (red, green and blue) indicate three
possible types of transition to synchronization (as considered in Fig.
4.3 and 4.4) (Buendía et al. 2020b)

Let us return for a moment to the Landau-Ginzburg model of di
Santo et al. (di Santo et al. 2018a). As it was explained in detail in
Chapter 2, the model consist on a lattice of mesoscopic units, which
are diffusively coupled. As the control parameter is increased, the in-
dividual unit goes through a homoclinic bifurcation, where the unit’s
activity and the synaptic resources start oscillating at increasing fre-
quency. Moreover, small external perturbations are able to make the
system spike before falling again into the quiescent state. Therefore,
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according to the Hodgin excitability classification, the model would
correspond to type-I excitability. Finally, if we continue increasing the
control parameter, the units get synchronized through a phase transi-
tion. At this point, scale-free avalanches emerge (di Santo et al. 2018a).

Note that the behaviour of the Landau-Ginzburg unit (oscillator)
is essentially different from the Kuramoto oscillator. The missing in-
gredient is excitability, which can be added by considering a model of
“active oscillators”, in which the angular speed is no longer constant
but depends itself on the phase, as

ϕ̇ =ω+ asinϕ, (4.2)

where ω is the oscillator natural frequency and a are parameters (Stro-
gatz 1994). For a > ω the deterministic dynamics of each isolated unit
exhibits two fixed points at ϕ∗± = ±arcsin(ω/a). While ϕ∗− is a stable
equillibria, ϕ∗+ is a saddle-node. When ω ≃ a, both equillibria are close
to each other, distancing as we increase the excitability. If stochastic
noise is added, the angle fluctuates around ϕ∗−, eventually reaching ϕ∗+,
and forcing the system to do a complete cycle to return again to the sta-
ble fixed point. This is exactly the same mechanism that drive spikes in
2D models such as the Fitzhugh-Nagumo, as explained in the Chapter
2.

When a < ω, the system is able to oscillate, with the period
increasing as T ∝ 1/

√
ω −α, the hallmark of the SNIC bifurcation

(Strogatz 1994). The model presented here is again nothing but
the canonical Ermentrout-Kopell type-I model, that can be coupled
through Kuramoto-like interactions. We argue that

ϕ̇j =ω+ asinϕj +
J
Mj

Mj∑
i∈n.n.j

sin
(
ϕi −ϕj

)
+ σηj(t) (4.3)

captures the properties of neuronal systems in a more realistic way
than Kuramto units, due to its excitable behaviour, as demonstrated
by Ermentrout and Kopell (Ermentrout and Kopell 1986). Note that
although the transition from fixed points to oscillations is SNIC, while
in the Landau-Ginzburg is homoclinic, both belong to type-I excitabil-
ity.

We consider versions of the model both in mean-field (fully-
connected networks) which are useful for analytical approaches
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and on two-dimensional lattices, mimicking the topology of cortical
columns in the cortex (Breakspear 2017). Eq. (4.3) is also known as the
Shinomoto-Kuramoto model or Winfree’s ring model (Shinomoto and
Kuramoto 1986b; Winfree 2001), and it has been previously studied in
the literature (Shinomoto and Kuramoto 1986b; Sakaguchi et al. 1987;
Zaks et al. 2003; Tyulkina et al. 2018).

At this stage, one could be tempted to use the Kuramoto order pa-
rameter in order to characterise synchronization in the system. How-
ever, it turns out that it is far from enough. Note that when ω ≃ a,
although the single unit can oscillate, the period can be very long, so
most of the units will stay around ϕ ≃ −π for a long time. Hence,
computing the Kuramoto order parameter for many uncoupled (J = 0)
oscillators still gives a non-trivial value for R. There are several solu-
tions to this problem. One is to use the change of variable (2.31) to
linearise the equation. A very similar (numerical) approach is the lin-
ear interpolation of spikes described in Chapter 2 and in Appendix B.
A possible solution is to consider the complete family of Kuramoto-
Daido parameters,

Zk = ⟨eikϕ⟩ ≡ 1
N

N∑
j=1

eikϕj ≡ Rkeiψk , (4.4)

that render complete information of the system. Since the system in-
cludes stochastic noise, higher order moments have to be considered
anyway if we want to go beyond the Ott-Antonsen ansatz solution, as
it was pointed out in Chapter 2.

We then apply the method sketched in Chapter 2 for the (stochas-
tic) Kuramoto model: write down a Fokker-Planck equation, expand
it in Fourier series, and then identify the Fourier harmonics with the
Kuramoto-Daido order parameters. In this case, Zk = pk, since all the
frequencies are set to ω. The result of the computations is given by
(Shinomoto and Kuramoto 1986b; Zaks et al. 2003)

Żk = Zk(iωk −
k2σ2

2
) +

ak
2

(Zk+1 −Zk−1) +
Jk
2

(
Z1Zk−1 − Z̄1Zk+1

)
(4.5)

where the bar stands for complex conjugate. Now the idea is to use
different low-dimensional closures to analyse the infinite set of equa-
tions. The Ott-Antonsen ansatz is enough to give a qualitatively correct
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view of the phase diagram, sketched in Fig. 4.2, although more refined
closures are necessary in order to predict the exact position of the bi-
furcation lines (Zaks et al. 2003; Tyulkina et al. 2018) (see Appendix
C). In order to visualize system behaviour we use the first Kuramoto-
Daido parameter, since Z1 = R1e

iψ1 gives information about synchro-
nization (through R1) and the global phase of the oscillators ψ1. Al-
though, as we discussed earlier, only one parameter is not enough to
render complete knowledge of the system, it suffices to gain intuition
on the different phases. The system presents three dynamical regimes:
synchronization, seen as a limit cycle in Z1, which makes R1 > 0, while
ψ1 is a periodic function. Asynchronous states, where R1 decreases3.
And collective excitable states, where all oscillators are fixed to the
same phase ψ1, fluctuating around this state. An external input to the
system is able to elicit a collective response, making the system spike.

The synchronized state and the collective excitable are separated
by a SNIC transition, which is crossed when the excitability a is in-
creased at low noise, and hence it is remnant of the single oscillator
SNIC –since all oscillators are synchronized, they behave in a similar
way. The boundary between the synchronous and asynchronous states
is a Hopf bifurcation, and it can be found by increasing the noise σ
at a fixed excitability, analogously to the Kuramoto model. Note that
in an excitable medium, these bifurcations would correspond to ex-
citability classes I and II in the Hodgin classification (see Chapter 2).
We decided to extend this classification to “synchronization classes”,
since the way of recruiting oscillators to spike together is very differ-
ent in both transitions. In type-I synchronization, oscillations emerge
at the transition point with infinite period but finite amplitude, while
in type-II synchronization oscillations emerge with fixed, non-vanishing
frequency (Buendía et al. 2020b). This means that in type-I synchro-
nization, almost all oscillators become locked when the transition is
crossed, while in type-II synchronization there is a growing cluster of
synchronized individuals.

Now, there is a small region where both bifurcations come close to
each other. At this point, we find a small region of bistability (the green
area in Fig. 4.2a) (Sakaguchi et al. 1987; Zaks et al. 2003; Childs and

3It never reaches R1 = 0 because, as discussed above, this would require a homo-
geneous distribution of phases in the case J = 0, which is not the case for non-linear
oscillators.
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Figure 4.3: Raster plots at different synchronization classes. Mean-
field raster plots for each one of the three considered cases in the syn-
chronous phase (left), right at the transition point (central column),
and in the asynchronous phase (right)

Strogatz 2008). This region has triangular shape, and its vertices are
co-dimension 2 bifurcations: a Bogdanov-Takens (BT), a saddle-node-
loop (SNL) and a cusp. All of these were already introduced in Chapter
1. At the bottom part of the bistability region, collective excitability co-
exists with a small limit cycle –partial synchronization–, but as noise
increases the limit cycle shrinks through the Hopf bifurcation, lead-
ing to coexistence between collective excitability and the asynchronous
state (stable equillibrium). Then, in order to understand synchroniza-
tion transitions, one should not only consider the standard scenarios,
as type-I and type-II, but also more diverse, complex scenarios. Near
codimension-2 points we can find mixed, or hybrid, synchronization
types4. Hence, call the transition from synchronous to the bistable

4As it happens with excitability at the Bogdanov-Takens bifurcation (Izhikevich
2006)
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phase hybrid type synchronization transition. Now it remains to study
whether the critical behaviour at this transition is different from type-I
and type-II.

In order to find the bifurcation diagram with the maximum accu-
racy possible, we complemented the analytical results with direct nu-
merical analyses, simulating either the full stochastic system (writing
an implementation of the Euler-Milstein algorithm for N = 104 oscilla-
tors) or solving (4.5) truncated at sufficiently high orders (up to k = 50,
so Zk>51 = 0). Note that the Fokker-Planck method assumes that we are
at the thermodynamic limit N → +∞, so in this case finite size effects
are ignored. Results of such analyses are both shown in Figure 4.2c.
We see that the shape of the phase diagram is qualitatively identical
to the one predicted by the Ott-Antonsen ansatz, but the bistability re-
gion has been shrunk into a very small region. Actually, the region is
so small, that the exact location of the codimension-2 points, as well as
the region boundaries, are both affected by finite size effects in direct
simulations.

4.3 Avalanches at hybrid synchronization

4.3.1 Mean-field

We now perform a systematic analysis of avalanche behaviour at the
different transitions. First, Fig. 4.3 shows representative raster plots
at each one the bifurcations, including the type-I, type-II and HT syn-
chronization transitions. Here the difference between all synchroniza-
tion types is evident: type-I confers a very coherent, regular structure
to the system near the transition, while type-II presents a blurry struc-
ture over a background noise. On the other hand, the hybrid-type syn-
chronization transition displays a coherent, synchronous irregular fir-
ing over a sparse activity. which is typical of neuronal systems (Brunel
2000; Bellay et al. 2015).

The standard protocol for measuring avalanches is then applied
(see Appendix A) at all the phases, as well as at the transitions among
them. The results are displayed in Fig. 4.4 for mean-field. Insets show
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Figure 4.4: Avalanche distributions at the different bifurcations.
(a,b) Avalanche size and duration distributions for three different
types of synchronization transitions (right at the transition points):
type-I (SNIC) transition (green lines, a = 1.024, σ = 0.3); type-II (Hopf)
transition (red lines, a = 1.04, σ = 0.575), and HT transition (blue lines,
a = 1.07, σ = 0.499) in mean-field systems (N = 5000). Only the last
one exhibits clear cut power-law behavior, both for size and duration
distributions. Insets: As in the main Figure but for simulations in a
2D lattice (size 642): type-I transition (a = 0.99, σ = 0.05), type-II tran-
sition (a = 0.60, σ = 0.64), and HT synchronization transition (a = 0.98,
σ = 0.185). (c,d) Finite-size scaling analysis of P (S) and P (T ) in FC net-
works of different sizes (as specified in the legend) in the HT regime:
As in the main Figures but for 2D lattices of sizes (N = 162, N = 322,
N = 642).
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also the results for two-dimensional systems, that will be discussed in
detail later. Scale-free avalanches do not emerge at the type-II (Hopf)
transition, nor at the type-I. However, the HT transition displays clean
power-law distributed avalanches at criticality. These span over sev-
eral decades, obey finite-size scaling, and fulfill the hyperscaling re-
lation (1.31). In mean-field, we obtain exponent values τ ≈ 2.1(1),
α ≈ 2.5(1) and γ−1 ≈ 0.75(5) using a Kolmogorov-Smirnov test (Clauset
et al. 2009; Alstott et al. 2014), which are compatible with the values
found in mean-field by Liang et al. (Liang et al. 2020).

We also have studied the behaviour of the scale-free avalanches
when we slightly deviate from the hybrid type transition. A slight re-
duction in excitability is not enough to completely destroy the power-
law distribution of the avalanches, as show in Figure 4.5, as long as
we lie near the bistability region. When we took points with larger ex-
citability, avalanches quickly disappear. This suggests that the deter-
mination of the bistability phase –which was performed solving (4.5)
up to k = 50– suffers from finite size effects, due to the small size of
such a region. Moreover, remember that almost critical systems also
present power-law distributed avalanches spanning some decades, and
in practice one of the bests way to determine is looking for the larger
span and then performing finite size scaling, since at criticality power-
law behaviour holds for anyN –subcritical systems at the end fall expo-
nentially, while supercritical ones saturate (Hinrichsen 2000; Binney et
al. 2001; Muñoz 2018). Separating both effects is a difficult task numer-
ically, but finding a small parameter range with avalanches distributed
as power laws falls under what we could expect from the traditional
theory of critical systems.

If we insist in moving away from the HT transition, scale-free
avalanches break down, either by changing excitability or noise, as
illustrated in Fig. 4.6. This demonstrates that scale-free behaviour
can be seen only in a very small region, near the HT transition, at
aHT = 1.07, σHT = 0.496.

Finally, as a complementary measure of complexity, we have com-
puted the distribution of interevent intervals, and the coefficient of
variation (see Appendix A). Results are shown in Figure 4.7. We found
that only around the HT transition, the coefficients of variation are
large CV > 1, and they are accompanied by broad distributions of IEI
values. These results indicate that the dynamical richness at the HT bi-
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Figure 4.5: Avalanches close to the hybrid type synchronization tran-
sition. Size and duration distributions for a network of size N = 5000
evaluated at the hybrid type synchronization transition (aHT = 1.07,
σHT = 0.496) and two other nearby points, slightly to the left of it.
Power law behavior is observed only in the bistable region close to the
hybrid-type synchronization.

furcation and the bistability regime is way larger than any other. Then,
even when type-I and type-II synchronization transitions are formally
critical (Ohta and Sasa 2008; Hong et al. 2015), they are not able to
generate the macroscopic level of complexity required for scale-free
avalanches.

4.3.2 Two dimensions

In addition to mean-field analyses, we performed a study of the system
in two-dimensional systems. This is justified by the organization of the
cortical columns in the brain (Breakspear 2017), that has also inspired
models such as the Landau-Ginzburg (di Santo et al. 2018a).

We used the same computational tools in order to obtain the
phase diagram in two-dimensions, revealing a very similar diagram
to the mean-field case, as demonstrated by Fig. 4.8. The same three
states (synchronous, asynchronous and collective excitable) can be
found in the low-dimensional system. At the asynchronous regime,
activity fluctuates randomly, creating smalls clusters that appear and
propagate locally. The average synchronization is zero, although there
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Figure 4.6: Avalanches away from the hybrid type synchronization
transition. Size and duration distributions for a network of size N =
5000 evaluated at the hybrid type synchronization transition (aHT =
1.07, σHT = 0.496), and two nearby points: (a) by varying noise σ at
constant excitability and (b) by varying excitability a at constant noise.
Power law behavior is observed only at the hybrid type transition

is a certain activity. On the other hand, at the synchronous phase
the system “breathes”, and oscillators behave in way similar to the
single unit. Therefore, the system is silent most of times, and all
neurons spike together in a small time window. Although visually
this activations seems to be wave-like, it is the closest it can get to
a perfect synchronization. In two-dimensional systems, topological
defects prevent completely coherent oscillations (Mermin and Wagner
1966; Shinomoto and Kuramoto 1986a; Kardar 2007a). Finally, the
collective excitable system is always pinned at the “down” state, but it
is susceptible to external inputs. Let us discuss in detail what happens
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Figure 4.7: ISI distributions and CVs for mean-field systems. Each
color represents the probability distribution of interspike interval at
different phases and their bifurcations, as well as the coefficient of vari-
ation, as shown in the legend. Parameter values: Synchronous regime,
σ = 0.5, a = 0.5; Hopf bifurcation, a = 0.5, σ = 0.92; collectively ex-
citable phase, σ = 0.5, a = 1.12; hybrid type synchronization transition:
σ = 0.5, a = 1.07; bistable regime: σ = 0.5, a = 1.072. Network size
N = 5000.

at the different bifurcation lines (see also Fig. 4.9).

1. Near the SNIC bifurcation, there is oscillating activity, that moves
as spiral travelling waves along the system.

2. Near the Hopf bifurcation, activity slightly oscillates in time,
growing and shrinking in spatially distributed, fragmented
clusters.

3. At the HT synchronization transition, the dynamical behaviour is
richer, being a mixture of the previous two. Travelling waves are
alternated with fluctuations that lead the system to the collective
excitable state for a while, which is a reflection of the bistability.

Then, richer dynamics are found at the HT synchronization transi-
tion, where the key features of both types live together. We then com-
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Figure 4.8: Phase diagram in two dimensions. The region where
avalanches are found is marked at the intersection of the dashed, black
lines. Additional points show regions where simulation videos were
recorded (available at the published version of the paper, see Fig. 4.9
for some examples).

puted avalanche distributions, finding again that scale-free distributed
avalanches emerge only at the hybrid synchronization transition. The
results are in the insets in Fig. 4.4, and critical exponents are τ ≈ 1.7(1),
α ≈ 1.9(1) and γ−1 ≈ 0.75(5), compatible with the values observed in
experiments, as well as with the Landau-Ginzburg model (di Santo et
al. 2018a). Note that exponents changed with respect to the mean-field
ones, except the γ , which is similar to the universal value proposed by
Fontenele et al. (Fontenele et al. 2019). This result, both for mean-field
systems and two-dimensional ones, is illustrated in Fig. 4.10.

4.4 Discussion

We have demonstrated here that the paradigmatic synchronization
transition of the Kuramoto model is not enough in order to understand
the observed critical behaviour, and more ingredients have to be taken
in account. In particular, we have classified synchronization bifurca-
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Figure 4.9: Spatio-temporal dynamics on two-dimensional systems.
The figure shows three rows, each one with six different snapshots of a
two-dimensional simulation, for the following cases: Upper row: SNIC
bifurcation (a = 1, σ = 0.08); central row: Hopf bifurcation (a = 0.5, σ =
0.65); and lower row: hybrid type synchronization transition (a = 0.98,
σ = 0.185). Blue color indicates lack of activity, while red color stands
for maximum levels of activity (identified as 1 + sinϕj). Simulations
performed for N = 642 with periodic boundary conditions.

tions in a way analogous to that of the Hodgin excitability classes, and
have demonstrated that critical scale-free avalanches, with exponents
compatible with those found in experiments, emerge only near a hybrid
type synchronization transition. However, this does not entirely solve
all theoretical problems. The next natural question to wonder is which
one of the dynamical ingredients confer such a special behaviour
to the HT transition. We will present some possible explanatory
scenarios for such dynamical complexity. The first scenario could
be the proximity to one of the codimension-2 points. Remarkably,
the saddle-node-loop (SNL) bifurcation has been previously argued
to be necessary for the generation of high variability and dynamical
richness in neural networks (Hesse et al. 2017; Schleimer et al. 2019);
but it has also been established that the crucial features of critically
balanced excitation/inhibition neural networks –a robust observation
in experiments– stem from a phase diagram organized around a BT
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Figure 4.10: Exponents accuracy analysis (a) Averaged avalanche size
as a function of the duration for different system sizes. (b) Same as
(a), but we multiply by sτ to obtain an asymptotically flat curve –
allowing easier visual inspected– and re-scaled as a function of the
system size to collapse the different curves. As expected from true
scale invariance, avalanches become flat and collapse for the different
system sizes. Inset: the same information, but for two-dimensional sys-
tems. Parameters: (a,σ ) for mean-field systems, N = 500: (1.07,0.520),
N = 1000: (1.07,0.505); N = 5000: (1.07,0.496) and 2D networks,
L = 16: (0.995,0.192); L = 32: (0.982,0.190); L = 64: (0.98,0.185). The-
oretical lines are shown as black dashed lines for comparison.

bifurcation (Benayoun et al. 2010; Cowan et al. 2016; Buendía et al.
2020b).

Unfortunately, the bistability region is so small in parameter space
that distinguishing all those points numerically is very difficult, spe-
cially owing to finite-size effects. The only computational answer we
can provide is that scale-free avalanches appear when entering the
synchronous phase from the bistability region, in close vicinity with
codimension-2 points.

The second scenario comes precisely from the interplay between
criticality and bistable regimes. In theory, these two are largely in-
compatible, since they correspond to either second-order or first-order
phase transitions, respectively. However, stochastic jumps between ex-
citable and partially synchronous states are likely to increase the com-
plexity of the system, which could be enhanced at the boundary of
the phase, where fluctuations are maximized by criticality. Moreover,
note that many experiments and models (Liu et al. 2014; di Santo et
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al. 2016; Jercog et al. 2017; Tartaglia and Brunel 2017; di Santo et al.
2018a; Schleimer et al. 2019) remark the importance of bistability in
neuronal systems and its role on dynamical richness. As we will see
in the next chapter, bistability can lead to oscillations in self-organized
scenarios. This could mean that a critical transition that leads to a
bistable regime, or a self-organized system to its Maxwell point, might
display critical-like dynamics. If this is true, one would argue that
bistability should also be present in other models such as (Liang et al.
2020).

We would like to remark that the topology of the phase diagram,
specially the bistable region surrounded by the SNL-BT-Cusp triangle
can be found in many models of neuronal dynamics, at very differ-
ent scales, and hence we argue that it could be a key feature of neu-
ronal systems. For example, the Morris-Lecar neuron (Liu et al. 2014)
posses this “triangle” at the individual level. Systems composed by
theta-neurons also display a very similar phase diagram at the col-
lective level (Luke et al. 2013; Luke et al. 2014). In particular, the
popular Wilson-Cowan model for brain dynamics presents the same
kind of bifurcations (Borisyuk and Kirillov 1992). Therefore, the phe-
nomenology discussed here is rather universal and not model-specific.
It is noteworthy that other scenarios have been described to connect
lines of type-I and type-II transitions –e.g., subcritical Hopf bifurca-
tions followed by a fold of limit cycles– which also involve a regime of
bistability (Fontenele et al. 2019; Buendía et al. 2020b).

Although the model studied here is not meant to be realistic, it pro-
vides us insights on the key dynamical mechanism needed to gener-
ate features observed in real systems. We hypothesize that cortical
avalanches emerge at the HT transition, and that the key ingredients in
this model (excitability, synchronization, bistability) should be present
in many others, but have been overlooked up to this point. Of course,
even if critical-neuro models present HT transitions –or, at least, some
its main ingredients– this will not be enough in order to affirm that
the brain works at a critical point. As it was pointed out at the begin-
ning, models are of no use without the backing of data, and hence a
“data-driven” approach is needed in order to understand the dynam-
ical regime of the cortex, and discriminate which is the most accurate
theoretical model among all th proposals.

135



4.4 Discussion

136



Chapter 5

Adaptation and
Self-Organization

"Any man could, if he were so inclined, be the sculptor of his own brain."
- Santiago Ramón y Cajal.

Thus far, we studied models where (a)synchronous states are de-
limited by phase transitions, and discussed the possibility of explain-
ing the experimental observations by tuning these models at criticality.
In particular, the hybrid synchronization hypothesis seems to be a good
candidate to explain neuronal avalanches and complex dynamics ob-
served in the real brain.

However, the study of criticality in biology always comes with an-
other implicit question. How did the system become critical? In phys-
ical systems, phase transitions are rare and usually need the fine tun-
ing of at least one control parameter. As we explained in Chapter 1,
the theory of self-organization (Bak et al. 1987; Bak 1996) gives a gen-
eral answer to this problem: if the control parameters can adapt as a
function of the current thermodynamic phase, they might present an
equilibrium at critical points, organizing the system to criticality with-
out the need of any external tuning. In practice, the problem relies
on identifying the physical mechanisms underlying these adaptation
processes.

The brain has several plasticity mechanisms that could help to bring
the brain to critical points. In this chapter, we briefly review some of
these mechanisms, as well as the theory of self-organized criticality,
including the recently proposed concept of self-organized bistability
(di Santo et al. 2016). Finally, these are applied to the study of the
Landau-Ginzburg model of the brain (di Santo et al. 2018a).
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5.1 Neuroplasticity

The capacity of the brain to re-wire, change, and adapt itself is known
with the name of neuroplasticity, or brain plasticity in general (Kandel
et al. 2000). Plasticity takes place at different scales through different
mechanisms, ranging from individual neurons to rewiring whole re-
gions (Kandel et al. 2000; Turrigiano and Nelson 2004), although the
effects and timescales of each mechanism are wildly different (Froemke
2015). For a long time, it was thought that brain was susceptible to
modification only during its early development, i.e., during childhood.
However, current evidence suggests that many plasticity mechanisms
remain at the mature brain, so it reorganizes during our whole life
(Kandel et al. 2000).

We focus on the different mechanisms of functional plasticity –that
is, mechanisms that act over already existing neurons and synapses.
These include homeostatic mechanisms (Turrigiano and Nelson 2004)
and synaptic plasticity1 (Mateos-Aparicio and Rodríguez-Moreno
2019). Some aspects of the latter were already briefly pointed out in
Chapter 2, where we discussed that synaptical function is constrained
by the number of neurotransmitters in the synaptic vesicles. Once the
vesicles are empty, the synapse cannot transmit the action potential
to the postsynaptic neuron, until the neurotransmitters are recovered.
This is a basic mechanism for short-term plasticity, that leads to synap-
tic depression. On the other hand, presynaptic spikes can lead to an
increase of residual Ca2+, which is known to facilitate vesicle release
(Kandel et al. 2000). In this case, a second spike arriving to the synapse
might have a greater effect due to the accumulation of calcium, known
as synaptic facilitation (Mateos-Aparicio and Rodríguez-Moreno 2019).
Other mechanisms such as augmentation and potentiation, which rely
on more complex biochemical pathways, also facilitate spiking, but
they operate in longer timescales2 (Cheng et al. 2018). Both depression
and facilitation happen at the same time, so models usually deal with

1There is a world of different regulatory mechanisms, and a complete classifica-
tion lies outside of the scope of this work.

2Facilitation acts in the order of 10−2 seconds, augmentation on the second, and
potentiation in the order of minutes.
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an effective net change in the synaptic conductivity (Tsodyks and
Markram 1997; Levina et al. 2007; Mattia and Sanchez-Vives 2012;
Froemke 2015; Cheng et al. 2018). Non-synaptic plasticity involves,
for example, the variation of excitability of the neuronal membrane,
facilitating –or hindering– the cell to depolarize and spike (Kandel
et al. 2000).

Long-term synaptic plasticity relies on more diverse chemical
mechanisms, modulating the density of post-synpatic neuron recep-
tors, or involves synaptogenesis (Kandel et al. 2000; Mateos-Aparicio
and Rodríguez-Moreno 2019; Millán et al. 2019). One of the most im-
portant forms of long-term adaptation is Hebbian dynamics (Sumner
et al. 2020). The Hebb postulate indicates that synapses are strength-
ened as a result of correlated activity between pre- and post-synaptic
neurons (Sumner et al. 2020). For example, long-term plasticity makes
us able to learn, memorise, and even modify our conduct, being the
physiological core of psychological behaviour theory, according to
activity-dependent plasticity (Jokić-Begić 2010; Månsson et al. 2016;
Mateos-Aparicio and Rodríguez-Moreno 2019; Sumner et al. 2020).
In this section we consider plasticity-inspired mechanisms, from the
point of view of the theory of self-organized criticality, and discuss
some of the aspects that would allow neuroplasticity to play a role on
the critical brain hypothesis.

5.2 Self-Organization Mechanisms

In Chapter 1, we briefly introduced the work of Bak, Tang and Wiesen-
field on “self-organized criticality” (SOC) (Bak 1996), an idea that
deeply changed our perspective of dynamical complexity in natural
systems, and created a renewed interest on critical phenomena and
its applications. The idea is that adaptation mechanisms are able to
tune system’s control parameters to the vicinity of a critical point,
thus explaining the ubiquitous observations of scale-free phenomena
in natural systems (Bak 1996).

Initially, the theory of SOC was explained using sandpile toy mod-
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els3, and the study of self-organization using such tools remains ac-
tive until today (Bak et al. 1987; Zhang 1989; Grassberger and Manna
1990; Manna 1991; Maslov and Zhang 1995; Christensen et al. 2004).
In discrete sandpile models, grains are slowly added into the network
sites. The total number of grains is a measure of the system “energy”.
When the number of grains in a lattice site exceeds certain threshold,
toppling grains are redistributed into neighbouring sites. If the sys-
tem is open, grains falling outside the boundaries are lost, therefore
dissipating the available energy. When the system has low energy, no
redistribution can take place, so energy is charged as new grains are
added. However, when energy is very high, a new grain can cause a re-
distribution avalanche, which will dissipate a large amount of energy
at the boundaries. At large times, this charge-dissipation procedure
will self-tune the sandpile into a critical state, where avalanches follow
power-law distributions (Jensen 1998; Christensen et al. 2004; Pruess-
ner 2012).

From the conceptual point of view, the key point is that both pro-
cesses (driving and dissipation) take place at very different timescales
(Bak and Chen 1991; Jensen 1998; Christensen and Moloney 2005). In
simulations, it is formally possible to obtain an infinite separation of
timescales by means of an offline driving procedure: grains are added
one by one, until an avalanche is triggered. While the avalanche takes
place, grains are no longer added. When finite timescales are present in
the macroscopic system, the scale-free behaviour is limited (Grinstein
et al. 1990; Socolar et al. 1993).

Many variations can be added to these models. Although the first
attempts for the model were deterministic (Bak et al. 1987), it was dis-
covered that deterministic models does not formally present true scal-
ing behaviour, but anomalous scaling (Tebaldi et al. 1999; Ktitarev et
al. 2000; De Menech and Stella 2000; Bagnoli et al. 2003). On the other
hand, numerical simulations on the stochastic sandpile (Manna 1991)
were enough to demonstrate scaling and universality. But since crit-
ical points are the hallmark of second-order phase transitions, there
were also efforts to map the stochastic sandpiles with other physical
models at criticality, such as pinning-depinning transition of inter-
faces in random media, (Narayan and Middleton 1994; Nunes Amaral

3Which do not actually represent very well the physics of real sandpiles. Surpris-
ingly, ricepiles seem to be more adequate (Pruessner 2012).
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and Lauritsen 1997; Pruessner 2003) or systems exhibiting absorbing-
active phase transitions (Vespignani et al. 1998; Dickman et al. 2000;
Vespignani et al. 2000; Pastor-Satorras and Vespignani 2000; Rossi et
al. 2000). The mappings were first heuristic, but rigorous analyses fi-
nally became available (Le Doussal and Wiese 2015).

Let us focus on the absorbing-active transition, which is of our in-
terest here. In order to understand the relationship between second-
order phase transitions and the sandpile models, we could play with
fixed-energy sandpiles, where periodical boundary conditions are con-
sidered, and no grains are added. This system presents two distinct
phases, depending on the energy E as the control parameter (Vespig-
nani et al. 1998; Dickman et al. 2000; Vespignani et al. 2000; Dickman
et al. 2001). Here, “activity” ρ, is to be understood as the number of
sites with grains over the threshold, which can be redistributed: for
E < Ec, there is no enough grains to sustain activity indefinitely, so at
the end all grains redistribute to a frozen state –the absorbing state4

ρ = 0; on the other hand, for E > Ec, there are so many grains that at
least one site is always over the threshold, meaning that avalanches run
indefinitely with ρ > 0. A second-order, continuous transition takes
place at the critical energy Ec, a fact that was formally demonstrated
recently (Dickman et al. 2010; Sidoravicius, Teixeira, et al. 2017). In
this way, the scaling features of SOC can be explained from the for-
malism of non-equilibrium phase transitions. However, fixed energy
sandpiles differ from the directed percolation (DP) universality class
since energy is conserved, a symmetry that is not present in DP sys-
tems and that is relevant for universality (Rossi et al. 2000; Huynh et
al. 2011; Bonachela and Muñoz 2008; Bonachela and Muñoz 2009; da
Cunha et al. 2014).

We review the main ingredients of theory of SOC, as well as its
“imperfect” counterpart, self-organized quasi criticality. We will do
the same for the new proposed theory of self-organized bistability, which
extends the concepts of SOC to first-order phase transitions.

4This is actually a set of different absorbing states; any microscopic state compat-
ible with the macroscopic condition ρ = 0 is absorbing.
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5.2.1 Self-organized Criticality

In order to analyse SOC systems, Langevin equations at the macro-
scopic level are considered. The order parameter in the sandpile is the
activity, while the (self-organized) control parameter is the energy. In
order to model it, one can take the Landau prescription, writing the
most simple equation for the dynamics of the activity. Since the fixed-
energy sandpile displays a continuous absorbing-active transition, the
Reggeon field theory obtained in Chapter 1, eq. (1.30) can be used,
backed by universality arguments. For fixed-energy sandpiles, one can
write

∂tρ (x⃗, t) = (−a+ωE)ρ − bρ2 +D∇⃗2ρ (x⃗, t) + σ
√
ρ (x⃗, t)η (x⃗, t) (5.1)

where the coefficients of the linear and quadratic terms are a,b > 0. The
coefficient ω can be set ω = 1 without losing any generality. As in the
first chapter, D and σ are diffusion and noise constants, respectively,
and η(x⃗, t) is a zero-mean Gaussian noise with

⟨
η(x⃗, t)η(x⃗′, t)

⟩
= δ(x⃗ −

x⃗′)δ(t − t′). For now, let us focus on homogeneous, noiseless, mean-
field systems (D = σ = 0). In this case, the critical energy is located
at Ec = a. When we move from fixed-energy sandpiles to SOC, the
control parameter becomes a dynamical variable itself, increasing by
slow accumulation of grains, and dissipating due to avalanche events.
A simple way to model this process is using the equation

∂tE(t) = h− ϵρ(t). (5.2)

where h and ϵ are the rates for driving and dissipation, respectively,
and the spatial dependence has been dropped for simplicity. Note that
the (mean-field) fixed point of the activity in this case is given by ρ∗ =
h/ϵ, which inserted in eq. (5.1) returns a fixed point ESOC = a+ bh/ϵ to
which the system self-organizes. Now, we consider the limit at which
the energy is conserved h,ϵ → 0. However, as discussed above, a key
ingredient of SOC is timescale separation, so the limit will be taken
with h ≪ ϵ, or equivalently, ∆ ≡ h/ϵ → 0. When this limit is taken,
one has ρ∗→ 0 and ESOC → Ec. If the energy is (almost) conserved, at
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Figure 5.1: Mean-field analyses of nullclines. A sketch represent-
ing the nullclines ∂tρ = 0 and ∂tE = 0. The latter is always given by
horizontal dashed lines, and represented for three different values of
∆ = h/ϵ→ 0. In the SOC case (left), nullclines collide at a stable fixed
point, while in SOB (right) they do in unstable equilibria, creating a
stable limit cycle around.

infinite timescale separation, the self-organized energy is the same as
the critical control parameter5(Tang and Bak 1988).

Looking at eq. (5.2), the SOC mechanism relies on the dependence
of the energy dynamics on the current phase. If there is no activity,
then Ė = h, so E grows slowly until reaching the active phase. On the
other hand, when ρ > 0, then Ė ≃ −ϵρ for a large enough timescale sep-
aration, decreasing the energy to the absorbing phase. This mechanism
makes the control parameter to fluctuate around ESOC , and drives the
energy exactly to Ec in the infinite timescale separation. Then, the ex-
istence of a control mechanism that acts differentially on each phase
creates a feedback loop that self-organizes the system to the very edge
of the transition (Grinstein et al. 1990; Dickman et al. 2000; Moreau
and Sontag 2003; Bonachela and Muñoz 2009; Buendía et al. 2020c).

Let us return to the spatially extended, stochastic description. The
demographic noise also vanishes in the absorbing state, so once the ac-
tivity goes to zero the dynamics freezes. Fixed-energy sandpiles can be
modelled just by letting ∂tE(x⃗, t) = ∇2ρ(x⃗, t) describing the redistribu-
tion of energy among neighbouring sites in the lattice. Now, the control
parameter is the energy density E in the lattice, i.e., the integral over

5We insist that the derivation was performed in deterministic mean-field, al-
though numerical evidence will demonstrate that this is also the case in lower di-
mensions.
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Absorbing Active
Non-spreading Spreading

Absorbing Active
Absorbing Active

Figure 5.2: Mechanisms for self-organization. The left panels show
self-organization to a continuous, second-order phase transition, while
the right ones display self-organization to a first-order one; top pan-
els are for perfect timescale separation, and the bottom ones are for
non-conserved cases. In SOC, the system self-organizes to the critical
point Ec, while the probability distribution of the non-conserved ver-
sion tends to peak around the percolation point Ep between spreading
phases. In SOB, they are always self-organized to the Maxwell point
EM , where both phases are equally stable.

x⃗ of the energy field divided by the volume, which is always globally
conserved. As in mean field, if E > Ec, redistributions take place all the
time, making ρ > 0, while if Ē < Ec the system falls into the absorbing
state (Dornic et al. 2005). Although this dynamics has been justified
just by phenomenological arguments, it can be formally derived from
microscopic dynamics on (Rossi et al. 2000; Wiese 2016).

In order to perform the simulations, there are two options, offline
or online driving, as mentioned earlier. In offline driving, one adds a
small amount of activity and energy initially, and let the system evolve
until falling into the absorbing state, with open boundary conditions to
allow dissipation. Then, the process is repeated. The energy will then
converge to the critical point of the (two-dimensional transition). An-
other possibility is to consider an online driving, modifying the equa-
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Figure 5.3: Distribution of average energy density. The distributions
have been computed for both perfect and imperfect timescale sepa-
ration (top and bottom rows, respectively) and three different system
sizes each in order to appreciate scaling. Note that in SOqC and SOCO
cases the distribution remains broad even in the thermodynamic limit.
Parameters: (SOC) a = −1, b = 1; (SOB) a = −1, b = −1.5, c = 1. The
corresponding non-conserved counterparts additionally use: (SOqC)
γ = 0.2, h = 1.0, ϵ = 0.1, Emax = 1.5; (SOCO) γ = 0.02, h = 1.0, ϵ = 0.1,
Emax = 1.3 with offline updating (eqs. (5.6)).

tion as in eq. (5.2) to allow both driving and dissipation, as

∂tρ(x⃗, t) =(−a+E(x⃗, t))ρ − bρ2 +D∇2ρ+ σ
√
ρ(x⃗, t)η(x⃗, t), (5.3a)

∂tE(x⃗, t) =∇2ρ(x⃗, t) + h(x⃗, t)− ϵρ(x⃗, t), (5.3b)

where now a slight perturb to the activity can drive the system out of
the absorbing state. The difference between these equations and the
offline method is that here E is no longer constant during avalanches.

The equivalence between the stationary point ESOC of these equa-
tions and the actual value Ec of the low-dimensional system is diffi-
cult to prove analytically, but computational data consistently report
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5.2 Self-Organization Mechanisms

that ESOC ≃ Ec in the large timescale separation limit (Bonachela and
Muñoz 2009).

Figures 5.3 and 5.4 show results from the numerical simulation6

of these equations, performed using the Dornic et al. algorithm that
allows exact integration of the system (Dornic et al. 2005). Figure 5.3
shows the probability distribution of finding an energy density E in
the offline procedure, which becomes more peaked around Ec as the
system size increases, leading to δ

(
Ec −E

)
in the thermodynamic limit.

Note that increasing the system size has the effect of obtaining a better
timescale separation, since boundary dissipation is equivalent to set a
dissipation rate ϵ ∝ L−1, while energy addition in the bulk rate grows
as h ∝ 1/N = L−2 in the two-dimensional case.

Let us go back to the problem of the universality class of stochastic
SOC models. As it was discussed earlier, activity was chosen to follow
the DP universality class, and at first sight it could seem that the sand-
piles are also compatible with DP. However, there are several evidences
that the SOC universality class is different, being so-called conserved
directed percolation (C-DP) or Manna class (Dornic et al. 2005). One is
the energy conservation law, which introduces relevant perturbations
at the renormalization group level. Moreover, the pinning-depinning
transition in random media, which has been formally mapped to the
sandpile models, is inherently different from DP (Alava and Muñoz
2002; Bonachela et al. 2007; Bonachela et al. 2009; Le Doussal and
Wiese 2015; Grassberger et al. 2016).

The C-DP class is explicitly clear in one or two dimensional sys-
tems, where it can be seen that critical exponents are different from
those of DP (Rossi et al. 2000; Huynh et al. 2011; Bonachela and Muñoz
2008; Bonachela and Muñoz 2009; da Cunha et al. 2014), including re-
cent extensive numerical experiments (Grassberger et al. 2016). On
the analytical side, a renormalization group is still missing, despite of
all the attempts in the literature (Vespignani et al. 1998; van Wijland
2002; Pruessner 2013; Janssen and Stenull 2016).

6Performed using a package originally written by Paula Villa, which I later im-
proved. The code for integration is open-source, and can be found on GitHub at
https://github.com/pvillamartin/Dornic_et_al_integration_class.

146



Adaptation and Self-Organization

5.2.2 Self-organized Bistability

SOC describes how a system self-organizes to the critical point of a
second-order phase transition. A natural question is to wonder if there
exists an analogous mechanism for self-organization to first-order tran-
sitions, that usually present a region of bistability between the active
and absorbing states.

This is a recent proposal (Gil and Sornette 1996; di Santo et al.
2016) and the basic idea is the same as in SOC, taking a minimum
model for the activity, and letting the control parameter to adapt de-
pending on the model’s dynamical state. In order to do this, one could
get a third-order polynomial, which is the most simple model for bista-
bility, and write

∂tρ(x⃗, t) =(−a+E(x⃗, t))ρ − bρ2 − cρ3 +D∇2ρ+ σ
√
ρ(x⃗, t)η(x⃗, t), (5.4a)

∂tE(x⃗, t) =DE∇2ρ(x⃗, t) + h(x⃗, t)− ϵρ(x⃗, t), (5.4b)

where now b < 0 and a,c > 0. Homogeneous, noiseless, mean-field
solutions (D = σ = 0) of these equations lead to a limit cycle in the
phase space, when the timescale separation is large enough. Let us
analyse in detail the mean-field dynamics of this system, in order to
understand in detail how the self-organization works here.

For a fixed energy value of energy, the activity equation has the
typical S-shape characteristic of first order transitions with hysteresis.
The absorbing state ρ0 = 0 is stable as long as E ≤ a ≡ E∗2. A solution
ρ± = b/2 ±

√
b2/4 +E − a emerges via a saddle-node bifurcation at the

point E∗1 = a − b2/4. The equilibrium ρ+ is stable for E > E∗1, while ρ−
becomes stable –but negative– for E > a. Therefore, the solution ρ−
only has physical sense in the interval E∗1 < E < E

∗
2, where it is unstable.

Hence, this provides the region of bistability, where the absorbing and
the ρ+ solutions both are stable, with their stable manifolds separated
by ρ−. This is shown in Fig. 5.2, which is nothing but a cut of Fig. 1.8.

When we include the energy dynamics, the system behaviour be-
comes richer. As in SOC, the energy tends to charge slowly during the
absorbing phase, and discharge fast when ρ > 0. However, now the
hysteresis cycle allows the system to oscillate: energy charge continues
up to the point E = E∗2, where the absorbing state becomes unstable,
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5.2 Self-Organization Mechanisms

and then it is forced to jump to the active phase. At the active phase,
energy is dissipated, but up to E = E∗1 < E

∗
2 following the upper branch

of the hysteresis cycle. This leads to the oscillations shown in Fig. 5.2.
It is possible to demonstrate that the period of such cycle scales as
T ∼ bh/ (2ϵ) = b∆/2, so when the infinite timescale separation is taken,
the period of oscillations becomes infinitely slow –conforming an infi-
nite period bifurcation. We will discuss more in detail what happens
in the case of “imperfect” timescales later.

Now it is possible to go beyond the mean-field description, as it
was done for SOC. Numerical evidence shows that for fixed energy
the bistable region survives in low-dimensional, stochastic systems7.
In the bistable region, instead of the critical point, the system self-
organizes to the Maxwell point EM at which both phases are equally
stable, as the “edge” of phase coexistence. Simulations show that when
we allow the energy to self-organize (either following offline or online
procedures), the system converges to E ≃ EM , being exact at the ther-
modynamic limit.

It is possible to do avalanche statistics, as in the case of SOC.
Surprisingly, avalanches in SOB also present power-law distributions,
even in the absence of a critical point (di Santo et al. 2016). However,
the exponents characterising the universality class are different, and
coincide instead with those of the mean-field DP: τ = 3/2 and α = 2, in
contrast with the Manna class. It is striking that these oscillations are
even to display “mean-field” exponents even at low dimensionality.
The reason behind this is that energy is self-organized to the Maxwell
point, where both phases are equally stable, and then the system be-
haves similarly to a voter model, which presents DP scaling properties
(Hinrichsen 2000; Marro and Dickman 2005; Henkel et al. 2008; Ódor
2008), but the critical upper dimension is d = 2 (Dornic et al. 2001;
Henkel et al. 2008).

It is important to remark that the avalanche distribution presents a
typical scale, in the shape of activity bursts that span the whole system
almost deterministically, taking all system energy, and usually called
dragon kings8 in the literature (Sornette and Ouillon 2012; di Santo et

7As long as the parameter b is greater than certain tricritical value. Lower values
allow fluctuations to soften the transition, making it continuous (Villa Martín et al.
2015).

8The poetic name refers to events that are both rare (“dragon”) and large (“kings”).
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Figure 5.4: Avalanche size distributions for the diverse self-
organization mechanisms. For SOC and SOB (upper panels) the
avalanche distribution is scale-free, only cut due to the finite system
size. The avalanche size distribution scales as the system size, as ex-
pected by the theory of critical phenomena. For imperfect cases, SOqC
and SOCO, the power laws can be fitted only approximately, even in
the thermodynamic limit, since the systems do not lie exactly at criti-
cality. Parameters are as in fig 5.3, except γ = 0.1, h = 0.1, DE = 0.1 in
the SOqC case.

al. 2016). These dragon kings comes from the slow mean-field oscil-
latory behaviour. Fluctuations deplete small amounts of energy, but
if the system is able to charge enough in order to complete the limit
cycle, all the sites become active for some time, leading to this strong
temporal scale. However, remember that the period of such collective
oscillations increases as we approach the perfect timescale separation
(i.e., as system size grows), so as we increase the system we find larger
spanning power-law distributions.

The value of |b| has an impact in the scale-free avalanches observed

They were introduced in the context of predictability in economical crises. It is note-
worthy to see the coincidence in name with Chinese mythology, where the Dragon
King is a deity that controls watery, weather... and of course, dragons!
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in SOB, since it controls both the amplitude and frequency of the os-
cillations. For small jumps from the quiescent to active state, power
laws span for many decades, as can be seen in Fig. 5.4. However, larger
values of |b| lead to more frequent appearance of dragon kings.

Finally, let us remark that sandpiles can be modified in order to
display SOB properties (di Santo et al. 2016), just by changing the
redistribution rules of the classical sandpile. A way to do this is in-
cluding a facilitation mechanism that fosters the creation of activity
at the redistribution of grains, a common way of generating discon-
tinuous transitions (Villa Martín et al. 2015). The behaviour of such
sandpiles is perfectly explained by SOB dynamics, showing power-law
distributed avalanches with the same exponents, as well as the out-
burst, dragon-king avalanches (di Santo et al. 2016). Actually, this be-
haviour seems to resemble better the dynamic of real sandpiles than
SOC itself, and could be underlying physical process of microfracture
experiments (Papanikolaou et al. 2012).

5.3 Imperfect self-organization

We have considered that both SOC and SOB theories have a perfect
separation of timescales so far, and hence the energy is only dissipated
at boundaries. These are key aspects in order to preserve an exact
self-organization to criticality, or, in the case of SOB, to the Maxwell
point. However, real natural phenomena do not usually present a per-
fect timescale separation, and energy is not exactly conserved, but dis-
sipation happens also at the bulk level. Many SOC models are, in-
deed, non-conserved: earthquake models (Bak and Tang 1989; Olami
et al. 1992) and forest-fire models (Bak et al. 1990; Grassberger and
Kantz 1991; Drossel and Schwabl 1992) are both classical examples.
In the case of the brain, SOC has been proposed as a tentative self-
organization mechanism to criticality in several works (Levina et al.
2007; de Arcangelis et al. 2006; Millman et al. 2010; Hesse and Gross
2014), but the system is non-conserved due to the leaky nature of both
neurons and synapses (Choi et al. 2012). As we commented above,
neuronal plasticity is composed of very different timescales, usually
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much larger than the spiking dynamics, but still not the formal infi-
nite separation. Then, it is important to understand how are SOC and
SOB results modified under these “imperfect” conditions. Although
the non-conserved systems are not truly critical, they display approx-
imate scaling laws (Grassberger and Kantz 1991; Grassberger 1994;
Bröker and Grassberger 1997; Grassberger 2002; Wissel and Drossel
2006; Zierenberg et al. 2020) that could be the source of the claimed
criticality in the brain.

5.3.1 Self-organized quasi-criticality (SOqC)

Our first step is to speak of imperfect self-organized criticality, usually
called self-organized quasi-criticality or SOqC. We start by performing
a simple modification to include energy dissipation in the SOC equa-
tions, as

∂tρ(x⃗, t) =(−a+E(x⃗, t))ρ − bρ2 +D∇2ρ+ σ
√
ρ(x⃗, t)η(x⃗, t), (5.5a)

∂tE(x⃗, t) =DE∇2ρ(x⃗, t)− ϵρ(x⃗, t), (5.5b)

where now set h = 0, and ϵ is no longer constrained to vanish in the
infinite size limit. The system is integrated as before, either using an
online or offline rule. The offline rule has to be slightly changed, in
order to account for the loss of energy in the bulk. Every time the
system falls at the absorbing state, a small perturbation of activity is
performed, generating a spark of activity in a certain location, and the
energy is increased at every site as well, to compensate for bulk dissi-
pation. In summary, the offline charge goes as

ρ(x⃗0,0)→ h, (5.6a)

E(x⃗,0)→ E(x⃗,0) +γ(Emax −E), (5.6b)

where γ is an external driving, Emax the maximum allowed energy in
the system, and x⃗0 a random position in the lattice. This is the update
rule used the Figures 5.3 and 5.4.

How does dissipation change the behaviour of the system? The first
important effect is that the self-sustained active phase disappears. If
the energy equation is integrated and substituted into the activity one,
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we find a non-Markovian term, −ϵρ(x⃗, t)
∫ t

0
dt′ρ(x⃗, t′), which is charac-

teristic of dynamical percolation (Cardy and Grassberger 1985; Janssen
1985; Grassberger 1983; Muñoz et al. 1996; Buendía et al. 2020a). In
this kind of systems, the two phases are a non-spreading and a spread-
ing (excitable) phases. In the latter, a small perturbation can perco-
late through the whole system, persisting for some time before falling
down again into the absorbing phase. Therefore, the universality class
of SOqC is that of dynamical percolation, rather than C-DP (Bonachela
and Muñoz 2009). As it was commented before, the symmetry corre-
sponding to energy conservation is relevant for universality classes.

In this case, the system charges energy slowly until finally reaching
the spreading phase, at which avalanches are able to percolate, dis-
sipating in their way all the system energy, and pushing it deep into
the non-spreading again. Then, the average energy density “wanders”
around the (percolation) critical point, but never reaching the edge of
the phase transition exactly, as shown in Figs. 5.2 and 5.3. The en-
ergy does not adapt to the critical value, but jumps alternating between
sub- and super-critical states, for any system size. Numerical results re-
veal that this sweeping through the phase transition point might suffice
to induce approximate scaling behavior, but not true scale invariance
(Sornette 1994; Bonachela and Muñoz 2009; Palmieri and Jensen 2018;
Buendía et al. 2020a).

If instead of the offline perturbation the online driving is consid-
ered, a term +h has to be added (or +h (Emax −E (x⃗, t)), if we want to set
a maximum level for the energy) to the energy equation in eqs. (5.5).
Now, note that it is possible to tune the (finite) value of h so it compen-
sates the dissipation level, leading to energy conservation, and hence
recover the C-DP universality class, although the imperfect separation
of timescales does not allow to obtain a truly critical point. This could
be expected from the fact that in this case the same equation as in SOC
is being used, but the limit of perfect timescale separation is no longer
imposed. In this case, the ration between the driving and dissipation
constants ∆ = h/ϵ acts as a control parameter that can be freely tuned
–and therefore the system is not completely “self-organized” in this
sense. Actually, if dissipation dominates, the system becomes subcriti-
cal, while if we make ∆ large, then we go to the supercritical phase.
However, for a broad range of choices for ∆, the system will hover
around the critical state, showing imperfect scaling behaviour.
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There is still a comment that will prove very important for the study
of self-organization in the brain. We said that the offline version of
SOqC belongs to the dynamical percolation universality class, while
the online one belongs to C-DP. The only (formal) difference between
both algorithms is just the term +h, the way of charging the energy.
So, what happens in the online algorithm if we take the limit h→ 0?
As Fig. 5.4 shows for SOqC, for small avalanche sizes and durations,
the distribution scales with the exponents of C-DP, while larger ones
show the dynamical percolation scaling. The value of h (among other
parameters) determine the span of the dynamical percolation region,
that grows as h→ 0. But as long as h > 0, this scaling will end at some
point, finally showing the true scaling behaviour of the system. How-
ever, very large system sizes might be needed for small values of the
driving –otherwise the true C-DP behaviour may be hindered. Addi-
tionally, in offline updating, low values of γ do not allow the system to
enter into the spreading phase, making the energy to hover around Ec,
and retrieving C-DP avalanches (see (Buendía et al. 2020a)).

5.3.2 Self-organized collective oscillations (SOCO)

Finally, in order to discuss all the possible cases, we focus on self-
organization of systems at a first order transition in which the
timescale separation is not perfect. A simple way to do this is to study
arbitrary dissipation and driving, using offline or online rules as the
ones discussed in the earlier section. The imperfect version of SOB
does not depend on the update procedure used. It suffices to assume
that h and ϵ do not vanish in eqs. (5.4) with online updating. We
remind that the energy nullcline gives the fixed point of the energy,
ρ∗ = h/ϵ, which is a simple horizontal nullcline that intersects with
the S-shaped cubic nullcline set by ∂tρ = 0, generating a stable limit
cycle. The fact that this nullcline is horizontal becomes very important
as we increase the timescale separation, because the tangential cut
with the absorbing state is the ultimate reason for the infinite-period
bifurcation at ∆ = 0, as we will demonstrate later. As long as the
timescale separation is large enough, ∆ < 1 the system “self-organizes”
to collective oscillations, and hence the name self-organized collective
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(A)

(B)

(C)

Figure 5.5: Equivalence between SOB and the Landau-Ginzburg
model. In a single unit, noiseless mean-field system, for ∆ < 1 (i.e.,
τR/τD > 1), the Landau-Ginzburg model presents an oscillatory regime.
As the timescales become larger, but always with τR ≫ τD , the null-
clines for the different values of ξ (shown in insets as yellow, purple,
and green colours) tend to become the same, making the system behave
as in SOB. On the other hand, if ∆ > 1, we have the bistability between
down and up states. Parameters: (A) ∆ = 0.1, τR = 103. Nullclines
are ξ = 0.2,1.5,3.5, respectively (B) ∆ = 10−3, τR = 107. Nullclines are
ξ = 1,5,10, respectively. (C) ∆ = 10. Nullclines are ξ = 0.2,1.5,3.5, All
cases use a = 0.6, b = 1.3.

oscillations for the imperfect SOB model. On the other hand, if ∆ > 1,
the mean-field system still displays a bistability reminiscent of the
individual unit, although this case is not as interesting because it
means that driving dynamics is way faster than dissipation.

Therefore, we jump directly into a more applied situation, by
analysing the Landau-Ginzburg model by di Santo et al. (di Santo et al.
2016). We demonstrate that this system could be also a paradigmatic
example of SOCO itself, with little difference with our discussion
above. Note that the equations for the single unit of the Landau-
Ginzburg model, eqs. (2.26) have already the same shape for the
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activity that SOC and SOB, and only the energy variable (that was
called “R” in that case) differs. Let us rewrite the timescales h = τ−1

R ,
ϵ = τ−1

D , the control parameter9 ξ ≡ Emax, and R ≡ E. Then, the
equations read10

∂tρ(x⃗, t) =(−a+E(x⃗, t))ρ − bρ2 − cρ3 +D∇2ρ+ σ
√
ρ(x⃗, t)η(x⃗, t), (5.7a)

∂tE(x⃗, t) =DE∇2ρ(x⃗, t) + h(ξ −E)− ϵEρ. (5.7b)

As a small side note, the diffusion term was not present in the orig-
inal model, so it could be disregarded without changing the universal-
ity class (Buendía et al. 2020c). Here dynamics are not conserved, so
the system cannot truly self-organize, as it was already discussed for
the SOqC case. Actually, control parameters remain, such as ξ and
∆ = h/ϵ. Let us first remind in detail how the deterministic single unit
works (D = DE = 0 and σ = 0). We assume that ∆ < 1, since the case
∆ > 1, as it happens in the standard SOCO, is uninteresting for us –just
the bistability, see Fig. 5.5. The model shows several phases depending
on the amount of synaptical resources, ξ:

• If ξ < a obviously E < a, and then the linear term in the activ-
ity equation becomes negative, leaving the absorbing state as the
only possible stable phase. Both nullclines intersect inside the
absorbing phase. It is very easy to confirm analytically the exis-
tence of this equilibrium, since the exact state is ρ0 = 0, E0 = ξ. It
loses stability at ξ = a via a homoclinic bifurcation.

• If we let ∂tE = 0, the fixed points lies at E∗ = hξ/ [(h+ ε)ρ∗], which
is defined outside of the absorbing phase. If we make a large
timescale separation, then we get E∗ ≃ ∆ξ/ρ∗. It is possible to
show that this point is unstable, and it is surrounded by the limit
cycle created through the homoclinic bifurcation. Actually, a
simple reasoning is able to show the existence of the limit cy-
cle. If we are in the absorbing state, energy has to slowly grows

9We remind that it originally represents availability of Ca2+, essential to facilitate
spiking activity.

10In (Buendía et al. 2020a), we performed the analysis using h(ξ − E) instead of
h(ξ −E (x⃗, t)), an irrelevant change in mean-field, and qualitatively non important in
smaller dimensions.
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since at ρ = 0 we have ∂tE = h (ξ −E). If ξ > a, at some point we
get E = a, making the absorbing state unstable, hence jumping to
the active phase, making ρ > 0 and rendering E∗ the only possi-
ble stable equilibrium. Now the energy has to change in order to
accommodate to E∗. When ∆ is very small, we have E∗ ≃ 0, which
is again inside the absorbing state, so the system as to dissipate
the energy again. But, as soon as we fall into the absorbing –and
before reaching E∗–, the solution E∗ no longer exists, and energy
is forced to start charging again, in a never-ending loop (see also
(Mikkelsen et al. 2013)).

• When we let the control parameter ξ to be larger, then the null-
clines can intersect in the stable up state, preventing the oscil-
lations. From the point of view of the system dynamics, what
happens is that after leaving the absorbing state, the stable en-
ergy E∗ ≃ ∆ξ/ρ∗ is reached before falling again to the absorbing.
Therefore, we are basically compensating the small value of ∆

with larger values of ξ. As the infinite timescale separation is ap-
proached, larger values of ξ are needed in order to compensate ∆,
and in the limit ∆→ 0, a value ξ→ +∞ is required to destabilize
the limit cycle, which disappears following a Hopf bifurcation.

This intermediate phase can be maximized by approaching the per-
fect timescale separation limit so the Landau-Ginzburg model con-
verges to SOB in this limit –displaying also scale-free avalanches, in
the sense that SOqC converges to SOC. This procedure is illustrated in
Fig. 5.6. A large timescale separation allows the system to self-organize
at the edge of a synchronous state, very similar to SOB dynamics. Then,
let us recap from Chapter 2 the phase diagram collective state of the
Landau-Ginzburg system:

• If ξ is small enough, then the system has not enough synaptical
resources and falls into the absorbing state, without any activ-
ity. If it is very large, then the system poses at an active phase,
where each individual site becomes active and inactive alterna-
tively, depending on its locally available resources. This is done
in an asynchronous way, leading to a constant average activity.

• Between both regimes, there is two additional phases character-
ized by oscillations of the individual units, that can be either
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Figure 5.6: Maximization of the mean-field oscillatory phase. This
diagram shows the length spanned by each phase as a function of the
control parameter ξ, depending on the timescale separation ∆. As we
make ∆→ 0, the oscillatory phase tends to span larger portions of the
parameter space, until completely taking it, hence making the system
almost independent on ξ.

synchronized or asynchronous (see Chapter 2). The synchronous
phase resembles very well the activity observed in SOB systems.
Actually, di Santo et al. (di Santo et al. 2018a) demonstrated scale-
free avalanches emerge at the edge between the synchronous and
asynchronous states.

Notice that in the single unit, when we take ∆ → 0, the oscillatory
phase is stable for a wide range of ξ values. Therefore, at the collective
level we could then wonder what happens with the synchronization
phase transition in this limit. Taking ∆→ 0 makes the system identical
to SOB, so we know that adopting the perfect timescale separation,
the system is fully independent of ξ and scale-free avalanches can be
found at almost any value of the control parameter.

We have also studied the full two-dimensional system numerically.
In particular, simulations of eqs. (5.7) were performed for several lat-
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tice sizes, running up to 108 simulations for different values of the con-
trol parameter. Online updating is used in the simulations, and there-
fore avalanches are measured by analysing the continuous time series,
and defining a small threshold (we set it to ρT = 10−6) that is used
to define avalanche start and end. Later, the distribution of avalanche
area over the threshold, and its duration, its studied (see also Appendix
A) (di Santo et al. 2016).

As it can be seen in Figure 5.8, simulations reveal power-law dis-
tributed avalanches for several values of the control parameter ξ, with
exponents compatible with those of predicted by SOB theory, as well
as large “dragon king” outbursts that scale with system size. Then,
the Landau-Ginzburg model with perfect timescale separation is able
to self-organize at the edge of the discontinuous phase transition, as it
happens in SOB.

One could wonder then what happens with hybrid-type synchro-
nization. If a large timescale separation is able to approximately bring
the Landau-Ginzburg model to a Maxwell point, explaining the emer-
gence of critical-like avalanches, isn’t it the end of the story? We could
then argue that the Landau-Ginzburg model works as a kind of ap-
proximate self-organization, and its universality class is the same as in
SOB. We examine this possibility in the next section with detail.

5.4 SOB in the Landau-Ginzburg model

When SOB was proposed in the first place, it was already hypothe-
sized that it could be relevant to explain the emergence of scale-free
avalanches in neuronal activity (di Santo et al. 2018a): SOB avalanches
present the same critical exponents as the unbiased branching pro-
cess, as it was initially argued for the brain (Beggs and Plenz 2003;
Beggs and Plenz 2004). Moreover, SOB relies on self-organizing over a
bistable transition, which have been argued to play an important role
during the last chapter. Bistability between up and down states has
been observed in the brain in conditions as deep sleep or anesthesia
(Tsodyks and Markram 1997; Mongillo et al. 2012; Stepp et al. 2015).
Under this light, it was proposed that SOB could be fit the experimen-
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tal observations better than the usual SOC (de Arcangelis et al. 2006;
Levina et al. 2007; Millman et al. 2010; Bonachela et al. 2010).

In parallel with SOB, the Landau-Ginzburg theory also presents a
first-order phase transition, and the only difference is the dynamics of
the self-adapting variable. In SOB, this is the “energy” field, that in the
Landau-Ginzburg description takes the role of synaptical resources.
As it was argued in the last section, the Landau-Ginzburg model can
be seen as an imperfect SOB, or SOCO, so there is still parameters that
can be tuned. These are the timescales of charge and depletion of cal-
cium ions (τR and τD , respectively) in the extracellular medium, and
their the maximum concentration, ξ. As we pointed out before, the
timescales can be readily identified with the driving and dissipation
rates in non-conserved SOB, while the calcium concentration is analo-
gous to Emax. In order to determine the actual role of self-organizing
dynamics, we work with biologically motivated values for the ratio be-
tween the timescales, that will be kept small but finite –so, no perfect
separation of timescales is possible.

Given a fixed separation of timescales, the Landau-Ginzburg
model still retains ξ as a control parameter. The collective behaviour
of the system depends on ξ, ranging from the absorbing (“down”)
state, to an asynchronous (“up”) state, crossing another phase of
“synchronous regular” bursts. Between the synchronous regular and
the asynchronous phases, at ξc, the system displays a synchronization
transition, where scale-free avalanches are found, as long as diverging
susceptibility and rich wave propagation in two-dimensions (di Santo
et al. 2018a). The main question at this point is: could such a syn-
chronization transition be obtained in a self-organized, parameter-free
model?

The question can be answered by revisiting the detailed mean-field
analysis of the individual unit of eqs. (5.7) (so we make assume D =
DE = 0, σ = 0). The first step is to see that the separation of timescales,
which can be resumed in the parameter ∆ = h/ϵ = τD /τR, is increased
in the limit ∆ → 0. The SOB limit will also require each one of the
rates to vanish in order to achieve energy conservation, i.e., h,ϵ → 0,
so both processes become infinitely slow. This limit is illustrated in
Figure 5.7. Formally, the nullcline Ė = 0 leads to E∗ ≃ ∆ξ/ρ, so as the
separation of timescales increases, the nullcline arrives sooner at a hor-
izontal asymptote. Remember that the SOCO system (eqs. (5.4) with
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Figure 5.7: Nullclines of SOCO vs the Landau-Ginzburg model. Both
models share the S-shaped nullcline for the activity ∂tρ = 0, repre-
sented as a thick, black line. Dotted lines represent the energy null-
clines ∂tE = 0 for the SOB model and the Landau-Ginzburg (LG), re-
spectively. Note how similar they are when they collide with the unsta-
ble equilibrium of the activity nullcline. Both tend to become parallel
as the timescale separation increase. Parameters: a = 0.6,b = 1.3,h =
0.005,ϵ = 0.1,ξ = 1.0.

∆ > 0) displayed a horizontal nullcline, so this means that when the
limit ∆ → 0 is taken changing ξ does not affect the nullcline shape,
making the parameter irrelevant in the perfect timescale separation
limit. Therefore, as one could expect, the “perfect timescale” sepa-
ration eliminates also any dependence on the control parameter. For
criticality, this means that reducing ∆ leads to a larger range of possible
values of ξ where scale-free avalanches can be found, as seen in Figure
5.8. Please note that this is related, but not direct consequence, of the
maximization of the oscillatory phase displayed in Figure 5.6. While
the maximization of the oscillatory phase affects the individual unit,
avalanches are collective phenomena. Such maximization could have
ended either in synchronous or asynchronous behaviours, but SOB-like
dynamics ensures the system self-organizes to the transition.

Therefore, in order to consider that a model is “self-organized”, it
is essential to study the relationship between the timescales needed
to recover the SOB limit. Experimental observations for the case
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Figure 5.8: Independence on the control parameter. Avalanche distri-
butions obtained for two-dimensional, noisy systems with a large sep-
aration of timescales, for different values of the control parameter ξ,
namely ξ = 1,3,5,7,10. Dashed lines indicate theoretical distributions
of the unbiased branching process avalanches. Parameters: b = 0.5,
a = 1, τD = 104, τR = 106, D =DE = 1.

of short-synaptic plasticity, which is the main mechanism behind
the Landau-Ginzburg model, yield differences in the range from
milliseconds to few seconds (Tsodyks and Markram 1997; Buzsáki
2006; Mattia and Sanchez-Vives 2012) that fall outside of the proposed
SOB limit, which requires a larger separation. In the case of the
Landau-Ginzburg model, if the depletion timescale is of the order of
milliseconds, that would need a driving of the order of minutes –ten
times larger than the observed ones.

In addition to that, the scale-free power laws have been observed in
many different contexts, as resting state, cultured networks, or even
during tasks (see Chapter 1). Therefore, there should be a way of
distinguishing these scenarios, beyond the parameter-free proposal of
self-organization. This hints that self-organization in the way of SOB is
not a plausible mechanism to explain all the observed features of cor-
tical activity, at least not by considering only the short-term plasticity
adaptation in the way the Landau-Ginzburg model does. For exam-
ple, the original proposal by Tsodyks-Markram (Tsodyks and Markram
1997) also implements a facilitation with a longer timescale, which al-
low the self-organization to happen. As we discussed at the beginning
of the chapter, there is a plethora of different neuroplasticity mecha-
nisms, with many different timescales and effects, such as the intrinsic
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change of excitability in the neurons, long term Hebbian plasticity, or
synaptic augmentation. The effects of the different regulatory mecha-
nisms is left as a future, promising work.

In order to sum up, the SOB model can be seen as the limit of the
Landau-Ginzburg for a perfect timescale separation. Both cases are
able to display scale-free avalanches with exponents compatible with
the ones empirically observed in neuroscience. However, the observed
separation of timescales is not enough in order to explain the criticality
observed in the Landau-Ginzburg model as self-organized, neither to
determine its universality class –which, in the proper limit, is to be
shared with SOB.
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Chapter 6

Perspectives and future work

"Most important part of doing physics is the knowledge of
approximation."
- Lev Landau.

After having presented the main results from the thesis, we dis-
cuss some of the ideas that emerged from such results, and how could
they impact the research in theoretical neuroscience and the criticality
hypothesis. In particular, I think that the most stimulating aspects to
discuss are the open questions: those issues which we could not answer
just by looking at the models, those we do not understand, and what
are our hopes for near-future experimental data that could confirm or
discard some of the hypotheses presented in this text. As it was in-
dicated in Chapter 1, experimental evidence has the last word on the
model reality, and although sometimes theoretical advances indicate
what to look for, models should not be driven by models exclusively.

However, in order to compare with experiments, toy models are of-
ten not sufficient. All the previously analysed models from chapters 3
to 5 are abstract representations of possible neuronal systems, or their
effective dynamics, and directly linking them to experiments is –to say
the least– adventurous. We argue that finding the universality class(es)
relevant to neuronal dynamics is enough in order to understand their
underlying processes (Binney et al. 2001; Ódor 2008). But using that
argument implies that we are assuming already that the brain is critical,
and hence finding its “normal form” near the transition will explain it.
But, what happens if the brain is not critical? Then the universality
argument is (possibly) not valid –and then toy models may represent
different faces or ingredients of the system, but a whole synthesis, with
a more detailed description1, would be needed in order to recover brain

1I am not against the main idea of statistical physics, that putting the right micro-
scopical ingredients will yield correct results at the collective level, but just stating
that identifying those ingredients in very complex, non-critical phenomena could be
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6.1 Networks of theta-neurons

dynamics as a whole (Bunge 2003). This calls for the necessity to check
criticality in the brain not only by simple arguments and toy models,
but also taking more realistic scenarios, doing a complete bottom-up
approach –or synthesis– to connect all levels of explanation with ex-
perimental evidence. I would also like to remark that more complex
models might not be necessarily more realistic dynamical systems for
the individuals, but the use of a more realistic topology, or the addition
of new key ingredients in a simple form.

I devote this section to demonstrate how our toy arguments apply
in more realistic scenarios, showing some of the preliminary research
result performed during the last months prior to the thesis writing.

6.1 Networks of theta-neurons

In chapter 4, we studied the synchronization transition using a sys-
tem of active oscillators. The key ingredient of such oscillators was
excitability, a fundamental aspect of neuronal dynamics that is miss-
ing in the stochastic Kuramoto model.

It was possible to obtain precise results on the topology of the phase
diagram and their critical bifurcations due to the possibility of working
with a simple phase model. This lead to periodicity in the angle distri-
bution P (ϕ,t), so it could be expanded in Fourier series, allowing us to
decompose the Fokker-Planck equation into an infinite set of differen-
tial equations. One possible criticism is that neurons (or even neuronal
regions) are not oscillators, but excitable units. However, near a limit-
cycle bifurcation they can be always regarded as non-linear oscillators,
as demonstrated by Ermentrout and Kopell (Ermentrout and Kopell
1986) or as argued by Izhikevich (Hoppensteadt and Izhikevich 1997).
Actually, note that the form of the active rotator presented in Chapter
4, eq. (4.2), is very similar to eq. (2.29) (which models a quadratic in-
tegrate and fire neuron with a leaky membrane), for a fixed intensity
I ≃ 1, as we demonstrated in Chapter 2. Therefore, our simple, the
model still captures the essential properties of excitable type-I units.

But our proposed model still presents important differences with

a very difficult task.
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real integrate-and-fire models, thus we decided to test whether the hy-
brid excitability transition could be found on systems of theta-neurons,
which are still regarded as a simple model written in terms of phases
(so the analytical machinery can be applied), but it is more realistic
than the active rotator model.

Actually, the key difference between both equations is coupling.
The toy model uses a Kuramoto-like coupling while the theta-neuron
uses current (or synaptical) coupling. This detail is an important dif-
ference, since the Kuramoto coupling includes both excitatory and in-
hibitory couplings in an effective way. The term sin

(
ϕi −ϕj

)
, for ϕi >

ϕj is positive (excitatory) for the i-th neuron, but negative (inhibitory)
for the j-th. We later show explicitly that adding inhibition enriches
the dynamics of the theta-neuron networks, which becomes similar to
the macroscopic phase diagram obtained for the active oscillators de-
scribed in Chapter 4.

Our objective in this section is to show that the formalism devel-
oped during the thesis to study systems of coupled oscillators is of use
in more realistic systems, as well as comparing the phase diagram of
the theta-neurons to the active-rotator model.

6.1.1 Mean-field theory

Let us study the behaviour of theta-neurons in mean-field first. We
start by recovering the equation for the theta-neuron, eq. (2.28), for a
system of N neurons,

ϕ̇j =
(
Ij (t) + 1

)
+
(
Ij (t)− 1

)
cosϕj , (6.1)

where ϕj is the angle that codes the neuron membrane potential and
Ij is the input current to neuron j. Remember that the theta-neuron
is derived from a quadratic integrate-at-fire exactly near a type-I ex-
citability bifurcation, so it can be seen that neurons are at rest when
ϕj = −π, and spiking at ϕj = π (see Chapter 2).

Let us first say a few words about the input current. In the absence
of current, the neuron is posed exactly at a SNIC bifurcation, hence
reacting to any external perturbation, no matter how small it is. A
way to solve this problem, and confer a “threshold” to the neuron, is
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to assume that a constant (negative) current is applied at all times to
the system. Then, assuming that all couplings are homogeneous, but
subject to stochastic noise, we have

Ij (t) = Idj (t) + I sj (t) = −qj + Jr (t) + σηj (t) , (6.2)

where qj is the external current applied to neuron j, σ is the noise
intensity, ηj (t) is a Gaussian white noise, J is the coupling intensity,
and r (t) is the instantaneous firing rate, that can be understood as the
number of spikes arriving to the neuron in a very small time window
for fast synapses (see also the section on synaptic inputs in Chapter 2).
Note that, since the system is a mean-field one, all neurons receive the
same input, which is the global system activity multiplied by a factor:
Jr (t). The external currents to each neuron play a similar role to an-
gular speed in individual oscillators, and we could set any distribution
g (q) for them. Finally, we have defined Idj = −qj + Js and I sj = σηj (t), in
order to separate the deterministic and stochastic parts of the current.

Let us study the simplest case, the deterministic (σ = 0, so I sj = 0)
system with g (q) a Lorentzian of mean q0 and spread ∆. It is then
possible to follow the procedure in Chapter 2 in order to obtain

Ż1 =
iId

2
(1 +Z1)2 − iI

d

2
(1−Z1)2 (6.3)

for the Kuramoto order parameter under the Ott-Antonsen ansatz, with
Id = q0 + i∆+ Jr (t). Then, the only thing that remains is to identify the
mean-field input r (t) to the neuron with the Kuramoto-Daido order
parameters. The conformal map

W =
1−Z1

1 +Z1
(6.4)

allow us to write eq. (6.3) as

Ẇ = −iW 2 + i (q0 + Jr (t)) , (6.5)

and it can be furthermore demonstrated that W = πr + iV , where V
is the mean membrane potential of the associated quadratic integrate-
and-fire neuron (Montbrió et al. 2015). In this way, it is possible to
obtain equations for the average firing rate and membrane potential,
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Figure 6.1: Phase diagram of deterministic excitatory QIF neu-
rons. Simulations are performed for a mean-field system of excitatory
quadratic integrate and fire neurons, using q0 and ∆ as parameters.
Red zone is a “down” phase, with low firing rates and membrane po-
tential below the threshold. Blue colors indicate a constant firing of
the neurons. Shaded region indicates a bistable region, as detected
numerically. This region is surrounded by a saddle-node bifurcation,
obtained by performing bifurcation analyses on eqs. (6.6)

ṙ =
∆

π
+ 2rV , (6.6a)

V̇ =V 2 − q0 + Jr −π2r2. (6.6b)

Figure 6.1 shows a comparison of the predicted phase diagram ob-
tained from theory and numerical simulations, respectively, when only
excitatory neurons with spike-like currents are considered. In numer-
ics, the input current is computed just by counting the number of neu-
rons that spiked in time interval [t − τ, t], with τ ≪ 1. The system dis-
plays two different phases: a “down” state, with almost zero firing rate,
and an “up” state with constant firing. For certain values of q0 and ∆,
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it is also possible to find a bistability region, where the system goes to
up or down states depending on initial conditions.

For analytics, it is possible to demonstrate that the instantaneous
firing rate r (t) in the Ott-Antonsen ansatz is given by

r(t) =
1

2π
1− |Z1|2

|1 +Z1|2
. (6.7)

as done by (Laing 2014; Montbrió et al. 2015). Actually, this can be eas-
ily done by computing the density of neurons at π, P (ϕ = π,t), a com-
putation that is immediate taking the Fourier expansion of the prob-
ability density, as shown in detail in Section 6.2 and (Montbrió et al.
2015).

Finally, let us consider what happens when we introduce stochastic
noise. For clarity, set g (q) = δ (q − q0) this time. Then, we can write the
Fokker-Planck equation,

∂tP (ϕ,t) =−∂ϕ {A (ϕ)P (ϕ,t)}+
1
2
∂ϕ

{
B (ϕ)∂ϕ [B (ϕ)P (ϕ,t)]

}
(6.8a)

A (ϕ,t) =
(
Id (t) + 1

)
+
(
Id (t)− 1

)
cosϕ (6.8b)

B (ϕ) =σ (1 + cosϕ) (6.8c)

which indicates us the probability of finding a particle at phase ϕ in
a time t. Note that A (ϕ,t) and B (ϕ) are respectively the determinis-
tic part and the multiplicative noise, respectively. We remark since we
set all the external inputs to q0, then the probability density does not
depend on q. If the assumption is relaxed, we would have P (ϕ,q, t).
Following again the steps explained in Chapter 2, it is again possible
to obtain an infinite set of equations for the Kuramoto-Daido order pa-
rameters. The computations are more involved than the previous ones
due to the appearance of multiplicative noise, but there is no additional
conceptual difficulties. The result is

Żk = i
(
1 + Id

)
kZk −

i
[
1− Id

]
k

2
(Zk+1 +Zk−1)+

+
σ2

8

[
k (2Zk−1 − 2Zk+1 +Zk−2 −Zk+2)− k2 (6Zk + 4Zk−1 + 4Zk+1 +Zk−2 +Zk+2)

]
,

(6.9)
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where the deterministic and stochastic contributions have been sepa-
rated for clarity. Note that the multiplicative noise comes from the fact
that we added the noise in the input current of the quadratic integrate-
and-fire neuron. After the change of variables to phases, it becomes
multiplicative, coupling larger orders into the equation.

The phase diagram, however, is qualitatively identical to the one for
the deterministic neuron: down and up states, and bistability between
them. Therefore, a mean-field, excitatory theta-neurons system dis-
plays a first-order phase transition from down to up states for low val-
ues of noise, while the change of phase is continuous over the cusp (see
Figure 6.1). The dynamics is more complex than the simple stochastic
model by Larremore et al. analysed in Chapter 3 –where a network
composed only by excitatory units leads to all active or inactive–, but
still not as much as the active rotators model.

6.1.2 Inhibitory neurons

Besides the more complicated shape of eq. (6.9), it is clear that theta-
neurons are lacking something that was present in the active rotators
models: by comparing both, the answer turns out to be inhibition.

As we discussed earlier, the sinusoidal coupling typical of Ku-
ramoto systems is able to mimic inhibition in a very coarse way. We
already remarked several times during the thesis the importance of
inhibition in the brain, and in the present context it is also funda-
mental in order to increase complexity and generate richer dynamical
regimes. Thus, we introduce an extension of the theory presented so
far in order to work with E-I networks.

Analytically, we have two different populations, the excitatory one
and the inhibitory one. Each one will have its own instantaneous firing
rate, denoted respectively re (t) and ri (t). The excitatory population
receives a deterministic current Ide (t) = −qe +ωeere (t) −ωeiri (t), while
the inhibitory one receives Idi (t) = −qi+ωiere (t)−ωiiri (t). For simplicity,
let us add an additive noise to the equations, that is formally equivalent
to assume a Lorentzian distribution for the external currents. Noise is
different for each population, with intensities σe and σi , respectively.
Additionally, each population is described by its own set of Kuramoto-
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Daido parameters, and hence we have Zek and Z ik. However, in this case
the Fokker-Planck equation is two-dimensional, as P (ϕe,ϕi , t), so the
Fourier coefficients form a matrix. Therefore, if we want to reconstruct
the probability distribution, in principle, we need the Kuramoto-Daido
order parameters

Zkl =
⟨
eikϕeeilϕi

⟩
=

∫
dϕedϕie

ikϕeeilϕiP (ϕe,ϕi , t) . (6.10)

This definition leaves the Kuramoto-Daido parameters for each popu-
lation as Zek = Zk0 and Z ik = Z0k. Looking at the Langevin equations,
one realises that generalising eq. (6.3) is straightforward,

Żkl = i
(
1 + Ide

)
kZkl −

i
[
1− Ide

]
k

2
(Zk+1,l +Zk−1,l)+

+ i
(
1 + Idi

)
lZkl −

i
[
1− Idi

]
l

2
(Zk,l+1 +Zk,l−1)−

−
σ2

(
k2 + l2

)
2

Zk . (6.11)

If we were to generalise eq (6.9), a similar procedure would suffice.
Although equations (6.11) are very complicated to solve, one could im-
mediately notice that setting k = 0 and l = 0 alternatively almost de-
couples the equations,

Żek =i
(
1 + Ide

)
kZek −

i
[
1− Ide

]
k

2
(Zek+1 +Zek−1)− σ

2k2

2
Zek (6.12a)

Ż ik =i
(
1 + Idi

)
kZ ik −

i
[
1− Idi

]
k

2
(Z ik+1 +Z ik−1)− σ

2k2

2
Z ik (6.12b)

where the coupling between Zek and Z ik is inside the input cur-
rents. Although we do not have general information about Zkl , Z

e
k

and Z ik modes are enough to recover the dynamics of the single
populations, allowing us to reconstruct the partial probability distri-
butions P (ϕe, t) and P (ϕi , t). Indeed, it is reasonable to assume that
P (ϕe,ϕi , t) = P (ϕe, t)P (ϕi , t) from the beginning. However, within
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this approximation it is possible to generalize the method for more
complex problems. For example, in a case where the noise matrix in
the Fokker-Planck is not diagonal, we could have expected couplings
from arbitrary Zkl to Zek and Z ik.

Finally, note that the order parameters we have used are for each
population. Therefore, we could have the Kuramoto order parameters⏐⏐⏐Ze1⏐⏐⏐ =

⏐⏐⏐Z i1⏐⏐⏐ = 1, meaning that both the excitatory and inhibitory popu-
lations are synchronized, but this does not imply that both populations
are synchronized together. In order to do so, one would need to com-
pute the order parameters for all the angles, without looking if the
particular neurons are excitatory or inhibitory,

Zk =
⟨
eikϕ

⟩
=

∫
dϕ

P1 (ϕ,t) + P2 (ϕ,t)
2

eikϕ =
1
2

(
Zek +Z ik

)
(6.13)

with P1 (ϕ,t) =
∫
dϕ2P (ϕ,ϕ2, t) and P2 (ϕ) =

∫
dϕ1P (ϕ2,ϕ, t). The

Fourier series was used in order to evaluate all the integrals, yielding
the Kuramoto order parameters of the population. Then, notice that
obtaining the Kuramoto-Daido order parameters Zek and Z ik allowed
us to obtain all the information about the system. Montbriò et al.
(Montbrió et al. 2015) derived mean-field equations for this problem
within the Ott-Antonsen ansatz, but they did not present any results
regarding the two-dimensional system. Apart from the extending
their analytical results, we gave some insights about the model in

the simplest approximation. Assuming the ansatz Ze,ik =
(
Ze,i1

)k
and

applying the conformal mapping (Montbrió et al. 2015; Laing 2018)
one gets

Ze,i1 =
1−W e,i

1 +W e,i

(6.14)

with We,i = πre,i + iVe,i it is possible to write equations for the average
membrane potential and instantaneous firing rate of the populations,

ṙe =
σe
π

+ 2reVe (6.15a)

V̇e =V 2
e + Ide − (πre)

2 (6.15b)

ṙi =
σi
π

+ 2riVi (6.15c)

V̇i =V 2
i + Idi − (πri)

2 (6.15d)
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A further change of variables is needed in order to make explicit the
fraction α of individuals in the system, since the averages are defined
as Ve,i = N−1

e,i

∑Ne,i
j=1Vj , instead of dividing by the total number of neu-

rons N . The first thing we can observe is that, if we make all the cou-
plings equal (ωee = ωei = ωie = ωii = J), then the average membrane
potential V = (Ve +Vi) /2 and firing rate r = (re + ri) /2 have exactly the
same shape as the excitatory-only system, but with an effective, re-
duced coupling J (1− 2α), in an analogous way of what happens to the
Larremore et al. model (Larremore et al. 2014). However, it was not
possible to find any hint of the LAI phase in this system, when a sparse
Erdös-Rényi network is employed.

Allowing for more freedom on the couplings should lead to a richer
phase diagram, as it happens in the Wilson-Cowan model (Wilson
and Cowan 1972; Borisyuk and Kirillov 1992) but a more careful bi-
furcation analysis should be performed. We are currently analysing
such phase diagrams, in order to compare with other models and look
for richer behaviours, such as limit cycles (synchronization) or asyn-
chronous regimes, in an ongoing research project. In addition to that,
the behaviour of the model in more complex topologies remains to be
studied. As it was mentioned before, for preliminary analyses, we have
studied the behaviour of theta neurons in Erdös-Rényi networks, with
the hope to find an asynchronous irregular regime, or deviations from
mean-field theory. No hints of different qualitative dynamics has been
found so far, meaning that Erdös-Rényi networks behave very similarly
to mean-field predictions. This could be, as we discuss later in this
Chapter, due to the presence of threshold in neurons (in this case, the
negative external current applied to neuron populations) but more re-
search is needed in order to elucidate these issues. We have also imple-
mented these models in real topologies, such as the connectome or syn-
thetic hierarchical-modular networks (see for example (Zamora-López
et al. 2016)), but results have yet to be analysed.
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6.2 A continuous measure for firing rates

A possible drawback for the analysis of the theta-neurons is that the
spike train coupling usually employed is difficult to write as angular
variables. Instead, many studies (Luke et al. 2013; Laing 2014; Luke et
al. 2014; Laing 2018) use a function that mimics the spike behaviour.
Since the spike is produced at ϕ = π, the function (1 + cosϕ)n tends to
be larger around ϕ = π as n increases, hence it is possible to use it as
current input function instead of the usual Kuramoto coupling.

We demonstrate here that is possible to make the process for infinite
n, mapping exactly QIF and theta neurons. First, recalling expression
(2.8) for the general current input, and assuming that the system is
fully connected, one can write

I (t) =
1
N

N∑
j=1

∑
{
t
j
m

}
∫ t

−∞
dt′Gτ

(
t
j
m − t′

)
δ
(
t
j
m − t′

)
, (6.16)

where N is the total number of neurons,
{
t
j
m

}
are the set of times at

which the j-th neuron spiked, and Gτ (t) is a kernel that returns the
strength of the interaction, which presents a typical time τ . Note that
at all the spike times, the phase of the j-th neuron must be π. Then,

δ
(
t
j
m − t′

)
= δ

(
π −ϕj (t′)

)
. Using the following equivalence,

δ (π −ϕ) = lim
n→+∞

√
n

4π

(1− cosϕ
2

)n
, (6.17)

which is very easy to demonstrate, it is possible to insert this expression
into the synaptical current equation eq. (6.16), to get

I(t) = lim
n→∞

√
n

4π
1
N

N∑
j=1

∑
{
t
j
m

}
∫ t

−∞
dt′Gτ

(
t
j
m − t′

)(1− cosϕj (t′)

2

)n
. (6.18)

The “spike times” delta has been effectively encoded into the function
ϕj (t′). Taking the limit at which the typical time of the kernel τ → 0,
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it is possible to eliminate the integral, since in that case Gτ (0 ≤ t ≤ τ) ≃
1/τ and then∑

{
t
j
m

}
∫ t

−∞
dt′Gτ

(
t
j
m − t′

)
f (t′) ≃ τ−1

∫ t

t−τ
dt′f (t′) ≃ f (t) +O (τ) . (6.19)

Notice that when take this limit, we are assuming that the only spikes
affecting the neuron are the ones that are present exactly at this time
t, thus the input current would be the instantaneous firing rate r (t) of
the network.

Now, let us rewrite the term with trigonometrical functions in order
to change all the powers into cosines of multiples of ϕ, which can be
readily substituted by Kuramoto-Daido order parameters. In order to
do this, the following identity turns out to be useful,

(1− cosφ)n =
1

2n−1

⎡⎢⎢⎢⎢⎢⎣(2n− 1
n

)
+

n∑
k=1

(
2n
n− k

)
(−1)k cos(kφj)

⎤⎥⎥⎥⎥⎥⎦ , (6.20)

which can be proved by induction with some effort. This identity allow
us to rewrite all the cosines asℜZk, absorbing the summation over all
neurons. Applying all these changes, we finally arrive at

I (t) = r(t) = lim
n→∞

√
n

4π
2
4n

⎡⎢⎢⎢⎢⎢⎣(2n− 1
n

)
+

n∑
k=1

(
2n
n− k

)
(−1)kℜZk

⎤⎥⎥⎥⎥⎥⎦ , (6.21)

where now only the last sum and the limit remain to be evaluated.
Unfortunately, it is not possible to compute the sum analytically at this
point unless we take the Ott-Antonsen ansatz, setting Zk = Zk1 . Writing
the real part asℜZ = (Z + Z̄)/2 and using that

n∑
k=1

(
2n
n− k

)
(−Z1)k = −Z1

(
2n
n− 1

)
2F1(1,1−n;2 +n;Z1), (6.22)

where 2F1(a,b;c;z) represents the hypergeometric function, it is possi-
ble to finally evaluate the limit n→∞. In order to do this, we employ
the asymptotic expansion of the binomial coefficients. For the hyper-
geometric function, recalling its definition
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2F1(1,1−n;2 +n;Z1) =
∞∑
k=0

(2−n− k)k
(2 +n+ 1)k

(−Z1)k→ 1
1 +Z1

, (6.23)

where to evaluate the limit for large n we used that both Pochammer
symbols scale as nk, leaving a geometric series. We can finally substi-
tute everything, leading to

r(t) =
1

2π

[
1− Z1

1 +Z1
− Z̄1

1 + Z̄1

]
=

1
2π

1− |Z1|2

|1 +Z1|2
. (6.24)

Notice that eq. (6.24) coincides with the result derived by Montbriò
et al. (Montbrió et al. 2015) when one solves for the firing rate2. How-
ever, here we obtained this equation from first principles, working only
from the phase description of the oscillators. There are two important
consequences from this result: first, interaction (6.18) can be formally
used to count spikes, as usually done in leaky integrate-and-fire neu-
rons, and making the theta-neuron exactly identical to QIF neurons.
Second, in (Montbrió et al. 2015) , the Ott-Antonsen ansatz is used
from the very beginning, while the derivation here uses it at the end,
generalizing their results. If eq. (6.21) is used instead of applying the
Ott-Antonsen ansatz, all harmonics can be taken in account, leading
to more accurate results when the system is noisy. Equation (6.21) can
complement the system of equations obtained above for theta-neurons,
giving a fully macroscopic description of a noisy set of QIF neurons at
any order k in an exact way.

Finally, note that if we work with phase oscillators from the very
beginning, we can just count the number of individuals that spiking,

2Except for a factor of 2 (i.e., the expression given by Montbriò et al. is divided
by π−1 instead of (2π)−1). This factors just shifts the coupling to J → J/2. However,
in the original derivation by Montbriò and collaborators there is no need to re-shift
anything in order to fit the numerical simulations, as we showed before. On the other
hand, both Luke and Barreto (Luke et al. 2013) and Laing (Laing 2014) normalize the
Dirac delta to 2π instead of unity (J→ πJ). Laing gives explicitly the result for (6.24),
which coincides exactly with the one we present here, multiplied by 2π as we could
expect. The direct computation of the number of spiking neurons via P (ϕ = π,t) also
yields the factor (2π)−1. It seems that for simulations where we are counting spikes
with small time windows (instead of making neurons interact through finite n) there
is a “correct” normalization factor, which I do not understand, nor I could find any
detail in the literature.
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Figure 6.2: Measuring firing rates through synchronization. Experi-
mental data used with permission of Jordi Soriano. In-vitro culture of
N = neurons. Phases were identified by setting ϕ = π at each spike,
and ϕ = −π just before the event, then performing linear interpolation
with ∆t = 10 ms. Decreasing the value does not affect the result. Then
the Kuramoto-Daido order parameters computed, and the firing rate
obtained using (6.21). Notice that each spike is convoluted with the
function (1− cosϕ)n, and hence the method lose fine synchronization
details inside fast bursting events.

i.e., those that are at ϕ = π. Then, the instantaneous firing rate will be
the density of oscillators at such a phase, that can be readily computed,
even for heterogeneous oscillators

P (ϕ = π,t) =
∫
dqP (π,q, t) =

1
2π

⎡⎢⎢⎢⎢⎢⎣1 + 2
+∞∑
k=1

(−1)kℜ (Zk)

⎤⎥⎥⎥⎥⎥⎦ (6.25)

where we used that Zk (t) =
∫
dqg (q)pk (q, t). It is clear that this consti-

tutes a simpler version of eq. (6.21). Moreover, using the Ott-Antonsen
ansatz yields again (6.24). One could wonder why it would be nec-
essary to perform all the complicated computations presented above,
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instead of this simple evaluation. The reason is that it serves to link
exactly theta-neurons with QIF, as it was already commented, and that
it allows to see what is the effect of convoluting the spike with a kernel,
which can be useful in several applications.

Another remarkable detail is that the derivation of the equivalence
between the spike counting and interaction (6.18) is model-agnostic.
This means that it is possible to compute the firing rate of any set of
neurons via phase interpolation. The usual procedure to compute the
firing rate of a set of N neurons is to bin the time with a small timebin
τ and count all spikes inside the bins. However, the choice of the time
bin is arbitrary is related with the system size N , as explained in Ap-
pendix A. If, instead, one discretizes the time, interpolates the phases,
and computes the firing rate via the Kuramoto-Daido parameters (ei-
ther in its complete, or Ott-Antonsen formulations), it is possible to get
a real, continuous, firing rate function that does not depend on time
binning -which could be of great value to experimentalists. I checked
this fact against experimental data provided by Prof. Jordi Soriano in
Barcelona3, of neuronal networks growing in vitro. Figures 6.2 and 6.3
show the results, which are very consistent against data.

I also tested the firing rate with fake, simulated data, in order to see
if has all the properties one could expect from the instantaneous firing
rate. It turns out that it behaves quite well, taking eq. (6.21) with up
to n = 50 or n = 100. Some facts about this measure are as follows:

• A completely asynchronous system has r (t) ≃ 1/ (2π), as one can
readily check from (6.24), no matter how fast is the individual
neuron firing rate. This is in contrast with the time-binned mea-
sure usually employed, where the time-bin is sensible to the fir-
ing rate of individual neurons4.

• Time bins are still needed to interpolate the phases. However,
the interpolation converges as the bin size goes to zero, so the
measure r (t) converges accordingly. In contrast, time-windows
always end up having no spikes when they are made sufficiently
small, due to the finite size of the network.

3Data from M. Montalà et al., eNEURO, submitted.
4Larger rates allow more spikes inside the same time-window. Although usually

one divides through Nτ , finite-size effects have a marked effect here.
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Figure 6.3: Using the distribution increases sensitivity. Same dataset,
but analysed using eq. (6.25) instead of (6.21). Since here the distri-
bution is working directly with the Dirac delta instead of the “kernel”
for large n, the method is more sensitive to structure inside bursting
events, as it can be appreciated in zoom. Notice how instantaneous
peaks are also larger. The price to pay is that finer discretizations are
needed to converge, as the negative event makes clear.

• Time binning also leads to problem in finite sizes: suppose that
all the neurons in the system spike at the same individual fir-
ing rate. If we duplicate the number of neurons, each bin will
have more spikes, so firing rates must be computed per neuron
(or reduce the time windows as N−1/2). However, this measure
is robust against any change of system size, just converging for
N → +∞.

I am now trying to contrast this measure with more data, possible us-
ing it to study the effect on avalanche measures. I think that, if used
correctly, this measure could be of great impact in the neuroscientific
community, even for experimentalists.
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6.3 On Jensen’s force and synchronization

In the Larremore et al. model we found that Jensen’s force was directly
related with the appearance of the asynchronous irregular state. Al-
though we were able to demonstrate the causal relationship between
the two phenomena, performing all the analytical computations, there
is still some unanswered questions about the mechanism which allows
the asynchronous irregular state to emerge.

6.3.1 Benayoun: the importance of “just one term”

For example, I was not able to locate the LAI phase in the model by
Benayoun et al. (Benayoun et al. 2010) in numerical experiments, al-
though its equations are very similar to the ones corresponding the Lar-
remore et al. model (see Chapter 2). The only difference between both
equations was actually the term corresponding to the input, which is
just

⟨
f (Λ)

⟩
for the Larremore model, but

⟨
(1− s)f (Λ)

⟩
for Benayoun et

al. Therefore, I suspect that the difference lies in the following: while
in the Larremore model it suffices to obtain input fluctuations in order
to perform averages as

⟨
f (Λ)

⟩
, the Benayoun et al. model requires the

full probability distribution for the activity in order to being able to
evaluate such quantities. Making

⟨
(1− s)f (Λ)

⟩
≃ (1− ⟨s⟩)

⟨
f (Λ)

⟩
and

applying the analytical techniques we developed for the Larremore et
al. model would be incorrect, since such an approximation is already
assuming the mean-field hypothesis.

It is worth to note that the term (1− s) means that if all the neurons
are simultaneously active, then nobody else can become active, which
is what actually happens in real systems. On the other hand, in the
Larremore et al. model once all the neurons are simultaneously active,
it feedbacks itself to remain in that (absorbing) state. Actually, at γc the
model is very similar to a voter model, displaying just two symmetrical
absorbing states, s∗ = 0 and s∗ = 1. It is just matter of time and fluctua-
tions to fall in one of both. In the Benayoun et al. model, fluctuations
can drive the network to high activity, but after a high fluctuation, the
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system must always fall again. In this case, the only absorbing state is
s∗ = 0.

Another detail that surprises me from the Benayoun et al. model
is that the mean-field macroscopic limit of this system are the Wilson-
Cowan equations, even when it apparently lacks a refractory period.
If we review the derivation of Wilson-Cowan equations (presented in
Chapter 2), the first assumption is the existence of a refractory period
r, that leads at the end to the saturation term (1− rs). In the Benayoun
et al. model neurons are assumed to be active for a typical time 1/β,
which is the typical timescale for a spike. In the Wilson-Cowan model,
spikes are Dirac delta functions, but neurons must remain refractory
for a time r. Hence, maybe the correct interpretation of the Benayoun
et al. model would be to take r = 1/β, and reinterpret the “active”
state of the neurons as “refractory” instead, with a discrete spike at the
time t at which the transition happened5. Then, the difference with
the Larremore et al. model –at which a neuron is continuously active
while it receives enough input– becomes evident: in Larremore et al.
excitability is missing, but this ingredient is present in the Benayoun et
al. model, which again lead to possibilities of bifurcations compatible
with those of the hybrid synchronization.

Finally, given the complexity of the phase diagram of the (mean-
field) Wilson-Cowan equations, probably an asynchronous irregular
regime is hidden in a small parameter range (see Chapter 2). The dia-
gram with multiplicative noise (the Benayoun et al. model) should be
then analysed with care, in order to find such states. From the point
of view of synchronization transitions, they probably exist –because
in the Wilson-Cowan equations there are limit cycles–, and studying
such regimes would give more information about the behaviour of the
Jensen’s force for more realistic systems.

5Using a three-state model, quiescent, spiking, and refractory for the neurons,
would also probably allow us to recover part of the fast oscillating variables inte-
grated out in the Wilson-Cowan equations.
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Figure 6.4: LIFLS model phase diagram. As with the Brunel model,
the LIFLS present a synchronous-asynchronous transition near g = 4
(marked with yellow circles). The leftmost transition, marked in red,
is a change from monostable to bistable collective firing rates, as hinted
by the increase of the second Kuramoto-Daido parameter. Parameters:
coupling J = Jext = 2 mV, N = 2000, τm = 20 ms, τs = 5 ms, τr = 2 ms,
Vr = −10 mV, Vh = 10 mV, Vl = 0 mV, θT = 20 mV.

6.3.2 Jensen force in I&F neurons

We discussed the possibility to find the asynchronous irregular state
in more realistic models in Chapter 3. One of the most concerning
issues when the research on Jensen’s force was published (Buendía et
al. 2019) was the lack of truly self-sustained irregular phases in leaky
integrate-and-fire neurons, which suffer from strong dissipation. How-
ever, in the literature there are some recent candidates to display such
self-sustained, low activity regimes, that could be explained using the
Jensen’s force approach (Kriener et al. 2014; Borges et al. 2020).

A later revisit of the Larremore et al. model shows that, when the
transfer function presents a threshold, the LAI phase might disappear.
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In the Larremore et al. model, a node can be activated by a single ac-
tive neighbour –even when it is very improbable– in contrast to real
neurons that need many active neighbours to overcome the membrane
potential threshold and start spiking. Hence, LAI phase might be hin-
dered when a threshold is considered, which might explain why it is
so difficult to find irregular phases in the absence of external input for
more realistic models. On the other hand, when the external input
is added, it compensates the threshold, allowing the neuron to spike
more easily. This is the case, for example, of the Brunel model (Brunel
2000), now regarded as a paradigmatic model of simple integrate and
fire neurons which are able to display very different behaviours. This
model presents several bifurcations and phases, including an asyn-
chronous irregular phase for inhibition dominated regimes with cer-
tain external input. When the system is excitation dominated, it ex-
periences a synchronization phase transition to a synchronous regular
regime. The transition happens just at the point of balance between
excitation and inhibition.

We analysed in detail the dynamic of this transition, in collabora-
tion with Prof. Johannes Zierenberg, who was studying the dynamics
of neurons at the transition. This turned out to be bistable, produc-
ing small “synchronization clusters” that change dynamically. We dis-
covered that such a bistability in the individual neurons comes from
input fluctuations. This mechanism is not particular of the Brunel
model, and it is displayed also for leaky integrate and fire neurons with
leaky synapses (LIFLS model). This model is defined by simple leaky
integrate-and-fire neurons

τmV̇j = −
(
Vj −Vl

)
+ Iej + I ij + Iextj , (6.26)

where each intensity is convoluted by an exponential kernel τs İj = −Ij .
The model is complemented by a reset rule: each time surpasses a
threshold, V ≥ θT , the membrane potential is hold to V = Vh, and
the current for neighbouring neighbours is increased by J (or gJ in
the case of inhibitory neurons). Then the neuron is refractory for τr
milliseconds, after which the membrane potential returns to V = Vr .
The external current is set as a random Poisson process of spikes. As
the Brunel model, this presents a synchronization phase transition at
the balanced state (see Figure 6.4) around gc ≃ 4, where bistability in
individual’s firing rate is found. Moreover, such fluctuations are not
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Figure 6.5: Jensen’s force in the LIFLS neuron. Time series for an indi-
vidual neuron in the model (top), and the corresponding input current
(bottom). The input current is divided in excitatory (green) inhibitory
(red) and total (blue). Spikes are marked with vertical lines. The aver-
age spiking frequency an autocorrelation times are indicated. Parame-
ters are as in Fig. 6.4, with g = 5.

white-noise, but present a certain correlation time –due to τs–, so they
are able to sustain the neuron firing for some time. This is an impor-
tant difference with the Larremore et al. model, in which fluctuations
are completely random. In the inhibition dominated regime (g > gc),
inhibition is able to decorrelate the time series, leading to the asyn-
chronous irregular states, where the neurons spike only due to almost
random fluctuations. In the excitatory regime, the input current is al-
ways large enough in order to make neurons spike tonically, leading to
a synchronization in the long-term. Moreover, large excitation leads to
bistability in the collective firing rate.

Near the balanced transition, large autocorrelation times are
able to present “up and down” states in the individual neurons and
synchronization clusters that change dynamically, as displayed in
Figure 6.5. Therefore, here Jensen’s force is acting in a more com-
plicated (but realistic) way, facilitating bistability for the individual
firing rates. Avalanche behaviour remains to be studied, but this
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synchronization transition could be of interest to compare with the
active oscillators model. However, a recent model by Girardi-Schappo
et al. (Girardi-Schappo et al. 2020), similar in spirit to the Larremore
et al. model, reproduces the phase diagram of Brunel, claiming that
scale-free avalanches are present only at the edge with the absorbing
state, and that they belong to the usual universality class of directed
percolation. The model is actually able to self-organize (through
a mechanism similar to SOqC) to the balanced, critical point. The
avalanches were measured the same way as in formal non-equilibrium
systems, in contrast with the usual method employed in neuroscience
(see Appendix A).
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Chapter 7

Overview and conclusions
"Now tell me what happened –in words. I want your translation of the
mathematics"
- Isaac Asimov, in Second Foundation, 1953

After sketching the current lines of research derived from the the-
sis results, I would like to discuss some of them, sharing some of my
concerns and thoughts, from a broader perspective.

7.1 Overview

The first issue I want to discuss is the data-driven approach to model
whole-brain dynamics by authors such as Deco, Cabral, Daffertshofer,
or Tagliazzuchi (Deco et al. 2009; Cabral et al. 2011; Cabral et al.
2014; Jobst et al. 2017; Daffertshofer et al. 2018b; Daffertshofer et al.
2018a). The idea is the following: using neuroimaging techniques, one
can infer the topology of the structural connectome, and then assign
a dynamical system to each one of the network nodes –that represent
mesoscopic regions. Finally, one can compare the simulated tempo-
ral series of activity with those obtained experimentally, fitting models
to observations. Data of the structural connectome are already widely
accessible, allowing to perform many analyses (Haimovici et al. 2013;
Villegas et al. 2014; Cabral et al. 2017; Ódor and Kelling 2019; Ata-
soy et al. 2019) which correlate the known structure with the observed
function. In the whole-brain models I am discussing, the objective is
usually to check whether the observed global data can be explained by
the criticality hypothesis. I believe that this idea is actually very pow-
erful, and has the potential to settle the criticality debate if carefully
analysed, so let me discuss this issue in-depth.
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Despite of being an overall good strategy, I believe it has both tech-
nical and philosophical pitfalls. One of the most concerning technical
problems with such a method is that, if the experimental signal is very
complex, a simple dynamical system with two different phases needs to
be at criticality in order to fit the data (Mora and Bialek 2011). In this
situation, where we have a network of nodes, not all the nodes have to
be posed at criticality, but it is important to keep in mind “overfitting”
due to large amount of degrees of freedom available.

Then, it is important to distinguish bifurcations at the individual
level with those at the collective one. Cabral and collaborators consider
a network of Stuart-Landau oscillators (Cabral et al. 2014). These are
nothing but the normal form of a Hopf bifurcation. When compared
with the data, it turns out that a system composed by (mostly) critical
Hopf oscillators is the one that fit best. How could we put this together
with our first result in Chapter 4, which discards the Hopf bifurcation
as a source of complexity and critical avalanches? The answer lies at
the scale at which we look at the outcomes. The Stuart-Landau units
are able to reproduce the experimental results near their Hopf bifurca-
tion, but at the macroscopic level, we do not know which is the resul-
tant dynamical regime; on the other hand, in the Kuramoto model, the
Hopf bifurcation is collective, for the whole system, while each oscilla-
tor is just rotating with speed ω0. Notice that at the HT transition, the
individual oscillators are very near their individual SNIC bifurcation1

(a = 1.07, with the individual SNIC happening at ac = 1). Therefore,
the key question is: if one computes the collective phase diagram of
the coupled system of homogeneous Stuart-Landau oscillators, what
macroscopic regime corresponds to all individuals tuned at the Hopf
bifurcation?

This problem was already addressed by Hoppensteadt and Izhike-
vich (Hoppensteadt and Izhikevich 1997), who tried to analyse the
problem of collective neuronal behaviour from the point of view
of universality. Neurons are excitable systems, and they can spike
through type-I or type-II excitability classes. Therefore, building a
canonical model for each excitability class, and studying its collective,

1It’s actually so close, that if the brain was working near the HT transition, and I
decided to fit the model to the data, I would probably claim that the oscillators need
to be near a SNIC transition... but we saw they SNIC bifurcations do not generate any
avalanches at the collective level!
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macroscopic behaviour, would suffice to uncover much of the possible
system dynamics. Hence, Hoppensteadt and Izhikevich already
studied systems of coupled Stuart-Landau oscillators (type-II) as well
as our active rotators (type-I) (Hoppensteadt and Izhikevich 1997) but
23 years ago the powerful reductions by Ott and Antonsen (Ott and
Antonsen 2008) were not yet available, and the analyses are obscure
and based on the “weakly correlated” approximation. Given the
results obtained in this thesis, I believe that performing a rigorous
analysis of the normal forms of type-I and type-II mean-field oscil-
lators is of central importance right now, a challenge actually able to
shed light on the dynamical state of the brain, which could constitute
a notorious advance both from theoretical and experimental sides.
There is already numerical machinery to perform accurate fits from
networks to experimental data recordings, which are obtained via
modern neuroimaging techniques. The remaining (difficult) task is to
understand the collective behaviour emerging from such a fit, linking
it to possibly realistic neuronal models. For example, recently Deco,
Daffertshofer and their collaborators (Deco et al. 2009; Daffertshofer
et al. 2018b) have also analysed the Wilson-Cowan model, fitting it to
experimental data, but it is always looked near the Hopf bifurcation
–so it should keep similarities with the canonical type-II model, the
Stuart-Landau oscillators.

I mentioned before that the problems are not only technical, but
also philosophical. This is in the sense that setting a simple model and
performing a fit is a purely instrumentalist point of view, and it should
be taken with care. A realist would be concerned about choosing an
adequate model to represent the dynamics of the region. Such a model
should be justified by theory or experimental observations. If not, one
could just set up any model able to display a large repertoire of dynam-
ical complexity (e.g., a chaotic system), or even a simple model which
is able to display such emerging complexity at the macroscopic level,
and fit the data accurately, just because the model has enough degrees
of freedom to do it. Let me give a practical example. Suppose that the
mean-field, the collective phase diagram of excitable type-I and type-II
oscillators turned out to be similar, with the same bifurcation lines and
phases (at least, locally). Then, since the fit is done at the macroscopic
level, both models should be able to fit the data equally well. However,
it is clear that a type-II model is not adequate for a type-I region, and
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viceversa. Just putting a model on a node because it is “simple” could
give misleading answers to our conceptual questions, specially if one
talks about the properties of individual regions.

Hence, it is very important to pay attention also to lower scales,
going for a bottom-to-top synthesis. Given the evidence in the litera-
ture, it is worth to wonder: if a critical type-II oscillator is model ade-
quate for mesoscopic regions, how do the neurons self-organize to such
a point at this scale? Why should be then possible to find avalanches
by looking at only that region, when we know that Hopf bifurcations
do not yield scale free avalanches2? These questions make it clear that
only working from philosophical realism, using a bottom-up approach,
we will be able to settle the debate on brain criticality.

Another relevant issue worth to be discussed is the relationship be-
tween the balanced brain and criticality. Balance between excitation
and inhibition is one of the most robust observations at this point, both
in experiments and theoretically (Brunel 2000; Shew et al. 2011; Poil
et al. 2012; Bellay et al. 2015; Denève and Machens 2016; Politi et al.
2018; Sadeh and Clopath 2020). However, balanced states are usually
linked to asynchronous irregular activity (Vreeswijk and Sompolinsky
1996; Denève and Machens 2016; Politi et al. 2018; Buendía et al.
2019), which are characterized by extremely de-correlated systems, in
contrast with the large correlations associated with criticality. On one
hand, such large correlations are usually invoked as an advantage for
information transmission in biological systems (Beggs 2008; Shew and
Plenz 2013; Muñoz 2018), but it has been demonstrated that the irreg-
ular activity is also a good candidate for computation and information
processing (Denève and Machens 2016; Rubin et al. 2017; Sadeh and
Clopath 2020). Balanced states have been found in concomitance with
neuronal avalanches experimentally (Shew et al. 2011; Poil et al. 2012),
and criticality has been related with such balance in many models
(Brunel 2000; Vogels et al. 2011; Poil et al. 2012; Denève and Machens
2016; Politi et al. 2018; Ullner et al. 2018). However, both exhibit some
aspects that seem to be in contradiction with each other. In our anal-
yses of the dynamical balance states, we saw that at criticality, corre-
lations exhibit a peak (Buendía et al. 2019) but still seems to decrease
as the system size is increased. Neuronal balance in some models is

2I have the feeling that the answer to this question is closely related with the
previous footnote.
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intrinsically linked with synchronization transitions, as it happens in
the Brunel model (Brunel 2000), where the balance between excitatory
and inhibitory interactions leads to a transition between asynchronous
irregular and synchronous regular collective spikes. It is possible that,
if the brain lives near the edge of a synchronization transition, it could
jump between the irregular de-correlated and synchronous correlated
states in a flexible way. The remaining question is what happens with
the correlations at criticality –which are expected to diverge, at least
for the macroscopic field, or displaying large spatially correlated do-
mains (as spin clusters in the Ising model). In our low-dimensional
systems, synchronization manifest itself as travelling and spiral waves,
which are a distinctive feature of excitable, noisy spatiotemporal sys-
tems. Although both the Landau-Ginzburg and the active oscillators
present larger spatial correlations at criticality, it is actually difficult
to discern whether if the synchronization clusters sizes are power-law
distributed or not, i.e., if the correlation distance diverges at criticality.
Temporal correlations of the models are more suggestive, with a Hurst
exponent near 1 for the Landau-Ginzburg model (di Santo et al. 2018a)
which is indicative of long-time autocorrelations. We also performed
classical measures of autocorrelation times in the active oscillators sys-
tem, finding larger correlations near the hybrid type bifurcation –but
discriminating if they were scale-free or not was actually very difficult.

However, models such as the active rotators and the Landau-
Ginzburg itself consider inhibition only in an effective way3, so they
say nothing about the role of synchronization in balanced networks.
On the other hand, they serve as a test field to measure correlations
near synchronization transitions. A more systematic study of how
angular variables (and their related activity) are correlated in excitable
models, would be needed in order to understand what is the difference
with models that belong to the mean-field DP universality class.
Correlation functions are a classical measure in the study of critical
phenomena and there is already studies for several variants of the Ku-
ramoto model (Hong et al. 2005; Hong et al. 2015; Wüster and Bhavna
2020), and I would expect similar results (power-law distributed
events) in the non-linear oscillator system –which does not seem to
be the case. The relationship between the nature of the transition

3For the Landau-Ginzburg, only net activity is considered, while in the active
rotators it is introduced in the Kuramoto coupling.
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corresponding to E-I balance, synchronization transitions, and how
correlations work in the synchronous-asynchronous spectrum is also
left as an important future work.

Finally, I would like to state my doubts on the method used to
measure critical avalanches in neuroscience experiments, pioneered
by Beggs and Plenz (Beggs and Plenz 2003), and explained in detail
in Appendix A. The idea of the method, at the end of the day, is to
construct a continuous temporal series of neural activity based on
the coarse-grained events measured by the electrodes. In order to do
this, it is mandatory to choose a bin width to cluster some of the spike
events, and this choice is arbitrary. As Beggs and Plenz admit in their
seminal paper, the simplest rational choice would be to use the average
inter-spike interval of the neurons –compute mean time between two
consecutive spikes, and average along neurons– but the events are so
sparsely distributed that doing so misses the internal structure of the
bursts. Then, the solution is to use the average inter-event interval,
which is the mean time between two consecutive events, no matter
what neuron spiked. The critical exponents depend on the time bin
width choice (Beggs and Plenz 2003; Beggs and Plenz 2004), and up
to my knowledge there is no formal mathematical reason to think
that the mean inter-spike interval is superior to any other choice
–apart from obtaining consistently the unbiased branching process
exponents. Moreover, the method does not seem to be fully consistent.
Di Santo demonstrated that it is possible to obtain power-law like
avalanches in randomly shuffled synchronous signals, as well as in the
synchronous irregular phase of the Brunel model (a find also noticed
by Touboul and Destexhe (Touboul and Destexhe 2017)). This is
indeed a problem, since the synchronous irregular phase is not critical
at all –but the method returns avalanches, so, if avalanches were the
only information we had about the system, we could end up thinking
it is indeed critical. The method does, however, detect correctly
the critical dynamics of the contact process (di Santo 2018). In the
Landau-Ginzburg model, avalanches in the activity cannot be found
through usual non-equilibrium time series analyses4 but avalanches
are recovered when using the “neuroscience standard” method, with
the correct critical exponents. These inconsistencies make me think

4Using a small threshold and integrating the signal above. This was confirmed by
personal communication with the authors.
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that we do not fully understand what this measurement is actually
doing, and if we want to discern criticality in the brain, it is key to
really know what is formally going under the hood. This is an open
project for which we have already several ideas, and it is soon to start
after finishing this work.

7.2 Conclusions

In this thesis, we have studied different models with the aim to shed
light on the problem of the criticality hypothesis in the brain, and its
relation with synchronization dynamics. In Chapter 1, we reviewed the
state of the art, and after the thesis, it is time to assess the impact of
our results for the theoretical neuroscience community, and the issue
of brain criticality in particular.

In the literature, the hypothetical critical transition at which the
brain is supposed to operate was claimed to belong to the mean-field
directed percolation universality class, a result backed by many theo-
retical and experimental studies (Beggs and Plenz 2003; Levina et al.
2007; Levina et al. 2009; Hahn et al. 2010; Millman et al. 2010; Poil et
al. 2012; Bellay et al. 2015; Girardi-Schappo et al. 2020). However, re-
cent experiments and models suggest that the associated critical expo-
nents can differ from those of the critical branching process (Pasquale
et al. 2008; Friedman et al. 2012; di Santo et al. 2018a; Fontenele et
al. 2019), and hence one has to look for other mechanisms, such as a
different universality class, Griffith phases, or even non-critical phe-
nomena. Our results are consistent with a new universality (Buendía
et al. 2020c), which would be the corresponding to the hybrid type
synchronization transition (HT). This transition emerges due to the ex-
citable behaviour of the system, and, although we could not elucidate
its origin exactly, it seems to suggest that bistability and oscillations
play a prominent role. I confirmed that the conditions present in our
active rotator model can be found in many well-known scenarios, as
theta-neuron networks (Luke et al. 2013; Luke et al. 2014), Morris-
Lecar neurons (Liu et al. 2014), or the Wilson-Cowan model (Borisyuk
and Kirillov 1992). Additionally, I found several models in the litera-
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ture which I think that would be worth revisiting conceptually using
the concept of HT transitions (Schleimer et al. 2019; Porta and Copelli
2019; Liang et al. 2020).

The dynamical richness and complexity the active rotators phase
diagram was early noticed by Borisyuk and Killinov (Borisyuk and Kir-
illov 1992) in the Wilson-Cowan model. But note that although our
active rotator model is oriented to capture mesoscopic properties, its
similarities with neuronal models such as the theta-neuron make it an
adequate one to study collective properties from individuals, with mi-
nor modifications.

In principle one can insist on using a canonical excitable type-I
model such as the active rotators to represent whole regions. The phase
diagram derived from active rotators in actually used as a paradig-
matic example of complexity by Cofré et al. (Cofré et al. 2020). In this
paper, the authors discuss the state of the art of whole-brain models,
highlighting the role of dynamical systems. In spite of the difficul-
ties that modelling with simple models present (which are extensively
discussed above from both the methodological and philosophical per-
spectives), gaining understanding from simple models is always the
first step to illuminate the behaviour of the complete system. The re-
sults obtained by Deco, Tagliazzuchi, and other researchers (Cabral et
al. 2011; Deco et al. 2009; Cabral et al. 2014; Jobst et al. 2017; Daf-
fertshofer et al. 2018b; Daffertshofer et al. 2018a) are very promising
and follow a similar philosophy to the active rotator model, which is to
couple simple models that are representative of an excitability class for
mesoscopic regions in order to capture the macroscopic rhythms of the
brain. Therefore, I believe that one of the main objectives would be to
compare these results with those obtained by type-I excitable systems
in more heterogeneous setups, adding more realistic topologies, and
heterogeneity in individual units. The outcome of such studies would
shed light on the (collective) dynamical regime of the cortex, advanc-
ing our knowledge towards the solution of the criticality hypothesis.
This would allow us to construct more realistic models, obtaining more
accurate pictures of the behaviour of each neuronal region, thus effec-
tively connecting the scales from the neuronal level to the whole-brain.

Finally, self-organization is a powerful tool in order to understand
emergent phenomena in the brain. The concept of SOB (di Santo et al.
2016; Buendía et al. 2020a) brings together bistability with oscillations,
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and it could provide us with answers to the mechanisms underlying
scaling in the brain. Plasticity does not only impact on brain dynam-
ics, but the structural connectivity itself: it is known that plasticity
plays a key role in the development of the brain, a process in which
dynamics and topology are highly interconnected (Kandel et al. 2000;
Millán et al. 2018). The analysis of self-organization performed in this
thesis focuses mostly on the dynamical part, considering either simple
mean-field or two-dimensional systems. In spite of this limitation, rel-
evant models (such as the Landau-Ginzburg) can be explained in terms
of self-organized collective oscillations (Buendía et al. 2020c). There-
fore, I think that studying plasticity and network topology under the
lens of self-organization could lead to a deeper understanding of col-
lective complexity in the brain. For example, preliminary studies over
the model of Larremore et al. showed that plasticity rules can induce
synchronized states, and allowed e.g. Girardi-Schappo to construct
a simple model with synchronization transitions (Girardi-Schappo et
al. 2020), as discussed earlier. Under my point of view, plasticity is
key in neuronal dynamics, and at least short-term plasticity should be
considered more often when constructing physical models of neuronal
networks.

In order to summarize, I think that the present work will serve
to shed light on synchronization dynamics in the brain, as well as
its relationship with the criticality hypothesis. In this thesis, I have
introduced some new concepts, as the Jensen’s force for excitatory-
inhibitory populations, and hybrid synchronization transitions, that I
believe that will be of use in the next years. Although their final im-
pact will be assessed by time, experiments, and long discussions, I have
the feeling that they have the potential to lead to new discoveries and
partially clarify issues about criticality and synchronization.

Additionally, I tried my best to be formal, both in analytics and nu-
merics, putting all my efforts to get to the root of the details, with the
idea of illuminating all the conceptual elements that might be hidden
at first sight. I am sure that some of these details entail relevant an-
swers, as I am fairly convinced that the debate on the brain’s criticality
hypothesis will not last very long, due to the current interest in the is-
sue and the quality of new experimental data. Unfortunately, although
providing valuable insights, solving the issue of criticality still does
not solve the neuroscience “soft problem”, for which it is necessary
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to invest more efforts, both in the experimental and theoretical sides.
However, the global picture is exciting: many scientists from very di-
verse backgrounds are now synchronized to understand how the brain
works, at all scales, from the neuron to the emotions. I find the impli-
cations of such a knowledge fascinating, from theoretical arguments
and clinical applications to the consequences on psychology, sociology,
and philosophy. I hope that, after obtaining answers to the soft prob-
lem, we will have a chance to understand the “hard” one –which could
yield many answers about ourselves and our position in the world.
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Appendix A

On avalanche measurements
In Chapter 1, we have introduced the concept of avalanche in non-
equilibrium physical systems (in particular, in the contact process) as
outbursts of activity when the system is perturbed from the absorbing
state. In simple systems, it is possible to obtain analytically approxi-
mations for the critical exponent values, which can be computed nu-
merically. As it was sketched in Chapter 1, there two usual ways of
measuring these events formally:

• The avalanches are rare outbursts that happen at the time series,
so a way of measuring them is to set a small threshold above the
time series average, and look for events that cross this thresh-
old for a certain time. The duration of the avalanche is the time
between two threshold crossings, and the duration is the area be-
tween the curve and threshold. For a sufficiently large time series,
it is possible to obtain statistics on these events, and compute the
distribution.

• In the case of the absorbing-active transitions, it is possible to set
the system initially at the absorbing state and perturb it slightly,
computing the time it needs to go back to the absorbing phase.
The size of the avalanche is integrated activity over all time. Then
it is possible to repeat the process as necessary to obtain good
statistics.

The second method can be mapped into the first just by adding a small
rate of spontaneous activation at the microscopic system. Then, it
should be clear that both ways of measuring the avalanches are for-
mally almost identical.

However, both methods make two important assumptions: that we
have complete information about the activity in the system, and infi-
nite precision measuring temporal events. Neither of those are true in
the case of neuroscience experimental setups. In the simplest, in-vitro
case considered by Beggs and Plenz (Beggs and Plenz 2003), there is
a set of electrodes, separated by a certain distance, which measure the
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potential of a neuronal slice. Each electrode is not measuring the ac-
tivity of individual neurons, but the integrated activity of collective
groups. Therefore, an event in an electrode means that many neurons
fired in a collective way. There is no way –in contrast with our simple
non-equilibrium models– to know how many neurons spiked or what
is the total “activity” of the system using this measure.

So what Beggs and Plenz proposed was the following experimental
procedure:

1. Select a small activity threshold for each electrode. If the signal
exceeds the threshold, we then assume that an “event” happened
at the peak of the activity, and assign it a weight proportional to
the area between the signal and the threshold. This is very similar
to our first procedure for non-equilibrium systems, but it is done
for each individual.

2. Put all the weighted events in a raster plot, i.e. a graph that repre-
sents the events that happened at every time. Then, one computes
the mean interevent interval, called ⟨IEI⟩, which is the average time
between two events produced by any electrode.

3. Finally, the time is divided in bins with width ∆t = ⟨IEI⟩, and
avalanches are defined as events that take place between two
empty bins. The duration is the time elapsed between the two
empty timebins, while the size is computed summing all the
(weighted) events inside. For sufficiently large time series, we
can evaluate the statistics of the avalanches.

In models, it is possible to mimic this procedure, either but computing
the average activity of a small group of simulated neurons, or using
mesoscopic models. It is possible to generalize this method to indi-
vidual neurons, setting the individual spikes as (unweighted) events,
if necessary. An important remark is avoid confusing the average in-
terevent interval of the system ⟨IEI⟩, with the average interspike inter-
val, ISI, which gives the average of times between spikes of a single
neuron. The mean and variance over different neurons of the inter-
spike interval are used to define the coefficient of variation, a common
measure to quantify the irregularity in spiking behaviour that is em-
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ployed in Chapters 3 and 4. This is defined as

CV =
σ2

(
ISI

)⟨
ISI

⟩ . (A.1)

Note that this measure does not depend on any time-binning proce-
dure. However, discretizing the time in bins is typical in neuroscience
experiments. For example, it is also employed for computing firing
rates in systems of individual neurons. In this case, the system is also
binned (usually with ∆t = 100 ms or ∆t = 500 ms (Gerstner 2014)), and
the firing rate is computed by counting spikes and normalizing divid-
ing by the number of individuals and bin size, as r = Nspikes/ (N∆t).
When ∆t→ 0, this is known as the instantaneous firing rates.

Therefore, what the experimental avalanche measure actually does
is to compute the “firing rates” for a certain time bin, and set the
avalanches to those events between two “absorbing” bins, in analogy
with the measure in non-equilibrium systems. As we discuss in Chap-
ter 7, the problem here is that ∆t is chosen arbitrarily. If we think about
a finite, asynchronous system, it is always possible to set a time bin
such that there is empty bins, leading to avalanche distributions. How-
ever, in the thermodynamic limit, there is no time without an event,
and everything is homogeneous. This problem is discussed more in
depth in Chapter 7.
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Appendix B

Weakly coupled oscillators

Here we present the procedure to perform a phase reduction to a gen-
eral system of coupled oscillators. We start considering the dynamical
system

dx⃗j
dt

= F⃗
(
x⃗j

)
+

N∑
i=1

gij
(
x⃗i , x⃗j

)
, (B.1)

where x⃗j ∈ Rn are the variables that identify the state of the oscillator

j, F⃗
(
x⃗j

)
represents the dynamics of the single oscillator, and gij

(
x⃗i , x⃗j

)
gives the interaction between different oscillators. Each individual os-
cillator is characterised by a single stable limit cycle, so after sufficient
time the variables x⃗j (t) will fall inside this limit cycle. Since the func-

tion F⃗ is the same for each individual, all individual oscillators are
identical, and share the same period T .

Once the system is posed at limit cycle, the angular variables can
be chosen via a homeomorphism between the limit cycle with a unit
circle, so the phase corresponding to t = 0 is ϕ = 0 and the phase cor-
responding to t = T is ϕ = 2π, linearly interpolating between both
values. What happens with points outside the limit cycle? In prac-
tice, such points can be disregarded by “thermalization”, i.e., wait-
ing a time enough for the system to reach the limit cycle. However,
formally speaking the cycle is just asymptotically approached, thus a
phase must be defined for any point of the phase space. For a single
oscillator, each point x⃗L (t) in the cycle has well-defined phase, so the
idea for arbitrary points x⃗ (t) in the phase space is to assign a phase
ϕ (x⃗) = ϕ

(
x⃗L

)
such that ϕ (x⃗ (t→ +∞)) = ϕ

(
x⃗L (t)

)
. Therefore, all the

points outside the cycle in the trajectory that link x⃗ (t) with x⃗L (t) share
the same phase, and they form a isochron (Izhikevich 2006; Nakao
2016). In this way the points inside the stable manifolds have a phase
assigned.

This definition allow us to define perturbations along the limit cy-
cle. If we have a point at the cycle x⃗L1 , and push it with a short-time
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pulse x⃗L + h⃗, then the phase jumps from ϕ1 = ϕ
(
x⃗L

)
to ϕ2 = ϕ

(
x⃗L + h⃗

)
.

The system will return to the stable limit cycle at a new point through
the isochron, hence maintaining ϕ2. Then, we can define the phase re-
sponse curve as

P RC
(
ϕ1, h⃗

)
= ϕ2 −ϕ1, (B.2)

where the dependency on the magnitude of the perturbation h⃗ is en-
coded in ϕ2. This definition works fairly well to be applied directly
in numerical and experimental situations, since it is easy to perturb
oscillatory behaviour with short pulses. In neuronal systems, it suf-
fices to do patch clamp on individual neurons, but the technique can
be used even at larger and more complex scales, obtaining PRCs even
for circadian rhythms (VanderLeest et al. 2007; Ukai and Ueda 2010;
Monti et al. 2017). The PRC is useful to determine if an oscillator can
be entrained to an external signal: a positive PRC means that the os-
cillator is able to adapt its period to match faster signals (at a certain
phases), while a negative PRC allows the oscillator to slightly decrease
its period. The PRC method allows one to include slight perturbations
easily. By Taylor expanding ϕ2 around h⃗ = 0 the PRC near small per-
turbations, we find

P RC
(
ϕ, h⃗

)
= ∇⃗ϕ

(
x⃗ = x⃗L

)
· h⃗ ≡ χ⃗ (ϕ) · h⃗ (B.3)

where χ⃗ (ϕ) is the linear response function, which can be also evaluated
by taking the derivative of the PRC at zero perturbation (Nakao 2016).
Experimentally, it can be obtained by applying very small perturba-
tions to the signal and computing the changes in periods. It is possible
to intuitively understand that an oscillator rotating with a fixed fre-
quency ω, behaves as the input multiplied by the linear response when
it is perturbed by an external input,

ϕ̇ =ω+χ (ϕ) I (t) . (B.4)

This can be formally demonstrated in detail (which can be found e.g.
in (Nakao 2016; Izhikevich 2006)), but it will be of little use here. Now,
we write (B.1) using (B.4), identifying the coupling as the input I (t), ef-
fectively reducing the nN -dimensional system to just a N -dimensional
one. It is possible to perform this change as long as the strength of
the interaction is low, and therefore this formalism is only adequate
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Weakly coupled oscillators

for weakly interacting oscillators. Then, changing variables to a co-
rotating frame with speed ω, all the free oscillators would seem to be
stuck. If we assume that the changes in phase due to the coupling are
of a slower timescale than those happening due to the “natural” fre-
quencyω, it is possible to apply temporal coarse graining (as in (2.23)),
by defining

Hij (ϕ) =
1
T

∫ T

0
dt′χj (t′)gij (x⃗i (ωt

′) , x⃗ (ωt′ +ϕ)) (B.5)

being x⃗ (ϕ) the inverse transformation to ϕ (x⃗). With this change of
variables, the final system reads

dϕj
dt

=ωj +
∑
j,i

Hij
(
ϕi −ϕj

)
, (B.6)

where ωj = Hjj (0) is the deviation of angular velocity of the j-th os-
cillator with respect to ω. This expression is usually difficult to tackle
analytically, so usually only the first term of the Fourier series of Hij is
considered in the computations,

dϕj
dt

=ωj +
∑
i

cij sin
(
ϕi −ϕj +ψij

)
(B.7)

which is nothing but the celebrated Kuramoto-Shinomoto model of
synchronization (Izhikevich 2006). Therefore, we see that this sim-
ple popular model arises from any general set of coupling limit cycles,
when the systems are assumed to interact weakly, and taking just the
first interaction harmonic.
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Appendix C

Bifurcation analysis
of active rotators

C.1 Equations for different ansatzs

In Chapter 4, we derived an infinite set of ODEs for the dynamics of
the Kuramoto-Daido order parameters. In this Appendix, we give indi-
cations about bifurcation analyses for different closures, and compare
their results. Let us start by recalling eq. (4.5)

Żk = Zk(iωk −
k2σ2

2
) +

ak
2

(Zk+1 −Zk−1) +
Jk
2

(
Z1Zk−1 − Z̄1Zk+1

)
(C.1)

where Zk =
⟨
eikϕ

⟩
are the Kuramoto-Daido order parameters, ω is the

angular frequency, a is the excitability, J the coupling between oscilla-
tors, and σ2 the noise intensity.

When the system is deterministic, the Ott-Antonsen ansatz (Ott and
Antonsen 2008), which is given by Zk(t) = [Z1(t)]k, is able to provide
an exact solution for the Kuramoto-Daido parameters. However, the
active rotator system is stochastic, meaning that such an ansatz only
provides correct solutions up to order O

(
σ2

)
(Goldobin et al. 2018;

Tyulkina et al. 2018), and higher-order corrections or a more adequate
ansatz are needed.

As it was already pointed out in Chapter 2, the Ott-Antonsen
ansatz is equivalent to assume that the distribution of angles P (ϕ,t)
is Lorentzian. Given the high synchronization of the oscillators con-
ferred by the excitable behaviour, one could think that the Gaussian
distribution would be more adequate for this case. Then, writing the
wrapped Gaussian distribution (2.47) with mean ψ (t) and variance
∆ (t),

P (ϕ,t) =
1

√
2π∆

+∞∑
k=−∞

exp
[
−

(ψ −ϕ + 2πk)2

2∆

]
, (C.2)

it is possible to obtain explicitly an expression of the Kuramoto-Daido
order parameters just by integration,
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Zk(t) =
∫
dϕP (ϕ,t)eikϕ = e−

1
2k

2∆(t)eikψ(t). (C.3)

From eq. (C.3) one can demonstrate (2.48), which is similar to the usual
form of the Ott-Antonsen ansatz. However, it is easier to just plug eq.
(C.3) into (C.1), to obtain

ψ̇ =ω+ ae−∆/2 cosh∆sinψ, (C.4a)

∆̇ =σ2 + 2sinh∆
(
ae−∆/2 cosψ − Je−∆

)
. (C.4b)

as derived by Zaks et al. (Zaks et al. 2003). Finally, one can perform
a bifurcation analysis on this reduced two-dimensional system, which
yields the phase diagram sketched in Figure 4.2, although some of the
bifurcation lines do not coincide very well with those obtained numer-
ically. This was already appreciated by Zaks et al. (Zaks et al. 2003),
and we will compare how well it performs against the other two op-
tions, the Ott-Antonsen and the second-order cumulant expansion pro-
posed by Tyulkina, Goldobin et al. (Goldobin et al. 2018; Tyulkina et
al. 2018).

Then, let us work on the Ott-Antonsen ansatz and its expansion. As
we already sketched in Chapter 2, it is possible to change from variable
Zk to the circular cumulants ϑk. The advantage of the cumulants is that
at the Ott-Antonsen solution, ϑ1 = Z1, while all other ϑk>1 = 0. There-
fore, it is possible to expand order by order from the Ott-Antonsen
manifold (see Chapter 2 for more details). Let us take the second or-
der, setting ϑk>3 = 0, so Z3 = Z3

1 + 3Z1ϑ2, with ϑ2 = Z2 −Z2
1 . Then, the

system reads

Ż1 =
1
2

(
J − σ2 + 2iω

)
Z1 + a

(
Z2

1 − 1 +ϑ2

)
− J

(
Z1|Z1|2 +ϑ2Z̄1

)
, (C.5a)

ϑ̇2 =2ϑ2(iω+ aZ1)− σ2(2ϑ2 +Z2
1 )− 2Jϑ2|Z1|2. (C.5b)

Note that imposing ϑ2 = 0 gives the same result as the Ott-Antonsen
ansatz, as expected. This closure provides us with a noticeable quan-
titative improvement on the location of the Hopf and SNIC bifurca-
tions, which coincide very well with the results of numerical integra-
tions (Buendía et al. 2020b). We checked the accuracy in the predic-
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Figure C.1: Comparison between analytical closures and numerical
simulations. The value of the Shinomoto-Kuramoto order parameter
S along the Hopf and SNIC bifurcations, both for analytical results
(black lines, see legend) and numerical simulations (blue line). Param-
eters: ω = 1, J = 1; Hopf, a = 0.5. SNIC, σ = 0.275. In numerical
simulations, N = 1000.

tion of the bifurcation lines by contrasting the results from the con-
sidered closures with direct numerical simulations of N = 1000 ac-
tive rotators. In order to avoid pitfalls from the non-linearities in the
angular phase with the Kuramoto order parameter, we used instead
the Shinomoto-Kuramoto order parameter (Shinomoto and Kuramoto
1986b; Shinomoto and Kuramoto 1986a; Lima Dias Pinto and Copelli
2019) which detects the presence or lacks of oscillations in a reliable
way, and it is defined as

S =
√
⟨|Z1|2⟩t − |⟨Z1⟩t |2 . (C.6)

where ⟨·⟩ indicates a temporal average. This parameter is also used for
the visualization of the phase diagram in Fig. 4.2.

The main conclusion from this analysis is that the best results in
both bifurcations are obtained from the ansatz proposed by Tyulkina et
al. (Tyulkina et al. 2018). As we discussed above, the Gaussian ansatz
captures very well the dynamics sear the SNIC bifurcation, since at
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3.2 Bifurcation analysis of the Ott-Antonsen equations

this bifurcation oscillators are highly synchronized. Finally, the Ott-
Antonsen ansatz fails to predict the coordinates of any of the bifurca-
tions, since they are studied for values of σ away from its applicability
region.

C.2 Bifurcation analysis of the Ott-Antonsen
equations

Following Childs and Strogatz (Childs and Strogatz 2008), we present
here the bifurcation analysis of the most simple case, the one corre-
sponding to the Ott-Antonsen ansatz. Making ϑ2 = 0, and writing
Z1 = Rsinψ, the closure equations read

Ṙ =
1
2
R
[
J
(
1−R2

)
− σ2

]
− 1

2
a
(
1−R2

)
cosψ, (C.7a)

ψ̇ =ω+
a
(
1 +R2

)
sinψ

2R
. (C.7b)

Several observations are important. First, making a = 0 recovers the
case for the stochastic Kuramoto model, eq. (2.44) (notice that the def-
inition of noise in Chapter 2 is slightly different). Second, if the Ku-
ramoto order parameter is constant, then the collective phase evolves
through the normal form of the SNIC bifurcation (see Chapter 1). This
means that a partially synchronous phase of a system of type-I oscil-
lators behaves exactly as a type-I oscillator, with redefined excitability
a′ = a

(
1 +R2

)
/ (2R) > a. In general, having less synchronization ac-

counts for more excitability at the macroscopic level, as one could have
expected intuitively.

In order to perform a bifurcation analyses, we follow the prescrip-
tion by Strogatz and Childs (Childs and Strogatz 2008). We know that
in the limit a = 0 the system behaves as the stochastic Kuramoto, so it
must undergo a Hopf bifurcation at J = σ2; on the other hand, individ-
ual oscillators with J = 0 present a SNIC bifurcation.

The normal procedure would be to obtain the equilibria by impos-
ing Ṙ = 0 and ψ̇ = 0, then insert these solutions (R∗,ψ∗) into the Jacobian
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Q (R,ψ), diagonalize it, and checking the bifurcation conditions on the
eigenvalues. However, not even the first step –obtaining analytic ex-
pressions for R∗ and ψ∗ is possible. Despite of that, it is possible to
obtain the bifurcation curves as it was pointed out at the end of Chap-
ter 1. Hopf bifurcation fulfills TrQ (R∗,ψ∗) = 0, while the condition for
the saddle node is detQ (R∗,ψ∗) = 0 in two dimensional systems Notice
that the equilibria values are bounded, since 0 ≤ R ≤ 1 and 0 ≤ ψ < 2π.
Hence, one can use the bifurcation condition in conjunction with the
condition for the fixed points to obtain the bifurcation curves as para-
metric equations that depend on the values of (R∗,ψ∗), without having
to compute explicitly the equilibria location. There are six unknowns:
R∗, ψ∗, ω, a, J , and σ . One of the parameters can be set to one with a
change of variable, without loss of generality. We choose ω = 1. For the
moment, let us fix J , and use the remaining four as variables. For the
system of equations, we choose to solve for R∗, cosψ∗ and sinψ∗. The
last two are not independent conditions, but cos2ψ + sin2ψ = 1 allow
one to extract the excitability in an easy way,

aH =

√
J − σ2

J + σ2

√
4ω2(J + σ2)2 + J2(J − σ2)2

2J
. (C.8)

We could have solved the system directly for R, ψ∗ and a, but the alge-
bra is simpler in this way (Childs and Strogatz 2008). This is a paramet-
ric curve for the Hopf bifurcation, aH = aH (ω,J,σ ), that was obtained
without knowing R∗ and ψ∗ explicitly. Actually, since we set ω = 1 and
fixed J then aH = aH (σ ).

For the saddle-node bifurcation line, the computation is more dif-
ficult. In this case we want to avoid the variable R∗ at all, since solving
for it implies solving high-order polynomials. Then, we choose to solve
for ω, cosψ∗ and sinψ∗, to eliminate the dependence on ψ∗. The result
is

ωS =
(1 +R2)3/2

2(1−R2)2

√
J(1−R2) (2σ2 − J(1−R2)2)− σ4(1 +R2), (C.9a)

aS =

√
2R2

(1−R2)2

√
(J(1−R2)− σ2) (2σ2 − J(1−R2)2). (C.9b)
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Figure C.2: Bifurcation lines predicted by the Ott-Antonsen ansatz.
The bifurcation lines in the (a,σ ) plane for the Ott-Antonsen ansatz.
Hopf bifurcations (eq. (C.8)) are represented by blue lines, while red
ones correspond to saddle-nodes (eqs. (C.9)). All plots are zooms to
remark the bistable region, which exists for all the values of coupling
displayed here.

Since R is bounded, the bifurcation line in the (a,σ ) plane can be ob-
tained by making ωS = 1 and solving for σ in the first equation to ob-
tain σS = σS (R), aS = aS (R) (remember that J is fixed) and then moving
the parameter R from 0 to 1.

In Figure C.2, we show different cut of the Hopf and saddle node
bifurcations obtained for several values of the coupling J . The bistabil-
ity region delimited by the small triangle is present for many values of
J , but decreases until vanishing for low enough values of the coupling.
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