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Abstract

Currently we live in hyper-connected world, which is one of the main causes
for the fast propagation of Information Technology (IT) Security attacks. An
IT Security incident can impact both in the economy and the reputation of
the organization that suffers it. Thus, IT Security is a prior concern for any
organization. Another important issue related to IT Security threats is that
the time required for compromising a network is, on average, in the order
of minutes, while the security team may need months to detect an incident
after it takes place. This makes it necessary to enhance the mechanisms of
intrusion detection to improve the capability of prioritization and classification
of IT security alarms. With the appropriate tools, the security team can detect
the incidents timely without being overwhelmed by an excessive number of
alarms.

Network security is of utmost importance within IT Security, and it aims
to make the communications infrastructure secure from the point of view of
the IT. In general, there are three approaches for network security: prevention,
detection and response. These approaches can be combined to achieve a
comprehensive security system. A practical combination of the detection and
response dimensions is the so-called Network Security Monitoring (NSM),
which is an approach that aims to detect the incidents in a network by mon-
itoring the network traffic. NSM is carried out by collecting, combining
and analyzing different sources of information, in order to detect and notify
intrusions. There are two main techniques for incident detection: Signature-
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based, which allows to detect attacks from previously defined patterns; and
Anomaly-based, which allows to detect deviations from the normal behavior
in a network, captured in a previously trained model.

Multivariate Statistical Network Monitoring (MSNM) is an NSM method-
ology that follows an anomaly-based detection scheme that extends the
Multivariate Statistical Process Control (MSPC) theory, developed in the
area of industrial process research. MSPC consists in two phases: phase I,
detection of assignable causes of variation in the calibration data that are
corrected and eliminated until the process is under Normal Operation Con-
dition (NOC); and phase II, monitoring of new data to detect (and diagnose)
anomalies. MSNM applies this philosophy to traffic network data, adding two
prior steps: parsing and fusion, which are needed to combine information from
different data sources in NSM. MSNM is useful to prioritize and diagnose
anomalies, which is congruent with the security team’s workflow.

In this PhD, we start from the MSNM methodology and introduce a
number of enhancements: i) a pre-processing method to consider the cyclo-
stationarity of the data (e.g. the cycles existing during day and night or weeks
and weekends), ii) a methodology for the comparison of diagnosis methods,
and iii) a univariate method for diagnosis. Furthermore, the pre-processing and
diagnosis methods, as well as some of other existing extensions for MSNM
are evaluated and compared with other reference methods using a real network
data set for the first time. The application on real network data allows to assess
the MSNM extensions under realistic conditions, yielding a more accurate
perspective of their performance.

This research work shows the existing symbiosis between industrial pro-
cesses and network security, introducing enhancements that are of interest for
both topics and that open new lines of research exploring the synergy between
MSPC and MSNM.
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Introduction

“If I would know what I am doing, I wouldn’t call it research, would I?”
Albert Einstein, Nobel Prize in Physics in 1921

“To start, press any key. Where’s the ANY key?”
Homer, The Simpsons
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The term Information Technology (IT) Security refers to the set of
techniques, rules and standards that allow to maintain safe and secure any IT
system and communications network [82]. A term which is related to IT Secu-
rity is that of information security. According to many authors [16, 82, 218],
Information security should meet at least the following requirements: 1)
Confidentiality, 2) Integrity, and 3) Availability. Confidentiality consists in
preventing non-authorized users from accessing or reading restricted informa-
tion. Integrity consists in avoiding data to be altered by any unauthorized part.
Availability guarantees that a given service or data is ready for its use. Most
authors also add 4) Accountability, which encompasses Non-repudiation, Au-
thentication and Authorization (also called Access Control). Accountability
is the capability of identifying who is the responsible for an event occurrence
in the system, what caused such event, and when did it take place. This implies
Non-repudiation, which ensures that none of the parties involved in an event
can reject that they took part in such event; Authentication, which ensures
that each of the parties involved in an event are identified; and Authorization,
which ensures that only the parties granted with access rights will actually
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access a given service or resource [16, 82, 218]. Other authors also include
Privacy, which has increased its relevance in the last years with the expansion
of the application of Machine Learning and Big Data techniques [137], as
well as the trend of being permanently connected [197]. Privacy is closely
related to Confidentiality, since both refer to the information protection. The
main difference is that Privacy is the right of any natural or legal person to
not sharing their personal information with anyone [146, 167, 210]; while
Confidentiality refers to the agreement of avoiding non-authorized users to
access any restricted information [146, 167, 197, 210].

1.1 Motivation

An IT security incident happens when the IT Security of an organization or
company is compromised due to any reason, violating any of the IT Security
requirements enumerated before. The number of IT security incidents has
increased over the last years. In 2014, eighteen thousand IT Security incidents
were detected by the Instituto Nacional de Ciberseguridad (INCIBE) in Spain.
By 2018, the number had increased to more than one hundred thousand [99].

1.1.1 The Cost of IT (In)Security

In the V Jornadas Nacionales de Investigación en Ciberseguridad (JNIC,
2019), the Chief Information Security Officer (CISO) in Telefónica shared
an interesting reflection: "The question is not «Can I suffer a cyber attack?»
but «When am I going to be (cyber) attacked?» or «How many cyber attacks
I am going to suffer?»". He also emphasized that the key is prevention and,
over all, the availability of a contingency plan [172]. The high potential
of the technology at the moment, in combination with the high degree of
interconnection of the society, makes the balance to be usually on the attackers’
side. This implies both a challenge and an opportunity at the same time,
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especially for the development of IT Security research, as well as for the
related industries. Nowadays, the IT Security market involves more than
85,000M e/year, which is expected to increase to 190,000M e/year by 2023.
In addition, between 2021 and 2027 the European Union is expected to invest
more than 2,100M e in IT Security [99]. According to the Gartner report [83],
this year (2019) the world investment in information security will be greater
than 110,000Me.

A relevant part of the IT Security incidents are data breaches1. Fig. 1.1
shows the data breaches in the last two years colored by data sensitivity [136].
In 2018 it was revealed that 50M of user profiles were gathered from Facebook
without permission of their owners [25]. More recently, in September of 2019,
a public database was disclosed with more than 400M of phone numbers
including, in some cases, other private data, such as name or gender [96, 136].
This might cost a fine of billions of euros to Facebook [18, 78, 176, 196].
A technical error in Twitter made the password of 300,000M users to be
stored in plain (readable) text. The company solved and published the error
in 2018, and asked the affected users to change their password [77]. This
bug will also probably imply a billionaire fine to the company [176]. Data
breaches not only affect big companies, since "no organization is too large
or too small to fall victim to a data breach" ("Data Breach Investigations
Report" from 2019, Verizon) [206]. The cost of a data leak for a Small
and Medium-sized Enterprise (SME), such as a private clinic or a small
store, with only one hundred clients, might reach the thousand of euros in
a year. A data breach has an average impact of 126e/year per record and
person [136, 183, 199, 205]. There are many causes for a data breach, such as

1A data breach is a type of security incident that occurs when someone accesses and
extracts personal or confidential information without any authorization [183, 199].
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an unauthorized access to a system, a malware2 infection, or insufficient data
protection [14, 104, 183, 199].

Fig. 1.1 Data breaches in 2018 and 2019, colored according to the data sensitiv-
ity. Size of nodes reflect the number of affected users. Source: Information is
beautiful [136].

According to the Verizon report in 2019 [206], the most affected industry
by IT Security incidents is the Public Administration, which has registered
more than twenty thousand cases, two thirds parts related to espionage. In
the rest of the industrial sectors, these incidents are mostly motivated by an
economical reward. Some of the most affected industries are Information, Fi-
nancial and Insurance, Healthcare, and Professional, Technical and Scientific
Services. These incidents are, in general, caused by errors in Web Applica-
tions or Privilege Misuse, and involve the compromise of personal data. The
threats3 are commonly external, meaning that the actors do not belong to the
organization target of the attack. However, there are some sectors, such as
Healthcare, Information or Educational Services, where the threats are almost

2Malware refers to any type of software that is built with the aim of damaging any device
(e.g. computer or telephone). It is used with different purposes, such as stealing information or
denying access to legitimate users [15, 133].

3 A threat is any situation or event that may damage a system or network. This refers to
unveiling, destroying, modifying or denying the access to the data or services [16]. A threat
that comes true is termed an attack.
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50% internal, meaning that the actors are people belonging to the company or
organization [206].

In addition, given the hyper connected world we live in today, an attack can
be easily propagated, causing a great impact, especially in the economy and
the reputation of any company or organization. Recently, the company Varonis
presented the study "60 Must-Know Cybersecurity Statistics for 2019" [205],
which unveils some alarming figures about IT Security: "More than 41% of
the companies have more than one thousand of sensitive files (including credit
cards and health care records) unprotected". "By 2021, the cost of the damage
related with the cybercrime is projected to hit six trillion of dollars annually".
Thus, cybersecurity and IT Security are some of the main concerns for leaders
in any organization.

Another important problem when facing up IT Security threats is that
the average time required to compromise a system or a network is relatively
small (in the order of minutes) in comparison to the average time that security
people need to detect the incident after it takes place (which may range from
days to months). Thus, it is really important to work on the reduction of
this time gap for detection and response. On the other hand, new attacks are
developed every day and they evolve quickly [84]. For this reason, security
detection mechanisms need to incorporate approaches to detect new attack
strategies, previously unseen. Finally, the security team usually receives
more alarms than they can handle [9, 62, 135]. In this sense, it is desirable
that the mechanisms for detection allow the adequate prioritization4 of the
alarms. Applying prioritization in IT Security events5 enhances the efficiency

4The prioritization of events (also known as events triage) is based on one or more criteria.
These criteria may be, for example, the impact or the magnitude of the event.

5An IT Security event in a system or network refers to any undesired situation or modifi-
cation in the system or network that occurs for a period of time and that is susceptible to be
detected by the security system. If the event is detected, this usually generates an alert, which
is recorded as an individual log as a part of a file or database.
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in anomaly detection, since it helps the security team to focus in solving the
most important alarms first.

1.1.2 Network Security

Network security is of utmost importance within IT Security. The objective
of network security is to make the communications infrastructure accomplish
all the security requirements (Confidentiality, Integrity, Availability, Account-
ability, Non-repudiation, Authentication, Authorization and Privacy) both in
the independent hosts and in the network as a whole. There exist different
standpoints to address network security. These aspects can be classified in:
prevention, detection and response. These are not exclusive; on the con-
trary, they are usually applied together to achieve a more secure network
infrastructure [16, 19, 82]:

• Prevention refers to the actions (including software deployment and
user awareness) taken by an organization to prevent attacks from being
successful.

• Detection is the part of the security system that implements mechanisms
to identify potential attacks, mainly by monitoring the network.

• Response allows the system or network to react once an attack is de-
tected [82].

Although a high percentage of the efforts are still focused on preventing
attacks, the solutions and techniques based in detection and response are
gaining more and more relevance. This makes sense if we consider the
reflection made in [20]: "prevention is similar to have a sheepdog, which
guards hundreds of sheep, and faces a pack of wolves; while detection is
to be able to find out a wolf hiding in a flock of sheep, and response is to
act when the wolf is discovered". There is the general acceptance in the IT
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Security community that, sooner or later, prevention measures are surpassed
by attackers. At that point, detection and response mechanisms need to be
applied.

Fig. 1.2 Network Security approaches and examples grouped by main goal.

Fig. 1.2 shows the classification of the aforementioned security aspects,
providing some examples of solutions that can be enclosed on each of them.
When we talk about prevention, the most basic tool of protection is a firewall,
which filters the communications coming in and out to a network (or host),
and provides access control. The antivirus software scans the files in the
hosts looking for known patterns (signatures) of malware and, if there is a
match, it handles the file properly. Finally, a main mechanism of prevention
is data encryption, which preserves the confidentiality and integrity in the
communications and may also ensure the authentication and non-repudiation.

The Computer Emergency Response Teams (CERTs) are groups of
security specialists that aim to detect and respond to cybersecurity incidents,
warning and/or advising the rest of the citizens and organizations about them.
CERTs are typically dependant either on governmental organizations or pri-
vate big companies [72, 184]. The Computer Security Incident Response
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Teams (CSIRTs) are frequently considered to be equivalent to the CERTs.
However, they are usually more focused in detection and response, rather than
in prevention [169, 185]. A list with the European CERT and CSIRT entities
can be found in [73].

Some of the most extended tools for detection (and usually also for
response) are introduced in the following paragraphs.

Intrusion Detection Systems (IDSs) are a set of techniques to detect
suspicious activity (possible intrusions) by monitoring and analyzing the
events in a network or a device [62, 103, 218]. When these systems also
allow to deploy defensive responses to the attacks, they are called Intrusion
Prevention Systems (IPSs). These responses can be carried out by discarding
or modifying the packets related to the attack [103]. Some of the IDSs
have evolved to Security Event Management (SEM) systems, which allow
the correlation6 of events from different sources, improving the detection
capability [62].

Security Information and Event Management (SIEM) systems are the
combination of two different systems. On the one hand, a Security Informa-
tion Management (SIM) system allows regulatory compliance, the analysis
and notification of the events, as well as long-time storage of such events. This
makes it possible to perform forensic analysis once an attack has taken place.
On the other hand, the SEM allows the real-time monitoring and correlation of
events. Thus, the objective of a SIEM system is to aggregate and analyze the
information collected from a number of sensors to detect, select, classify and
validate incidents in a network [112]. In addition, a SIEM system generates
reports for the compliance of security policies, useful to pass audits. Finally,
another important feature is that SIEM systems allow the visualization and

6In the context of IT Security, the term correlation means finding connections among
distinct data sources or IT Security events, rather than being used with the traditional statistical
meaning.
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prioritization of the events, thus helping security operators7 to interpret and
understand the alarms [87, 103].

Finally, Network Security Monitoring (NSM) is an approach intended
to detect the attacks in a network by monitoring the network traffic [134, 218].
This is carried out by collecting, correlating and analyzing traffic, to detect
intrusions, with the aim of alerting and notifying such intrusions [20, 171].
Sometimes, NSM also implies responses or actions when an attack is detected.
SIEM systems may be seen as examples of NSM systems [19, 20, 32].

In general terms, the incident detection process can be classified into
Signature-based and Anomaly-based [68, 81, 103, 105]. The former identi-
fies attacks from previously defined patterns. The latter detects deviations
from the normal behavior in a network or system in relation to a previously
trained model. Signature-based systems cannot detect zero-day9 attacks while
anomaly-based are theoretically able to do it. On the contrary, anomaly-based
approaches tend to generate a high number of (false) alarms. Thus, one of the
main challenges for detection is to reach a balance between both the capability
to detect zero-day and the reduction of false alarms [62, 218].

NSM Methodologies
One of the main problems in NSM (as previously pointed out in the more

general context of IT Security) is the high time of response of the security

7 A security operator is a person in charge of administering and monitoring the security
system in an organization, while a security analyst is in charge of analyzing and discovering
vulnerabilities and risks in the organization. Both security operators and analysts are usually
interchangeable terms, and they are people who take part of the security team.

• A vulnerability is an asset8 that could lead to its unauthorized exploitation. A vul-
nerability may exist due to a bad design, implementation or even for intentional
reasons [16, 19].

• A risk is the probability of suffering any damage or lost. Its value can be considered a
combination of the threat, vulnerability and relevance of the asset [19, 82].

9A zero-day attack is an attack that had not been previously seen and, thus, its features and
signature are not known.
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team in comparison to the time needed to compromise a system. This makes
it necessary to prioritize the IT Security events, so that security operators can
optimize their working protocols and manage the alarms in a more effective
manner [9, 62, 84, 135]. For example, neural networks are used for anomaly
detection but the results are hard to interpret and, thus, prioritization of the
alarms is limited. In the last years, the multivariate analysis has also being
explored for anomaly detection in the context of IT Security [42, 118]. One of
the best known multivariate methods is Principal Component Analysis (PCA).
Furthermore, the multivariate analysis can be combined with other techniques,
such as Exploratory Data Analysis [42] or visualization tools, allowing the
triage and interpretation of alarms. In addition, the multivariate analysis offers
an advantage over most Machine Learning (ML) techniques: the diagnosis.
The diagnosis ease the identification and understanding of the root causes
of a given incident, thus helping in the triage of the alarms [36]. Although
diagnosis in the context of black box ML exists [147], this is still in its infancy.

Multivariate statistical approaches based on PCA were proposed at the
beginning of the 2000s for intrusion detection [110, 118]. One of the main
advantages of PCA is its unsupervised nature, which does not require the prior
specification of potential anomalies in the system. For this reason PCA is
a powerful tool to build systems that detect both known and new types of
anomalies, which is of principal importance for network security practitioners
in order to detect zero day attacks. The use of PCA to build detection engines
in the context of NSM was proposed by Lakhina et. al in a pioneering work
in the early 2000’s [118]. The main goal of the proposal is to distinguish
normal from abnormal network traffic by means of a PCA model, and to
diagnose the root causes of anomalies. There have been several modifications
of the original PCA-based approach [26, 27, 66, 119, 168]. However, most of
these proposals still maintain part of the drawbacks identified in the original
work [118]. This motivated the development of the Multivariate Statistical
Network Monitoring (MSNM) methodology, which leverages the similarities
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between network traffic and industrial processes and inherits the procedures
in the well-established Multivariate Statistical Process Control (MSPC). In
MSNM, first it is needed to perform feature extraction and data fusion, which
allow dealing with different data sources; and then the MSPC theory based in
PCA is employed. This connection between network and process data allows
us to take advantage of the existing solutions in the process control industry
for intrusion detection, yielding a perfect cooperation between both areas [42].

This PhD is focused on anomaly detection based systems in the context
of both the NSM and the process monitoring. More precisely, the aim of this
work is to push the recent developments on Multivariate Data Analysis in
MSNM [42] and propose enhancements of these techniques that contribute
both to MSNM and MSPC. For this reason, this thesis is conducted using data
both from industrial processes (Saccharomyces Cerevisiae cultivation process)
and network traffic data, as well as synthetic data.

1.2 Objectives

The objective of this PhD is to deal with the main research problems related
to the detection and diagnosis of incidents in network security by applying
multivariate data analysis. To carry out this general goal, the individual
objectives are defined in Table 1.1.

Some additional specific objectives are also defined as a part of the re-
search plan for this PhD, which are shown in Table 1.2.

1.3 Main Contributions

The following paragraphs summarize the main contributions of this PhD and
relate them to the Objectives defined in Section 1.2.
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Objective Description

MO1 To design methods or algorithms for anomaly detection
based in multivariate analysis.
These methods should reduce the number of false alarms
and allow the detection of zero-day attacks.

MO2 To design methods or algorithms
for the accurate diagnosis of anomalies.

Table 1.1 Main objectives (MO).

Objective Description

SO1 To evaluate the proposed techniques for
anomaly detection and diagnosis, which implies
the comparison with the state-of-the-art methods.

SO2 To apply the proposed techniques to real network data.

Table 1.2 Secondary Objectives (SO).

Cyclo-stationary Pre-processing. A pre-processing method for cyclo-stationary
data was proposed as a result of a short research stay in Amsterdam. The
stay took place in Shell Global Solutions International B.V., under the su-
pervision of Dr. José María González-Martínez. The goal of the stay was to
study Multivariate Anomaly Detection techniques for cyclo-stationary data.
The data are cyclo-stationary when we can find cycles in their behavior.
Examples of cyclo-stationary data are traffic network and industrial batch
processes [52, 91, 148–150]. As a result of the stay, a new alternative for
pre-processing cyclo-stationary data was developed. This is useful to improve
the detection capabilities of multivariate anomaly detection methods. The
proposed method reduces the uncertainty in the pre-processing parameters
in comparison to the reference method in the literature. The proposed pre-
processing method enhances the anomaly detection, which is one of the main
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objectives of the thesis (MO1). This method was also evaluated and compared
with the reference method with simulated and real data (SO1 and SO2).

Diagnosis of Anomalies. A methodology for the comparison of diagnosis
methods was designed during the first year of the PhD. This is a comprehensive
methodology that allows to consider the main factors that affect the diagnosis
within the framework of Experimental Design and ANalysis Of VAriance
(ANOVA). The methodology is developed to provide low uncertainty results,
thanks to the application of the Monte Carlo approach. On the other hand, a
univariate diagnosis method was proposed. This method aims to solve one
of the main problems in the multivariate diagnosis methods, the smearing
effect. This effect is a consequence of the correlation between the variables,
which can make an anomalous variable to contaminate non-affected variables.
The proposal of this diagnosis method pursues one of the main goals of
the thesis (MO2). Using the proposed methodology for comparison, the
univariate diagnosis method was evaluated and compared with the state-of-
the-art diagnosis methods with simulated and real data (SO1 and SO2).

Evaluation of Multivariate Anomaly Detection Methodologies in the Con-
text of NSM to Real Network Data. In 2015 the Multivariate Statistical
Network Monitoring (MSNM) was proposed as a methodology for multivari-
ate anomaly detection for NSM. Since then, there have been a number of
variants [33, 36, 40, 129, 192, 195], some of them developed in the context of
this PhD.

As a part of the contribution of this research work, some of the MSNM
variants were applied to real network data collected from an Internet Server
Provider (ISP) (SO2). A new comparison of the pre-processing [192] and the
diagnosis proposals [195] against the state-of-the-art methods was carried out
(SO1). For the pre-processing, the comparison was carried out in terms of the
performance of anomaly detection, defined by the relation between the number
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of false positives and false negatives. For the diagnosis, the comparison was
carried out in terms of accuracy of the variables signaled as anomalous, and
the simplicity of visual interpretation.

One of the features of NSM is that it allows the combination and correla-
tion of data from different data sources. The combination of the different data
sources to provide a single data matrix can be performed in different ways.
The hierarchical combination of the data was proposed as an MSNM extension
in [129]. This type of fusion implies the definition of several levels and the
building of a different model in each of the defined levels. The hierarchical
fusion was also evaluated with real data (SO2). For the hierarchical approach,
several scenarios were defined to cover distinct cases of study.

1.3.1 Articles

The results of this PhD have been published in different research journals with
high impact factor. These contributions are detailed below:

• Fuentes-García, N. M., Maciá-Fernández, G., and Camacho, J. (2018).
Evaluation of diagnosis methods in PCA-based Multivariate Statistical
Process Control. Chemometrics and Intelligent Laboratory Systems,
172:194–210

• Camacho, J., Maciá-Fernández, G., Fuentes-García, N. M., and Sac-
centi, E. (2017b). Semi-supervised multivariate statistical network
monitoring for learning security threats. Transactions on Information
Forensics and Security, 14(8):2179–2189

• Camacho, J., García-Giménez, J. M., Fuentes-García, N. M., and
Maciá-Fernández, G. (2019b). Multivariate Big Data Analysis for
Intrusion Detection: 5 steps from the haystack to the needle. Computers
and Security (COSE), 87
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• Fuentes-García, N. M., González-Martínez, J. M., Maciá-Fernández,
G., and Camacho, J. (2019b). PARAMO: Enhanced Data Pre-processing
in Batch Multivariate Statistical Process Control. Journal of Chemomet-
rics, 33(11)

1.3.2 Conference Papers

The results of this PhD have been shared with the research community in
different conferences, both international and national, which are detailed
below:

International Conferences

• Fuentes-García, N. M., Camacho, J., and Maciá-Fernández, G. (2016c).
Fault Diagnosis: Contribution plots vs oMEDA. In XVI Chemometrics
in Analytical Chemistry (CAC), Barcelona (Spain)

• Fuentes-García, N. M., Maciá-Fernández, G., and Camacho, J. (2017b).
A Univariate Approach for Diagnosis in PCA-MSPC. In Scandinavian
Symposium on Chemometrics (SSC15), Naantali (Finland)

• González-Martínez, J. M., Fuentes-García, N. M., Camacho, J., and
Maciá-Fernández, G. (2017). Parameter stability and its effects on bi-
linear modelling of batch processes. In Mini Arctic Workshop, Valencia
(Spain)

• Fuentes-García, N. M., González-Martínez, J. M., Maciá-Fernández,
G., and Camacho, J. (2019c). PARAMO: Enhanced Data Pre-processing
in Batch Multivariate Statistical Process Control. In Scandinavian
Symposium on Chemometrics (SSC16), Oslo (Norway)
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National Conferences

• Fuentes-García, N. M., Camacho, J., and Maciá-Fernández, G. (2016a).
Comparación de métodos de diagnóstico de anomalías en monitor-
ización estadística multivariante de redes. In Reunión Española sobre
Criptología y Seguridad de la Información (RECSI), Menorca (Spain)

• Magán-Carrión, R., Camacho, J., Maciá-Fernández, G., and Fuentes-
García, N. M. (2017). Esquema Jerárquico de Monitorización y De-
tección de Anomalías en Red: Aplicación Práctica. In III Jornadas
Nacionales de Investigación en Ciberseguridad (JNIC), Madrid (Spain)

• Maciá-Fernández, G., Camacho, J., Magán-Carrión, R., Fuentes-García,
N. M., García-Teodoro, P., and Therón-Sánchez, R. (2017). UGR’16:
Un nuevo conjunto de datos para la evaluación de IDS de red. In
XIII Jornadas de Ingenieria Telematica (JITEL2017), Valencia (Spain),
pages 71–78

• Maciá-Fernández, G., Camacho, J., Magán-Carrión, R., Fuentes-García,
N. M., García-Teodoro, P., and Therón Sánchez, R. (2018). Un resumen
de: UGR’16: Un nuevo conjunto de datos para la evaluación de IDS
de red basados en cicloestacionariedad. In IV Jornadas Nacionales de
Investigación en Ciberseguridad (JNIC), San Sebastián (Spain), pages
117–118

• Fuentes-García, N. M., Camacho, J., and Maciá-Fernández, G. (2019a).
Evaluación de mejoras en la monitorización estadística multivariante
para la detección de anomalías en tráfico ciclo-estacionario. In V Jor-
nadas Nacionales de Investigación en Ciberseguridad (JNIC), Cáceres
(Spain).
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Outreach Sessions

• Fuentes-García, N. M., Camacho, J., and Maciá-Fernández, G. (2016b).
Diagnóstico de Anomalías: Gráficos de Contribución vs oMEDA. In
I Jornadas de Investigadores en Formación Fomentando la interdisci-
plinariedad (JIFFI), Granada (Spain)

• Fuentes-García, N. M., Camacho, J., and Maciá-Fernández, G. (2017a).
Defending the network. Detection and Diagnosis of Anomalies. In
CITIC-Coffees, Granada (Spain)

1.4 Organization of this Thesis

This thesis is organized in five parts plus appendices. Each part is composed of
several chapters. The first part is devoted to the Introduction and is organized
in two chapters: This present chapter introduces the motivations and objectives
of this work, while Chapter 2 describes the state-of-the-art in Network Security
Monitoring.

The second part is focused on the Multivariate Statistical Monitoring,
which is the basis of this work. The MSPC methodology, developed in the
process industry, is introduced in Chapter 3. The MSNM (which is based in
the MSPC extension for NSM) is detailed in Chapter 4.

The third part of the thesis presents the Materials and Methods used for
this research work, including software, metrics and main data sets (Chapter 5).

The Contributions to the Multivariate Statistical Network Monitoring of
this PhD work are presented in the fourth part, which consists of three chapters:
Chapter 6, where an alternative approach to enhance the pre-processing in
MSNM/MSPC applied to three-way tensors is proposed, and Chapter 7, where
a novel diagnosis method in MSNM/MSPC is proposed. These contributions,
together with some of the extensions for the MSNM, are applied on a real
network data set in Chapter 8.
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Finally, the fifth part includes Chapter 9, which presents the Conclusions
of this thesis.





2
Network Security Monitoring

“Trust everyone and not trust anyone are two vices: But in the one there is
more virtue, and in the other more security.”

Lucio Anneo Séneca, Philosopher in the AD first century

“Cybercrime is the greatest threat to every profession, every industry, every
company in the world.”

Ginni Rometty (2015), IBM Corp.’s Chairman, President and CEO since 2012
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NSM is one of the most relevant approaches for network security. Its
goal is to monitor and control the state of a given network with the aim
of detecting abnormal behaviors and, when detected, to manage them in a
timely manner. This is a significant challenge, since communication networks
produce a huge volume of data at a high pace, following the definition of a
Big Data problem [41].

Security Management is defined in [16] as "The process of establish
and maintain the security in a computer or network system", which is com-
posed of the following steps: 1) Prevention of security problems, 2) Intrusion
Detection, 3) Investigation (after one intrusion is detected), and 4) Reso-
lution/Recuperation. Based on this definition, and inspired in the defense
cycle proposed in [19], the NSM cycle can be characterized as represented
in Fig. 2.1: 1) Monitoring, 2) Detection, 3) Forensics/Diagnosis, and 4)
Response/Recovery.

NSM requires collecting data from one or more devices and sending
them to a data analysis engine [16, 19]. If a security incident is found by a
detection system, it needs to be diagnosed and troubleshooted by the security
team [16, 42, 218]. As soon as an abnormal activity is detected, the security
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Fig. 2.1 Network Security Monitoring based in the general model of (Cyber)security
Management [16, 19].

operators should be alerted. Thus, they can investigate and diagnose the
detected event and take proper actions to solve it and recover the network to a
normal state [16, 218].

Collecting data is not a difficult task by itself, the hard work is to make
them become useful [62]. Since the monitoring gathers information from
different sources/devices (usually developed for different purposes and by
different manufacturers), data are commonly disparate and present differ-
ent formats [62, 135]. For this reason, the captured information must be
transformed as a part of the network monitoring, so that all the data can be
combined and unified to the same format [135]. Another significant task is to
define what kind of information should be stored. This is important not only
to prevent relevant records from being lost, but also to avoid wasting storage
space and processing time. In addition, security operators should be able to
read and interpret the output from an NSM application, which should be in a
human understandable format [19, 135].
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The rest of the sections describe some relevant concepts to provide a
unified vision of the topic; then, the main components for NSM are introduced.
Additionally, both open source and commercial solutions for these components
are reviewed.

2.1 Components of a Network Security Monitoring
System

An NSM system is usually composed of one or more sensor and integrator
modules. Fig. 2.2 shows the general scheme for an NSM system. A sensor is a
mechanism that collects data from the network, generating logs or records that
can be analyzed by the security team. Sensors are composed of collectors and,
sometimes, processors, which allow to capture and transform the information,
respectively, prior to send it to the integrator module. However, the most
simple sensors might only be composed of a collector module. IDS are
described later in this chapter. Sensors are configured to send the information

INTEGRATORSENSOR
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• Log and/or record genera�on

Collector Processor
Detec on 

Engine

Correla on

Engine

Aggrega�on and correla�on from 
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Fig. 2.2 Workflow of data through an NSM system.

to a centralized memory, where such information can be accessed. Since
in typical NSM applications there is a huge amount of records to handle,
it is a challenging task to detect when and where there is an attack in the
network [32].
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Security data can be collected from security systems or other devices,
such as applications or operating system logs [135]. After data collection,
these need to be structured and combined to become information (useful and
understandable data). Integrators combine the data collected by the sensors
and detect intrusions in them. First, the different records are correlated to
extend their semantic information, yielding good models for detection of
attacks or abnormal activities. This requires pre-processing the format of
the data to be readable by the correlation engine. Afterwards, the detection
engine detects illegitimate network traffic by means of either a model of
normal operation or the signatures for known attacks.

Fig. 2.3 shows an example of an NSM system. One of the advantages
of this architecture is that it is possible to build more complex systems by
combining the outputs of the different modules. For example, the output of an
integrator could be the input for a second integrator, making the former act as
a sensor for the latter.

2.1.1 Sensors

A sensor is a device for collecting and transforming data. The data source
can be either active or passive [135]. Active data sources are those that
introduce additional network traffic in order to measure features such as
connectivity or delays. Examples of these data sources are the commands ping
or traceroute1. Passive data sources are those that obtain information
from the network without introducing additional network traffic. Passive data
sources can be grouped according to their origin as: i) Network Traffic, ii)
Security and iii) Logs and State.

1See manuals in https://linux.die.net/man/8/ping and https://linux.die.net/man/8/traceroute.
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i) Network Traffic Sensors

Data can be directly collected from the network in different formats. Some
of these formats are packets, sessions (traffic flows) and statistics, which are
described below.

Packets. Each communication that uses the TCP/IP protocol stack is split in
packets, which are individually routed to their destination [16, 19, 134]. Thus,
a packet is the basic information unit in the Internet. Packets contain detailed
information of the communications, so that they are really useful for a deep
investigation about security incidents (forensics) [32].

Sensors usually capture packets using a programming library such as
libpcap [108] and store them for later analysis. The most common format for
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the storage is pcap, a binary format that can be read by almost all sniffers2

and traffic analysis tools [16, 19, 62, 135]. There exist several tools for
collecting network traffic. The most popular are Wireshark [62, 63] and
tcpdump [108], which listen in a network interface and then display the
collected network traffic. They analyze the raw data from complete packets,
displaying their information in an understandable format to users. Wireshark
offers a GUI to explore packets, together with a command line tool, tshark,
while tcpdump only provides command line options [16, 19, 20, 62, 134, 135].
tshark provides a more powerful and complex engine than tcpdump for data
analysis. However, in practice, tcpdump is the most used since it is more
simple, allowing it, for example, to do the analysis on the fly during the capture
of the data. On the contrary by its own developers, using Wireshark during
the capture is not recommended, since there might exist some vulnerabilities
in its syntax that can be used by attackers. Wireshark is more powerful for the
analysis after the capture and can also be used to obtain traffic statistics [63].

The main drawback of capturing packets is that it implies a huge volume
of information, rendering it impractical for long captures. An alternative
solution might be filtering or limiting the size of the capture. These filters can
be applied both during and after the collection [62].

Sessions (Traffic Flows). The information extracted from traffic flows pro-
vides a higher abstraction level, reducing the volume of data stored in com-
parison to packet captures while still allowing to have a considerable amount
of information. Sessions can be collected, for example, in routers. One of
the most extended protocols is NetFlow, which is a standard developed by
Cisco Systems to extract and send information of traffic flows [60]. Although
NetFlow was not originally developed for cybersecurity, it is widely used
in this context, since it provides a highly valuable summary of the sessions
and it can be easily interpretable. Two of the most relevant tools used for

2A sniffer is a program that collects and analyzes packets in a communication network.
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collecting and analyzing sessions information are Argus and nfdump [62].
Argus collects and transforms session data [24], which are visualized and
analyzed by using Ra client [62, 159]. nfdump is a set of tools (including
nfcapd and the homonymous command nfdump) for collecting and process-
ing NetFlow data through the command line. nfcapd storages NetFlow data
while nfdump reads the files stored by nfcapd using a syntax similar to that
of tcpdump [62, 153].

Traffic Statistics. This information is related to certain features of the net-
work, such as traffic volume or type of traffic, among others. Statistics do
not allow to perform a forensic analysis per se, but help security operators
in their investigation, complementing the data collected by other tools. One
of the most extended tools used for traffic statistics is the Simple Network
Management Packet (SNMP) [175]. SNMP is an application layer protocol
that allows to exchange management information among devices in a network.
Wireshark and tshark can also be used to obtain traffic statistics.

ii) Security Sensors

Security sensors capture information from the output of systems specifically
designed for cybersecurity purposes. In what follows, some of the most used
security sensors in NSM are described.

Firewall Logs. This is one of the most useful security data sources, since it
provides information about each access (failed or successful, authorized or
not) to the network. One of the main advantages of firewalls is that they can
be found in any network. However, one of their limitations is that log systems
are not always properly configured and they frequently only store logs about
blocked traffic. Additionally, the location of the firewall and the blocking
rules are important to determine its effectiveness as a data source.
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IDS. IDSs are one of the best known security sensors. Indeed, these are
a particular type of sensor, which are composed of collector, processor and
detection engine. They are classified as Host IDS (HIDS) and Network IDS
(NIDS) according to the origin of the collected data [9, 103, 105]. HIDSs are
deployed in end systems (hosts) and monitor user activity and internal process
behavior [16, 103, 105, 134]. NIDSs first collect data from the network
using any of the aforementioned network traffic sensors. Then, they analyze
such data to find security violations. Both HIDS and NIDS can be classified,
depending on the detection approach, in: signature-based, if they use patterns
to detect known attacks, and anomaly-based, if they use models of normal
behavior to detect abnormal activities [16, 81, 105, 218].

Regardless the type of IDS, once the data are received and identified as
(potentially) harmful, the system alerts the security operators. Managing alerts
is a complex process that involves the identification of the real cause for the
alert and its location, as well as to investigate related contextual information
(e.g.the previous history of the Internet Protocol (IP) involved). In general, the
main drawbacks of signature-based IDSs are the need for frequent updates of
the signature database, and the inability to detect zero-day attacks [32, 105].
On the other hand, the main challenge for anomaly-based IDSs is to reduce
the amount of false alarms, which can be performed by prioritizing and/or
visualizing the events [32, 62, 135]. This can also be achieved thanks to
existing lists that contain events likely reported as false positives, which allow
to avoid escalating those events as alarms [16, 32, 103, 134].

Vulnerability data. These data are the result of running vulnerability assess-
ment tools on the network and end systems. These tools unveil weaknesses
and security holes that may enable an unauthorized access to the system.
Two of the most extended tools for this purpose are Nmap [127] and Nes-
sus [186]. Nmap (Network Mapper) is an open source program for port
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scanning to evaluate the security of the operating systems3, allowing to dis-
cover vulnerabilities and providing useful information about open ports and
services. Although Nmap was originally developed for Linux, it is now multi-
platform [19, 62, 127, 134]. Nessus is also a multi-platform program for
vulnerability scanning in operating systems. Originally, Nessus was open
source, but now it is private software (although there are open-source alter-
natives, such as OpenVAS (Open Vulnerability Assessment Scanner) [145]).
The analysis usually starts with a port scanning, which can be done, for exam-
ple, using Nmap. Once the open ports are discovered, Nessus sends a number
of probes against such ports to unveil existing vulnerabilities. The results can
be exported to different formats, such as plain text or XML [186].

Other useful resources that allow to obtain vulnerability data are the
National Vulnerability Database (NVD) and Common Vulnerabilities and
Exposures (CVE) databases. NVD is a public service provided by the National
Institute of Standards and Technology (NIST) of the United States to enu-
merate and classify existing vulnerabilities in current software and hard-
ware [62, 144]. CVE is another similar service provided by the MITRE4

that also includes the NVD [140]. These databases offer the most updated
information about known vulnerabilities in operating systems and applica-
tions/services, and their solution (if known). The vulnerabilities are usually
discovered either using any of the aforementioned or similar tools.

FIM. File Integrity Monitoring (FIM) systems allow to detect changes in the
files stored at the devices in relation to a base copy of such files. Some of the
parameters that are checked by a FIM are the modification/creation date or the
permissions of access and modification, as well as the checksum (hash) of the
contents. One of the problems of this type of data source is the huge volume
of data and the number of false positives that it tends to generate. Some of

3This is known in IT Security as fingerprinting machines.
4https://www.mitre.org/
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the tools that implement FIM capabilities are OSSEC [154] and LogRhythm
SIEM [125]. OSSEC is an open source HIDS [154]. LogRhythm SIEM is
a commercial SIEM that also performs FIM [125].

Antivirus. These programs are used to detect and remove malware from
computers. Antivirus software are usually signature and/or rule based, and
they are designed to analyze computer files. Since antivirus generate logs of
the activity, it is possible to use their outputs as a data source. However, this is
typically challenging since the logging capabilities are often poorly developed
in antivirus.

User Behavior Analytics (UBA). This is a method to detect internal threats,
targeted attacks and financial fraud [124]. UBA is based in the definition of
patterns in human behavior to create models of normal activity. The goal is
to detect deviations or abnormalities that may be related to threats. To create
the model, UBA needs to collect and analyze a huge amount of data about
users behavior, which usually requires the application of Big Data techniques,
Machine Learning (ML) and visual analytics. UBA outputs are a useful data
source, since they complement the data collected by other sensors, helping to
enrich the models.

Threat Intelligence. This is a method for the sharing of information about
threats among organizations, which can also be useful to enhance detection
engines. Threat intelligence uses knowledge related to the own organization,
including context or risk indicators, but also existing reports about previous
attacks, among other data [141]. The goal of threat intelligence is to foresee
threats based in the previous experience, taking into account information both
from the own and external organizations. Threat Intelligence tools are in
charge of collecting this information and generate reports or alarms that can
be integrated with other security mechanisms, such as SIEM systems. Threat
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connect [207] and Cyber Threat Alliance [7] are two commercial tools for
threat intelligence, while Open Threat Intelligence [11] and Collective Intel-
ligent Framework [64] are examples of open source solutions.

iii) Logs and State Sensors

Logs and state sensors gather information from applications or operating
systems, among others. These sensors can be used either individually or to
complement the information collected by other sensors that usually provide
more detailed information. The sources include network management proto-
cols, such as SNMP [175], which allows interchanging information among
network devices and can be collected using for example Open SNMP5; system
logs, such as syslog, which can be captured with tools like syslog[126]; or
Application Logs obtained, for example, from Apache or sendmail.

syslog. This is a protocol implemented in the application layer to generate
logs related to the activities in a system. This protocol records occurrences,
such as login events to a host or a server. This is also useful to launch
alerts related to activities or errors in the operating system or the hardware,
among others. Considering the type of resource that generates a record, in
combination to the type of alert, it is possible to establish a scale of priorities,
which is useful to help the security operators to manage such alerts.

Application Logs. Each application service, such as web surfing or the
e-mail, is aimed at a different purpose and, as a result, it has its own format
to record the logging information. Apache web server or Sendmail are only
examples of applications that can generate logs. Apache is the most extended
web server. It can provide data about the configuration of the websites as well
as the databases, but also statistics about access to web pages. On the other

5https://sourceforge.net/projects/opensnmp/
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hand, Sendmail is a Mail Transport Agent, which is in charge of routing the
e-mails to their destination. For example, this is useful to investigate whether
an affected host had exchanged any message with other machines before being
compromised, and the nature of such messages.

Application Logs sensors allow anomaly detection, registering system
accesses (both successful and failed), and prioritization in relation to the type
of resource involved in an anomaly. This information can be useful for the
investigation after an IT Security incident is detected [16, 135].

Additionally, we can consider a more generic type of data sources/ sensors
that are not classified in any of the aforementioned groups: meta-data (e.g.
tags related to the reputation of an IP).

Meta-data. This is a useful option to obtain additional information about
the data collected by the rest of the tools, thus helping to contextualize such
information. For example, one can investigate the owner of a given domain
name by using WHOIS [101] or check the reputation associated to any URL
or IP address using services such as MXtoolbox [143] or URLVoid [152] and
IPVoid [151], which provide a number of services for this purpose, including
WHOIS or blacklists [19, 62, 135]. For instance, if we have detected a suspi-
cious IP address, we can find out its owner using the service WHOIS. We can
combine the result of this service with the use of blacklists and/or statistics
about attacks coming from certain locations to draw an hypothesis about the
history of the suspicious IP address.

In spite of the attempts to provide unification models for the exchange
of alert information, such as Intrusion Detection Message Exchange For-
mat (IDMEF) [135, 170], one of the main problems in data collection is that
manufacturers, when designing the devices and software, do not usually follow
a standardized format for information logging. This implies the need of a
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parsing6 process to extract useful information from the data and homoge-
nize different sources to a common format [32, 135, 170]. For instance, IP
addresses can be located in different parts of the log file depending on the
sensor. In such case, the parsing process is useful to identify the IP addresses
on each available log and match them in order to combine different sources in
a meaningful way. This process is needed to feed detection and visualization
tools with structured information. However, there are some challenges related
to the parsing, namely: i) sensitivity of the parsing code to format changes in
the sensors in the sensors, usually caused by updates in their specifications
or even their functionalities; ii) scarcity of information about the format used
by each manufacturer; and iii) lack of synchronization in the timestamp of
sensors, which can be especially challenging if they are distributed in different
countries with distinct time zones and do not make use of synchronization
services like Network Time Protocol (NTP) [32, 135].

2.1.2 Integrators

Integrators merge the data collected by the sensors, converting the format
of the data to be readable by detection engines and, sometimes, correlating
different records to extend their semantic information. Some of the types
of integrators are [32]: Security Event Management (SEM) [20], Security
Information and Event Management (SIEM) [87], and Universal Threat Man-
agement (UTM) [86].

i) Types of Integrators

SEM. This system is in charge of "the collection, analysis and escalation of
indications and warnings to detect and respond to intrusions" [20]. Its aim
is visualize and understand traffic data by using a single and unified tool that

6Parsing is the process of identifying and extracting individual parts that compose a log to
obtain a logical and organized data structure [135].
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combines different data sources. For that purpose, a SEM allows pivoting7

among the different data sources. This means that, if there is an incident,
the security operator will be able to navigate from one source to another to
investigate it and obtain contextual information. Let us imagine that there is a
NetFlow record that has been signaled as anomalous. By means of pivoting,
it is possible for example to retrieve the reputation or the location of the
source IP. Thus, pivoting reduces considerably the time needed to investigate
a security incident (specially if the pivoting is graphically assisted) [20, 32].
One of the features that makes a SEM system to be such a powerful tool is
that it allows the visualization and prioritization of the events, thus helping
security operators to interpret and understand the alarms [87, 103].

SIEM. This system can be described following the definition of the SIEM
market provided by Gartner [87, 112] as a system that "analyzes event data
in real time for early detection of targeted attacks and data breaches, and
collects, stores, investigates and reports on log data for incident response,
forensics and regulatory compliance". Remember that SIEM systems are the
combination of two different systems: SEM and SIM systems. The main
difference in relation to the SEM is that a SIEM also performs reports and
include features for regulatory compliance while the SEM does not necessary
do that (indeed, this is a functionality usually provided by the SIM module).
SIEM are the most popular (and expensive) type of integrator systems in the
industry [32].

UTM. This is a type of "multi-function network security product used by
small or midsize business" [86]. These devices have high level functionalities
(multi-function gateway), which can be, for example, a firewall in the appli-
cation layer of the TCP/IP and Open Systems Interconnection (OSI) models,
Intrusion Prevention and Detection (IPS and IDS), antivirus, anti-spam and

7Pivoting refers to the ability of going from one data source to another.



36 Network Security Monitoring

anti-phishing [32, 82, 182]. The main advantages of the UTMs are their re-
duced cost and complexity, while the drawbacks are that UTMs usually cannot
correlate events.

ii) Detection Engine

The goal of this engine is to detect suspicious behavior in the data by the
integrator system (see Fig. 2.2) after the combination of the data coming
from the set of sensors [32]. The volume of data to be analyzed can be re-
duced by filtering or grouping data, and/or by feature extraction8, considering
only those features that are interesting. PCA, for example, is a classic tech-
nique that allows to obtain new (latent) features measured by applying lineal
transformations to the original data [218].

The detection engine can be defined either Manually-based or using
ML and Exploratory Data Analysis (EDA). Fig. 2.4 represents the ways of
applying Data-Driven (DD) techniques, from the point of view of the security
analyst, and based in the data analysis approach. The extreme case, where no
DD is applied and all relies on security operators’ experience, corresponds to a
manually-based approach (left). This mechanism is applied to detect security
violations using rules, which are defined manually by the security analysts.
IT Security Companies have their own team of experts to analyze attacks
and extract rules to identify such attacks, so that the rules can be updated in
detection systems. These systems are highly reliable in situations when there
is a low probability of finding a new attack, since the systems can only detect
previously observed attacks. This approach is enclosed in Signature-based
systems [81, 103].

A more autonomous mode, which in the extreme case does not need the
security analyst supervision, corresponds to an automatic analysis (right in
Fig. 2.4). This autonomous analysis corresponds to more traditional ML

8Feature extraction consists on obtaining new variables by transforming the original data
records.
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approaches. ML can be defined as the join of statistics and artificial intelli-
gence to learn from data by automatically inferring and generalizing a learning
model [8, 55, 68]. Indeed, this is a global term widely used to refer to the task
in which one calibrates (trains) a model or algorithm to obtain a descriptive
output for a given input. If the value for the output is previously known and
used for the training, then the learning is named supervised, and it usually ap-
plies to classification and regression problems. However, if only the input data
are known and the objective is to extract patterns or common behavior from
the data, the learning is known as unsupervised [55, 179]. Mixed approaches
are considered to be semi-supervised learning [62, 103, 157, 179, 218].

If the analyst is allowed to analyze and make any type of decision over
the output of the algorithm, even modifying the detection technique, we start
moving to the left, towards an exploratory detection mode in a middle point
between manually-based and autonomous detection engines. The exploratory
mode is a more interactive mode, which implies the security analyst supervi-
sion and still applies ML, although often this procedure is referred to as EDA.
In addition, any form of DD techniques can be further classified by considering
the type of machine learning they use as: supervised (top), semi-supervised
(center) and unsupervised (bottom).

EDA consists in analyzing the data without any prior assumption [98] in
order to obtain a better understanding [23, 98, 200]. "Exploratory data analy-
sis is detective work in the purest sense - finding and revealing the clues" [200].
EDA combines both statistics and visualization tools (for example, scatter or
bar plots [135]) to extract summarized features from the data. Data mining
techniques are usually applied for a deeper examination, helping in the ex-
traction of patterns in the data [68]. Visualization aids us to find patterns and
outliers in the data, helping security operators to understand and prioritize
events [32, 62, 135].

Normally, the learning process requires building a model from a training
dataset by selecting some parameters, ω , that are usually optimized in con-
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Fig. 2.4 Modes of detection engines. Manual analysis (experience-driven) is rep-
resented at the left, while the autonomous analysis (DD), is displayed to the right.
Exploratory Data Analysis is shown in the middle, since it combines experience and
data analysis. DD-based techniques can be vertically classified as: supervised (top),
semi-supervised (center) and unsupervised (bottom).

secutive steps until the solution is found [8, 68]. In supervised learning, this
allows the estimation of outputs for a given test labeled input. In unsupervised
learning, the model provides a description of the input data [8, 55].

Supervised Learning. These methods learn features or patterns from
a set of labeled data that are used to train a model. This model is used (in
NSM) for data classification, which consists on finding the classes to what the
security events belong [157, 218]. Supervised learning can be considered to
be task driven, which means that, depending on the focus of the system, the
way of learning can vary. For NSM, the main task is detect known attacks.
If the system has learned a set of attacks, then it is possible to identify such
attacks, which makes it a signature-based system [157, 217]. Some of the best
known methods for supervised ML are [55, 157, 179, 218]:

• Neural Networks. Neural Networks learn or infer patterns from a set
of labeled examples. Usually, to extract good classification results, a
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huge amount of training data is needed. The results are very precise but
hardly interpretable by humans.

• K-nearest neighbors (KNN). KNN algorithms compute the distance (for
example euclidean distance) between the observations9 to be classified
and the labeled observations in a training dataset. To classify an obser-
vation, the K closest training observations are selected and, usually, the
most repeated label in those is selected as the classification for the ob-
servation under study. It is simple to implement and understand, but the
computational cost may be excessive if K has a high value. This method
works with small datasets and a low number of features, although the
variables can be reduced using some dimensionality reduction methods,
such as PCA.

• Random Forest Classification. This method works as a collection of
decision trees. A decision tree defines a set of rules to make decisions
on each branch of a tree. In Random Forest Classification, each decision
tree is built from random features for, finally, building a forest of low
correlated trees. Random forests work under the hypothesis that a set of
uncorrelated trees work better than a single tree [217].

Similarly to rule-based manual systems, supervised systems have a good
performance to detect previously observed attacks. However, supervised
systems are not designed to zero-day attacks.

Unsupervised Learning. This type of learning does not need labels,
since the categories (e.g. normal vs anomaly) are obtained directly from the
objects [81, 157, 218]. Some of the best known methods for supervised ML
in NSM are [55, 157, 179, 218]:

9An observation is the set of properties or features that are measured for an entity. The
entities of interest can be disparate (e.g. time intervals or devices).
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• Unsupervised Neural Networks. These are some particular types of
Neural Networks that work in an unsupervised way. A well-known
example are autoencoders. Autoencoders work as noise filters and are
also useful to reduce the dimensionality of the data. First, they compress
the data (encode) and, then, the data are reproduced, thus removing the
noise in the output (decode) [17, 100]. An example of autoencoder to
implement a NIDS can be found in [139]. Self Organized Maps are
another example of unsupervised Neural Network that also work as a
method to reduce the dimensionality of the data. Self organized maps
apply competitive learning [10, 160]. An example of self organized
maps to implement an IDS can be found in [58].

• Clustering. This type of algorithm groups data according to a given
similarity (shared properties) or separation criterion (dissimilar prop-
erties) [111, 178]. A well-known method is K-means, which groups
the observations in K classes, with the optimum K being a value not
known a priori. The procedure is an iterative repetition of a sequence
of two steps: 1) compute the centroid of the K groups and 2) assign
each observation to the closest group. Unsupervised random forests
are also used as a clustering method [2].

• (Multivariate) statistical detection. This is another type of unsupervised
learning that works in two steps: first, special causes of variation are
detected and properly dealt to obtain a monitoring system that only
considers the variation intrinsic to the calibration data (training model);
then, new data are monitored to detect anomalies in relation to the pre-
viously trained model. MSPC is a well-known example of multivariate
statistical detection that is applied for control in industrial processes.
MSNM is another example of multivariate statistical detection that is ap-
plied for multivariate stastical network monitoring in network security.
Both are PCA-based and are explained in Chapters 3 and 4, respectively.
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Unsupervised systems are not optimized to detect a particular attack. The
models are trained to distinguish between normal and abnormal traffic data,
and typically applied following and EDA approach. Deciding whether the
anomaly is an attack or not, as well as the type of attack or incident, is a task
that should be performed by security operators and/or analysts. This task
can be performed by using visualization tools that receive the output of the
detection engine and transform it in useful information to help the security
team deciding about the alerts. These systems are particularly practical to
detect zero-day attacks and, in general, are more consistent with the workflow
of security analysts than supervised approaches.

Semi-supervised Learning. These methods are the combination of both
supervised and unsupervised learning, and make use of a partially labeled set
of data [62, 103, 157, 179, 218]. Sometimes unsupervised methods are applied
to discover the structure of the data. Then, supervised algorithms are applied
over the data previously labeled using the unsupervised learning. Another way
to apply semi-supervised learning is to use supervised learning to optimize,
and then unsupervised model for the detection of a given set of attacks. Like
that, the unsupervised system will be more sensitive to those attacks included
during the supervised learning, being still able to detect zero-day attacks. This
type of model optimization can be very practical, for example, a current threat
has been detected in another part. If the pattern is known, it is possible to
optimize the model to detect this specific type of attack while the ability of
detecting zero-day attacks is maintained.

2.2 Solutions for Network Security Monitoring

This part of the chapter lists a collection of network security tools, both open
source and commercial that include a detection engine. These tools have been
grouped in IDSs, integrators, and tool collections. The latter include both
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sensors and integrators as well as other security tools, yielding more complete
security capabilities.

2.2.1 IDSs

As discussed before, IDSs are a type of sensor with detection engines. Indeed,
they are frequently used alone, although their output may be combined with
other sources in an integrator, yielding a more powerful detection system.

i) Open Source Tools

Snort. This is the most popular IDS, although it can be used also as a snif-
fer [103]. Snort is a signature-based NIDS, which also allows port scanning,
as well as registering, alerting and providing response to any defined anomaly.
Unified2 is the output format generated by Snort, which can be generated
in three modes: packet logging, alert logging, and true unified logging [59].
Packet logging is used for packet captures while alert logging only register
IT Security events. true unified logging allows recording both events and
packets [59].

Snorby. This is a web application for NSM, which has a GUI to manage
alerts from IDSs such as Snort or Suricata. It requires the output format of the
IDS to be Unified2, the Snort format.

Suricata. This is a detection engine for threats. Suricata is both a real-time
network IDS and a network IPS. It works by network traffic monitoring and
offline processing of pcap files. Suricata is signature-based and provides the
output in standard formats, such as YAML or JSON, but it can also be configured
to generate outputs in specific formats, such as Unified2.
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Open Source HIDS SECurity (OSSEC). This is an open source HIDS that
performs log analysis, integrity checking, monitoring of Windows records, and
rootkit detection. In addition, OSSEC provides alerts and active responses.
OSSEC is multi-platform, since it can be used in most of the Operating
Systems. Although this engine has some SIEM features, such as allowing
the correlation of logs from several devices and formats, and mechanisms for
security policies compliance, it has been traditionally considered an IDS [154].

2.2.2 Integrators

i) Open Source Tools

Zeek (Bro). Zeek was originally developed by Vern Paxson and Robin Som-
mer [156] as a research work called Bro. Now, it has evolved and it is widely
used by companies, as well as research and educative organizations [156].
This is a complete open source tool for NSM that permits both anomaly
and signature based detection [62, 156]. Zeek collects traffic network using
libpcap, and then the engine of events processes the data, performing a
passive analysis on such data. It also allows collection and analysis of sessions
of particular services. In addition, Zeek can be programmed to take actions in
the evaluation of events (e.g. to send an email to the analyst) [156]. Although
it is usually included in the IDS classification, Zeek can be considered a
SEM [19, 20, 32, 156].

Prelude. This is a SIEM for Linux that collects, normalizes, combines and
correlates security events. In addition, Prelude also generates reports about
these events and can read any type of log [204].

Wazuh. This is a SIEM for signature-based intrusion detection, which was
developed by the homonymous company [211]. Wazuh is based in OSSEC
and it is used in combination with the Elastic Stack [71], allowing the monitor-
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ing of the system for security analysis, intrusion and vulnerability detection,
and providing response to security incidents, including integrity and compli-
ance [211].

Open Source Security Information Management (OSSIM). This is a
SIEM, allowing the collection, normalization and correlation of events. OSSIM
was developed by Alien Vault (AT&T Cybersecurity since February 2019) [13],
and it uses the Open Threat Exchange® (OTX®) [11], which allows the users
to contribute and receive updated information in real-time about security in-
formation. The capabilities of OSSIM include discovering assets10, assessing
vulnerabilities, intrusion detection, monitoring of behavior, and correlation of
events [12]. OSSIM integrates different software to provide a complete NSM
solution. Among other tools, this solution is composed both of a host and a
network IDS. The NIDS part provides intrusion detection and network traffic
scanning. It also looks for signatures of the latest attacks, as well as malware
or possible compromising of the system. The HIDS analyzes the behavior and
state of the system, alerting when it suspects that there is something wrong.
Similarly to other SIEMs, OSSIM allows to detect and prioritize the most
important threats and anomalies [12].

ii) Commercial Tools

This part of the section covers two examples of commercial integrator systems,
both included in the Gartner’s "Magic Quadrant for Security Information
and Event Management" for 2018 [102, 112]. This quadrant assesses the
SIEMs in the market according to a set of criteria, which are mainly Ability
to Execute and Completeness of Vision. Ability to Execute usually means
that vendors are economically capable to be well positioned in the market,
and Completeness of Vision can be seen as the ability to understand present

10 In the case of OSSIM, asset is referred to machines.
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and future needs of the market. Thus, Magic Quadrant of Gartner has four
categories: Leaders, Challengers, Visionaries and Niche Players. Leaders
have both high ability to execute and completeness of vision of the market,
Challengers have high ability to execute but still have not found the right
direction to focus on the market, Visionaries have good ideas and a complete
vision of the market but do not have competitive ability to execute, and Niche
Players are focused in a small segment of the market (or do not have a
complete vision of it) and have a limited ability to execute [85].

Splunk. This is a commercial SIEM, which performs network monitoring
and real-time data collection and correlation. Splunk also allows incident
management and forensic analysis. It allows data and event analysis, providing
visibility and context of the alerts. In addition, it uses Big Data techniques to
integrate the data from the organization to be monitored, allowing to improve
the intrusion detection by using machine learning algorithms [181]. Splunk is
considered as a Leader in the Gartner’s Magic Quadrant because it provides
"SIEM solutions that can share architecture and vendor management across
SIEM and other IT use cases" as well as "a scalable solution with a full
range of options from basic log management through advanced analytics and
response" (see Gartner’s Magic Quadrant in [102]).

USM (AlienVault® Unified Security Management®). This is a commer-
cial SIEM based in OSSIM, and it was also developed by Alien Vault (AT&T
Cybersecurity since February 2019) [13]. USM is a unified platform for threat
detection and policy compliance (which is one of the main differences in
relation to OSSIM, see [6] for more details), as well as incident response.
AlienVault USM Anywhere provides USM as a cloud service [13]. USM
is considered as a Niche Players in the Gartner’s Magic Quadrant because
"targets end-user SIEM buyers, with an emphasis on financial services and
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healthcare as well as service providers", which "typically are mid market, not
large enterprises" (see Gartner’s Magic Quadrant in [102]).

2.2.3 Tool Collections

Open Source

This type of network security tools are continuously evolving, since they are
composed of a number of variate software and they are open source.

Sguil. This is a set of open source tools for network security monitoring,
which allows to collect, analyze, alert and response to intrusions [19, 208].
Sguil provides a real-time interface and includes two IDSs [103, 208]. Some
of the tools that compose Sguil are [208]:

• MySQL, as a database service.

• Snort and Suricata, for network intrusion detection and scanning as
well as for logging packets and solving alerts.

• tcpdump, to collect network traffic from the logs of the packets.

• Wireshark, to analyze the collected packets.

Security Onion. This is a collection of open source tools, which is provided
as a Linux distribution. Security Onion (SO) allows to monitor, record and
manage logs, as well as to perform intrusion detection [177]. Some of the
tools that compose SO are [177]:

• Elastic Stack, as a search and analysis engine that also transform and
centralize the data, providing visualization functionalities [70, 71].

• Snort, Suricata and Bro, for network intrusion detection, scanning and
issuing alerts, as well as for logging of packets.
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• Wazuh, for host intrusion detection.

• Sguil, for network security monitoring and event drive analysis.

• Squert, to consult and visualize Sguil data.

• Cyberchef, to encrypt, codify, compress and analyze data.

• NetworkMiner, for forensic analysis.
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“Torture the data, and it will confess to anything.”
Ronald Coase (1981), Nobel Prize in Economics in 1991

“I keep saying that the sexy job in the next 10 years will be statisticians, and
I’m not kidding.”

Hal Varian (2009), Chief economist at Google since 2002
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Almost fifteen years ago, Lakhina et al. proposed to apply Principal
Component Analysis (PCA) for network monitoring [118]. Since then, there
have been multiple works that follow this approach [26, 27, 66], including the
extension to networking of a well-known anomaly detection methodology in
the industry, the Multivariate Statistical Process Control (MSPC) [42]. This
extension is referred to as MSNM and, due to its relevance in this work, it will
be described in next chapter. This chapter is intended to review the MSPC
theory.

MSPC was originally developed to monitor industrial processes. As an
extension of Statistical Process Control (SPC), the aim of this methodology is
to distinguish special causes of variation from common causes of variation
in a process. Essentially, this means discriminating among events that are
considered random variability and those that are due to an assignable cause [42,
106] The main difference between MSPC and SPC is that the former allows
the consideration of multiple variables and their correlations while SPC is a
univariate method and thus it only allows the monitoring of one variable at a
time [42].

Using MSPC makes it possible to monitor several variables simultaneously
by considering their correlation for a better model of the normal behavior and,
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thus, a better anomaly detection. Due to the high dimensionality of the data in
industrial processes, techniques based in latent variables, such as PCA, are
usually applied in combination with MSPC.

PCA-MSPC is performed using a pair of complementary statistics that
enable the indirect monitoring of a high number of variables. The statistics
are computed from the PCA decomposition of the calibration data to build a
model of normal operation [117, 150, 213].

MSPC is applied in two steps:

• phase I) The aim of this phase is to detect, diagnose and correct for
special causes of variation in the process, so that only common causes
of variation remain. In many cases, e.g. [150], this phase is limited to
the removal and diagnosis of outliers, under the belief that the rest of
collected data represent a stable process.

• phase II) After phase I, we say the process is under NOC. The second
phase corresponds to the actual monitoring of new incoming data from
the process. The goal is to detect excursions from the model of normal
behavior in a timely manner. When an anomaly is detected, diagnosis
is performed to identify its causes and classify its nature [42, 76, 150].
This allows to identify the variables related to the anomaly and helps
the analysts to find the root cause of such anomaly.

The rest of the sections in this chapter describe how the PCA model is
created and the computation of the statistics is performed, their use for the
monitoring, and the way of performing the diagnosis for MSPC. Finally, a
last section describes the BMSPC, which is intended to apply MSPC for batch
process monitoring.
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3.1 Principal Component Analysis

Given an N×M data matrix, where N is the number of observations and
M the number of variables, PCA identifies the sub-space with maximum
variance in the M-dimensional space of variables, represented by the first A
Principal Components (PCs). The original variables are linearly transformed
into the PCs. To do this, first the data matrix X is normalized, typically by
mean-centering:

Xc = X−1 ·µ (3.1)

where Xc represents the mean-centered data, 1 is a column vector and µ is the
array containing the sample means of the columns of X.

The data matrix sometimes is also normalized by Auto-Scaling (AS) as
follows:

Xsc = Xc⊘1 ·σ (3.2)

where Xsc represents the auto-scaled data, ⊘ is the Hadamard (element-wise)
division and σ is the array containing the sample standard deviations of the
columns of X.

The PCA model can be expressed as follows [117, 213]:

Xsc = TA ·P′A +E (3.3)

with TA the score matrix of size N×A, PA the loading matrix of size M×A,
and E, the residual matrix of size N×M. The columns in PA correspond to
the eigenvectors of XX = 1

N−1 ·Xsc
′ ·Xsc.

Once the PCA model is built, the scores for a new observation, tnew, are
computed by projecting that observation, xnew, onto the model subspace:

tnew = xnew ·PA (3.4)

and the residuals, enew, are calculated using these scores:
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enew = xnew− tnew ·P′A (3.5)

3.2 Anomaly Detection

Both scores and residuals are monitored in the MSPC system using two
statistics, namely, the D-statistic (D), and the Q-statistic (Q). The D-statistic
is computed to monitor the model subspace [117, 212, 213].

D =
A

∑
a=1

( ta
sa

)2
=

A

∑
a=1

(ta)2

λa
(3.6)

where ta and s2
a are, respectively, the score for the ath component and the

sample variance of this score. The variances of the PCs are the eigenvalues,
λa, of Λ = 1

N−1 ·T
′
A ·TA.

To monitor the residuals, the Q-statistic is calculated as:

Q =
M

∑
m=1

(em)
2 (3.7)

where em is the residual value of the observation corresponding to the m-th
variable.

If any of the statistics corresponding to a new observation is greater than a
threshold, the so-called Upper Control Limit (UCL), this observation is identi-
fied as anomalous. The derivation of UCL values for both statistics follows.
The scores are linear combinations of the original variables; thus, according
to the Central Limit Theorem, they follow a Normal distribution [150]. As
a consequence, the D-statistic times a constant follows a β – distribution in
phase I [198]:

D∼ (N−1)2

N
BA/2,(N−A−1)/2 (3.8)
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therefore, the corresponding UCL for the D-statistic at significance level α is
given by:

UCL(D)α =
(N−1)2

N
B(A/2,(N−A−1)/2),α (3.9)

For new incoming data in phase II, the D-statistic times a constant follows
an F – distribution [198]:

D∼ A · (N2−1)
N · (N−A)

FA,(N−A) (3.10)

and the corresponding UCL at significance level α is given by:

UCL(D)α =
A · (N2−1)
N · (N−A)

F(A,(N−A)),α (3.11)

Several procedures can be used to determine the UCL for the Q-statistic.
Again, the residuals can be assumed to follow a multivariate normal distribu-
tion. Jackson and Mudholkar showed in [107] that an approximate critical
value at significance level α is given by:

UCL(Q)α = θ1 ·

zα

√
2θ2h2

0

θ1
+1+

θ2h0(h0−1)
θ 2

1


1

h0

(3.12)

where θn = ∑
rank(X)
a=A+1 (λa)

n, with rank(X) the rank of X and λa the eigenvalues
of matrix 1

N−1 ·E
′ ·E, h0 = 1− 2θ1θ3

3θ 2
2

; and zα is the 100 ·(1−α)% standardized
normal percentile.

Alternatively, the approximation based on the weighted chi-squared distri-
bution proposed by Box can be used [22]. Control limits for the Q-statistic
that distinguish phase I and phase II can also be found in [76].

To achieve adequate performance in phase II, it is highly recommended
to re-adjust the control limits using the calibration data on a leave-one-out
cross-validation basis [44, 161]. The limits are raised or lowered so that the
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Overall Type I (OTI) risk equals the imposed significance level α [44, 95].
Following the definition in [150], the OTI is the percentage of false alarms in
the Normal Operation Condition (NOC) calibration observations:

OTI = 100 · # f
N

% (3.13)

where # f is the number of single observations where either of the statistics
computed surpasses its control limit in the NOC calibration data.

The monitoring charts are plots used to represent the statistics and the
control limits. They help us to visualize and interpret the value of the statistics.
For a better understanding, let us take as an example the monitoring chart
displayed in Fig. 3.1.
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Fig. 3.1 D- and Q-statistics and their corresponding theoretical control limits.

To build the example, first we generate a 100×10 calibration matrix at
random. Then, we also created a 10× 10 test matrix following the same
correlation pattern as in the calibration. The value of the first two variables in
the last five test observations is increased to make them anomalous. Fig. 3.1
shows the D- and Q-statistic, as well as the corresponding theoretical UCLs.
The UCL for the D-statistic is represented as a vertical dashed line, while
for the Q-statistic this is represented as an horizontal dashed line. Those
observations that are to the right of the UCL for the D-statistic are abnormal,



58 Multivariate Statistical Process Control

although still follow the correlation structure in the PCA model. Those
observations that are above the UCL for the Q-statistic are abnormal, and
break the correlation structure in PCA.

Fig. 3.1 shows the statistics for the calibration data colored in red. All the
calibration data except observation #79 are under the UCL for the Q-statistic
and left to the UCL for the D-statistic. Observation #79 can be considered
as a mild outlier, since the Q-statistic is above its UCL. For the test, we
can observe the observations under NOC represented in green, while those
that are anomalous are represented in blue color. Observations #6 and #10
show anomalous values in the Q-statistic, and observations #7 to #9 show
anomalous values both in the D- and the Q- statistic.

3.3 Diagnosis

Once an anomalous behavior is detected in a process, it should be diagnosed.
This is usually done by analyzing the contributions of the monitored variables
to the value of the statistics exceeding the control limits. Those variables with
a higher magnitude in their contribution are considered to be related to the
anomaly. The most used diagnosis methods are the Contribution Plots (CP)
and the Reconstruction-Based Contributions (RBC) [4, 5, 69, 117, 150, 212,
213]. Other alternatives, such as observation-based Missing-data method for
Exploratory Data Analysis (oMEDA) [29], have also been proposed. These
multivariate diagnosis methods are reviewed in Chapter 7.

We use the previous example to illustrate how diagnosis methods work. We
apply oMEDA to diagnose the anomalous observations in recall Fig. 3.1. As
a result, a bar plot is obtained in Fig. 3.2. This plot represents the contribution
of each variable to the diagnosed anomaly. We can observe how the method
highlights clearly the two first variables, which are those what we made to be
anomalous.
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Fig. 3.2 Example of diagnosis applying oMEDA, obtained using the MEDA-
Toolbox [43].

3.3.1 The Smearing Problem

The state-of-the-art diagnosis methods are multivariate and they can suffer
from the smearing effect: misdiagnosis owing to the spread of the contribution
from the variables affected by an anomaly to those not affected by it [114, 212].

The smearing problem results in a more complex diagnosis process. A
wrong diagnosis may lead to an incorrect identification of the source of the
anomalies, affecting also the triage and prioritization of such anomalies, which
is of main interest for this work. The diagnosis and the smearing problem are
treated in detail in Chapter 7.

3.4 Batch MSPC (BMSPC)

Batch processes are a special type of industrial processes that are impor-
tant for many production areas, such as the chemical, pharmacy and food
industries [148–150]. A batch refers to a process composed of a number of
phases and steps that are repeated cyclically, following a specific a recipe [52].
Each of these repetitions is called a batch. The duration of the batch pro-
duction can vary from batch to batch, depending on the initial conditions, as
well as other factors [52, 91, 92]. The process variables can be monitored



60 Multivariate Statistical Process Control

either online (during the batch processing) or offline (after the batch process-
ing). The main disadvantage for the latter is that monitoring results might
not be available before starting the processing of next batch and, thus, the
reaction to a process failure is delayed [52]. Batch processes allow a tight
control of the process, which in the end is translated into a greater economical
impact [52, 91, 115, 148–150].

Batch processes present characteristic cycles that are repeated during the
execution of each batch. In this work, we use the term cyclo-stationarity to
refer to this structure. This makes it necessary to adapt the existing procedures
in MSPC to batch monitoring (BMSPC) [52, 115, 148–150]. The network
traffic data are also characterized by the presence of cycles in their activity.
For example, one can identify similar patterns during the day or the night,
but also among working days or weekends. These patterns are periodically
repeated for the same network. Again, we can observe the analogy between
industrial processes and network traffic data. For this reason, we also pay
special attention to BMSPC in this work.

Typically, a batch process is monitored by collecting measurements on J
variables through the batch production. After collecting measurements on I
batches, a data set of IxJxKi measurements is available. The cyclo-stationarity
of the network data can be considered by re-arranging the observations in a
three-way matrix1. To build a model from batch data, a number of modeling
steps are typically performed: 1) Alignment, 2) Pre-processing, 3) Unfolding,
4) Calibration, and 5) Detection [92]. The latter is performed following the
MSPC theory: to detect special causes of variance in phase I and anomalies in
phase II, once the NOC model has been obtained. If an anomaly is detected,
like in MSPC, the Diagnosis is also performed.

1In network data both a day or a week can be considered a cycle. In this thesis we consider
each day the cycle of interest.
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3.4.1 Batch Monitoring Cycle

1) Alignment Step

For batch process monitoring, all the process variables should be aligned to
the same pace and all the key process events2 should also be synchronized
(see Fig. 3.3). An incorrect synchronization has been proven to affect the
correlation of the data [91, 93, 95] as well as the stability of the model param-
eters [92]. The propagation of these problems causes the anomaly detection
model to be degraded. Additionally, it it is taken into account that the batches
might not have the same length, it is evident the need of applying methods for
alignment and synchronization of batches [91, 93, 95]. With such purpose, sev-
eral approaches can be found in the literature. According to [91, 92], they can
be classified in three groups, considering if they are based on: i) compressing
and/or expanding intervals in the variable trajectories using linear interpo-
lation, ii) feature extraction, or iii) expanding, compressing and translating
intervals in the variable trajectories [92]. After the application of such methods
a three-way structure of dimensions IxJxK is obtained [91]. As an illustrative
example, Fig. 3.3 (a) shows the first variable of the Saccharomyces cerevisiae
process simulation without any alignment, while Fig. 3.3 (b) represents the
effect of applying an alignment method (the multi-synchro algorithm [93]) in
the same variable. We can observe that the key process event is synchronized
and the batch length is the same after the alignment [89, 91].

2) Pre-processing Step

Synchronized data are usually pre-processed for several reasons, namely to: i)
remove offsets, ii) account for differences of magnitude across variables, and
iii) give certain weights to variables depending on the nature of data.

2A key process event defines the moment in which each step of a process takes place
(when the step starts and ends). Key process events usually vary from batch to batch (see
Fig. 3.3 (a)).
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(a) (b)

Fig. 3.3 Visual representation of the first variable of the Saccharomyces Cerevisiae
process simulated using MVBatch [89] toolbox (a) without applying any synchro-
nization or alignment, and (b) after applying the multi-synchro algorithm [89, 91].

In batch process monitoring, there are two generally accepted pre-processing
methods: Trajectory Centering and Scaling (TCS) [149] and Variable Center-
ing and Scaling (VCS) [214]3, which are detailed in Chapter 6.

3) Unfolding Step

Once the data are aligned, synchronized and pre-processed, they need to
be transformed from three-way into two-way to apply bilinear techniques
like PCA. This is termed the unfolding of the data. There exist different
approaches to unfold the data. A thorough study on the differences among
these methods in terms of the process dynamics captured by the bilinear model
can be found in [46]. For implications on quality prediction, the reader is
referred to [47].

The main approaches to unfold the data into a single two-way matrix
are: i) batch-wise [148], ii) variable-wise [214], and iii) batch-dynamic [53]

3Note that TCS and VCS are terms that were introduced in [92] to refer to pre-processing
techniques associated with the batch modeling approaches originally presented by Nomikos et
al. [149] and Wold et al. [214], respectively.
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unfolding (see Fig. 3.4). Batch-wise unfolding is performed in the batches
direction, so that the result is an I×KJ matrix. Variable-wise unfolding is
carried out in the variables direction, so that the result is an IK× J matrix.
Batch-dynamic unfolding where a number of lags4 is defined can be seen as
an intermediate solution to batch- and variable-wise unfolding. The higher
the number of lags, the more similar to a batch-wise approach5. On the
contrary, the lower is the number of lags, the more similar is batch-dynamic
to a variable-wise unfolding6 [46, 52]. Other approaches unfold the data
in several two-way matrices, for example by creating K local models [163].
This method can also be combined with other approaches [121, 162]. Finally,
other alternative is the multi-phase approach, which consists in calibrating
independent models for different stages or phases in the process [48, 201].
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Fig. 3.4 Main types of unfolding into a single matrix. Figure adapted from [46, 52].

4Each lag defines the value of the current sampling time as the previous one.
5The maximum number of lags, (#lags), is K−1. In this case, the batch-dynamic approach

corresponds to a batch-wise unfolding.
6If there are no lags, which is an extreme case, the batch-dynamic corresponds to a variable-

wise unfolding.
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4) Calibration Step

Unfolded data are typically modeled by projection techniques to latent struc-
tures, such as PCA or Partial Least Squares (PLS) regression. Depending on
the objective, the choice of the multivariate statistical model will differ. The
interest in this thesis is limited to PCA.

5) Detection Step

Similar to the MSPC, in BMSPC a monitoring scheme is designed based on
the estimation of the D and Q statistics [158]. The control limits for their
control charts are computed from NOC process data, and can be re-adjusted
for a given imposed significance level by cross-validation [49]. In BMSPC,
phase I and phase II are also applied [75].

During phase I the goal is to distinguish between the common and special
sources of variability across batches. Those variations that are considered to
be assignable in the process need to be corrected and eliminated, so that finally
we can build a model from a NOC process [89]. After the calibration model
has been created, in phase II, incoming batches are monitored to determine
whether the process remains under NOC or not.

6) Diagnosis Step

Similar to MSPC, after detecting an anomaly in a process, either in phase I or
phase II, those observations that make the statistics exceed their corresponding
UCL need to be diagnosed. In BMSPC it is possible to apply the same
diagnosis methods as in MSPC (see Section 7.1).

3.4.2 The Parameter Stability Problem

Each of the steps in the data pipeline until the calibration model is created has
influence on the stability of the monitoring system.
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Previous studies show that the lack of stability affects the quality of the
PCA model and the detection performance of MSPC [92]. More precisely,
the effects of the synchronization method and the unfolding approach in the
parameter stability have already been evaluated. The Parameter stability is
inversely related to the uncertainty: the greater the uncertainty in a model, the
lower the parameter stability and, thus, the less reliable the system is. It is
desirable to reduce the parameter uncertainty in the model.

One of the critical factors on the parameter stability is the Ratio number-
of-Observations-to-the-number-of-Parameters (ROP) [92]: a high ROP is
pursued to achieve a low parameter uncertainty. A thorough study on the
implications of each of the modeling steps on the parameter stability can
be found in [92]. In particular, the cited work shows that a main source of
model instability is the over-parameterization in the TCS pre-processing. The
parameter stability is treated in detail in Chapter 6.
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“I have no special talent. I am only passionately curious.”
Albert Einstein, Nobel Prize in Physics in 1921

“Intelligence is the ability to adapt to change.”
Stephen Hawking, Physicist
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The use of PCA to build anomaly detection engines in the context of
NSM was proposed by Lakhina et. al in a pioneering work in the early
2000’s [118]. The main goal of the proposal is to distinguish normal from
abnormal network traffic by means of using a PCA model and to diagnose the
root causes of anomalies. Lakhina applied PCA over counts of packets and
bytes in the traffic of the network. A later work from the same authors [119]
proposed to use the entropy as a measure of change in the counts. As already
discussed, PCA creates two sub-spaces: one corresponding to the model and
other to the residuals. A strong assumption of [118] and [119] is that the
model sub-space corresponds to normal variability, while residuals correspond
to abnormal variability. Besides, the data under monitoring was the same
used to create the model. This approach has as main drawback that anomalies
may pollute the PCA model, degrading the quality of the anomaly detection
systems [42]. There have been several modifications of the original PCA-
based approach with the aim of solving some of its weaknesses [26, 27, 66,
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168]. In the last years, other research works on multivariate analysis for
security-related anomaly detection have opted for combining PCA with other
detection schemes. For example, Aiello et al. [3] combine PCA with mutual
information for profiling DNS tunneling attacks; and Fernandes et al. [74]
combine PCA with a modified version of dynamic time warping for network
anomaly detection. These authors also propose an alternative approach based
on ant colony optimization. In [109], Jiang et al. apply PCA over a wavelet
transform of the network traffic for network-wide anomaly detection. A similar
approach with multi-scale PCA is used in [54]. Xia et al. [216] propose
an algorithm based in the Singular Value Decomposition (SVD) which is
combined with other techniques for anomaly detection by considering the
cyclo-stationarity of the data.

Most of these proposals still suffer part of the disadvantages of the original
work [118]. This motivated the development of the Multivariate Statistical
Network Monitoring (MSNM) methodology, which was introduced in 2015,
based in the MSPC theory (see Chapter 3) [42]. The rest of the sections of
this chapter describe the MSNM methodology and related extensions.

4.1 MSNM

MSNM is an extension of the MSPC theory for NSM. It can be enclosed
in the unsupervised learning paradigm, allows to combine traffic data with
other security data sources [30] and it has shown a detection performance
comparable to the state-of-the-art machine learning methodologies [38]. The
most relevant advantage of MSNM in relation to such methodologies is its
ability to provide diagnosis support [36, 38].

MSNM has four steps: 1) Parsing, 2) Fusion 3) Detection, and 4) Diagno-
sis [42], which are summarized in this section.
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4.1.1 Parsing

A main difference of the data used in MSPC and network monitoring data
is that network data usually come in the form of logs of different sensors
structured in different formats, as discussed in Chapter 2. For this reason, these
data need to be processed and transformed into a common format. After this
processing, a set of features is extracted, which is used by the detection engine
to build a model for later anomaly detection. The process of identifying which
features we need to extract is known as feature engineering. Features can be
obtained either directly or indirectly from logs. Thus, direct parsing refers
to those features that do not need any transformation prior to the extraction
(e.g. number of packets per connection, as it can be seen in the 5th column of
Fig 4.1). Indirect parsing refers to those features that are not in the log but can
be obtained as a combination and/or transformation of some information in
them (e.g. number of connections per minute), which requires the combination
of several rows in Fig 4.1.

Fig. 4.1 Example of raw data source for MSNM: NetFlow record from the
UGR’16 [130].

In MSNM [30], the use of counters in the work of Lakhina et al. [118]
was generalized to consider the disparity of data sources. This is termed
the feature-as-a-counter approach: the combination of data counters with
multivariate analysis. Each feature contains the number of occurrences for a
given event during a period of time. The combination of different sources of
information is simplified thanks to this feature definition [41].

Fig. 4.2 shows an example of the counters corresponding to the example
depicted in Fig. 4.1. These counters indicate the number of occurrences of
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the features for each observation, defined as a time interval of one minute.
Like that, for instance, we can observe that most of the source and destination
IPs in the capture are public, since the number of counters is greater than
those for the private IPs (columns #1 and #4 correspond to private source and
destination IPs, respectively; while columns #2 and #5 correspond to public
source and destination IPs).

Fig. 4.2 Counters corresponding to the example in Fig. 4.1.

4.1.2 Fusion

Due to the fact that each data source generates its own set of features or
variables during the parsing step, these need to be combined to obtain a single
stream of featured data. Since each source can have different sampling periods,
the features may need to be stretched/compressed to a common sampling rate,
so that they can be finally merged. Once the sampling rate is homogenized,
the features are organized in a single high dimensional data matrix.

Fig. 4.3 represents the fusion step conceptually: first, the features are
extracted from each data source. The result is a number of data matrices with
the features and observations corresponding to each data source (represented
in different colors). It can be observed that the dimensions of these matrices is
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not necessary the same. Second, after the fusion step, all the matrices are con-
catenated into a single matrix with an homogeneous number of observations
and as many features as the sum of the features of the original data sources.
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Fig. 4.3 Conceptual representation of the fusion step.

4.1.3 Detection

Once the parsing and the fusion steps are finished, the MSPC steps can
be followed. PCA is applied with the objective of obtaining the subspace
of maximum variance in the M-dimensional variable space. This allows the
detection of anomalies by the computation of the D-statistic and the Q-statistic.
The use of PCA, in combination to these statistics, reduces the complexity of
network security monitoring.

In addition, for each observation n, the D-statistic and the Q-statistic can
be combined into a single score, the Tscore. This measure allows to take
into account at the same time both the D- and the Q- statistic. In NSM, the
interest is more on anomalies triage rather than detection. Thus, the Tscore
helps security operators to prioritize alarms, since they only have to take into
account a single statistic. Fig. 4.4 shows an example of detection using the
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Tscore. In this example, we can observe that five observations are clearly
different to the rest. Observations are prioritized according to their Tscore to
perform the diagnosis and investigate the root causes of the corresponding
anomalies.
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Fig. 4.4 Example of detection using the Tscore.

The Tscore is defined according to the following equation [36]:

Tn = α · Dn

UCLD
.99

+(1−α) · Qn

UCLQ
.99

(4.1)

where UCLD
.99 and UCLQ

.99 are the upper control limits for the D-statistic and
the Q-statistic computed from the calibration data [42], which are computed
as 99% percentiles, and α ∈ [0,1] is a weighting factor for the combination of
both statistics [36].

Like MSPC, MSNM is applied in two phases: phase I, which is intended
to identify and correct for special sources of variability in the traffic data; and
phase II, where the new data are monitored to detect and diagnose anomalies
based on the model of normal operation. Since phase I and phase II are focused
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in different objectives, the weighting factor α in Equation (4.1) is defined in
different ways for each of them. In phase I, α corresponds to the percentage
of captured variance by the PCA model, since assignable sources of variance
affect the model. In phase II, α can be defined as the ratio between the number
of selected PCs, A, and the number of variables, M, since anomalies can be
found in any direction of the space of variables.

4.1.4 Diagnosis

Once an anomaly is detected, a diagnosis is performed to identify the features
related to the anomaly. This is important to help in the identification of the root
causes of the anomaly. Let us consider as an example Fig. 4.5, which shows
the oMEDA diagnosis for the Scan44 attack in the UGR’16 dataset [130]. We
can observe a bar plot where the most highlighted features are expected to be
related to the anomaly1. Thus, the diagnosis is a useful tool to prioritize the
investigation of the anomaly, enabling the security team to response in a faster
way.

4.2 Extensions on the MSNM application

Since the first proposal of MSNM, there has been a number of extensions [33,
36, 40, 129, 192, 195] to improve the performance of the methodology and
enhance it with new functionalities. Most of these extensions are related
to single step of the MSNM. Fig. 4.6 depicts a diagram of the extensions.
They are also described later in this section. This work has contributed to
most of the extensions, leading those related to pre-processing (the PARAMO
approach) [192] and diagnosis [195] (a methodology for the comparison of

1d port_citrix and d port_msnmessenger are those with the highest magnitude, which are
easily visible in the plot. Then, features d port_register, d port_kpasswd and sport_citrix have
also a high magnitude. This diagnosis points out a port scanning attack.
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Fig. 4.5 Example of diagnosis using oMEDA.

diagnosis methods, and the U-Squared method), which are detailed as main
contribution of this thesis in Chapters 6 and 7 respectively.

Fig. 4.6 MSNM steps and the main extensions.
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4.2.1 Extensions in the Fusion Step

There are different levels of data fusion: low, middle and high [61, 67].
In the low-level, the fusion is performed in the data, prior to the model
building. In MSNM, we understand as low-level fusion when it is done
at counts level. In the middle-level, the fusion is carried out after feature
extraction from the data, after applying PCA. Finally, in the high-level, the
fusion is performed on the output of several anomaly detection, regression or
classification systems. An example can be to fuse the statistics obtained after
applying MSPC [61, 67, 180].

Standard Fusion

When one needs to monitor a communications network, it is usual that some
type of data are collected from many sensors (see Chapter 2) in a distributed
fashion. After the parsing and fusion steps, performed locally in each sensor,
these data can still be maintained in individual but homogenized matrices
(with the same number of features, M, and observations, N). Let us call the
resulting matrices Xi, where 1≤ i≤ S, and S corresponds to the number of
monitored sensors.

In standard MSNM, these data are generally combined following a low-
level fusion in a single matrix, by concatenating the features in a single matrix,
X = [X1 X2 ... XS] with dimensions NxSM (recall Fig. 4.3). In what follows
we will call this approach C-fusion, term that comes from concatenating. If
the sources are of the same type (e.g. two routers), another alternative is to
fuse by aggregating (summing) the counters corresponding to each feature.
The result is a matrix X = ∑Xi with the same dimensions as the individual
matrices, NxM. In the following we will call this approach A-fusion, term
that comes from aggregating. Finally, the PCA model is built in both cases as
usual from the matrix X.
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The C-fusion allows to identify the source of an anomaly using diagnosis
tools, that is, the sensor collecting the anomalous data, while this is not
possible using the A-fusion. Furthermore, different to the A-fusion, the C-
fusion allows the consideration of different types of data sources (which is
the most realistic case in NSM). As a downside, the concatenation of the
features increases resources required for the computation of the model, while
the aggregation simplifies this calculation. Also, concatenation increases
the number of variables, and thus the model uncertainty. The performance
in terms of anomaly detection is evaluated for both approaches using real
network data in Chapter 8.

Hierarchical MSNM

An alternative approach for data fusion in MSNM was proposed in [129].
This is a hierarchical model (H-fusion), which consists on the computation
of the statistics in different layers of the hierarchy2. Both statistics and
data can be combined in different parts of the hierarchy using one or more
integrators. Examples of this approach are shown in Fig. 4.7. Fig. 4.7 (a)
shows a hierarchy with a single integrator. In the low layer, each sensor is
modeled individually using MSNM. The statistics of the different sensors
are integrated at the top layer, where another MSNM model is computed.
If an anomaly is detected at the top layer, the diagnosis is used to identify
the original source of the problem. Then, in the low layer, the diagnosis is
repeated to identify those variables related to the anomaly. Fig. 4.7 (b) shows a
more complex hierarchy with two integrators and three layers. Regardless the
complexity of the hierarchy, the mechanism for detection/diagnosis remains
as in the first example.

In general, the hierarchical union of the data shows the following benefits:

2In hierarchical MSNM, level refers to the position, layer or stage in the hierarchy rather
than the aforementioned level of fusion.
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• Preserving C-fusion advantages: prioritization and identification of the
location and/or source of the anomaly.

• Volume and time consumption reduction of the data needed for the
monitoring (see Appendix (D)).

• Scalability, since a number sources can be added to the architecture of
the hierarchy, yielding more possible scenarios.

• Privacy enhancing, since it is possible to apply high-level fusion in the
top layers of the hierarchy, avoiding to send features to the integrator,
which might not belong to the same organization that is generating such
features.

The hierarchical MSNM is evaluated using real network data and compared
with the two standard fusion alternatives in Chapter 8.

4.2.2 Extensions in the Detection Step

The enhancements presented in this section correspond to i) the three-dimensional
arrangement of the data taking into account the cyclo-stationarity; and ii) the
pre-processing of the data (Optimal Scaling and PARAMO).

Data Arrangement and Model Building

Three-Mode MSNM. In MSNM, after the parsing and fusion steps, net-
work traffic data are organized in two-way matrices. Recall from Chapter 3
that network data are similar to batch processes if the daily cyclo-stationarity
is considered. To do this, the observations in a data matrix N×M can be
re-arranged in a three-way array, where K sampling time points for the J = M
monitoring variables are observed during I days3. The comparison between
the two types of data arrangement is displayed in Fig. 4.8.

3We use I× J×K instead of I×M×K to maintain the same nomenclature as in BMSPC.
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(a)

(b)

Fig. 4.7 Examples of hierarchical MSNM (a) with only one integrator and two layers
of hierarchy and (b) two integrators and three layers of hierarchy.

The three-way organization of the network data is analogous to the one
discussed for a batch process from the process industry, which is described
in Section 3.4. Thus, we can use the BMSPC approach to handle the cyclo-
stationarity. In this case, the synchronization is not needed, since the days
have originally the same length and the main events are expected to be aligned
across days. The pre-processing can be performed using TCS (see Chap-
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Fig. 4.8 Network Traffic data are typically arranged in two modes (left). An alternative
arrangement considers the cyclo-stationarity of a single cycle a day, representing the
data as a three-way array (right).

ters 3 and 6). For the unfolding, the batch-wise approach or any form of
dynamic model results in a high dimensionality, given the large number of
variables typically used in MSNM. Instead, a variable-wise unfolding is rec-
ommended. Note that a variable-wise unfolding is actually equivalent to the
data distribution that we had prior to the three-way arrangement of the data.
Still, the main advantage of conceptually considering the cyclo-stationarity of
the data is that most of the dynamics of the data are compensated for in the
pre-processing, transforming data from cyclo-stationary to stationary. This is
somehow equivalent to go from VCS to TCS (see Chapter 6). This is expected
to detect more complex attacks, specially those that are progressively exe-
cuted along the days and that are not easily detected by the two-way MSNM
models. Note that the good properties of the two-way (bilinear) organization
of the data are maintained under this approach. The main disadvantage of
this approach is that we add uncertainty to the model, since a higher num-
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ber of pre-processing parameters need to be estimated from the observations
(remember the Parameter Stability Problem discussed in Section 3.4.2).

This extension has been evaluated using real network data in comparison
with the standard fusion of the data.

Pre-processing

Recall pre-processing is a step that is needed prior to the construction of the
PCA model. Typically, the pre-processing consists on mean centering and,
sometimes, Auto-Scaling (AS), so that the same weigh is assigned to each of
the variables for the model building.

Optimal Scaling for MSNM. A supervised optimization technique is in-
troduced in [40] to enhance MSNM. This supervised algorithm learns the
optimum scaling from the features in the input data. The supervised part of the
method optimizes the weights of the features inputted to PCA for the detection
of specific attacks. Thus, the system still allows to detect new attacks and, at
the same time, it is optimized to detect some attacks of interest. This turns
MSNM into a semi-supervised learning approach. The proposed supervised
learning is based on an extension of the gradient descent method based on
PLS [39, 45]. The objective is to optimize the Area Under the Curve (AUC)
of the Tscore by modifying the values of the scaling of the features.

The main advantage of this approach is that the benefits of the unsuper-
vised strategy are maintained, such as the detection of zero-day attacks, whilst
they are combined with the ability of learning the pattern of a targeted threat,
e.g. to optimize our detection performance to a current dangerous threat.

PARAmeters from More Observations (PARAMO) for MSNM Based
on the three-mode extension of MSNM, PARAMO is an extension for pre-
processing that considers the cyclo-stationarity of the data [192]. This ap-
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proach is based in the reference method proposed in [149]. PARAMO esti-
mates the means and standard deviations in a three-way tensor using more
observations than the original method. This is detailed in Chapter 6 and evalu-
ated using real network data in Chapter 8. The main advantage of PARAMO
is that it reduces the uncertainty of the pre-processing parameters and, as a
consequence, it increases the capability of fault detection of the monitoring
system.

4.2.3 Extensions in the Diagnosis Step

As a part of the MSPC, the root causes of a detected anomaly need to be
diagnosed to troubleshoot the problem and/or avoid it in the future. In MSNM,
where the number of security events is usually higher than what security
operators can handle, the diagnosis takes even a more important role, if
possible. The diagnosis helps prioritize the alarms and thus to deal with them
in a more effective manner.

Univariate Squared (U-Squared) for MSNM Based in oMEDA [29], the
U-Squared considers the full variable space for diagnosis, which results in
a univariate diagnosis [195]. It is described in Chapter 7 and evaluated
using real network data in Chapter 8. The main advantage of this method is
that it enhances the performance of the diagnosis methods because it avoids
the smearing effect. Being a univariate method, U-Squared simplifies the
diagnosis, thus helping the security operators to triage events.

4.2.4 Extensions for Big Data

Recall MSNM has four steps: 1) Parsing, 2) Fusion, 3) Detection, and 4)
Diagnosis. Although originally MSNM was designed as a methodology to
deal with Big Data problems [41], the four steps are not enough to deal with
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real network data, which volume makes it necessary to extend the original
methodology.

The first extension is proposed as a part of a 5 steps methodology [36],
which includes an additional step, Step 5) De-Parsing. A later work proposes
to perform two additional steps to complete the Big Data extension [33]: Step
0) (Automatic) Feature Extraction and Step 6) Visualization Step. Fig. 4.9
shows the complete integration of these steps. In this figure, the three new
steps (which are described in the following paragraphs) are displayed in yellow
color, while the original steps from MSNM are represented in black color.
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Fig. 4.9 Additional steps for MSNM to deal with Big Data.

De-Parsing Step In network monitoring, after the diagnosis step, it is de-
sirable to come back to the original records to further interpret the diagnosis
performed on the monitored variables. The De-Parsing consists on identify-
ing the raw information logs related to the anomalies [39]. The information
obtained from the detection and the diagnosis steps is used with this purpose.
On the one hand, the detection provides the timestamps for the anomaly, which
can be one or a set of consecutive sampling intervals. On the other hand, the
diagnosis provides the main variables associated to the anomaly. Crossing
timestamps and variables we can identify the raw logs with high accuracy.
The complete 5-step methodology is evaluated using real network data in
Chapter 8.
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Let us consider as an example a botnet attack (from the UGR’16 dataset [130]).
The oMEDA diagnosis for the first anomalous observation is shown in Fig. 4.10.
This observation corresponds to the 28th of July of 2016.
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Fig. 4.10 oMEDA diagnosis for the first anomalous observation of the UGR’16.

In our analysis, we observe that the destination port IRC is the most
relevant feature for this anomaly. The IRC port is usually configured as 6667.
To perform the De-Parsing step, we combine the detection and diagnosis
information in a query into the raw data using nfdump on the collected nfcapd,
week5_July, as follows:

nfdump −r week5_July ...
−t 2016/07/28.00 : 00 : 00−2016/07/28.23 : 59 : 00...
−s ip ′dst port 6667′.

The result of this query confirms that there are several machines receiving
a high number of IRC packets, with a high traffic flow (see Fig. 4.11 (a)). The
De-Parsing step is repeated for a day with no attacks to contrast these results,
the 28 of April of 2016, which is also a week day (see Fig. 4.11 (b)). We can
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observe that the number of packets, flows and bytes is much higher in July
(attack) than in April (NOC).

(a)

(b)

Fig. 4.11 Summary on the raw data after De-parsing (a) anomalous observation (28
July 2016) and (b) NOC observation (28 April 2016). The difference between both
days is manifested in the number of flows, packets and bytes.

The 5-step methodology integrates the De-Parsing in an automatic way
and provides with free software to make it possible: the FCParser [37].

(Automatic) Feature Derivation Step The volume of real Big Data prob-
lems usually is too high to perform feature extraction manually. For this
reason, authors in [33] propose an algorithm for self-extracting the features
from the data to get a better description of the content. This step needs to
be applied prior to the parsing. According to [33], the main characteristics
of this learning are: i) the main sources of the variance should be captured
by the features, and ii) characteristics less common should be left as residual
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information in the form of "default" features. The latter is built following the
original feature-as-a-counter approach. The main advantage of this approach
is the automatic consideration of a huge amount of information to extract
relevant features in an effective way.

Visualization Step Since De-Parsing also generates a huge amount of raw
log entries, the underlying information in such logs is difficult to understand.
For this reason, it is suggested to apply a graph visualization technique or tool,
such as Gephi4, turning the results into meaningful and understandable [33].

4Gephi is a multi-platform Open Source software for data visualization and exploration.
Since it allows graph representation (among other features), it is being used in the last years
for cybersecurity visualization [19, 135, 202]
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Materials and Methods

“I think you can have a ridiculously enormous and complex dataset, but if
you have the right tools and methodology then it’s not a problem.”

Aaron Koblin, Co-founder and President of Within. Creator and leader of the
Data Arts Team at Google from 2008 to 2015

“There are no questions without answer, only bad formulated questions”
Morpheus (1999), The Matrix
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This chapter presents the tools used to implement the experimental part
of this thesis, as well as the methods utilized for generating the datasets used
for the evaluation of such experiments.

5.1 Implementation Tools

All the experiments have been implemented using Matlab®, due to its per-
formance in matrix computation. In addition, two toolboxes have been used
throughout this work: The MEDA-Toolbox (latest update to stable version
performed in 2018) [43, 51], which has been utilized in exploratory data
analysis, as well as implementing the studied and proposed methods; and
MVBatch (latest update to stable version performed in 2018) [89], which
has been mainly used for the batch monitoring experiments performed in
Chapter 6.
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5.1.1 MEDA-Toolbox

The MEDA-Toolbox is a set of multivariate analysis tools for the exploration
of datasets [43, 51]. This toolbox also allows dealing with Big Data (in the
sense of allowing to deal with unlimited number of observations), which is
of high importance for the application of the proposed techniques using real
network traffic data.

The MEDA-Toolbox provides classical multivariate exploratory data anal-
ysis functionalities, such as score plots or PCA. The MEDA-Toolbox helps to
select the number of PCs for PCA and PLS thanks to the application of cross-
validation algorithms (take as an example Fig. 5.1 (a)). It also includes more
complex tools like MEDA (see Fig. 5.1 (b)) and oMEDA (see Fig. 5.1 (c)),
which are intended to study the relationship among variables, and among
variables and observations, respectively. The result of MEDA is similar to a
correlation matrix, showing the variables that are related grouped in squares.
Positive correlations are displayed in red, while negative correlations are
shown in blue. The darker is the color, the more correlated the variables are.
The result of oMEDA is useful for the diagnosis of one or more observations
and it will be detailed in Chapter 7. In addition, the MEDA-Toolbox allows
the representation of MSPC charts, including the computation of the statistics
and the control limits (see Fig. 5.1 (d)).

There are technical limitations in relation to computation time and memory
that make it difficult to manage a dataset when it exceeds a given volume.
The Big Data functionality extends the multivariate tools to allow their use
without any limitation in the number of observations. Fig. 5.2 shows the same
tools displayed in Fig. 5.1 for a Big Data set. The Big Data model building
requires the creation of intermediate data structures that are stored to avoid
memory overflows. The model can be updated in two ways: i) Iteratively and
ii) Following an Exponentially Weighted Moving Average (EWMA). Both of
them work by clustering similar observations. The main difference is that
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Fig. 5.1 Example of functionalities of the MEDA-Toolbox (a) Cross-validation for
selecting the number of PCs (b) MEDA, (c) oMEDA, (d) MSPC.

the iterative approach uses all the historical data that are available for the
calibration while the EWMA approach applies a forgetting factor, λ , to the
past observations. λ ranges from 0 to 1, where 0 is the lowest value and means
fast adaptation (only present observations are considered to update the model),
while 1 is the maximum value and means the consideration of all the past
history. In this sense, EWMA enables a better adaptation of the model to the
current state of the data. In Chapter 8 we apply the iterative update, since the
traffic during the months used for the calibration is expected to be similar and
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we think that it is more useful to consider all the past history to create this
model.
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Fig. 5.2 Example of Big Data functionalities of the MEDA-Toolbox (a) PCs selection,
(b) MEDA, (c) oMEDA and (d) MSPC (example applying iterative updating).

In addition, the MEDA-Toolbox has a GUI that allows to explore the
data. This is specially useful when one starts working with exploratory data
analysis, since it is possible to apply either PCA or PLS (see Fig. 5.3 (a)) in
combination with MEDA, oMEDA, or any of the implemented EDA methods
easily. As an example, Fig. 5.3 (b) shows the GUI for PCA.
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(a) (b)

Fig. 5.3 MEDA-Toolbox GUI: (a) Welcome screen allows selecting between PCA
and PLS, and (b) Functionalities after selecting the PCA option.

5.1.2 MVBatch Toolbox

MVBatch is another set of tools for multivariate analysis, which is focused
on batch data analysis and monitoring. It implements each of the steps of
the batch monitoring cycle: 1) alignment, 2) pre-processing, 3) unfolding, 4)
projection to latent structures, 5) monitoring, and 6) Diagnosis [89, 91, 92].
Each of these steps can be performed following both state-of-the-art and
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novel algorithms. For example, in Chapter 6, the Relaxed Greedy Time
Warping (RGTW) algorithm is applied for the synchronization, TCS for the
pre-processing, batch-wise for the unfolding, and PCA for the model fitting.
The theoretical control limits are adjusted by using cross validation. The
MEDA-Toolbox is integrated in the MVBatch, which also includes a simulator
of the Saccharomyces cerevisiae cultivation process [89], which is used to
generate both NOC and Abnormal Operation Condition (AOC) datasets in
Chapter 6.

The MVBatch Toolbox has also a GUI that allows to perform the complete
batch monitoring cycle, including the visualization of the raw data prior to
the synchronization step. The GUI is really useful at the beginning of the
experimentation, since it allows the configuration of each of the monitoring
steps graphically in an intuitive way. It is possible to select the algorithm to
be applied, as well as the input parameters for such algorithm.

5.2 Data Generation

This section describes the mechanisms used for the generation of the main
datasets used in the experimentation performed through this PhD. Since this
research work has been developed between two research areas, representative
datasets originating from each of them have been selected: from cybersecurity,
the UGR’16 [130] dataset and data collected from a virtual network [129];
and from the process industry, several datasets are generated using the Sac-
charomyces cerevisiae cultivation process simulator [89, 120]. In addition,
and with the purpose of obtaining random data for Monte Carlo simulations,
several synthetic datasets are also generated for different correlation levels
using the simuleMV tool in the MEDA-Toolbox. All of them are described in
the following paragraphs.
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(a)

(b) (c)

(d) (e)

Fig. 5.4 Example of functionalities across the GUI of the MVBatch Toolbox: (a)
Overview Batch monitoring cycle, (b) Visualization of raw data (screening), (c)
Alignment, (d) Modeling, and (e) Monitoring.
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5.2.1 The UGR’16 Dataset

UGR’16 is a recently published dataset [130] that consists of a collection
of NetFlow traffic records from a Tier-3 ISP. An Internet Server Provider
(ISP) is a company that provides Internet connection and services to its clients.
Some of the most relevant services provided by the ISP from which data were
collected are hosting, mail or FTP services. This network hosts a disparate
set of clients, which implies an heterogeneous network traffic, making this
dataset representative of a wide range of Internet users.

The network traffic was captured during a total of four months. During
the fourth month, a series of controlled attacks were launched in the network.
Therefore, the capture contains real induced anomalies.

The network traffic was collected by two NetFlow sensors configured in
two redundant border routers, which provide Internet access to the ISP. There
are different sub-networks, one of them hosting the non-protected services,
and the other one (internal network) providing firewall protected services to
the clients.

To insert the controlled attacks, a total of 25 virtual machines were de-
ployed in some of the sub-networks: 5 attackers referred to as A1 to A5, and
20 victims, referred to as V11-V45

1. Machines A1 to A5 attack the rest of the
virtual machines (Vi) in different timestamps during a given period of time.
Different types of attacks were implemented, and labeled as DoS, scan11,
scan44 and botnet. These attacks are detailed in Section 8.2.2.

All the network traffic is labeled, indicating whether the traffic flow corre-
sponds to: i) background traffic, meaning that neither attacks were introduced
nor anomalies were detected in the capture; ii) anomalous traffic, meaning
that anomalies were found in the records; and iii) attack, meaning that the
flows are artificially induced attacks. Since it is a long capture, one of the

1Victim machines belong to four groups. Thus, the name and subscript of the victims have
the following structure: Vi j,1≤ i≤ 4 and 1≤ j ≤ 5 [130].
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most important features of this dataset is that it allows to detect different types
of cycles in the network traffic , i.e., the cyclo-stationarity of the data. As
an illustrative example, Fig. 5.5 shows the number of HTTPS flows from two
different and non-consecutive weeks. The difference between working days
(Fig. 5.5 (a)) and weekends (Fig. 5.5 (b)) is evident and daily patterns are also
observed.

All the features described in this section make this dataset of main interest
for this PhD work, since all the proposals can be validated using real traffic,
and this provides an added value our results. More details about UGR’16 can
be found in [130].

5.2.2 Virtual Network

Network data are collected from the virtual network described in [129]. This
virtual network is composed of three routers with 30 client machines in each
of them. The information is gathered to a border router and collected during
25 hours. The first 24 hours the network is working under NOC, while the
25th hour includes a number of attacks.

5.2.3 Saccharomyces cerevisiae Simulator

In the study of the parallelism between process control and network moni-
toring, different datasets have been generated using batch process data. The
Saccharomyces cerevisiae cultivation process simulator has been used to gener-
ate several data sets, which are described in detail in Sections 6.6.1 and 7.4.3.

The Saccharomyces cerevisiae process simulator is a well known tool
that is widely used for the assessment of methods for batch monitoring in
the industry [89, 120]. The model of aerobic growth on glucose and ethanol
is defined in [120]. In this work, the evolution of different variables (e.g.
ethanol, glucose, pyruvate or amount of biomass production, among others) is
studied taking into account their relationships under different considerations,
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Fig. 5.5 Connections with destination HTTPS port from UGR’16. Differences and
similarities between (a) working days and (b) weekends.

namely: i) steady-state and ii) dynamical conditions. More specifically, the
Saccharomyces cerevisiae process is modeled under the assumption of glu-
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cose limited continuous cultivation, which is characterized by showing two
phases of growth: 1) purely oxidative growth, which produces biomass and
carbon dioxide as main products; and 2) oxido-reductive growth, which mainly
produces ethanol because of the alcoholic fermentation caused by glucose
repression. During this second growth pyruvate is also generated in differ-
ent ways as a consequence of the increase in the oxygen uptake rate [120].
The equations that model the reactions corresponding to the Saccharomyces
cerevisiae cultivation process can also be found in [120].

5.2.4 Synthetic Data

We use simuleMV [31] to generate random data with the purpose of perform-
ing Monte Carlo experiments. simuleMV allows random data generation if
the dimensions of the output matrix are known: the observations, N, and the
variables, M. It also allows to fix the correlation level, L. L is defined as an
integer ranging from 0 to 9, where 0 means no correlation and 9 means that
the correlation is the maximum. By default, the correlation level is 5.
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Pre-processing

“A person who never made a mistake never tried anything new.”
Albert Einstein, Nobel Prize in Physics in 1921

“If you don’t like something, change it. If you can’t change it, then change
your attitude”

Maya Angelou, American writer, poet, singer and civil rights activist
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This chapter is mainly based on the following research paper:

• Fuentes-García, N. M., González-Martínez, J. M., Maciá-Fernández,
G., and Camacho, J. (2019b). PARAMO: Enhanced Data
Pre-processing in Batch Multivariate Statistical Process Control.
Journal of Chemometrics, 33(11)
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Data pre-processing is an essential step in MSPC and MSNM. Pre-
processing is performed prior to model building, and has a direct effect on
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the quality of the calibration model. When one deals with network traffic or
process data, it is recommended to center the data to detect deviations around
the mean. Most of times it is also needed to homogenize the scale of the
variables so that they are given the same relevance in the system. This is
often needed since variables frequently come from different sources, and their
relative scales are not comparable.

After the parsing and fusion steps in MSNM, network traffic data are
normally organized in two-way matrices, where M variables are monitored
in N observations over time. To consider the cyclo-stationarity of the data,
the observations are re-arranged in a three-way matrix, where K sampling
time points for the J monitoring variables are observed during I days1 (see
Section 4.2.2). Taking as a reference the batch monitoring, the most extended
pre-processing approaches for three-way arrays are Trajectory Centering and
Scaling (TCS) and Variable Centering and Scaling (VCS). The benefit of
conceptually considering the cyclo-stationarity of the data is that most of the
dynamics of the data are compensated for in the pre-processing, transforming
data from cyclo-stationary to stationary. However, as a negative side effect,
applying the batch MSPC methods introduces artificial uncertainty in the
data [92].

This chapter presents an alternative approach for pre-processing based on
TCS. The aim of this approach is to reduce the uncertainty in pre-processing
parameters with the final goal of increasing the capability of anomaly detection
of the monitoring system. The rest of the chapter describes different variants
for this approach and compares them with the reference method, TCS.

1Although in the context of MSNM I corresponds to days, in what follows we will talk of
batches, for the sake of simplicity.



6.1 State-of-the-art Pre-processing Methods 107

6.1 State-of-the-art Pre-processing Methods

In batch processes, there are two generally accepted pre-processing methods
to consider the differences of magnitude and offsets in variable trajectories:
TCS [149] and VCS [214], which conceptual representation is shown in
Fig. 6.1. The means are computed in TCS for each variable and sampling
time point across all the batches, which is represented as a vertical bar (see
Fig. 6.1 (a)). This is termed the average trajectory across batches. When
VCS is applied, the means are computed for each variable across all the
batches and sampling time points, which representation remembers a wall (see
Fig. 6.1 (b)). This is termed the grand mean of a variable. Equivalent defini-
tions of the standard deviations are used in each approach. Next paragraphs
provide the formal definition for both pre-processing methods.

(a) (b)

Fig. 6.1 Visual representation of (a) Trajectory Centering and Scaling (TCS) and (b)
Variable Centering and Scaling (VCS) pre-processing.

TCS consists in mean centering and scaling to unit variance the data of
each j-th process variable at each k-th sampling time point across I batches
(recall from Equation (3.2)). The mean of the variable j at sampling time
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point k is computed as follows:

µ jk =
1
I

I

∑
i=1

xi jk (6.1)

where xi jk is the value of the variable j at sampling time point k in batch i.
The standard deviation of the variable j at sampling time point k is com-

puted from the residuals after subtracting the mean:

σ jk =

√
1

I−1

I

∑
i=1

(xi jk−µ jk)2 (6.2)

In contrast, VCS performs mean centering and scaling to unit variance on
all the data associated with each process variable. The grand mean of each
variable j is computed as follows:

µ j =
1

IK

I

∑
i=1

K

∑
k=1

xi jk (6.3)

The standard deviation is computed from the residuals of the correspond-
ing mean as follows:

σ j =

√
1

IK−1

I

∑
i=1

K

∑
k=1

(xi jk−µ j)2 (6.4)

where σ j is the standard deviation of the variable j across the I batches and K
sampling time points of the process.

6.1.1 The Parameter Stability Problem in the Pre-Processing Con-
text

In Chapter 3 the parameter stability problem was described. Each of the batch
monitoring steps introduce uncertainty, making the model less stable. One
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of the main factors affecting the parameter stability is the Ratio number-of-
Observations-to-the-number-of-Parameters (ROP) [92]. The model param-
eters (means, standard deviations and loadings) need to be estimated from
a number of observations. The ROP is the relation between the number of
observations that is available to perform the estimation and the number of
parameters to be estimated. For a fixed number of parameters to be esti-
mated, the lower the number of observations, the lower the ROP and the
higher the uncertainty in the parameters. This makes the parameter stability
decrease [92, 192].

TCS only considers I observations to estimate a total of KJ parameters
as illustrated in Fig. 6.1 (a), while in VCS the number of parameters is J and
the number of observations KI as shown in Fig. 6.1 (b). As a consequence,
comparing TCS and VCS, the ROP and thus the parameter stability are much
lower in the former than in the latter [92]. A high ROP is an advantage
for VCS. However, low uncertainty does not imply that the correct process
variation is kept in the residuals after pre-processing [1, 116, 149]. This is
illustrated in the following.

Fig. 6.2 represents the pre-processed batch data after applying TCS (left)
and VCS (right) on synthetic data [192]. For a better illustration, an anomalous
batch (red colored) has been added to the NOC data. This batch is a copy
of the tenth NOC batch, in which the values for the sampling time points in
the interval [100,120] are modified to simulate an upset in the process. The
anomalous batch is pre-processed using the NOC mean and standard deviation
obtained for each pre-processing method. In the example, we can see that
TCS is the only pre-processing approach under study that takes the anomalous
observations to different (higher) values than the rest of NOC observations,
what will enable the fault detection.

In general, TCS is preferred to VCS because the former removes the aver-
age trajectory of the batches and focus the BMSPC on the deviations around
it (compare Fig. 6.2 (a) with Fig. 6.2 (b) and 6.2 (d)). This makes TCS to be a
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more sensible pre-processing approach to detect deviations from normality.
On the contrary, VCS removes the grand mean of j across the I batches and K
sampling time points, which maintains the systematic variation of the process
(compare Fig. 6.2 (a) with Fig. 6.2 (c) and 6.2 (e)). For a thorough discussion
on the implications of these pre-processing techniques on modeling and mon-
itoring, the reader is referred to [1, 91, 116, 164, 215]. In what follows we
assume TCS as the reference method, in spite of the aforementioned problems
of uncertainty of this method. Indeed, these problems are the motivation for
next section.

6.2 ROP Enhancement Alternatives

We propose to rearrange the raw data from the 3-way structure in order to
increase the number of observations used to calculate the pre-processing
parameters, thus increasing the ROP and the parameter stability. Two ap-
proaches based in a sliding window scheme are presented to encompass more
observations than those considered in TCS for parameter estimation.

• PARAmeters from More Observations (PARAMO). This approach
calculates the pre-processing parameters for each variable j and time
point k across batches by considering a number of neighbored observa-
tions in time.

• RAw DAta Filtering (RADAF). This approach first filters raw data
within the window by considering a number of neighbored observations
in time. Then, TCS is applied over the smoothed data.

Fig. 6.3 illustrates the general idea to enhance the parameter estimation.
TCS takes I observations to calculate a total of KJ pre-processing parameters
(recall from Fig. 6.1 (a)), while the proposed alternative assumes IW obser-
vations to estimate these KJ parameters, where W is the number of sampling
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(a)

(b) (c)

(d) (e)

Fig. 6.2 Trajectories for the Specific Oxygen Uptake Rate corresponding to the
different batches of the Saccharomyces Cerevisiae data set: (a) Raw data with average
trajectory and grand mean represented by solid and dashed cyan lines, respectively.
Additionally, an anomalous batch has been added, which is displayed with a red solid
line. (b) Trajectory centered data, (c) Variable centered data, (d) Trajectory Centered
and Scaled data, and (e) Variable Centered and Scaled data.
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time points in a given window (see Fig. 6.3). Note that the proposed approach
can be considered to be a trade-off between TCS and VCS (compare Fig. 6.3
with Fig. 6.1 (a)) and 6.1 (b)).

Fig. 6.3 Graphical representation of window-based pre-processing.

On the other hand, two sliding window techniques are used to increase the
number of observations:

• Uniformly Weighted Moving Window (UWMW). The pre-processing
parameters are computed treating all observations within the window
with equal importance.

• Exponentially Weighted Moving Window (EWMW). This method
weighs observations with a forgetting factor λ , following an expo-
nential function. λ takes values ranging from 0 to 1; the closer to 1, the
closer to a uniformly weighted moving window.

Next sections explain how to compute both pre-processing approaches,
PARAMO and RADAF, in addition to the corresponding sliding window
techniques.



6.3 PARAMO 113

6.3 PARAMO

For the sake of generality, let us consider a window ωk of size W observations
centered at sampling time point k. Later, we will discuss the implications of
the application of asymmetric windows2. The restriction W = 2L+1,L ∈ N+

is imposed for W to define the centered window with the same number of
preceding and succeeding observations. Also, consider preceding observations
are included in the partial window←−ω k whereas succeeding observations are
in the partial window −→ω k. Thus:

←−
ω k = {wp, ...,k} (6.5)

−→
ω k = {k, ...,ws} (6.6)

where wp and ws are the extreme values of ωk and follow:

wp = max(1,k−L) (6.7)

ws = min(K,k+L) (6.8)

6.3.1 Uniform PARAMO (U-PARAMO)

Given a three-way data array, X, with dimensions I batches, J variables, and
K sampling time points, the means and standard deviations are computed
following:

µ
UPA
k =

1
WI

ws

∑
w=wp

I

∑
i=1

xiw (6.9)

2An asymmetric window is a window that only takes into account observations preceding
(or succeeding) the sampling time point k. For the topic under discussion, only an asymmetric
window with preceding observations are of interest.
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σ
UPA
k =

√√√√ 1
WI−1

ws

∑
w=wp

I

∑
i=1

(xiw−µw)
2 (6.10)

where µUPA
k is the vector of mean values and σUPA

k the vector of standard
deviations for all the monitored variables calculated using the measurements
spanned by the window ωk. xiw refers to the observations of J monitored
variables corresponding to the sampling time point w for batch i, and µw is
the vector of means for the J monitoring variables computed at sampling time
point w.

6.3.2 eXponential PARAMO (X-PARAMO)

An exponential law [30, 65] is applied in ascending and descending order
on each partial window, ←−ω k and −→ω k. The exponentially weighted moving
window estimation of the averages at sampling time point k is computed by
averaging the means for preceding and succeeding observations:

µ
XPA
k =

1
2

(←−
µ k
←−
N k

+
−→
µ k
−→
N k

)
(6.11)

where µXPA
k is the array of means for the J monitoring variables computed

at sampling time k using the measurements in the window ωk. ←−µ k are the
accumulated averages at sampling time point k in the partial window ←−ω k,
and −→µ k are the accumulated averages at sampling time point k in the partial
window −→ω k. The expressions to estimate the averages in the partial windows
are defined as follows:

←−
µ w = λ

←−
µ w−1 +

I

∑
i=1

xiw, f or w = {wp, ...,k} (6.12)
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−→
µ w = λ

−→
µ w+1 +

I

∑
i=1

xiw, f or w = {k, ...,ws} (6.13)

Note that←−µ w−1 = 0 when w = wp and −→µ w+1 = 0 when w = ws.
←−
N k and

−→
N k are the number of observations used to calculate the average at sampling
time point k in the corresponding partial windows:

←−
Nw = λ

←−
N w−1 + I (6.14)

−→
N w = λ

−→
N w+1 + I (6.15)

with
←−
N w−1 = 0 for w = wp, and

−→
N w+1 = 0 for w = ws.

Similar to the means estimation, the array of standard deviations for the
J monitored variables at the k-th sampling time point using an exponential
function, σXPA

k , is computed using the measurements spanned by the window
ωk as follows:

σ
XPA
k =

1
2

(√
1

←−
N k−1

←−
σ 2

k +

√
1

−→
N k−1

−→
σ 2

k

)
(6.16)

where ←−σ 2
w and −→σ 2

w are the accumulated variances at sampling time point
k. These accumulated variances are calculated removing the corresponding
average at each sampling time point w in the partial window:

←−
σ

2
w = λ

←−
σ

2
w−1 +

I

∑
i=1

(xiw−←−µ w)
2, f or w = {wp, ...,k} (6.17)

−→
σ

2
w = λ

−→
σ

2
w+1 +

I

∑
i=1

(xiw−−→µ w)
2, f or w = {k, ...,ws} (6.18)

with←−σ 2
w−1 = 0 for w = wp, −→σ 2

w+1 = 0 for w = ws.
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6.3.3 Configuration Values for PARAMO

The size of window, W , needs to be selected for PARAMO. In the case of
X-PARAMO, we need to set also λ . However, not all the possible values will
produce accurate results. A large size of the window (and λ ) produces an
excess of smoothing in the pre-processing parameters, which can lead to a
relevant information loss. This excessive smoothing is graphically observed
in the form of artifacts. These artifacts are specially visible in the trajectories
for the standard deviations. Fig. 6.4 shows a practical example of this effect,
computed for the first process variable of a NOC data set of the Saccharomyces
Cerevisiae cultivation process [89] (see Chapter 5) where TCS is displayed in
cyan and X-PARAMO in gray. X-PARAMO is applied for different sizes of
W and values of λ . For W < 11, there are no artifacts, while for the greater
sizes there is an increment in the magnitude of the standard deviation.

The presence of artifacts can also be mathematically quantified, by com-
puting the Sum of Squared Residuals (SSR) as described in the following:

SSRm =
J

∑
j=1

K

∑
k=1

(σTCS
k, j −σ

m
k, j)

2 (6.19)

where m is the moving window method. The SSR is computed between
the trajectory of the pre-processing parameters computed i) by TCS and ii)
applying the moving window method with the selected configuration for the
chosen ROP increasing approach. The SSR allows the comparison of different
pre-processing approaches.
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Fig. 6.4 Effect of applying different levels smoothing on (a) the trajectory of the
standard deviation across multiple variables and (b) zoom over the 5th process variable
of the Saccharomyces cerevisiae process cultivation.

6.4 RADAF

Let us consider the same restrictions and extreme time points for ωk as defined
in Equations (6.7) and (6.8).
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Uniform RADAF (U-RADAF)

Given a three-way data array, X, with dimensions I batches, J variables, and
K sampling time points, the smoothing of the RADAF approach is performed
as follows:

X̃URA
k =

1
W

ws

∑
w=wp

Xw (6.20)

where X̃URA
k corresponds to the filtered data of all the process variables and

batches computed using the measurements spanned by the window of size W
centered at the sampling time point k. Xw is the two-way array extracted from
X at sampling time point w. Means and standard deviations are computed
from X̃URA

k using TCS.

eXponential RADAF (X-RADAF)

In RADAF, like in PARAMO, the window ωk is split into two partial windows,
←−
ω k and −→ω k. The exponential law for RADAF is recursively calculated for
each partial window as follows:

←−̃
X w = λ

←−̃
X w−1 +(1−λ )Xw,w = {wp, ...,k} (6.21)

−→̃
X w = λ

−→̃
X w+1 +(1−λ )Xw,w = {k, ...,ws} (6.22)

←−̃
X w and

−→̃
X w are the filtered observations corresponding to preceding and

succeeding windows, respectively.
The filtered value of Xk (raw data at sampling time point k) is computed

as:
X̃XRA

k =
1
2
(
←−̃
X k +

−→̃
X k) (6.23)

where X̃XRA
k corresponds to the filtered data for all the process variables and

batches computed at sampling time point k. Means and standard deviations
are computed from X̃XRA

k using TCS.
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Next section describes some pitfalls when the pre-processing enhancement
is applied.

6.5 Oversights on the Application of ROP Enhance-
ment Approaches

6.5.1 Negative Effects of Asymmetric Windows

The application of the proposed pre-processing variants in an asymmetric
window, which only includes preceding observations to sampling time point k,
causes artifacts both on RADAF and PARAMO.

Let us take as for illustration the pre-processing proposal X-PARAMO.
Fig. 6.5 (a) shows the means and standard deviations computed for the first
process variable of a NOC data set of the Saccharomyces Cerevisiae cultivation
process (see Section 6.6.1 for data Generation). The pre-processing parameters
have been computed by TCS and by X-PARAMO applying an asymmetric
window. When computing the average trajectory, an exponential shift related
to λ is artificially created. This in turns creates exponential artifacts (peaks)
in the standard deviation.

However, when the window is centered on the sampling time of interest,
none of these artifacts are generated. Fig. 6.5 (b) shows the result of applying
X-PARAMO in a centered sliding window. The shift appearing in the pre-
processing parameters when an asymmetric smoothing applied is corrected.
The mean and standard deviation trajectories for different values of λ almost
overlap with the resulting trajectories for TCS (compare black solid line with
dashed lines in Fig. 6.5 (b)). The main difference lies in the smoothing
effect when a high λ is applied. In addition, the peaks related to the artificial
variation introduced in the estimates are drastically diminished (see right graph
in Fig. 6.5 (b)). Note that the smoothing is more prominent in the standard
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deviation than in the averages because of the propagation effect. Similar
effects are also observed for the application of RADAF in a centered window.
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(a) Means (left) and standard deviations (right) calculated for the first process variable
applying PARAMO and the asymmetric exponential law.
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(b) Means (left) and standard deviations (right) calculated for the first process variable
applying PARAMO and the symmetric exponential law.

Fig. 6.5 Comparison of the pre-processing parameters (means and standard devia-
tions) computed for the first process variable of the Saccharomyces cerevisiae process
cultivation with TCS and PARAMO based on (a) asymmetric EWMW and (b) sym-
metric EWMW

.

To mitigate the addition of spurious variability by asymmetric methodolo-
gies, we recommend the application of symmetric moving window methods
for both RADAF and PARAMO. Note that applying a centered window is
possible since the model is built in an off-line mode from historical observa-
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tions, and thus, it does not introduce any delay in the monitoring (exception
made on the discussion in next sub-section).

6.5.2 Negative Effects of RADAF

Fig. 6.6 (a) illustrates a limitation of RADAF: the standard deviation is
underestimated, as observed in the last period of the batch. The reason for this
effect is the filtering performed by RADAF, which reduces the uncertainty in
the estimation of the mean and therefore the variance associated. This effect
is better observed in steady periods of the average trajectory. While this is not
a problem or disadvantage by itself, it means that new batches under real-time
monitoring will need the same filtering as in the calibration data. According
to Section 6.5.1, windows need to be centered to avoid artifacts, which means
that the proper application of RADAF in the monitoring phase would cause a
delay of ⌊W/2⌋ sampling time points.

Taking into account Sections 6.5.1 and 6.5.2, our general recommendation
is to use PARAMO with the symmetric application of UWMW (U-PARAMO)
or EWMW (X-PARAMO). However, RADAF is not discarded on the exper-
imental work, so that we are able to evaluate and compare the effect of its
application.
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Fig. 6.6 Comparison of the pre-processing parameters (means and standard deviations)
computed for the first process variable of the Saccharomyces cerevisiae process
cultivation with RADAF following the symmetric exponential law (X-RADAF) and
TCS.

6.6 Materials and Methods

The aim of this section is to present the datasets and metrics needed to compare
the pre-processing proposals, and it is guided by three questions:

1. Which is the best enhancing approach, PARAMO or RADAF?
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2. Which is the best moving window method, exponential (X) or uniform
(U)?

3. Does the best pre-processing approach of our proposal outperform
TCS?

RADAF has been included in the experiments to complement the study of
the problems described in Section 6.5.2. In the main experiment, RADAF is
applied only to obtain the pre-processing parameters during the calibration.
Then, the new test data are pre-processed without any filtering. The aim
is to assess whether applying RADAF only to estimate the pre-processing
parameters is a valid approach for on-line monitoring. However, in network
monitoring (and probably in some other fields), a certain delay could be
affordable if the detection results are improved. For this reason, a second
experiment has been performed to complete the study with the evaluation
of RADAF applied also to the model building and the test data. Thus, both
calibration and test data are filtered with a symmetric window, introducing a
delay of ⌊W/2⌋ in on-line monitoring. Corresponding results for this second
experiment are shown in Sub-section 6.7.2. Note that PARAMO only acts on
pre-processing parameters.

6.6.1 Process Control: Saccharomyces Cerevisiae

Given the analogy between MSPC and MSNM, one of the selected datasets for
the experimental part of this thesis comes from the process control area. This
is a well-known process benchmark, the Saccharomyces Cerevisiae cultivation,
which is described in the next paragraphs. These data are generated using the
simulator of the fermentation process [89] and are used for the comparison
of the pre-processing approaches and monitoring systems. The simulation of
NOC batch data is based on the stoichiometric biological model published
in [120]. In addition, Gaussian noise of low magnitude is added to the initial
conditions (10%) and to batch data (5%).
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For the simulation of Abnormal Operation Condition (AOC) batch data,
the aforementioned parameters are altered, producing an anomaly that affects
the normal metabolic behavior described by the stoichiometric reactions.

A total of five types of datasets are simulated for this research study both
for NOC and AOC. All the datasets contain J = 11 process variables (see
Table 6.1):

Dataset type #Datasets #Batches Target

NOC 100 30 Parameter stability assessment
NOC 1 25 Model validation

FI: k1l modified, t ∈ [1,35] 50 20 Fault detection assessment
FII: k6 modified, t ∈ [1,15] 50 20 Fault detection assessment

FIII: k6 modified, t ∈ ]15,35] 50 20 Fault detection assessment

Table 6.1 Synthetic datasets generated with the fermentation process of the Saccha-
romyces Cerevisiae cultivation. k1l and k6 are two of the kinetic parameters defined
in [120], which were modified to generate FI, FII and FIII.

For the sake of creating realistic process upsets, a gradual deterioration
is imposed in the simulation: the kinetic parameters gradually vary in each
iteration to simulate a deviation from normality across batches, and therefore,
over production time. This implies that the first batches will not completely
reflect the fault as much as the last batches. The aim is to mimic real abnormal
scenarios in industrial processes, such as fouling, catalyst deactivation, and
product quality degradation, and illustrate the difficulties to detect early subtle
drifts with monitoring systems.

After the data generation, for each dataset (NOC and AOC), all the batches
are synchronized against a NOC batch whose duration is the median of
the batch length of the first dataset. In this case, the RGTW algorithm is
used [90, 92]. No constraints in variables are imposed and the synchronization
parameters are adjusted by following a cross-validation approach [90].

The results of the simulation for each fault are shown in Fig. 6.7. The
overall Q-statistic values computed for each batch and type of fault show a
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Fig. 6.7 Synthetic faults generated from the simulated fermentation process of the
Saccharomyces cerevisiae cultivation: evolution of the overall Q-statistic over batches
for three different faults, with control limits depicted as red dashed lines (left), and
raw batch trajectories of the variables involved in the failure with NOC ranges shown
with red dashed lines (right).
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gradual increase in the magnitude of the fault (see Fig. 6.7 (a)). The degrada-
tion of the operating conditions over time is represented by a gradient gray
color. The clearer the color, the longer the time the process has been affected
by the abnormality. The band of normal operation conditions for each variable
is also shown in red dashed lines to ease the identification of the fault.

1. 100 NOC datasets are simulated for comparison purposes in terms of
parameter stability, with 30 batches each.

2. A single independent set is generated with 25 batches for validation
purposes. These batches are used to homogenize the accuracy of the
final monitoring systems in terms of the Overall Type I (OTI) error.

3. Three different faults are simulated to evaluate the performance of the
monitoring systems in terms of Overall Type II (OTII) error. A total of
50 independent datasets, with 20 abnormal batches each, are created
for the three process disturbances. Each abnormality affects a different
metabolic route of the yeast3. The features of the simulations performed
for each fault are:

• Fault I. Constant k1l is gradually modified across batches in the
fermentation time interval 1h≤ t ≤ 35h to induce an abnormality
in the glucose uptake system and the glycolytic pathway. The
resulting abnormality affects the entire batch run.

• Fault II. Constant k6 is gradually modified across batches in the
fermentation time interval 1h≤ t ≤ 15h to induce a fault associ-
ated with an abnormal formation of ethanol from acetaldehyde.
The abnormality affects the lag phase, in which the yeast becomes
acclimated to the heterogeneous culture media. As a result, the
yeast is shifted from dormancy to metabolic activity.

3Two of the kinetic parameters (constants) defined in [120] are modified to generate the
faults. These constants are: k1l and k6.
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• Fault III. Same fault as Fault II, with the difference that the
disturbance is simulated in the second half of the process (15h≤
t ≤ 35h), affecting the other fermentation phases: the first and
second exponential growth, and the stationary phase.

6.6.2 Metrics for Evaluation of the pre-processing proposals

Parameter Stability Assessment

The effects on the parameter stability are studied through the Normalized
Squared Difference (NSD), which is conducted between pairs of NOC datasets
to compare and evaluate the parameter stability of the pre-processing methods.
For the present work, this value is computed for each of the model parameters,
θ , which is used to represent the means, standard deviations and loadings. θ is
distributed in two independent and identically distributed samples as described
in [92]:

NSDθ =
1
K

K

∑
k=1

J

∑
j=1

(
θ
(1)
jk

∥θ (1)
k ∥
−

θ
(2)
jk

∥θ (2)
k ∥

)2 (6.24)

where θ
(1)
jk and θ

(2)
jk are the parameter values corresponding to the j-th variable

at sampling time point k in the model parameter vectors θ
(1) and θ

(2) for the
first and second datasets under comparison, respectively. θ

(1)
k and θ

(2)
k are

the parameter arrays corresponding to sampling time point k. To estimate the
NSD for the loadings the sign of each loading vector is corrected by the sign
of the absolute maximum loading value.

The lower the NSD value, the lower the uncertainty in the evaluated
parameter, and thus the higher the stability of such parameter [92].
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Performance of monitoring systems

In this part of the section, the metrics for the accuracy of the models to detect
anomalies are described.

The OTI is used to compute the percentage of false positives, i.e. detected
anomalies that do not contain any security problem or fault. It is used to
normalize different monitoring systems [44, 95]. Another important measure
is the number of false negatives, corresponding to real anomalies that are not
detected. The corresponding metric is the OTII [49, 162, 203].

The OTI risk values are computed as follows:

OT I = 100
# f

K · I
(6.25)

where # f refers to the number of false positives. The OTI should be as close
as possible to the imposed significant level in the UCL [44, 95], which is of
special relevance in the case of cybersecurity.

The OTII is calculated as follows:

OT II = 100
#n f

∑
I f aulty
i=1 l(i)

(6.26)

where #n f is the number of false negatives, I f aulty the number of faulty batches,
and l(i) the length of the abnormality in each batch (true faults). The OTII
value should also be as close to 0 as possible.

The OTI risk values are computed from an independent set of NOC batches
(INOC) not used for model building, using Equation 6.25. Following [44,
95], we set the control limits of all monitoring systems with different pre-
processing methods so that the OTI value is close to the imposed significance
level α , in order to enable a fair statistical comparison between modeling
approaches. To study the impact of enhanced parameter stability on process
monitoring, the accuracy of the monitoring systems needs to be evaluated
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for the different associated pre-processing approaches. For such purpose, the
percentage of faults not detected are calculated following Equation 6.26.

The three questions at the beginning of the section are assessed in terms
of the NSD value to evaluate the parameter stability [92] and, in terms of
the OTII value to assess the accuracy of the monitoring systems to detect
faults [49, 162, 203]. As a first step, the synchronized batch data are pre-
processed using the methods under study. Afterwards, the resulting data are
batch-wise unfolded. Finally, PCA is applied for model building. The first PC
is selected to construct the model:

• For the first study, to evaluate parameter stability, the NSD values are
computed for each consecutive pair of simulated NOC datasets yielding
50 values per combination of approach and moving window method,
for each pre-processing parameter.

• For the second study, to evaluate monitoring performance, a monitoring
system is designed. After the model building, the control limits of the
monitoring system are adjusted by cross-validation. The performance
of the monitoring systems is subsequently assessed for the three faults
generated (Fault I, II and III). This study implies the statistical analysis
of 50 OTII values, as many as datasets generated per fault. The OTII
are computed following Equation 6.26, where the false negatives are
the total number of non-detected faults neither by the D-statistic nor by
the Q-statistic.

6.6.3 Finding Comparable Configurations for the Exponential
and Uniform Moving Window Methods

All pre-processing variants should also be homogenized in terms of the smooth-
ing caused in the trajectories of pre-processing parameters due to the appli-
cation of the sliding windows. We consider that the smoothing effect of the
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uniform window versions of RADAF and PARAMO are equivalent for the
same window size. Then, we set the level of smoothness of the exponential
versions to be as close as possible to the corresponding uniform versions.
This is illustrated in Fig. 6.8 for PARAMO. Potential values of λ and W
for X-PARAMO are evaluated in terms of the SSR (see Equation (6.19)) and
compared to SSR0, which represents U-PARAMO. The closest setting to SSR0

is chosen. The range of settings S for the homogenization of X-PARAMO
with U-PARAMO is 0≤ λ < 1 and W ∈ [3,5,7,9,11]. The procedure is run
for each of the 100 NOC data sets, considering two different window widths
for the reference method: Wre f ∈ [3,5].

Fig. 6.8 shows the smoothing homogenization procedure of X-PARAMO
for U-PARAMO with W = 3 (Fig. 6.8 (a)) and W = 5 (Fig. 6.8 (b)). In both
cases, median values (plus quartiles) for the 100 random repetitions are shown.
We look for the minimum values in the curves and, in case of similar results,
we choose the lowest window size.

Let us take as an example the homogenization for U-PARAMO with a
reference window of size W = 5, which is shown in Fig. 6.8 (b). X-PARAMO
with window sizes W = 7, W = 9, and W = 11 present similar values of d.
Here we recommend to select the configuration for the exponential weighting
W = 7 and λ = 0.89, choosing the minimum window size. Equivalently, for
U-PARAMO with W = 3 we would choose X-PARAMO with W = 7 and
λ = 0.51.

6.7 Evaluation of the Pre-processing Proposal

6.7.1 Results of the Main Experiment

We study the parameter stability (NSD) and monitoring performance (OTII)
using a designed experiment with three factors: the moving window method,
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Fig. 6.8 Homogenization of the configuration values of X-PARAMO to the reference
method, U-PARAMO, with uniform size (a) W = 3 and (b) W = 5.

the level of smoothness, and the pre-processing approach. Results are analyzed
using ANalysis Of VAriance (ANOVA) as described in Table 6.2.
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Factor Level Description

f 1 U Moving Window Method
X

f 2 W1 Setting
W2

f 3 RADAF Approach
PARAMO

f 12 Interaction f 1 and f 2
f 13 Interaction f 1 and f 3
f 23 Interaction f 2 and f 3
f 123 Interaction f 1, f 2 and f 3

Table 6.2 Factors, levels and interactions considered for the 3-factor ANOVA studies.
U represents the uniform and X the exponential moving window method. W1 and
W2 are the configuration settings corresponding to W=3 and W=5 for uniform
windows and their corresponding homogenized values for exponential windows (see
Section 6.6.3), respectively.

Which is the best enhancing approach and moving window method for
parameter stability?

One separated ANOVA is performed on the NSD values4 for each parameter
vector (means, standard deviations and loadings) to assess whether the effects
on parameter stability are statistically significant across pre-processing meth-
ods. Additionally, the effect size η = SS( f )/SS(total) is employed to identify
the most relevant factors (see Table 6.3).

NSD f 1 f 2 f 3 f 12 f 13 f 23 f 123

Means ✗ X(η = 0.0132) ✗ ✗ ✗ ✗ ✗

Standard Deviations X(η = 0.0113) X(η = 0.0172) X(η = 0.2803) ✗ ✗ X(η = 0.0113) ✗

Loadings (P#1) ✗ X(η = 0.0241) X(η = 0.4558) ✗ ✗ X(η = 0.0240) ✗

Table 6.3 Results of the 3-Factor ANOVAs for the parameter stability evaluation.
Xindicates statistical significant differences (p− value < 0.05). ✗ indicates absence
of statistical significant differences.

4Given the positive skewness of the NSD values, a logarithmic transformation is applied
prior to ANOVA.
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The interaction between f 2 and f 3 is statistically significant (p−value <
0.05) for the standard deviations and the loadings. All the main effects are
statistically significant for the standard deviations. In the case of the loadings,
all the factors except for f 1 are also statistically significant. However, for the
means the only relevant factor is f 2 (the setting). We believe this is due to
the fact that means are more stable than the rest of the parameters, given the
propagation of the uncertainty from means to standard deviations and to the
loadings. Thus, the effect of applying PARAMO or RADAF is not evidenced
on the means.

The Least Significant Difference (LSD) intervals for the interactions be-
tween f 2 and f 3 are shown in Fig. 6.9 and reflect that PARAMO outperforms
RADAF for the standard deviations and loadings and for the settings under
study. According to η , the most relevant factor is f 3 (PARAMO vs RADAF).
The NSD values are lower for PARAMO than for RADAF, which means that
PARAMO yields more stable pre-processing parameters. Thus, we select
PARAMO for the rest of the parameter stability study. The LSDs represented
in Fig. 6.11 show that, for the standard deviations, the exponential (X) window
method is significant better in the NSD values than the uniform (U) method.

Which is the best enhancing approach and moving window method for
monitoring?

The ANOVA scheme in Table 6.2 is repeated on the OTII values for each of
the three generated faults. The goal is to study the differences on accuracy of
the models to detect faults. The results are displayed in Table 6.4.

The resulting ANOVAs show a statistical significant difference in the
interaction between f 1, f 2, and f 3 (denoted as f 123) only for Fault II
(p− value < 0.05). The corresponding LSD intervals for these interactions
displayed in Fig. 6.12 show that PARAMO present better results than RADAF.
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Fig. 6.9 LSD intervals at 95% confidence level of the NSD values for the interactions
between enhancing approach PARAMO and RADAF and the selected configuration
settings W1 and W2 computed on (a) the standard deviations and (b) the loadings.
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Fig. 6.10 LSD intervals at 95% confidence level of the NSD values for the settings
W1 and W2 computed on the means from the 3-factor ANOVA.

f 1 and f 3 and their interaction present statistical significant differences
in Fault I and Fault III. The LSD intervals corresponding to the interactions
between f 1 and f 3 in Faults I and III are depicted in Fig. 6.13, and show
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Fig. 6.11 LSD intervals at 95% confidence level of the NSD values for moving
window methods Uniform and eXponential computed on the standard deviations from
the 3-factor ANOVA.

that the false negatives, or OTII values, are generally lower on average for
PARAMO than RADAF. The rest of the experiments are performed applying
PARAMO. In addition, we can observe that the OTII values are generally
lower in X-PARAMO than in U-PARAMO, regardless of the simulated fault.

OTII f 1 f 2 f 3 f 12 f 13 f 23 f 123

Fault I X(η = 0.0066) ✗ X(η = 1388) ✗ X(η = 0.0033) X(η = 0.0125) ✗

Fault II X(η = 0.0108) ✗ X(η = 1656) ✗ ✗ X(η = 0.0084) X(η = 0.0027)
Fault III X(η = 0.0027) X(η = 0.0054) X(η = 0.8335) ✗ X(η = 0.0049) X(η = 0.0273) ✗

Table 6.4 Results of the 3-Factor ANOVAs for the monitoring performance evaluation.
Xindicates statistical significant differences (p−value < 0.05). ✗ is used when there
are no statistical significant differences.
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U-RADAF,W1

Fault II

Fig. 6.12 LSD intervals at 95% confidence level of the OTII values computed for
Fault II for the interaction between enhancing approach, moving window methods
and the selected configuration settings.
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Fig. 6.13 LSD intervals at 95% confidence level of the OTII values for the interaction
between enhancing approach and moving window methods computed for (a) Fault I
and (b) Fault III.

Does PARAMO outperform TCS from the point of view of the parameter
stability?

An ANOVA study of one factor (the pre-processing method, f ) at five levels
(see Table 6.5) is performed individually for means, standard deviations
and loadings. The ANOVA results show that there are statistical significant
differences. The LSD intervals in Fig. 6.14 show that the NSDs obtained with
PARAMO outperform TCS, and their differences are statistically significant
(p− value < 0.05) for the means and standard deviations.
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Factor Level Description

TCS
U-PARAMO, W1

f U-PARAMO, W2 Pre-processing method
X-PARAMO, W1
X-PARAMO, W2

Table 6.5 Levels for the 1-factor ANOVA studies.
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Fig. 6.14 LSD intervals at 95% confidence level of the NSD values computed for the
simple effect of type of pre-processing (TCS and PARAMO) for (a) the means and
(b) standard deviations.

Does PARAMO outperform TCS from the point of view of monitoring?

An ANOVA of a single factor at five levels (see Table 6.5) is performed
separated for each generated fault. The ANOVAs unveil that there exist
statistical significant differences among methods for the faults under study.
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The resulting LSD values in Fig. 6.15 show that the OTII values obtained with
X-PARAMO are consistently lower than for TCS, irrespective of the settings
under study.
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Fig. 6.15 LSD intervals at 95% confidence level of the OTII values for the simple
effect of type of pre-processing (TCS and PARAMO) computed for (a) Fault I, (b)
Fault II and (c) Fault III.
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These outcomes support the claim that X-PARAMO not only reduces
the parameter uncertainty, but also improves the accuracy of the monitoring
systems to detect faults.

6.7.2 Results applying RADAF in model building

In this part of the section, we consider the use of RADAF also to obtain the
loadings from filtered data. That is, unlike in the application of RADAF in
the previous sub-section, we also use filtered data (Equations 6.20 and 6.23)
to fit the PCA model. This causes a delay of ⌊W/2⌋ in the application of this
approach in real time, due to test data also has to be filtered.

After the model building from the filtered data, the parameter stability
is assessed again for the loadings (note that the results does not change for
the means and standard deviations, as they are computed exactly like in
Section 6.7.1). There are statistical significant differences between PARAMO
and RADAF in the same factors and interactions as in Section 6.7.1. However,
in this case, RADAF is better than PARAMO and setting W2 is better than
W1. The LSDs are displayed in Fig. 6.16.
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Fig. 6.16 LSD intervals at 95% confidence level of the NSD values for the interactions
between enhancing approach and the selected configuration settings computed the
loadings. RADAF is applied to obtain the pre-processing parameters and for to build
the PCA model



140 Pre-processing

In comparison with TCS, there are also statistical significant differences,
being RADAF better than TCS. The corresponding LSDs are shown in
Fig. 6.17.
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Fig. 6.17 LSD intervals at 95% confidence level of the NSD values for the simple
effect of type of pre-processing (TCS, RADAF and PARAMO) computed for the
loadings. RADAF is applied to obtain the pre-processing parameters and for to build
the PCA model.

A 3-factor ANOVA with interactions is performed separated for each
generated fault. The ANOVAs unveil that there exist interactions between
all the factors under study and the interactions are significant. The resulting
LSD values in Fig. 6.18 show that the OTII values obtained with RADAF
are consistently lower than for PARAMO for Fault I and II, irrespective of
the setting and the moving window method. For Fault III, the OTII val-
ues obtained with RADAF are consistently lower than for PARAMO for
W2, while for W1, there are no statistically significant differences between
U-RADAF and X-PARAMO and U-PARAMO is statistically significant bet-
ter than X-RADAF.

Finally, an ANOVA of a single factor at five levels is performed separated
for each generated fault. The ANOVAs unveil that there exist statistical
significant differences among methods for the faults under study. The resulting
LSD values in Fig. 6.19 show that the OTII values obtained with RADAF are
consistently lower than for TCS, irrespective of the settings or the moving
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Fig. 6.18 LSD intervals at 95% confidence level of the OTII values for the interactions
between enhancing approach PARAMO and RADAF, the moving window method
(Uniform and eXponential), and the selected configuration settings W1 and W2
computed on (a) Fault I, (b) Fault II and (c) Fault III.

window method under study. The best results for RADAF correspond to
setting W2.
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Fig. 6.19 LSD intervals at 95% confidence level of the OTII values for the simple
effect of type of pre-processing (TCS, PARAMO and RADAF) computed for (a)
Fault I, (b) Fault II and (c) Fault III.

It can be concluded that filtering the data improves the loadings and so
the model does, with the corresponding enhancing in the capability of fault
detection. In our experiments, these results are better as the filtering is more
aggressive.
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6.8 Conclusions

This chapter addresses two open points related to the parameter stability and
its impact on process modeling: i) the development of novel pre-processing
approaches to enhance model parameter stability, and ii) the study of the
influence of parameter stability on fault detection.

More precisely, the comparative study here unveils that the approach
based on obtaining the pre-processing parameters from more observations,
PARAMO, outperforms the established methodology for pre-processing batch
data in Batch Multivariate Statistical Process Control. Using this proposal,
both the parameter stability and the monitoring performance are enhanced.
Thus, we show that it is possible to enhance the parameter stability by reduc-
ing the uncertainty in the pre-processing parameters; and that the lower the
uncertainty in the model parameters, the higher the quality in the monitoring
system.

The results improve even more when RADAF is applied also in model
building accepting a ⌊W/2⌋ delay. This implies that, for the Saccharomyces
Cerevisiae cultivation process, a window of W = 3 produces a delay of ≈ 10′,
and for W = 5 the delay is ≈ 20′. These times may not be affordable for this
type of process. The decision of applying this approach should be made in
coherence with the needs of improving the pre-processing parameters, and
always remembering that the delay increases also with the degree of the
smoothing. Another solution to face up the symmetric filtering in online
monitoring might be using missing data imputation [106]. On the contrary,
PARAMO ensures an on-line monitoring without any delay.

Finally, we must remark that, despite this study has been carried out in the
MSPC context, it is applicable in a straightforward manner to MSNM. Indeed,
these pre-processing techniques are applied in Chapter 8 to real network data.
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“Life does not deserve one to worry so much.”
Marie Curie, Nobel Prize in Physics in 1903

“Everything should be simplified as much as possible, but no more.”
Albert Einstein, Nobel Prize in Physics in 1921.
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This chapter is mainly based on the following research paper:

• Fuentes-García, N. M., Maciá-Fernández, G., and Camacho, J.
(2018). Evaluation of diagnosis methods in PCA-based Multivariate
Statistical Process Control. Chemometrics and Intelligent Laboratory
Systems, 172:194–210
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One of the most important steps in a monitoring system is to identify
the variables related to a previously detected anomaly. This step is that is
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termed diagnosis of the anomaly, and it helps the analysts to identify the root
causes of the anomaly so that problems within the process or the network can
be timely identified and corrected for [117]. As already stated in Chapter 4,
the diagnosis takes even a more important role in MSNM, since the number of
security events is so high that security operators usually cannot handle all of
them. This makes necessary the prioritization and triage of the events, which
can be performed in a more efficient manner thanks to the diagnosis.

This chapter starts by reviewing the state-of-the-art diagnosis methods in
the MSPC. Then, the two contributions of this part are presented. On the one
hand, a method that follows a univariate approach to enhance the diagnosis
process is introduced. On the other hand, a methodology for the comparison
of diagnosis methods is proposed. This methodology is applied over three
state-of-the-art multivariate diagnosis methods and the univariate proposal.

7.1 State-of-the-art Diagnosis Methods

There have been a number of developments in diagnosis in the past decades.
Three existing multivariate methods for MSPC diagnosis are described in this
section. On a general perspective, reviewed works provide limited comparison
with other approaches in the literature. In addition, multivariate methods
suffer from the smearing problem: misdiagnosis owing to the spread of the
contribution of the variables affected by an anomaly to those not affected
by it [114, 212]. This problem results in a more complex diagnosis process
and reinforces the necessity of a comprehensive study that compares these
techniques.

7.1.1 Contribution Plots (CP)

The CP is currently the most accepted approach for diagnosis in PCA-MSPC [117,
150, 212, 213]. The contribution of the m-th variable to the D-statistic, cD

m, is



148 Diagnosis

obtained from the following expression:

cD
m = t ·Λ−1 ·p′m · xm (7.1)

where pm is the vector in the m-th row of the loading matrix for the A selected
PCs and xm is the value of the m-th variable in an (anomalous) observation, x.

The contribution of the m-th variable to the Q-statistic, cQ
m, corresponding

to the residual, is calculated applying:

cQ
m = (xm−pm · t′)2 (7.2)

7.1.2 Reconstruction-Based Contributions (RBC)

The RBC is a popular method that follows an alternative approach to compute
the contributions of the variables to a given statistic [4, 5]. It is based on the
work of Dunia et al. [69]. The contribution of the m-th variable to the D-
statistic, rbcD

m, corresponding to the model, is calculated from the expression:

rbcD
m =

(im ·DA ·x′)2

dmm
(7.3)

where DA = PA ·Λ−1 ·P′A, im stands for the m-th row vector of the identity
matrix I with size M×M, and dmm is the m-th element in the main diagonal
of matrix DA.

The contribution rbcQ
m to the Q-statistic, corresponding to the residual, is

obtained from:

rbcQ
m =

(im ·CR ·x′)2

cR
mm

(7.4)

with CR = PR ·P′R, being PR the loading matrix with the residual components
from A+1 to M, and cR

mm the m-th element in the main diagonal of matrix CR.
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7.1.3 The observation-based Missing-data method for Exploratory
Data Analysis (oMEDA)

The oMEDA is a more recent method that was originally designed for ex-
ploratory data analysis. This method computes the contribution of a variable
to specific patterns, such as clusters or outliers, in the scores distribution [29].
Unlike the previous methods, it uses the same expression for the model and
residual sub-spaces and it does not compute the contributions to the statistics.
Moreover, it handles groups of observations if desired.

Let us consider the column vector, xm, containing the values for the m-th
variable in the group of observations to be diagnosed:

xm = x̂m(Z)+ em(Z) (7.5)

where x̂m(Z) is the projection of xm in a given sub-space Z and em(Z) is the
corresponding residual. Then, oMEDA follows:

dZ
m = 2 ·x′m ·D · |x̂m(Z)|− x̂′m ·D · |x̂m(Z)| (7.6)

that can be re-expressed only in terms of xm and em(Z), from Equation (7.5)
as follows:

dZ
m = (x′m + e′m(Z)) ·D · |xm− em(Z)| (7.7)

where D = d·d′
∥d∥2 and d is a dummy column vector with non-zero values in

positions corresponding to the observations to be studied 1.
Fig. 7.1 shows the result of applying oMEDA following the same example

as in the original work (archaeological artifacts dataset) [29]. In this dataset,
the concentration of ten different metals in archaeological artifacts is provided
with the objective of identifying whether there exist any differences and/or

1The way of selecting the possible non-zero values is out of the scope of this work. For
further details refer to the original paper [29].
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similarities among artifacts in different quarries or not. The artifacts are
63 obsidian samples obtained from four known quarries. First, a PCA is
performed. Fig. 7.1 (a) shows the two first components of the model, capturing
the 70% of the variance approximately. In this figure, we can observe that
metals are grouped (e.g. Ca, Sr and Ti or Mn, Fe and Ba). Furthermore, we
can distinguish the distinct quarries depicted with different colors and forms:
first quarry is represented by red inverted triangles, the second one by green
stars, the third one by blue squares, and the fourth one by cyan pluses. After
obtaining the PCA model, we apply oMEDA to investigate the relationships
among observations and variables. To do this, we use again the first two
components of the model and, as an example, we compare first and fourth
quarries. Then, we assign zero to all the observations that we are not interested
in (second and third quarries), and different values to the groups of variables
that we want to compare (first quarry = 1, fourth quarry = -1). Fig. 7.1 (b)
shows the result of applying oMEDA in that way. We can observe that samples
from the first quarry have higher amounts of K and Rb than the fourth one
(positive bars). On the contrary, Fe, Mn and Zr have higher importance in the
fourth quarry than in the first one (negative bars).

oMEDA can be used for the diagnosis of one observation by filling D with
zeros in all the observations except for that of interest to diagnose. This is
equivalent to define d = 1, which in turn means, D = 1, if oMEDA is applied
only to the observation of interest. Then, the expressions corresponding to
the two sub-spaces under study can be obtained by substituting D = 1 in
Equation (7.7):

dD
m = (xm + em) · |xm− em| (7.8)

where Z = D refers to the model sub-space,

dQ
m = (xm + x̂m) · |xm− x̂m| (7.9)
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(a) (b)

Fig. 7.1 Example of grouping observations applying oMEDA, showing (a) Bi-plot for
the first two PCs of the PCA of the archaeological dataset [29] and (b) Comparison
of the first two PCs for two observations.

and Z =Q, refers to the residual sub-space2.
Let us consider again the example in Chapter 3 (see Fig. 7.2). In that

example, first we generated randomly a 100× 10 calibration matrix. Then,
we also created a 10×10 test matrix that follows the same correlation pattern
as in the calibration. The value of the first two variables in the last five test
observations is increased to make them anomalous. We only diagnose the
last one. To do this, we create a dummy vector with all the observations
having zero value, excepting the one we want to diagnose: d = [0,0, ...,0,0,1].
This allows us to identify the anomalous variables (see Section 3.2). Those
variables showing a high magnitude (in absolute value) are related to the
anomaly. Fig. 7.2 shows two bars corresponding to the first two variables of
the test data, which are the ones that we previously turned anomalous.

2Note that the superscripts D and Q are used to maintain the consistency with the terminol-
ogy used in the previously studied diagnosis methods.
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Fig. 7.2 Example of diagnosis applying oMEDA.

7.2 Univariate Squared: a Different Approach for Di-
agnosis

After an anomaly occurs, the correlation structure in the model may not hold
for such anomaly and therefore the division in model/residuals found for
calibration data may not be optimum for diagnosis. If this occurs, one can
consider that it makes no sense to calculate the contribution of the variables to
each statistic separately [195].

Under this hypothesis, it might be interesting to take into account the
full variable space for diagnosis. The fact that oMEDA is equally computed
for the model and residual sub-spaces makes its extension to the complete
variable space straightforward. Thus, setting Z = D+Q, and using Equations
(7.8) and (7.9), the following expression yields:

um = dD+Q
m = xm · |xm| (7.10)

being equivalent to um = sign(xm) · (xm)
2, which we call Univariate-Squared.

Note that this expression corresponds to a univariate approach because it
considers only the original value of each variable and not the scores. Similar
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approaches are analyzed elsewhere [113, 114] but their performance has not
been assessed properly through a thorough comparison.

The univariate proposal contrasts with the accepted trend in PCA-based
MSPC diagnosis: it adopts a univariate approach although a multivariate
detection has been previously applied. The main advantage of this method is
that it does not suffer from the smearing problem, as the correlation, which
is the main cause of the smearing [113, 114, 212], is not considered in the
computation.

7.3 Methodology for Comparison of Diagnosis Meth-
ods

While there have been a number of developments in diagnosis in the past
decades [4, 5, 29, 113, 114, 117, 122, 123, 150, 155, 166, 213], no sound
method for comparing existing approaches has been proposed.

In this section, a procedure for comparison of diagnosis methods is pre-
sented. This methodology is inspired in the field of Design of Experiments
and Analysis of Variance [142] and enables consideration of the different
factors that might influence the performance of diagnosis methods, provid-
ing a comparison framework. This method has been developed to meet the
requirements that, in our opinion, a comprehensive comparison methodology
should meet:

• Generation of anomalies with known diagnosis. The variables related to
an anomaly should be known in advance, so that it is possible to check
whether the diagnosis methods identify these variables correctly or not.
This provides a ground truth of such affected variables.

• Definition of a metric to evaluate the diagnosis performance. A quanti-
tative measure to assess the performance of diagnosis method is needed.
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• Experimental Design. The factors that might have an impact on the
methods under consideration should be assessed properly using an
adequate design. Additionally, it is needed to define a number of
replicates of the experiment, to reduce the uncertainty of the results.

7.3.1 Step 1. Generation of Anomalies with Known Diagnosis

We propose a procedure to modify NOC observations to obtain anomalies. In
principle, the use of NOC observations as starting point ensures that there are
no other anomalies in the observation except those introduced artificially. The
procedure for the artificial generation of anomalies is described in the next
paragraphs.

Let us consider an anomaly-free observation from the NOC matrix, x ∈
XNOC, and the set of variables to be altered, Ṽ. The observations are split in the
columns into two parts. The sub-vector corresponding to Ṽ (the variables to
be altered) is denoted by x̃, while the sub-vector including those variables not
modified is ẋ. Then, the anomalous observation, xalt , is obtained by altering
the original value of x as follows:

xalt = x+ r (7.11)

where the value of each variable m is computed following:

xalt,m =

xm, if xm ∈ ẋ,

χ · s, if xm ∈ x̃,
(7.12)

with s = sign(xm), the sign of the variable m in the original observation. χ is
the altered value of the observation, and in this work it is the same for each
variable m ∈ Ṽ. This assumption is not perfect, but a Monte Carlo approach as
described in Section 7.3.3 provides enough variability to obtain realistic and
significant results. The Equation (7.12) is applied to modify the original value
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of x, using a value χ so that one of the statistics is equal to its corresponding
UCL multiplied by a given factor, K. This allows to obtain an anomalous
observation, xalt following the definition of MSPC. This can be done in (at
least) two ways:

• Trial and error. χ is iteratively increased to modify the normal value of
the selected variables until any of the statistics is equal to K·UCL.

• Analytically. χ is computed applying analytic expressions to alter the
selected variables.

Since the numeric approach can be computationally intensive, the analytic
alternative is generally preferred.

To derive the analytical expression, let us start by analyzing the equation
applied to compute the D-statistic, Dst = t ·Λ−1 · t′, where t is the score for
the observation, x, to be altered. Considering that t = x ·PA, the vector can
be re-ordered into affected and non-affected variables: xalt = [ẋ x̃] and the

corresponding re-ordered loading matrix follows: PA =

ṖA

P̃A

, where P̃A and

ṖA are the loadings for the altered and non-altered variables, respectively. A
re-defined expression for the D-statistic is:

Dst = (ẋ · ṖA + x̃ · P̃A) ·Λ−1 · (Ṗ′A · ẋ′+ P̃′A · x̃′) (7.13)

For fixed ẋ, solving the equation for Dst = K · UCLD provides the value
for x̃ from the quadratic expression:

Dst = dD + x̃ ·bD + x̃2 ·aD = K · UCLD (7.14)

with dD = ẋ · ṖA ·Λ−1 · Ṗ′A · ẋ′, bD = s · (2 · P̃A ·Λ−1 · Ṗ′A · ẋ′), aD = s · P̃A ·Λ−1 ·
P̃′A · s′, and s the vector containing the original sign of each variable in x.
Finally, the value for the observation x after applying the alteration, xalt , is
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obtained by replacing the variables to be modified with the result of solving
Equation (7.14) as a normal quadratic equation and selecting the solution that
keeps the positive sign in the discriminant:

x̃D = (−bD +
√
(bD)2−4 ·aD · cD)/(2 ·aD) (7.15)

where x̃D is the new value assigned to each selected variable for the altered
observation, xalt , and cD = dD−K ·UCLD.

Similarly, to alter a given observation, x, for the Q-statistic it is necessary
to replace the equation to solve, Qst = K ·UCLQ and to consider Qst = tR · t′R.
This makes dQ = ẋ · ṖR · Ṗ′R · ẋ′, cQ = dQ−K ·UCLQ, bQ = s · (2 · P̃R · Ṗ′R · ẋ′)
and aQ = s · P̃R · P̃′R · s′, where tR and PR stand for the scores and the loadings
in the residual components. The resulting expression is:

x̃Q = (−bQ +
√
(bQ)2−4 ·aQ · cQ)/(2 ·aQ) (7.16)

Finally, the new value for the variables to be altered is:

χ = min(x̃D, x̃Q) (7.17)

7.3.2 Step 2. Definition of a metric to evaluate the diagnosis per-
formance

In order to know if a diagnosis method outperforms another, it is needed to
quantify their performance in a meaningful way. In the present work, a ratio
is defined, based on the relation between the contribution of the anomalous
variables and the contribution of the non-affected variables. The proposed
metric is calculated as the quotient between the average of the contributions
from these variables, which is denoted Diagnosis Goodness Ratio, γ:

γ =
µc̃

µċ
(7.18)
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with µc̃ and µċ computed as follows:

µc̃ =
∑x̃m∈x̃ |c(x̃m)|

V
(7.19)

µċ =
∑ẋm∈ẋ |c(ẋm)|

M−V
(7.20)

where c(x̃m) are the contributions for the affected variables, c(ẋm) the contri-
butions for the non-affected variables in the altered observation, xalt = [ẋ x̃],
and V is the number of altered variables. The greater the ratio γ is, the better
the diagnosis performance of the method. On the contrary, if the value of γ is
close or even lower than 1, there is no diagnosis capability at all.

7.3.3 Step 3. Experimental Design

Many elements can impact the diagnosis. The goal of this step is to evaluate
how such factors affect the diagnosis performance. In this work, the following
factors are considered:

• Number of selected PCs (pcs). The way of selecting the number of
PCs to build a PCA-model still remains an open problem because the
number of latent variables affects the quality of the model, the detection
and the diagnosis performance [34, 35, 150, 213].

• Number of variables to alter (V ). The number of variables affected
by an anomaly is expected to impact the diagnosis performance. Note
that the expressions proposed in Equations (7.15) and (7.16) allow the
alteration of any number of variables.

• The relationship between the number of variables (M) and the number
of samples (N) in the calibration matrix, τ . For the present study,
different types of matrices are considered: Fat matrices, F, with M > N;
Square matrices, S, with N ≃M; and Thin matrices, T , with N > M.
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Considering the previous discussion, the Algorithm 1 is designed to com-
pare a given set of diagnosis methods. When an experimental run is performed,

Algorithm 1 Core algorithm

1: procedure
2: for each τ ∈ {T,S,F} do
3: for each pc ∈ pcs do
4: for v ∈ {1 : V } do
5: for each observation n ∈ {1 : N} do
6: x← XNOC(n)
7: xalt ← x // Anomalous observation is initialized to x
8: Ṽ←{ṽ1, ..., ṽv} // Select ṽv randomly
9: x̃D

Ṽ← Anomaly generation Eq.(7.15)

10: x̃Q
Ṽ← Anomaly generation Eq.(7.16)

11: χ ←min{x̃D
Ṽ, x̃

Q
Ṽ} Eq.(7.17)

12: xalt(Ṽ )← χ // Variables in Ṽ take the new value, χ

13: Compute Dst(xalt) and Qst(xalt)
14: Increase nDst if Dst >UCLD

15: Increase nQst if Qst >UCLQ

16: for each method do
17: Compute contributions
18: γ ← µc̃

µċ
// Ratio calculation

19: end for
20: end for
21: end for
22: end for
23: end for
24: end procedure

one way of increasing the confidence on the results is to repeat such experi-
mental run a high number of times. The higher the number of repetitions, the
more reliable the results. For this reason, a Monte Carlo procedure is applied
over the core Algorithm 1, to perform an experimental comparison according
to the identified needs, achieving low uncertainty results.
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The Algorithm 1 is repeated over Y experimental runs by considering
each combination of the parameters: the type of matrix (τ), the number of
selected PCs (pcs), the number of variables to be altered (V ), and the randomly
generated NOC observations (N). For each observation x, v random variables
are selected to obtain the set of variables Ṽ to be altered, where v varies in the
range {1 : V } and corresponds to the number of selected variables. Once the
anomaly is generated, it is introduced in these selected variables, producing
xalt . Then, the statistics for the anomalous observation are computed, and
we register those that exceed their corresponding UCL (nDst and nQst) to
compute the relative number of faults signaled by each of the statistics, the
contributions and the ratio.

7.4 Evaluation of Diagnosis Methods

To assess the performance of the selected methods, the corresponding ratios
are computed and compared under a wide range of simulated situations using
simuleMV [31]. The results are validated using two real datasets: traffic
data from a communications network [129], and another one obtained by
simulating the Saccharomyces cerevisiae cultivation process [120] (see Chap-
ter 5). The data are auto-scaled in all cases, since they include variables with
incomparable units.

Note that the Monte Carlo approach allows the generation of anomalies
that cover a wide range of possibilities, both univariate and multivariate and
both maintaining/breaking the correlation structure in the model. Unlike in
other related works [56, 57, 165, 166], the use of first principles models in
the anomaly generation procedure is skipped to avoid drawing conclusions
that only hold in very specific cases/processes. However, the results should be
interpreted considering that there is no theoretical warranty that all types of
failure are covered.
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7.4.1 Case of Study I: Simulated Synthetic Data

The simulation software, simuleMV [31], generates random data for a given
level of correlation, L ∈ {0,9}, where 0 means no correlation and 9 means
the correlation is the maximum (recall Chapter 5). This software implements
an algorithm that takes into account the number of observations, N, and the
number of variables, M, for the matrix to be simulated. In addition, simuleMV
enables the generation of a data matrix based on a given covariance matrix.

Table 7.1 shows the configuration for the experimental design using the
proposed methodology.

τ N M L Y pcs V

Thin (T) 100 10 {3,6,9} 10 {1,2} {1,2,3}
Square (S) 100 100 {3,6,9} 10 {1,4} {1,2,3}

Fat (F) 100 1000 {3,6,9} 10 {1,11} {1,2,3}
Table 7.1 Parameters involved in the Monte Carlo Simulation - L, N and M are
parameters in simuleMV.

• Three types of matrices are simulated: T (Thin)= 100×10, S (Square)=
100×100, F (Fat) = 100×1000.

• Three different correlation levels, L, are considered for each type of
matrix: low = 3, normal = 6 and high = 9.

• Y = 10 different replicates are generated for each type of matrix and
correlation level.

• The number of selected PCs is: i) pcs = 1, and ii) the number of PCs
that captures the 75% of the total variance in most of the replicates.

• The number of variables to be altered, V , is varied from 1 to 3.

The performance of the diagnosis of statistics Q and D is assessed sep-
arately, as customary in the literature. Following the expressions defined in
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Equations (7.15) and (7.16), the variables are altered until any of the statistics
is K = 2 times its upper control limit. Algorithm 1 is applied iteratively over
the presented parameters. Although we focus in making anomalous one of the
statistics as described above, the anomaly may be detected by both statistics
at the same time. The diagnosis is applied only for those statistics in which
the anomaly was manifesting.

Results

The comparison study includes an ANOVA performed on the ratio values.
A logarithmic transform is applied to the ratio outcomes to smooth their
positive skewness. The test includes the main factors of the experiment and
first-order interactions: correlation level (L), selected PCs (pcs), number of
affected variables (V ), diagnosis method, type of matrix (τ), and statistics. The
ANOVA results show that all these factors and their corresponding interactions,
except the correlation level, are statistically significant (p− value < 0.01).

It is also interesting to identify which of the studied parameters are most
relevant. With this aim, the effect size is computed as in the previous chapter
(η2 = SS( f )/SS(total)). The most relevant parameters, sorted by η2, are the
type of matrix (τ), the statistic, and the diagnosis method. These parameters
also present strong interactions; thus, varying any of them has a considerable
effect on the other. This suggests that the comparison of the diagnosis methods
should be performed individually for each combination of statistic and type of
matrix. The LSD plots for statistical significant differences are computed and
shown in Fig. 7.3. U-Squared in most cases outperforms the other methods,
except for Square matrices and the Q-statistic, where CP and RBC present
better results.

Results should be interpreted taking into account whether the anomalies
are generated in the D-statistic, the Q-statistic or both. The percentage of
generation for a normal correlation level, L = 6, is shown in Fig. 7.4. In
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Fig. 7.3 ANOVA indicates that the results are significant for the selected parameters.
LSD plots for (a) Thin matrices (T), (b) Square matrices (S), and (c) Fat matrices (F).
The results for the D-statistic are shown in the left column, while the right column
displays those results for the Q-statistic.

general, the probability of generating an anomaly in the D-statistic increases
with the number of affected variables and the number of selected PCs whereas
the percentage of generating an anomaly in the Q-statistic is always higher
than that of the D-statistic in our experiments. Though not shown in the figure,
this trend is observed to grow when the correlation level is increased.

Since statistical significance is not the same as practical significance [142].
Fig. 7.5 and 7.6 show the results for a normal correlation level, L = 6, in
the form of Box plots. The aforementioned plots are produced using the
Advance Box Plot library, aboxplot [21]. These plots include the mean value
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(a) Thin matrices (100x10)
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(b) Square matrices (100x100)
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Fig. 7.4 Percentage of anomalies generated on each statistic for 1 PC and for the
number of PCs that captures 75% of the total variance: 2 PCs, 4 PCs, and 11 PCs for
(a) Thin matrices (T), (b) Square matrices (S) and (c) Fat matrices (F) simulated with
correlation level L = 6 (normal correlation) in SimuleMV.
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represented by a circle, together with the quartiles and outliers. The ratios, γ ,
are displayed for each type of matrix, statistic and number of PCs. Since there
are only a few or no anomalies in the D-statistic when 1 PC is selected for the
Square and Fat matrices, see Fig. 7.4, those results are not shown in Fig. 7.5,
and only the ratios for the Q-statistic for Square and Fat matrices are shown.

In general terms, the Univariate-Squared method provides results that
are comparable with the rest of the methods in terms of the diagnosis ratio.
U-Squared outperforms the other diagnosis methods for the D-statistic and, for
Thin matrices, also for the Q-statistic. The differences between the results are
more evident when the number of PCs is increased, which is also the reason
for the larger differences in the D-statistic. The enhancement in the U-Squared
ratio probably is due to the fact that correlation between the variables is not
taken into account, and thus the smearing effect disappears.

Note that the Reconstruction-Based Contributions method has a very low
ratio when the diagnosis is performed for the D-statistic. More precisely, when
1 PC is selected, the ratio γ is always equal to 1, indicating a complete lack
of diagnosis capability. This result is mathematically proven by deriving the
RBC expression for the D-statistic in the Appendix C [195].

Finally, these results are repeated by using mean-centered data instead of
auto-scaled (AS) data (not shown). Although the ratios are generally lower
than for AS, the performance of the methods is the same as when using
auto-scaled data.

7.4.2 Case of Study II: Simulated Communication Network Traf-
fic

After performing the comparison with simulation data, the methodology is val-
idated with data obtained from real applications to assess its consistency. More
specifically, traffic data from a communications network [129] is considered.
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Fig. 7.5 Ratios, γ , for 1 PC and (a) Thin matrices (T), (b) Square matrices (S) and
(c) Fat matrices (F) simulated with correlation level L = 6 (normal correlation) in
SimuleMV.
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Fig. 7.6 Ratios, γ , for (a) 2 PCs and T, (b) 4 PCs and S, and (c) 11 PCs and F simulated
with correlation level L = 6 (normal correlation) in SimuleMV.
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This dataset is split into two sub-sets: one for the calibration, correspond-
ing to one-third of the observations, X, and another one with the remaining
observations for testing, test. The matrix X contains N = 501 observations
and M = 24 variables. The matrix test includes one hour with network attacks.
Since our comparison approach uses NOC data, in order to avoid polluted
values, the observations corresponding to attacks are removed. Then, only
data below 50% of the UCL are used to ensure the test data are initially NOC.
The final dataset, XNOC, has N = 303 observations and M = 24 variables.

The comparison algorithm (see Algorithm 1) is run using N = 1000 ran-
dom observations. The number of selected PCs is i) pcs = 1, and ii) pcs = 2,
which is the number of PCs that captures the 75% of the total variance. The
variables are altered until either of statistics is K = 2 times its control limit.
The configuration for the experiment is shown in Table 7.2.

τ N M Y pcs V

Thin (T) 303 24 1 {1,2} {1,2,3}
Table 7.2 Parameters involved in the verification using Network data.

Results

Fig. 7.7 shows the percentages of anomaly generation for each statistic. The
probability of generating of an anomaly only in the Q-statistic is closer to that
of a Square matrix in the simulation result.

The ANOVA is performed on the ratio values to contrast the results with
those from the simulated data. The test takes into account the factors of the
experiment: selected PCs (pcs), number of affected variables (V ), diagnosis
method, and statistics, as well as their first-order interactions. Note that the
type of matrix is Thin in this case. The result from the test is consistent
with that obtained using simuleMV and shows that all these factors and
the corresponding interactions are statistically significant (p− value < 0.01).
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Fig. 7.7 Percentage of anomalies generated on each statistic for (a) 1 PC and (b) 2
PCs corresponding to the Communications Network Traffic data set.

The most relevant parameters are, sorted by η2, the statistic, the diagnosis
method, and the number of altered variables. These parameters are, without
considering the type of matrix, the same as those from the simulation and also
present strong interactions. Using these results, the comparison is performed
individually for the diagnosis methods for each statistic. When statistically
significant differences are identified among the approaches, the LSD plots
are computed (see Fig. 7.8). The results are congruent with those from Thin
matrices in the simulation: U-Squared is better than the rest of the diagnosis
methods.

Fig. 7.9 shows the distribution of the ratios computed after applying the
diagnosis methods. According to the observed anomaly generation percent-
ages for each statistic, there are only few or no anomalies in the D-statistic.
Therefore, those are not considered, and only the ratios for the Q-statistic are
shown in Fig. 7.9. U-Squared improves the multivariate diagnosis methods
as the number of PCs and anomalous variables increase. The differences are
more remarkable between U-Squared and oMEDA.
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Fig. 7.8 LSD plots for Network Traffic Data. The results for the D-statistic are shown
in the left column, while the right column displays those results for the Q-statistic.

7.4.3 Case of Study III: Data Set for Process Control

Similarly to the experiments carried out in Chapter 6, to validate the proposed
methodology in MSPC, this study is carried out using process data. We use the
data from the Saccharomyces cerevisiae batch process simulation [44, 120].

As the data are three-way, they are unfolded for the application of PCA-
MSPC. Batch-wise, Variable-wise and Batch-Dynamic unfolding [46] are used
to obtain Fat, Thin and Square matrices, respectively. The parameters for the
Monte Carlo experiment are shown in Table 7.3.

τ N M Y pcs V

Thin (T) 3000 11 1 {1,2} {1,2,3}
Square (S) 900 781 1 {1,2} {1,2,3}

Fat (F) 30 1100 1 {1,2} {1,2,3}
Table 7.3 Parameters involved in verification using Saccharomyces cerevisiae process
data.

These data are altered in the same way as in the simulation section but
using only one replicate for each considered type of calibration matrix (Thin,
Square and Fat). The number of selected PCs is i) pcs = 1, and ii) pcs = 2, i.
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Fig. 7.9 Ratios in the Q-statistic, γ , for (a) 1 PC, and (b) for 2 PCs corresponding to
the Communications Network Traffic data set.
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e., the number of PCs that captures the 75% of the total variance. The number
of observations selected meets that in the calibration matrix. The variables are
altered until any of the statistics is K = 2 times its control limit.

Results

Fig. 7.10 shows the percentage of anomalies generated for each statistic. Com-
pared to the distribution of probabilities obtained using synthetic data, the
probability of generation only in the Q-statistic decreases for each type of ma-
trix. There is a greater probability of generating an anomaly in both statistics
simultaneously, compared to the results obtained for the data simulated with
simuleMV.

In the same way as for the synthetic data, an ANOVA is performed on the
ratio values. The study considers the same factors as in the first experiment:
selected PCs (pcs), number of affected variables (V ), diagnosis method, type
of matrix (τ), and statistics, as well as the first-order interactions. The ANOVA
result is consistent with that obtained using simuleMV as it shows that all
these factors and the corresponding interactions are statistically significant
(p− value < 0.01).

The most relevant parameters according to the effect size are the same
as those in the simuleMV results: the type of matrix (τ), the statistic, and
the diagnosis method. These parameters also present strong interactions.
According to these results, the comparison is performed individually for each
combination of statistic and type of matrix. The LSD plots are computed
when there exist statistically significant differences among the approaches (see
Fig.7.11). The results are coherent with those obtained for the synthetic data:
U-Squared is in most cases better than the other methods, except for the Q-
statistic for Square matrices, where CP and RBC are better. For the Q-statistic
for Fat matrices, there is no significant difference among the methods.
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(a) Thin matix (1000x11)
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(b) Square matrix (300x781)
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Fig. 7.10 Percentage of anomalies generated on each statistic for 1 PC and 2 PCs for
(a) Thin matrices (T), (b) Square matrices (S) and (c) Fat matrices (F) corresponding
to the Saccharomyces cerevisiae process simulation.
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Fig. 7.11 LSD plots for (a) Thin matrices (T), (b) Square matrices (S), and (c) Fat
matrices (F) corresponding to the Saccharomyces cerevisiae process simulation. The
results for the D-statistic are shown in the left column, while the right column displays
those results for the Q-statistic.
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Fig. 7.12 and Fig. 7.13 show the distribution of the ratios computed after
applying the diagnosis methods. The outcomes for anomalies detected in the
D-statistic are on the left, whereas those for the Q-statistic are on the right.
Note that if an anomaly is detected in both Q and D, it is included in both
graphics. From a practical viewpoint, the differences are more relevant for the
D-statistic, and similarly to the simulated data results, these differences are
more evident when the number of PCs is increased. For the Q-statistic, the
difference between U-Squared and the other methods is not significant.

For this dataset, RBC does not show good results for the D-statistic either,
and is useless for diagnosis when only 1 PC is selected.
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Fig. 7.12 Ratios, γ , for 1 PC for (a) Thin matrices (T), (b) Square matrices (S) and (c)
Fat matrices (F) corresponding to the Saccharomyces cerevisiae process simulation.
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Fig. 7.13 Ratios, γ , for 2 PCs for (a) Thin matrices (T), (b) Square matrices (S) and (c)
Fat matrices (F) corresponding to the Saccharomyces cerevisiae process simulation.
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7.5 Conclusions

In this chapter, a methodology to compare different diagnosis methods experi-
mentally is presented. This methodology satisfies the requirements previously
identified for a comprehensive comparison of diagnosis methods: i) anoma-
lies with known diagnosis are generated, ii) a way to measure the diagnosis
performance of each method is defined, iii) the parameters that might affect
the diagnosis are identified, and an algorithm which integrates the previous
requirements is proposed. This algorithm is integrated in a Monte Carlo
procedure to obtain low uncertainty results.

This is a generic methodology, since the Monte Carlo approach allows
the generation of anomalies that cover a wide range of possibilities, both
univariate and multivariate and maintaining/breaking the correlation structure
in the model. However, as already stated, the results should be interpreted
considering that there is no theoretical warranty that all types of failure are
covered.

Three state-of-the-art diagnosis methods of MSPC are compared using the
proposed methodology: Contribution Plots (CP), Reconstruction-Based Con-
tributions (RBC) and observation-based Missing-data method for Exploratory
Data Analysis (oMEDA). A fourth method that follows a univariate approach
is also included, Univariate Squared (U-Squared), with the following reason-
ing: when an anomaly occurs, the correlation structure in the model may not
hold for such anomaly and therefore the division in model/residuals found
for calibration data may not be optimum for diagnosis. In such case, one can
consider that, for diagnosis, it makes sense to calculate the contribution of
the variables to the full variables space instead of separated for each statistic.
Applying oMEDA to the full variable space leads to derive the U-Squared
expression and to include it in the comparison. The univariate diagnosis shows
good performance results even when the correlation is not broken. The com-
parison is validated using realistic datasets from a communications network
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and from a process simulation of production of Saccharomyces cerevisiae.
These results are consistent with those obtained from the synthetic data.

This study leads us to propose a mixed PCA-MSPC/MSNM process in
which detection is performed using a multivariate approach but diagnosis is
performed via a univariate method.



8
MSNM Extensions Applied to Real

Data

“No amount of experimentation can definitely prove that I am right; but a
single experiment can prove that I am wrong.”

Albert Einstein, Nobel Prize in Physics in 1921

“One never will see what she has done, but what there is still to do.”
Marie Curie, Nobel Prize in Physics in 1903
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This chapter evaluates the MSNM extensions presented in the following
research papers using real network data:

• Fuentes-García, N. M., González-Martínez, J. M., Maciá-Fernández,
G., and Camacho, J. (2019b). PARAMO: Enhanced Data
Pre-processing in Batch Multivariate Statistical Process Control.
Journal of Chemometrics, 33(11)

• Fuentes-García, N. M., Maciá-Fernández, G., and Camacho, J.
(2018). Evaluation of diagnosis methods in PCA-based Multivariate
Statistical Process Control. Chemometrics and Intelligent Laboratory
Systems, 172:194–210

• Camacho, J., García-Giménez, J. M., Fuentes-García, N. M., and
Maciá-Fernández, G. (2019b). Multivariate Big Data Analysis for
Intrusion Detection: 5 steps from the haystack to the needle.
Computers and Security (COSE), 87

• Maciá-Fernández, G., Camacho, J., García-Teodoro, P., and
Rodríguez-Gómez, R. A. (2016). Hierarchical PCA-Based Multivariate
Statistical Network Monitoring for Anomaly Detection. International
Workshop on Information Forensics and Security
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In the previous chapters, the MSNM is explained: from its origins in the
MSPC theory to the contributions to the multivariate statistical monitoring in
this thesis. The alternatives and extensions for the MSNM application are also
described.

The last contribution of this PhD is the application of some of the MSNM
extensions to a real case. The UGR’16 [130] dataset is selected for such
purpose. This dataset contains a large capture of real network data that were
collected from an ISP during 2016 (see Sections 5.2.1 and 8.2.2). UGR’16
also includes attacks that allow the evaluation of the capability of detection
and diagnosis of the MSNM approaches.

Once the sensors have collected the raw data and the features are extracted,
the data can be fused in different ways (see Section 4.1.2). For this reason,
the evaluation has been split into two parts: on the one hand, the experiments
performed for the standard fusion of the data, which considers different
types of data fusion and pre-processing methods; and, on the other hand, the
application of MSNM for the hierarchical fusion of the data (H). Although
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the hierarchical fusion is not a contribution of this thesis per se, it is applied
and evaluated for the first time to real network data in this work.

The rest of the chapter is organized as follows: first, the experiments
are described as a part of the materials and methods section. Then, the 5-
step methodology [36] (recall Chapter 4) is applied with two variants of the
standard fusion of the data, allowing the evaluation of the extensions for the
pre-processing and diagnosis. Then, the 5-step methodology is also applied
for the hierarchical MSNM. To conclude, the results and conclusions of the
evaluation are presented.

8.1 MSNM extensions

There exist extensions for each of the MSNM steps but for the parsing, which
follows the original feature-as-a-counter approach [42]. The extensions ap-
plied and studied in this chapter are:

• Fusion step. Data can be joined to a single data matrix in different
ways. We suggest two alternatives to obtain the standard fusion: i)
Concatenating the value of the features (C); and ii) Aggregating the
value of the features (A)1. Both are represented in Fig. 8.1.

• Detection step. This step is generally composed of a set of sub-steps,
namely: the pre-processing, the PCA model building, and the com-
putation of statistics. For network data, the pre-processing is usually
done by Auto-Scaling (AS). This approach does not take into account
the cyclo-stationarity of the data. Thus, we propose here to consider
the cyclo-stationarity of network data, and for this reason we apply
X-PARAMO (our proposal for BMSPC [192]) and TCS (one of the

1Please, remember from Chapter 4 that A-fusion can only be applied if the data sources are
of the same type (e.g. all of them routers measuring netflow).
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most extended methods for BMSPC). This work follows an unsuper-
vised approach, thus we do not consider the optimized scaling [40], due
to its semi-supervised nature makes it not comparable to the rest of
methods in a fair way in the context of this work (unsupervised anomaly
detection).

• Diagnosis step. Once an anomaly is detected in the previous step, it
is needed to investigate what happened before the anomaly took place.
To do this, there are many multivariate diagnosis methods that were
explained in Chapter 7. Here we assess our proposal, U-Squared [195]
as well as the method in which is based, oMEDA.

…

+ |

…

Fig. 8.1 Standard fusion: Aggregating (A-fusion) is denoted with ’+’. Concatenating
(C-fusion) is indicated with ’|’.

These extensions are applied following the 5-steps methodology [36],
which is also an MSNM extension. In addition, we evaluate a second alter-
native to the standard fusion, the hierarchical organization of the data. The
hierarchical approach was proposed as an MSNM extension for the first time
in [129]. As explained in Chapter 4, there are different levels of data fusion:
low, middle and high [61]. To evaluate this approach we have selected the
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alternatives that (to the best of our knowledge) may lead to significant different
results, considering those previously obtained for the evaluation of standard
fusion (see Section 8.2.3). Thus, the hierarchical approach is assessed apply-
ing C-fusion, AS for pre-processing and U-Squared for diagnosis. Finally,
sometimes, the hierarchical approach requires applying some re-ordering in
the diagnosis and fusion steps in comparison to the original MSNM and the
5-steps methodology, which will be detailed in Section 8.2.3.

8.2 Materials and Methods

This section describes the metrics and the dataset used for the experiments, as
well as the way of performing such experiments, including the fusion of the
data and the variants applied of the MSNM steps.

8.2.1 Anomaly Detection Assessment

The relation between the number of false and true positives is very important
in network monitoring, since the number of alarms may be excessive in this
context. A way to measure this relation is the Area Under the Curve (AUC),
which represents the area under the Receiver Operating Characteristics (ROC)
curve [97, 138]. This is a typical measure for one-class classifiers, where
the anomaly-based IDSs can be enclosed, and also for 2-class classifiers. An
ideal classifier (a classifier that detects all the true positives without any false
positives) has AUC = 1, while a classifier with poor capabilities for correct
anomaly detection has AUC ≈ 0.5, which is similar to a random classifier [8].
The type of classifier proposed in previous chapters for MSNM follows an
unsupervised approach that, in some sense, can be considered to be a one-class
classifier. For this reason, we use both AUC and ROC curves to assess the
performance of the techniques under study in the context of the UGR’16
dataset.
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8.2.2 UGR’16 dataset

Recall from Section 5.2.1 that the UGR’16 dataset is a network traffic data
collection that was captured during a total of four months. During the fourth
month, the traffic network was collected while a series of controlled attacks
were launched in the same network. To insert the controlled attacks, a total
of 25 virtual machines were installed in some of the sub-networks, with a
similar configuration to that used in other ISP clients: 5 attackers referred to as
A1 to A5, and 20 victims, referred to as V11-V45. Machines A1 to A5 attack the
rest of the virtual machines (V∗) in different timestamps during a given period
of time. Different types of attacks were implemented, which are labeled as
DoS, scan11, scan44 and botnet:

• DoS attacks are executed by sending TCP SYN packets to the victims
using hping3 with destination port 80. hping3 is a command line
Linux tool used to verify the connectivity between two machines. It
works by sending some packets that can be modified [173, 174]. DoS
traffic is merged with the real background traffic. Each packet has a size
of 1280 bits with a rate of 100 packets/s.

• The scan11 attack is a port scan, where a single attacker scans a single
victim. In this type of attack it is common to find a high number of
ports that are being scanned. These ports can be related to well-known
services, such as ’messenger’ or ’emule’, but also to more unusual
services.

• The scan44 attack is another type of port scan, where four of the
attackers simultaneously start a scan against victim machines. This
type of attack works in the same way as scan11 does (in relation to the
features of the attack by itself). The difference is in the organization of
the attackers and the victims.
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• The botnet attack is a simulation of a NERIS botnet. A botnet attack
consists on the infection of a number of machines by means of any
type of malware to transform them in bots that are under the control
of a master machine. After the infection, the master sends orders to
the bots, which is usually a mechanism applied to be able to perform
attacks in higher dimensions. Thus, the master needs to be connected
with the bots to send them the instructions. This is frequently done
using IRC, p2p or HTTP, among others [209]. The bot transmission can
be synchronous (all the attacks are initiated by the attackers at the same
time) or asynchronous (the attacks are initiated at different instants
of time). Some of the most common types of attacks performed by a
botnet are Distributed Denial of Service (DDoS), SPAM campaigns
or Bitcoin mining, among others. In the case of UGR’16, the traffic
generated by a NERIS bot [79, 80] is adapted and inserted in the trace
as if it were generated by the 20 victim machines. This permits to
evaluate the behavior of a botnet infection scenario.

Fig. 8.2 shows two different days, a first day when the DoS attack took
place (displayed in red), in contrast with the same day of the week obtained
from the NOC data (represented in blue). This is an illustrative example of
the implications of the attacks in relation to the NOC network traffic.

Finally, it is worth mentioning that the original capture also contains real
anomalies that were properly labeled. Some of these anomalies correspond
to SSH scan, SPAM, or UDP scan attacks. During the capture, an important
anomaly was also found in the UGR’16 dataset during June (note that this
anomaly was not even detected in the original paper that describes the dataset):
a sudden increase in the IRC traffic between one of the virtual machines in
the ISP network and an external IP (see Section 8.2.2). The existence of such
anomalies is considered and dealt with when the experiments are performed
to ensure the results are reliable.
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Fig. 8.2 Comparison in terms of TCP SYN counts between a day with a DoS attack
(red) and an attack-free day (blue).

After applying Step 1 (parsing) and Step 2 (fusion) of MSNM, a NOC
matrix, X, (months from March to June) is obtained with N = 136.180 obser-
vations and a test matrix, test, (last month of the capture) with N = 47.275
observations. The number of variables is M = 143, where the last 9 are control
variables, which are used as a Ground Truth. Thus, the number of monitoring
variables is M = 134.

Separation in "Virtual" routers

Recall from Section 4.1 that MSNM follows a feature-as-a-counter approach [42].
To evaluate C-fusion (concatenation of the data from different sensors) and
the H-fusion (hierarchical concatenation of the statistics and/or features ob-
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tained in different sensors and layers) we need to split the traffic in different
sensors. For this reason, the collected data are split into three different Virtual
Routers (VRs) with sensors named VR1, VR2 and VR3, and the connections
are assigned to each virtual router depending on the IP addresses of the con-
nection end points. When a connection has end-points belonging to several
virtual routers, this connection is assigned only to one of these sensors. Ta-
ble 8.1 shows the criteria followed to assign each connection to a virtual
router. For each connection, the IP addresses (both source or destination) are
checked: as soon as any of the IP matches an entry in the table, the connection
is assigned to the corresponding virtual router (and sensor). As a result, we
obtain three NOC matrices: X1, X2, and X3 with the same dimensions as
X; and three matrices for the test data: test1, test2, and test3, also with the
same dimensions as test. Recall that this dis-aggregation is possible due to
the feature-as-a-counter approach [42], which also allows the future fusion in
different forms.

Source or Destination IP Virtual Router

42.219.156.0/24 VR1
42.219.152.0/24 or 42.219.154.0/24 or 42.219.158.0/24 VR2

Rest (including external) VR3

Table 8.1 Criteria to assign end-points to virtual routers (with sensors).

Following these criteria, the attacks are distributed as shown in Table 8.2.
Note that none of the attacks is captured by in VR3 (see [130] for more details
about the sub-network that each machine belongs to).

Real IRC Anomaly in UGR’16

Separating the data in virtual routers made it possible to find out an important
anomaly during June: a sudden increase in the IRC traffic between one of the
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Attack Machines VR1 VR2

DoS A1→V21 - X
A1−A5→V21,V31,V41 - X

scan11 A1→V44 - X

A1→V21 - X
scan44 A3→V31 - X

A4→V41 - X
A2→V11 X -

botnet V∗,A∗ X X

Table 8.2 Distribution of the attacks in the virtual routers (with sensors).

virtual machines in the ISP network and an external IP address. This can be
seen in Fig. 8.3.
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Fig. 8.3 IRC traffic in UGR’16 during June.

Before this finding, June was part of the calibration data and, thus, the
anomalous traffic was considered to be normal. This turned in the deterioration
of the general results in the detection, but specially of those related to the
botnet attack. The reason was that having high IRC traffic is a key feature in
many botnets, and this is exactly the case of the botnet that was introduced
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for testing in the UGR’16 dataset, and that we need to detect [40]. The
separation performed in the previous section was decisive to discover that
the botnet was properly detected in VR2, but not in VR1. This was possible
thanks to the diagnosis (see Fig. 8.4) carried out as a part of the Phase I of
the application of the MSNM methodology. The attack in the test data was
not detected in VR1 because there was an abnormally high IRC traffic in this
router during the calibration.

QVR1 DVR1 QVR2 DVR2 QVR3 DVR3
0

2000

4000

6000

8000

10000
Botnet (H1)

Fig. 8.4 Wrong diagnosis of the botnet (model calibration includes anomalous IRC
traffic in June).

After that, a de-parsing process was carried out, looking in the original
records (take as an example Fig. 8.5). The analysis unveiled that, indeed, there
were about 3.8M of connections between 42.219.156.231 (virtual machine in
VR1) and 168.227.46.37 (external machine, VR3) during several days of June.
This represents the 98.5% of the connections, which transmitted 1.3GB of
data. The external machine (168.227.46.37) varied the source and destination
ports, while the local machine (42.219.156.231) always used the port 6667.
Once the anomaly was confirmed, June was removed from the calibration data
in all the studies.
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Fig. 8.5 Statistics by IP and port (output from the nfdump tool).

8.2.3 MSNM application

The calibration dataset includes traffic from 2016/03/19−00 : 00 to
2016/05/31−23 : 592. That is, more than two months. Note that the capture
starts at 2016/03/18−10 : 52 and finishes at 2016/06/26−18 : 27. The
observations at the beginning of the dataset are removed to start with the
first complete day, and all the observations corresponding to June are also
removed due to the IRC anomaly that was found during initial explorations
(see Section 8.2.2). Additionally, the anomalies labeled in [130] are also
removed to have a NOC dataset for the calibration; yielding N = 98.262
observations, corresponding to minutes.

For the test data we only consider the anomalies that correspond to syn-
thetic attacks. In the same way as for the calibration, the days that are not
complete are removed from the dataset. In addition, only those containing
the artificial attacks are considered. Despite the fact that in the UGR’16

2Note that this is expressed in American format.
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paper the authors explain that synthetic attack batches are spanned during 12
days, during the experiments it was discovered that the last two phases of the
botnet (corresponding to the two last days of attacks) are not in the data:
one of them owing to a parsing error, and the other due to a miss insertion
in the raw data. For this reason, the test dataset contains only 10 days, going
from 2016/07/28−00 : 00 to 2016/08/06−23 : 59, yielding N = 43.200
observations.

Since the experiments are intended to evaluate our proposals for the pre-
processing (Chapter 6) and the diagnosis (Chapter 7), Steps 1 and 2 of the
MSNM methodology were applied before starting this work and they are not
shown here. Step 3 (detection) is performed as follows:

1. Pre-processing. The data are pre-processed by Auto-Scaling (AS) them.

2. Model building. The PCA model is created following
Equations (3.3) to (3.5). For this purpose, the Big Data functionality in
the MEDA-Toolbox [51] is used to build the model applying an iterative
update. For the PCA model, 1 PC is selected, since it captures most
part of the variance.

3. Compute the statistics. The statistics and their corresponding control
limits in Phase I are calculated following Equations (3.6) to (3.9) and
(3.12), which is also performed using the Big Data functionality in the
MEDA-Toolbox. Then, the Equation (4.1) is applied in Phase II for
detecting the anomalies (attacks).

The diagnosis (Step 4) is performed by applying U-Squared [195] and
oMEDA [29]. Finally, as a part of the 5-steps methodology evaluation, the
de-parsing (Step 5) is manually performed: once a set of observations is
detected as anomalous and the diagnosis signals a number of related features,
the raw records are inspected, by making queries with the constraints obtained
in the detection and the diagnosis steps.
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Standard MSNM

A standard MSNM means in this context that the data are combined into a
single matrix using a single low-level fusion [61, 67, 180]. In this scenario,
the fusion of the data from all the sensors can be performed in two different
possible configurations: i) A-fusion, X = X1 +X2 +X3 (see Fig. 8.6 (a));
and ii) C-fusion, X = [X1 X2 X3] (see Fig. 8.6 (b)). A-fusion consists in
aggregating the data by columns (features). This is performed by summing
the values of each feature and observation across the different data sources.
Thus, in the case of the UGR’16 data set, where 134 features are defined
(remember Section 8.2.2), the number of features would remain the same if
we use the A-fusion, that is, M = 134. C-fusion consists in concatenating the
data horizontally. This is performed by appending at the end of a matrix (after
the last column) the matrix corresponding to the next data source, yielding a
new matrix with the same number of observations. The number of features is
the sum of the features of all the considered data sources. Therefore, for the
C-fusion, the number of features would be M = 3×134 = 402.

These experiments also involve the evaluation of different pre-processing
approaches, including those that take into account the cyclo-stationarity of the
data. These methods are usually applied in batch MSPC and were already val-
idated in Chapter 6, using process data. Thus, we select TCS and X-PARAMO
as pre-processing methods to consider the cyclo-stationarity of the data during
the evaluation with real network data. X-PARAMO is applied with the three
configurations shown in Table 8.3. These configurations are selected following
the recommendations in Chapter 6: not to apply an excessive smoothing to
avoid the information loss. In this case, the number of observations and the
pace of the data are much more higher than for industrial processes. For this
reason, we consider sizes of windows that span from seven minutes (a really
small window in this context) up to one hour (a larger but yet reasonable
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(a)

(b)

Fig. 8.6 Standard topology for (a) C-fusion and (b) A-fusion.
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window). The forgetting factor help us to control the smoothing. In this case,
λ = 0.8 only penalizes the observations most distant in time.

Setting W λ

s1 7 0.8
s2 21 0.8
s3 61 0.8

Table 8.3 Configuration settings for X-PARAMO. W represents the total size of the
window (given in minutes), and λ corresponds to the forgetting factor.

Following the pre-processing methods from the BMSPC requires:

1. Transforming the data from two to three dimensions. This process
yields a 1440x134x70 matrix, where 70 are the number of collected
days, 1440 are the minutes in a single day, and 134 is the number of
features (note that this does not changes in relation to the two-way
matrix).

2. Pre-processing the three-dimensional data using the two selected meth-
ods and corresponding configurations.

3. Unfolding the data in a variable-wise mode. Note that this unfolding
does not change the original arrangement of the data, since the N
observations still correspond to the sampling time points. We discard
batch-wise unfolding due to the extremely high number of observations
of these data, which would lead to a 70x192.960 matrix.

Hierarchical MSNM

The hierarchical fusion of the data implies a number of benefits: the reduction
in the volume of traffic towards the monitoring system, the scalability of the
architecture, and a higher level of privacy of the monitoring approach [129].
At the same time, it maintains the main advantages of the C-fusion: the
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location of the source of the IT alerts thanks to the diagnosis. An important
concern when applying this approach is whether the performance is reduced
in relation to the standard MSNM due to the effect of the different layers
imposed by the hierarchy. To study the hierarchical MSNM, four different
scenarios are investigated. The main differences among them are: the number
of layers in the hierarchy; the position of the sensors to collect the data and
build the models; and the way of creating the data matrix to build the models
on each layer. For the model building, the MSPC Phase I is applied: the data
are first pre-processed, then the PCA model is applied and, finally, the outliers
are treated properly.

Scenario I (H1). This scenario has two layers: a ground layer, correspond-
ing to the virtual routers and their individual sensors (leaf sensors), and a
top layer, corresponding to the level where the statistics to be monitored are
computed. Here, a different model is computed on each of the leaf sensors.
Then, the statistics are also computed in these sensors, and they are sent to
the top layer to be concatenated in a matrix, X = [Q1 D1 Q2 D2 Q3 D3]. The
result is an Nx6 matrix, which is used to build the model in the top layer
(see Fig. 8.7 (a)). The fusion performed by the integrator at the top layer is a
high-level fusion [61, 180], since it fuses the statistics, which are the output
of the sensors.

A second layer is added to the hierarchy with the aim of evaluating this
type of fusion with additional layers and for different organizations of the
routers. We decided to include this additional layer to fuse two of the virtual
routers. Then, in the top layer, the statistics resulting of this layer are combined
with those obtained for the router not combined yet. Thus, we obtain three
different scenarios by interchanging the different routers so that all of them
are considered in each of the possible situations and we can study the effect
of the different organizations in the performance of anomaly detection. These
scenarios are described in the following paragraphs.



8.2 Materials and Methods 197

(a) (b)

(c) (d)

Fig. 8.7 Hierarchical topologies (a) H1, (b) H2, (c) H3, and (d) H4.

Scenario II (H2). This scenario has three layers: a ground layer, corre-
sponding to the virtual routers and their individual sensors (leaf sensors),
a second layer, where an intermediate sensor collects data from VR1 and
VR3, and a top layer, corresponding to the layer where the statistics to be
monitored are computed. An individual model is built for VR1, and the cor-
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responding statistics are computed (Q1 and D1). These statistics, together
with the observations for the features in VR3 are integrated in the second
layer, yielding X13 = [Q1 D1 X3], which is an Nx(2+M) matrix. The fusion
performed by the integrator in the second layer is a combination of low- and
high-level fusion [61, 180], since it fuses the statistics (which are the output
of the sensor in VR1, high-level) with the features in VR3, low-level. We
call this combination hybrid-fusion. A new model is built from X13, and
the statistics are also computed. An individual model is also built in the leaf
sensor for VR2. Then, the corresponding statistics are computed (Q2 and D2).
These statistics, together with the statistics computed for the second layer,
Q13 and D13, are collected at the top layer, yielding X = [Q13 D13 Q2 D2],
which is an Nx4 matrix. Finally, at the top layer, a model is built from X
(see Fig. 8.7 (b)). The fusion performed by the integrator at the top layer is a
high-level fusion [61, 180], since it fuses the statistics, which are the output
of the sensors.

Scenario III (H3). This scenario is the same as H2, interchanging VR2 and
VR3 (see Fig. 8.7 (c)).

Scenario IV (H4). This scenario is the same as H2, interchanging VR2 and
VR1 (see Fig. 8.7 (d)).

Since the effect of TCS and PARAMO has already been evaluated in
Section 6.7, and there are no attacks affecting the cyclo-stationarity in the
UGR’16 dataset, in this part of the chapter the pre-processing is performed
with AS. The same applies to the diagnosis methods, which are evaluated in
Chapter 7. Thus, U-Squared is applied to simplify the diagnosis. Note that,
for the hierarchical approach, the diagnosis allows us to identify and prioritize
the data source where an anomaly was originated. This is an added value to
the original functionality of the diagnosis, which enables the identification of
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the topological location of the abnormal variables for a given anomaly, thus
helping to discover the root cause of the anomaly.

8.3 Results for Standard MSNM

Detection (Step 3). As a first part in the study, an evaluation of the general
detection capacity of the monitoring variants is performed, which is assessed
using the ROC curves and the AUC. Fig. 8.8 represents the ROC curves for
the different standard fusions: A and C, applying different pre-processing
methods: AS, TCS, and X-PARAMO with the configurations shown in Ta-
ble 8.3 (XPA-s1, XPA-s2, XPA-s3). All the evaluated alternatives present a
high performance (AUC ≥ 0.93). Furthermore, it can be observed that TCS
and PARAMO present an equivalent AUC to the auto-scaling (the reference
method). Finally, we can observe that the C-fusion shows a greater AUC
than the A-fusion. This difference may be caused by the existing correlation
between the features in the different sensors, which is captured by the model
in C-fusion, but it is missed when using A-fusion.

As a second part of the study, the aforementioned alternatives are analyzed
to assess the individual performance considering the type of attack. Fig. 8.9
shows the AUC grouped by attack type. It can be observed that the scan44
is almost perfectly detected by all the evaluated alternatives. The DoS is the
most difficult attack to detect, specially for the A-fusion methods. However,
the performance is still AUC ≈ 0.9 for this attack.

Diagnosis (Step 4). After the detection step, the anomalous observations
that correspond to the attacks in the test dataset are diagnosed. As an example,
Fig. 8.10 shows the U-Squared diagnosis for one sample of every attack type.
We can observe that for the DoS and the Botnet attacks (Fig. 8.10 (a) and (d),
respectively) some features are clearly signaled and the diagnosis is simple.
However, for the two scan attacks (Fig. 8.10 (b) and (c)), identifying a clear
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Fig. 8.8 ROC curves and AUCs for the standard fusion (a) C and (b) A.

number of variables is challenging3. In such cases, we recommended sorting

3Note that, for Scan44, the variables that are highlighted correspond to VR1. However, the
attack affects both VR1 and VR2 (recall Table 8.2). This does not means that the anomalies
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Fig. 8.9 AUC grouped by attack for the standard fusion (a) C and (b) A.

the variables according to their absolute value and in descending order as

are not diagnosed in VR2, this means that VR1 should be prioritized in relation to VR2, since
the magnitude of the anomaly is higher in VR1.
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Fig. 8.10 U-Squared diagnosis applying C-fusion for (a) DoS, (b) Scan11, (c)
Scan44, and (d) Botnet.

displayed in Fig. 8.11 and then to select those that are before the ’knee’ of the
plot.

We also compare in Tables 8.4 and 8.5 the most relevant features for
the attacks after the diagnosis in A- and C-fusion for the U-Squared and
oMEDA. Features in both tables are selected following the aforementioned
’knee’ criterion. The diagnosis for all the attacks but the DoS in Table 8.5
are coherent with what we expected. We find surprising that telnet traffic
is the most relevant variable for the Denial of Service (DoS) attack signaled
for both diagnosis methods, since this feature is not specially related to this
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Fig. 8.11 Sorted U-Squared diagnosis applying C-fusion for (a) Scan11 and (c)
Scan44. It is useful to select those features before the ’knee’.
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DoS attack. For this reason, we tried to go deeper in the research of this
attack, by investigating the raw data. Visualizing the telnet flows from X
and test we observed that, indeed, there is a generalized increase in this type
of traffic during the month of the capture for the test data. This anomaly is
much more evident in VR2. Thus, the diagnosis is actually correct and the
methods allow to detect an unexpected anomaly, which is clearly prioritized
in the case of U-Squared, since the magnitude of this anomaly is higher than
the magnitude of our controlled attacks. When oMEDA is applied for the
botnet there are some features that are signaled but do not correspond to such
attack (denoted with ’**’): dport_dns, protocol_udp and sport_dns. We
have investigated them and all show a lower value than in the calibration data,
which explains that oMEDA signals them as anomalous.

Attack U-Squared oMEDA

DoS sport_telnet* sport_telnet*, sport_http, dport_http

Scan11 dport_kpasswd, sport_telnet*, sport_telnet*, dport_citrix,
dport_gopher, dport_citrix dport_msnmessenger

dport_msnmessenger
Scan44 dport_kpasswd, dport_gopher, dport_citrix, dport_msnmessenger,

dport_citrix, dport_msnmessenger dport_register,dport_kpasswd
Botnet dport_irc, sport_irc, dport_irc, dport_dns**, protocol_udp**,

sport_dns**, sport_irc

Table 8.4 Diagnosis for A-fusion applying U-Squared (univariate) and oMEDA
(multivariate). Only the features with the highest value are displayed. Incorrect
diagnosis are underlined. The ’*’ denotes that this is not considered an incorrect
diagnosis, since we previously verified that, indeed there exists anomalous telnet
traffic in the background. The same applies for ’**’

Table 8.5 shows the results for the diagnosis after applying C-fusion. The
Scan44 attack is detected by oMEDA in VR2 while U-Squared signals VR1
for the C-fusion. Both methods provide a diagnosis that is partially correct,
since the attack takes place both in VR1 and VR2. The main feature for the
Botnet attack, the IRC traffic, is signaled properly by both diagnosis methods.
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Besides, U-Squared identifies the two sources of the anomaly, VR1 and VR2.
However, oMEDA only identifies the features from VR2 and also signals other
features from VR3 (remember that there are no attacks coming from VR3).
We think that this may be caused by the smearing effect. Note that U-Squared
also signals dport_telnetVR3 as anomalous (this is marked with an ’*’ in
Table 8.5). However, this is not considered an incorrect diagnosis, since we
previously verified that, indeed, there exists anomalous telnet traffic in the
background.

Attack U-Squared oMEDA

DoS sport_telnetVR2* tcpflags_RSTVR2, sport_telnetVR2*,
sport_httpVR2, dport_httpVR2

Scan11 sport_telnetVR2*, dport_kpasswdVR2, dport_registerVR2, dport_citrixVR2,
dport_gopherVR2 tcpflags_RSTVR2,sport_registerVR2

Scan44 sport_kpasswdVR1, dport_kpasswdVR1 dport_citrixVR2, dport_registerVR2,
sport_quoteVR1 dport_msnmessengerVR2, sport_registerVR2

Botnet dport_ircVR2, dport_ircVR1, sport_ircVR2, dport_ircVR2

Table 8.5 Diagnosis for C-fusion applying U-Squared (univariate) and oMEDA
(multivariate). Only the features with the highest value are displayed. The ’*’
denotes that this is not considered an incorrect diagnosis, since we previously verified
that, indeed there exists anomalous telnet traffic in the background.

De-Parsing (Step 5). Finally, looking into the raw records, a deeper analysis
was performed by using nfdump for querying the raw data. Let us take as
an example the diagnosis of the botnet attack. One of the first things to be
checked is whether there exist differences between a day with a botnet attack
and a day free of attacks or not. To do this, we apply the following nfdump
commands:
nfdump −R

nfcapd.201607280000 : nfcapd.201607282359
−s ip ′src port 6667 or dst port 6667′

for a normal day (the 28th of July).



206 MSNM Extensions Applied to Real Data

nfdump −R nfcapd.201608100000 : nfcapd.201608102359
−s ip ′src port 6667 or dst port 6667′

for a day affected by the botnet. In both cases, source and destination ports
are filtered by port 6667, which in this case corresponds to the IRC port.
The results confirmed that there was an abnormal increase in the IRC traffic
at 2016/07/28−00 : 00. Then, a manual de-parsing was carried out by
performing similar queries, considering only those raw records corresponding
to the anomalous observations and the diagnosed variables to build the nfdump
queries. This was repeated for the rest of the days and attacks, varying the
conditions of the queries to inspect the relation between the collected data, the
diagnosed features, and the attacks.

8.4 Results for Hierarchical MSNM

Detection (Step 3). Fig. 8.12 represents the ROC for the different hier-
archical scenarios: H1 (2 layers), H2 (3 layers), H3 (3 layers) and H4 (3
layers). All the evaluated alternatives, except H4, present a high performance
(AUC ≥ 0.95). The AUC for H4 is much lower than for the rest of the scenar-
ios.

Fig. 8.13 shows the AUC grouped by attack, where it can be observed that
the scan44 is almost perfectly detected by each of the evaluated alternatives.
The botnet also present good results in all the cases. The DoS and the scan11
have an AUC ≥ 0.95 for H1 to H3, while they are difficult to detect by H4,
specially the scan11 attack, which presents poor results for this scenario.

We explore two ways to improve H4:

• Creating the model for the second layer from the statistics, instead
of using the variables from VR3, see Fig. 8.14 (a) and compare with
Fig. 8.7 (d). This means that X23 = [QV R2 DV R2 QV R3 DV R3].
The top layer is built in the same way as we did for H4: the statistics
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Fig. 8.12 ROC curves for the hierarchical fusion.
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from the second layer are concatenated with the statistics calculated in
VR1. Then, the PCA model is created. This scenario is called H4b.

• Weighting the features using block scaling (see Fig. 8.14 (b)): for the
second layer, each of the statistics of VR2 are weighted after the pre-
processing with a 0.5 factor, while the variables of VR3 are weighted
with a 1/M factor. Thus, we have two blocks: one for VR2, and
another for VR3, which are equally weighted. Thus, each branch of the
hierarchy has the same importance for the model building in the top
layer of the hierarchy. This scenario is called H4c.

(a) (b)

Fig. 8.14 Hierarchical topologies (a) H4b and (b) H4c.

Fig. 8.15 shows that both H4b and H4c have a detection performance
similar to those obtained for the rest of the hierarchical scenarios. Results for
H4c are somewhat better than for H4b due to the weighting. Unfortunately,
applying solutions similar to H4b an H4c to the other scenarios (H2 and H3)
largely degrades performance in H3. This deserves further study.
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Diagnosis (Step 4). After the detection step, the anomalous observations
that correspond to the attacks in the test dataset are diagnosed. Table 8.6
show the most relevant features for these attacks after the diagnosis at the top
layer of the hierarchy. These results are, in general terms, correct in terms
of identifying the true location of the attack. DoS and Scan11 attacks are
properly fdetected in VR2. H1 and H2 only signal the botnet in VR2, which
is an incomplete diagnosis (VR1 is also affected by the botnet). Yet, this is
useful to prioritize the alarms: the operators should investigate (and probably
solve) first VR2. Finally, it can observed that the diagnosis is also correct for
the scan44 attack. However, in H1 only VR1 is signaled, although the attack
takes place also in VR2.

Attack H1 H2 H3 H4b H4c

DoS QVR2 QVR2 QVR12 QVR23, DVR23 QVR23, DVR23
Scan11 QVR2 QVR2 QVR12 QVR23, DVR23 DVR23, QVR23
Scan44 QVR1 QVR13 QVR12 QVR1, DVR23,

DVR23, QVR23 QVR23, QVR1
Botnet QVR2 QVR2 QVR12 QVR1, QVR23, DVR23,

DVR23 QVR23, QVR1

Table 8.6 Diagnosis for the hierarchical fusion applying U-Squared at the top layer.

Next step is to propagate the diagnosis to low layers according to the
diagnosis in the top layer. Table 8.7 shows the diagnosis for the second
layer, while Table 8.8 represents the diagnosis for the ground layer. The
single routers are diagnosed in the ground layer for the corresponding attacks.
For the second layer, the diagnosis is not applied when the result in the top
layer signals a leaf router (e.g. VR2) and not a branch (e.g. VR13), since
this diagnosis corresponds to the ground layer. When the diagnosis is not
performed, it is represented with a ’-’. The leaf routers signaled are correct
for all the attacks. Note also that H3 prioritizes VR2 for the botnet attack,
signaling the IRC features. Once the virtual routers are signaled, the diagnosis
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is performed in the same way as we did before (for the standard fusion of the
data), yielding congruent results with those obtained in such part.

Attack H2 H3 H4b H4c

DoS - sport_telnetVR2* QVR2 QVR2

Scan11 - sport_telnetVR2*, dport_kpasswdVR2, dport_gopherVR2 QVR2 QVR2

Scan44 - QVR1 QVR2 QVR2

Botnet - dport_ircVR2, sport_ircVR2 QVR2 QVR2

Table 8.7 Diagnosis for the hierarchical fusion applying U-Squared at the second
layer. When this diagnosis does not apply, it is signaled with ’-’.

Attack VR1 VR2 VR3

DoS - sport_telnetVR2* -
Scan11 - sport_telnetVR2*, dport_kpasswdVR2, -

dport_gopherVR2
Scan44 sport_kpasswdVR1, dport_kpasswdVR1, dport_kpasswdVR2, dportdport_gopherVR2, -

sport_quoteVR1, sport_snmpVR1, dport_emuleVR2, dport_msnmessengerVR2,
sport_discardVR1, dport_syslogVR2, sport_kpasswdVR1

sport_ftp_dataVR1
Botnet dport_ircVR1, sport_ircVR1 dport_ircVR2, sport_ircVR2 -

Table 8.8 Diagnosis for the leaf routers applying U-Squared. When this diagnosis
does not apply, it is signaled with ’-’. The ’*’ denotes that this is not considered an
incorrect diagnosis, since we previously verified that, indeed there exists anomalous
telnet traffic in the background.

The De-Parsing is omitted for this part of the evaluation, since there are
no differences between standard and hierarchical MSNM for this step.

8.5 Comparison of Hierarchical and Standard Approaches

Fig. 8.16 compares the standard and the hierarchical fusions, showing that both
types of union of the data have an equivalent performance. Applying the C and
the H* fusions enables the identification of the source of the anomaly, as well
as the consideration of the correlations between the data sources. However,
the model is more complex for C than for H*, which is more evident as the
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number of data sources increases, being this the main inconvenience for the
C-fusion (see Appendix D). In general, the hierarchical union of the data
shows the following benefits:

• Maintaining the C-fusion advantages: identification of the source and/or
location of the anomaly.

• Volume and time consumption reduction of the data needed for the
monitoring. The hierarchical fusion yields a higher number of models
with lower number of features than the standard fusion, which is more
efficient in terms of resources used (see Appendix ??).

• Scalability, since a higher number of sources can be added to the archi-
tecture of the hierarchy, yielding more possible scenarios.

• Privacy, since it is not needed to send the features to the integrator (that
might be external to the organization). Instead, a high-level fusion can
be performed so that sensitive data are not disclosed (e.g. sending the
statistics to the integrator).

Thus, considering the good performance of H* models and their advantages,
we believe these models deserve further research.

8.6 Conclusions

This chapter presents the evaluation of MSNM with real network data follow-
ing two alternatives for the standard fusion of the data: the first alternative
(A-fusion) aggregates the features of different sensors in a single matrix, re-
ducing the dimensionality and simplifying the model building; the second
alternative (C-fusion) concatenates the features collected from different sen-
sors, enriching the model due to the consideration of the correlation of the
variables between the sensors. Both A- and C-fusion present a high capability



8.6 Conclusions 213

of anomaly detection in the UGR’16 dataset, with an AUC higher than 0.9 in
all the cases. The C-fusion alternative shows as a main benefit the capability
of identifying the location of the anomaly, while for the A-fusion approach
the greatest advantage is its technical performance related to volume and time
consumption due to the lower number of features. However, the A-fusion
alternative cannot distinguish the location of the anomaly.

In the experiments shown in this chapter, the MSNM extensions for the
pre-processing have a performance comparable with the AS. It still remains
an open task to design and introduce more challenging attacks that might be
undetected by some of the methods, so that we can assess the real performance
of the detection methods more comprehensively.

The diagnosis helps to discover the causes of an anomaly. The experiments
with real data have confirmed that U-Squared enhances the diagnosis, thus
contributing to solve the smearing problem and reducing the complexity of
the diagnosis. This also helps us to focus on the most relevant features to
prioritize the search of the root causes of the anomaly.

Different scenarios are studied for the hierarchical fusion of the data.
The first case of study has two layers: ground and top layer (H1); while
the rest of the scenarios have three layers: ground, second and top layer
(H2 to H4). These scenarios are evaluated to study the effect of applying
different organizations of the routers to the same architecture (H2 to H4). The
results are comparable to those obtained for the standard fusion of the data (in
terms of the AUC), except for some cases that deserve further study.
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Conclusions





9
Conclusions

“Success is to love yourself, love what you do, and love how do you do.”
Maya Angelou, American writer, poet, singer and civil rights activist

“We can only see little of the future, but enough to realize that there is much
to do.”

Alan Turing, Mathematician and Logician
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The core of this PhD is Multivariate Statistical Network Monitoring
(MSNM), which is grounded on two pillars: on the one hand, from the
IT Security arena, Network Security Monitoring (NSM); on the other hand,
from the industrial processing arena, Multivariate Statistical Process Con-
trol (MSPC). Since MSNM was proposed almost five years ago, there have
been a number of extensions of the methodology, either improving any of the
steps [40, 129, 192, 195] or including new steps that add functionalities to
the original proposal [33, 36]. These extensions can be used together, thus
enhancing the performance of MSNM. This PhD work includes some of
these extensions, such as [36, 40]. More precisely, the two main contributions
presented in this work are also MSNM extensions:

• A pre-processing approach for the batch MSPC or cyclo-stationary
MSNM that considers more observations to obtain the pre-processing
parameters: PARAmeters from More Observations (PARAMO). This ap-
proach improves the capability of anomaly detection of the monitoring
system [192].

• A univariate diagnosis method to enhance the diagnosis: Univariate
Squared (U-Squared). This method reduces the complexity of the di-
agnosis, improving the prioritization of the anomalies, which is one of
the main problems for IT security teams. It also contributes to solve the
smearing problem, which is well known in the context of the MSPC
diagnosis.
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Additionally, a methodology for the comparison of diagnosis methods is
proposed. This methodology i) generates anomalies with known diagnosis,
ii) defines a metric for the evaluation of the performance of the diagnosis
methods, and iii) considers the factors affecting the diagnosis for the design
of experiments. These requirements are applied following a Monte Carlo
procedure, yielding low uncertainty results that, in combination with ANOVA,
allow to compare the diagnosis methods in an accurate way.

Tables 9.1 and 9.2 summarize the objectives of this thesis. The goal of
this PhD was to deal with the main research problems related to the detection
and diagnosis of incidents in network security by applying multivariate data
analysis. Table 9.1 shows the individual objectives that were defined to achieve
this goal, while Table 9.2 presents some additional specific objectives also
defined as a part of the research plan for this PhD.

Objective Description

MO1 To design methods or algorithms for anomaly detection
based in multivariate analysis.
These methods should reduce the number of false alarms
and allow the detection of zero-day attacks.

MO2 To design methods or algorithms
for the accurate diagnosis of anomalies.

Table 9.1 Main objectives (MO).

The main conclusions of this PhD work have been detailed individually
in the corresponding chapters. This chapter groups all these conclusions,
providing the reader with a global vision about the results obtained during
the research work. Finally, new lines of research derived from this thesis are
proposed at the end of the chapter.
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Objective Description

SO1 To evaluate the proposed techniques for
anomaly detection and diagnosis, which implies
the comparison with the state-of-the-art methods.

SO2 To apply the proposed techniques to real network data.

Table 9.2 Secondary Objectives (SO).

9.1 Conclusions

This research work tackles a number of open points in cybersecurity, more
precisely, in NSM:

1) The improvement in the capability of anomaly detection. The goal is to
increase the sensitivity and the quality of a monitoring system to detect
new anomalies without increasing the number of false positives.

2) The prioritization and interpretation of anomalies or events in a given
time frame. This is also a way to mitigate the occurrence of false
positives. The goal is to reduce the work load for security operators,
and a visualization is worth a thousand words.

This work also deals with some relevant issues related to MSPC, con-
tributing at the same time to solve some of the aforementioned open points in
NSM:

3) The uncertainty in the pre-processing parameters [91, 92].

4) The enhancement of the capability of fault detection. The uncertainty
may affect the quality of the monitoring system [91, 92].

5) The smearing effect in the diagnosis. This problem makes the diagnosis
more complicated, since the variables signaled as anomalous might not
be actually contaminated [114, 212].
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In this context, PARAMO is presented as a pre-processing approach al-
ternative to the reference method in the literature, Trajectory Centering and
Scaling (TCS) [149]. This proposal contributes to solve points 3) and 4) in
BMSPC, and also 1) in NSM; thus covering one of the main goals of this
thesis (MO1) and one secondary objective (SO1). U-Squared is proposed as a
univariate alternative for the diagnosis, tackling point 5) in MSPC, and 2) in
NSM. This proposal covers the other main goal of the PhD (MO2), and also
the other secondary objective (SO1).

• PARAMO uses more observations than TCS to obtain the pre-processing
parameters, reducing the uncertainty of the pre-processing parameters.

• The reduction in the uncertainty makes the model to be more stable,
which permits an increase of the capability for anomaly detection,
reducing the number of non-detected faults. This enhances the quality
of the monitoring system.

• U-Squared consists in applying observation-based Missing-data method
for Exploratory Data Analysis (oMEDA) [29] in the full variable space,
instead of individually to the model and the residual sub-spaces.

• The U-Squared is a univariate method that enhances the diagnosis. One
of the reason is that it eliminates the smearing effect, since it does not
consider the correlations of the variables. This simplifies the diagnosis
process and helps the prioritization of events.

PARAMO is assessed with different data sets, which were generated by
simulating the Saccaromyces Cerevisiae process cultivation. U-Squared is
evaluated with synthetic data simulated for different correlation levels, fol-
lowing the proposed methodology in this thesis for comparing diagnosis
methods [195]. The results for U-Squared are also validated with two inde-
pendent data sets corresponding to i) a virtual communications network and
ii) the simulation of the Saccaromyces Cerevisiae process cultivation.
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Both PARAMO and U-Squared are also validated with real network data,
thus achieving the secondary objective SO2. The UGR’16 dataset [130] is used
in this evaluation. MSNM is applied over two alternatives for the standard
organization of the data: i) by concatenating the features of the different data
sources in a single matrix (C-fusion), and ii) by aggregating all the extracted
features from different data sources in a single matrix (A-fusion). The goal
was to study the effect of applying PARAMO as a pre-processing approach
on these two different alternatives, since PARAMO takes into account the
cyclo-stationarity of the data. Another goal of this evaluation was to compare
U-Squared with a multivariate method (oMEDA) for the diagnosis. The
conclusions derived from this part are:

• A-fusion allows simplifying the fusion but not identifying the location of
the anomaly. On the contrary, C-fusion allows to distinguish the location
of the anomaly but it needs more technical resources (e.g. computational
time) than the A-fusion due to the high number of features considered in
this type of fusion. C-fusion also reduces model stability. C-fusion can
be applied to combine different types of data sources while A-fusion is
restricted to the same type.

• eXponential PARAMO (X-PARAMO) provides similar results to Auto-
Scaling (AS). The main advantage of X-PARAMO over AS is that
X-PARAMO show better performance to detect anomalies affecting the
cyclo-stationarity of the data.

• U-Squared enhances the diagnosis, reducing the complexity of the
diagnosis and helping the prioritization in the search of the root causes
of an anomaly. This allows to perform an easy and quick diagnosis.

In this research work, the hierarchical fusion for the MSNM methodol-
ogy [129] is evaluated for the first time with real network data, using the
UGR’16 dataset [130] (SO2). Four hierarchical scenarios are assessed to
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study the effect of the different organizations of the data in this type of fusion.
The hierarchical approach shows the following benefits over the standard
approaches: C-fusion advantages are maintained (identification of the location
of the anomaly), volume and time consumption reduction of the data needed
for the monitoring, scalable architecture, and privacy increasing.

The diagnosis for a hierarchical fusion starts at the top level, helping
operators to locate the anomaly. At the ground level (and sometimes in the
intermediate levels), the diagnosis helps to discover the causes of an anomaly
by identifying the most relevant features involved in such anomaly. In this
study, the U-Squared is applied to enhance the diagnosis.

In summary, this PhD provides a general insight in the MSNM methodol-
ogy: from the basis in cybersecurity and industrial process control to the most
recent extensions for MSNM presented as main contributions of the thesis.
The proposals are evaluated both with simulated data and real network data.
In addition, these proposals are also validated for the two fields of applica-
tion: network security monitoring and industrial process control. Although
the hierarchical organization is not a contribution of this thesis per se, it is
applied for the first time to real network data. In addition, its evaluation under
different scenarios allows to identify the correlation problems that may appear
depending on the distribution of the sensors.

9.2 Future Work

Applying PARAMO to the pre-processing provides similar performance to
auto-scaling on real network data. The benefits of its application in fault
detection when the faults affect the cyclo-stationarity of chemical data are also
shown. Since all the methods provide similar performance in the real network
data for the existing attacks, we hypothesize that the evaluation of more
complex attacks may show a superior performance of 3-way pre-processing
approaches. To evaluate the real profit of PARAMO in real network data,
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it is needed to design and introduce new attacks breaking the normal time-
model. Take as an example, sending SPAM e-mails in a low rate for several
consecutive days at unusual times of the day. This behavior usually might not
generate anomalous events for auto-scaled models. However, pre-processing
with PARAMO may allow detecting small deviations of the data from the
average of each specific time of the day. Thus, the number of true positives can
be increased for this type of attacks, at the same time that the rest of attacks
is still detected. We leave as future research work the tasks of designing and
introducing attacks affecting the normal time-model in the UGR’16, as well
as evaluating the effect of applying PARAMO when there exist such attacks.

Designing a good hierarchical scheme needs to take into account the
existing correlations in a proper manner. The organization of the sensors
may affect the correlation of the data and, thus, the capability of anomaly
detection of the monitoring system. A future research work is to study the
optimal distribution to define the hierarchical schemes and the number of
layers used to build the hierarchy. In addition, one of the alternatives proposed
to deal with the problems derived of the distribution of the sensors is to weight
each branch in the hierarchy tree. This allows to balance the importance of
each block in the model, which is more relevant when we combine features
obtained from the raw data and statistics already computed in another layer
in the hierarchy. Another possibility is applying high-level fusion in all the
layers of the hierarchy and also weighting the branches. The way of selecting
the weights, as well as to study their effect in different hierarchical scenarios
is also a new line of research.

Finally, there have been extensions of MSNM for each of the steps except
for the parsing (Step 1). Thus, the proposal of alternatives for the parsing step
of the MSNM methodology still remains an open problem.
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“No TV and no beer make Homer go crazy.”

Homer, The Simpsons (originally from Jack Torrance, The Shining, 1980)

A
List of Acronyms

ANOVA ANalysis Of VAriance

AOC Abnormal Operation Condition

AS Auto-Scaling

AUC Area Under the Curve

BMSPC Batch MSPC

CL Control Limit

CP Contribution Plots
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CERT Computer Emergency Response Team

CISO Chief Information Security Officer

CSIRT Computer Security Incident Response Team

CVE Common Vulnerabilities and Exposures

DM Data Mining

DD Data-Driven

DDoS Distributed Denial of Service

DoS Denial of Service

EDA Exploratory Data Analysis

EWMA Exponentially Weighted Moving Average

EWMW Exponentially Weighted Moving Window

FIM File Integrity Monitoring

GUI Graphical User Interface

HIDS Host IDS

IDMEF Intrusion Detection Message Exchange Format

IDS Intrusion Detection System

INCIBE Instituto Nacional de Ciberseguridad

IP Internet Protocol

IPS Intrusion Prevention System

ISP Internet Server Provider
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IT Information Technology

KNN K-nearest neighbors

LSD Least Significant Difference

MBDA Multivariate Big Data Analysis

MEDA Multivariate Exploratory Data Analysis

ML Machine Learning

MSNM Multivariate Statistical Network Monitoring

MSPC Multivariate Statistical Process Control

MVBatch MultiVariate Batch

NIDS Network IDS

NIST National Institute of Standards and Technology

NOC Normal Operation Condition

NSM Network Security Monitoring

NSD Normalized Squared Difference

NTP Network Time Protocol

NVD National Vulnerability Database

oMEDA observation-based Missing-data method for Exploratory Data Anal-
ysis

OSSEC Open Source HIDS SECurity

OSI Open Systems Interconnection
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OSSIM Open Source Security Information Management

OTI Overall Type I

OTII Overall Type II

PARAMO PARAmeters from More Observations

PC Principal Component

PCA Principal Component Analysis

PLS Partial Least Squares

RADAF RAw DAta Filtering

RBC Reconstruction-Based Contributions

RGTW Relaxed Greedy Time Warping

ROP Ratio number-of-Observations-to-the-number-of-Parameters

ROC Receiver Operating Characteristics

SEM Security Event Management

SIEM Security Information and Event Management

SIM Security Information Management

SME Small and Medium-sized Enterprise

SNMP Simple Network Management Packet

SPC Statistical Process Control

SSR Sum of Squared Residuals

SVM Support Vector Machines



251

SVD Singular Value Decomposition

TCP Transmission Control Protocol

TCS Trajectory Centering and Scaling

UBA User Behavior Analytics

UCL Upper Control Limit

UDP User Datagram Protocol

U-PARAMO Uniform PARAMO

U-RADAF Uniform RADAF

U-Squared Univariate Squared

UTM Universal Threat Management

UWMW Uniformly Weighted Moving Window

VCS Variable Centering and Scaling

VR Virtual Router

X-PARAMO eXponential PARAMO

X-RADAF eXponential RADAF





“Nothing in life is to be feared, it is only to be understood.
Now is the time to understand more, so that we may fear
less.”

Marie Curie, Nobel Prize in Physics in 1903

B
Related Terms

This appendix presents a compilation of some useful definitions that can be
found in the related literature. These terms will help to an easier reading by
having the same concepts in mind.

Threat. A threat is any situation or event that may damage a system or
network. This refers to unveiling, destroying, modifying or denying the access
to the data or services [16]. A threat that comes true is termed an attack.

Asset. An asset is any valuable element in a given framework. In IT Secu-
rity, it can refer to machines or physical resources, to certain information or
intellectual property, and also prestige or reputation. The value of an asset can
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be estimated as the time and resources needed (cost) for replacement or for
returning the asset to its original state [19, 82].

Security Operator. A security operator is a person in charge of adminis-
tering and monitoring the security system in an organization, while a security
analyst is in charge of analyzing and discovering vulnerabilities and risks in
the organization. Both security operators and analysts are usually interchange-
able terms, and they are people who take part of the security team.

Chief Information Security Officer (CISO). A CISO is a person who
has the highest responsibility in relation to IT Security of an organization.
Some of the tasks corresponding to the CISO are supervise the planning and
deployment of everything related to the information security, including the
definition of security policies and the design of infrastructures for supporting
the prevention, detection and response of any IT Security issue.

Security Team. Security Team are people in charge of the security of an
organization, including both security analysts and operators. See also CERT.

Computer Emergency Response Team (CERT). CERTs are groups of se-
curity specialists that aim to detect and respond to cybersecurity incidents,
warning and/or advising the rest of the citizens and organizations about them.
CERTs are typically dependant either on governmental organizations or pri-
vate big companies [72, 184]. The CSIRTs are frequently considered to be
equivalent to the CERTs. However, they are usually more focused in detection
and response, rather than in prevention [169, 185]. A list with the European
CERT and CSIRT entities can be found in [73].
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Vulnerability. A vulnerability is an asset that could lead to its unauthorized
exploitation. A vulnerability may exist due to a bad design, implementation
or even for intentional reasons [16, 19].

Asset. An asset is any valuable element in a given framework. In IT Secu-
rity, it can refer to machines or physical resources, to certain information or
intellectual property, and also prestige or reputation. The value of an asset can
be estimated as the time and resources needed (cost) for replacement or for
returning the asset to its original state [19, 82].

Risk. A risk is the probability of suffering any damage or lost. Its value can
be considered a combination of the threat, vulnerability and relevance of the
asset [19, 82].

IT Security Event. An IT Security event in a system or network refers to
any undesired situation or modification in the system or network that occurs
for a period of time and that is susceptible to be detected by the security
system. If the event is detected, this usually generates an alert, which is
recorded as an individual log as a part of a file or database.

Prioritization. This is also known as triage and it allows to determine the
order in which the events are analyzed and/or solved. Prioritization is based
on one or more criteria. These criteria may be, for example, the impact or the
magnitude of the alert.

(IT Security) Incident. An IT security incident happens when the IT Se-
curity of an organization or company, of an organization or company is
compromised due to any reason, violating any of the IT Security require-
ments [16, 218]. One of the best known IT Security incidents are the in-
trusions, which aim is just to compromise the confidentiality, integrity or
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availability of a resource, as well as avoiding the security mechanisms in a
network or system [16, 20, 218].

Data Breach. A data breach is a type of security incident that occurs when
someone accesses and extracts personal or confidential information without
any authorization [183, 199].

Malware. Malware refers to any type of software that is built with the
aim of damaging any device (e.g. computer or telephone). It is used with
different purposes, such as stealing information or denying access to legitimate
users [15, 133].

Correlation. In the context of IT Security, the term correlation means
finding connections among distinct data sources or IT Security events, rather
than being used with the traditional statistical meaning.

Zero-Day Attack. A zero-day attack is an attack that had not been previ-
ously seen and, thus, its features and signature are not known.

Sensor. A sensor is a mechanism that collects data from the network, gen-
erating logs or records that can be analyzed by the security team. Sensors are
composed of collectors and, sometimes, processors, which allow to capture
and transform the information, respectively, prior to send it to the integrator
module. However, the most simple sensors might only be composed of a
collector module.

Integrators. Integrators combine the data collected by the sensors and
detect intrusions in them. First, the different records are correlated to extend
their semantic information, yielding good models for detection of attacks or
abnormal activities. This requires pre-processing the format of the data to be
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readable by the correlation engine. Afterwards, the detection engine detects
illegitimate network traffic by means of either a model of normal operation or
the signatures for known attacks.

Sniffer. A sniffer is a program that collects and analyzes packets in a com-
munication network.

Intrusion Detection System (IDS). Intrusion Detection Systems (IDSs)
are a set of techniques to detect suspicious activity (possible intrusions) by
monitoring and analyzing the events in a network or a device [62, 103, 218].
These are a particular type of sensor, which are composed of collector, proces-
sor and detection engine. When these systems also allow to deploy defensive
responses to the attacks, they are called IPSs.

Security Event Management (SEM). SEMs systems are in charge of "the
collection, analysis and escalation of indications and warnings to detect and
respond to intrusions" [20]. Its aim is visualize and understand traffic data by
using a single and unified tool that combines different data sources.

Security Information Management (SIM). SIM systems allow the regu-
latory compliance, analysis and notification of the events, as well as long-time
storage of such events. This makes it possible to perform forensic analysis
once an attack has taken place.

Security Information and Event Management (SIEM) . SIEM systems
are the combination of the SIM and SEM systems. Thus, the objective of
a SIEM system is to aggregate and analyze the information collected from
a number of sensors to detect, select, classify and validate incidents in a
network [112]. In addition, a SIEM system generates reports related to the
compliance of security policies, useful to pass audits. SIEM systems allow
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the visualization and prioritization of the events, thus helping the security
operators to interpret and understand the alarms [87, 103].

Universal Threat Management (UTM). This is a type of "multi-function
network security product used by small or midsize business" [86]. These
devices have high level functionalities (multi-function gateway), which can
be, for example, a firewall in the application layer of the TCP/IP and OSI
models, Intrusion Prevention and Detection (IPS and IDS), antivirus, anti-
spam and anti-phishing [32, 82, 182]. The main advantages of the UTMs are
their reduced cost and complexity, while the drawbacks are that UTMs usually
cannot correlate events.

Parsing. Parsing is the process of identifying and extracting individual
parts that compose a log to obtain a logical and organized data structure [135].

Pivoting. Pivoting refers to the ability of going from one data source to
another.

Feature Extraction. Feature extraction consists on obtaining new vari-
ables by transforming the original data records.

Observation. An observation is the set of properties or features that are
measured for an entity. The entities of interest can be disparate (e.g. time
intervals or devices).

Key Process Event. A key process event defines the moment in which
each step of a process takes place (when the step starts and ends). Key process
events usually vary from batch to batch (see Fig. 3.3 (a)).



“Shut up brain. Now I have friends, I don’t need you
anymore.”

Lisa, The Simpsons

C
Oversights on the Application of RBC

for the D-statistic

The RBC expression for the Hotelling’s T 2 is analysed here. T 2 = x′ ·DA ·x,
with DA = PA ·Λ−1

A ·P′A, is used to define the RBC expression for the D-
statistic in Alcala and Joe Qin [4], Alcala and Qin [5]. Following a similar
derivation procedure as in Camacho [28], we can define:

α̌
A
m =

A

∑
a=1

p2
m,a

Λa
(C.1)
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β̌
A
v,m =

A

∑
a=1

pv,a · pm,a

Λa
(C.2)

where pm,a is the loading of the variable m and the selected component a,
Λa is the element corresponding to the selected component a on the main
diagonal of ΛA, pv,m is the loading of variable v, and β̌v,m are the elements that
do not belong to the main diagonal of the matrix.

Let us consider now Equation (C.3) to be the expression in the D-statistic
for the variable m

im ·DA ·x = α̌
A
m · xm + ∑

v ̸=m
β̌

A
v,m · xv (C.3)

and

dm,m = i′m ·DA · im = α̌
A
m (C.4)

the element dm,m corresponding to the diagonal of the matrix DA. From
equations (7.3) and (C.4):

rbcD
m = x′ ·DA · im · (i′m ·DA · im)−1 · i′m ·DA ·x (C.5)

is the extended form of Equation (7.3) for RBC. By combining it with
Equation (C.3), it can be re-written as follows:

rbcD
m =

(α̌A
m)

2 · x2
m +∑v̸=m(β̌

A
v,m)

2 · x2
v

α̌A
m

+

2 · α̌A
m · xm ·∑v ̸=m β̌ A

v,m · xv

α̌A
m

+

2 ·∑v̸=m ∑w̸=v ̸=m β̌ A
v,m · β̌ A

w,m

α̌A
m

(C.6)
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By applying Equation (C.6) for 1 selected PC, and replacing α̌A
m and β̌ A

v,m with
Equations (C.1) and (C.2), the Equation (C.7) is obtained:

rbcD
m = ((

p2
m,1

Λ1
)2 · x2

m + ∑
v ̸=m

(
pm,1 · pv,1

Λ1
)2 · x2

v +

2 ·
p2

m,1

Λ1
· xm · ∑

v̸=m

pm,1 · pv,1

Λ1
· xv +

2 · ∑
v ̸=m

∑
w̸=v ̸=m

p2
m,1 · pv,1 · pw,1

Λ1
· xv · x′w) ·

1
p2

m,1/Λ1
(C.7)

By grouping and simplifying Equation (C.7) in Equations (C.8) and (C.9),

rbcD1PC
m =

1
Λ1
· p2

m,1 · x2
m +

1
Λ1
· ∑

v ̸=m
p2

v,1 · x2
v +

2
Λ1
· xm · ∑

v ̸=m
pm,m · pv,1 · xv +

2
Λ1
· ∑

v ̸=m
∑

w̸=v̸=m
pv,1 · pw,1 · xv · x′w (C.8)

rbcD1PC
m =

1
Λ1
·∑

v
p2

v,1 · x2
v +

2
Λ1
·∑

v
∑
w̸=v

pv,1 · pw,1 · xv · x′w =

rbcD1PC
v (C.9)

it is shown that the RBC value for the expression in the D-statistic is exactly
the same for every variable, i.e., each variable has the same contribution,
which makes, according to Equation (7.18), the ratio γ = 1. This is translated
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into a lack of diagnosis ability for RBC for the D-statistic if 1 PC is selected,
as it cannot be distinguished which variables are affected when there is an
anomaly.



“Shut up brain. Now I have friends, I don’t need you
anymore.”

Lisa, The Simpsons

D
Efficiency Calculation for Standard

and Hierarchical Fusion

We evaluate theoretically the computational cost of the hierarchical approach
in relation to the standard fusion of the data [129]. Recall that for a matrix
X of N observations by M variables, the PCA model is calculated following
Eq. (3.3). The complexity of this operation [88] is obtained from the com-
plexity of calculating the covariance matrix, O(N ·M2), and its eigenvalue
decomposition, O(M3), following:

CS = O(NM2 +M3)≈O(NM2), for N≫ 0 (D.1)
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When the calculation of the PCA model is split as explained in Chap-
ters 4 and 8 for the hierarchical approach, we are actually computing L local
PCA models, every one with M/L variables, plus one global model with L ·2
variables. For this reason, the complexity now becomes:

CH ≈ O(N
[M2

L
+L2]), for N≫ 0 (D.2)

Thus, the computation load is lower in the hierarchical than in the standard
fusion if the number of nodes involved in the computation, L, and the number
of variables considered, M, comply that M > L(1−1/L)−

1
2 ≈ L (for L≫ 0).

We can conclude that the computation needed for the algorithm is even
lower than in standard PCA when the number of sensors L is lower than
the number of variables M considered in the computation. This actually
corresponds to regular scenarios, as the number of variables is usually high in
networking environments.



“¡Todo está saliendo a pedir de Mil-
house!”

Milhouse, Los Simpsons

E
Resumen amplio en castellano
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Motivación

Un incidente de seguridad (o incidente IT, del inglés Information Tech-
nology) sucede cuando la seguridad de una organización o compañía se ve
comprometida debido a cualquier razón, violando cualquiera de los requerim-
ientos típicos de seguridad IT (Confidencialidad, Integridad, Disponibilidad,
Responsabilidad, No repudio, Autenticación y Autorización [16, 82, 218]).
Un problema importante cuando se afrontan las amenazas de seguridad de la
información es que el tiempo requerido para comprometer un sistema o red es
realmente reducido (del orden de segundos o minutos) si se compara con el
tiempo necesario para la detección y reacción frente a un ataque por parte del
personal de seguridad IT (que puede llevar desde días hasta meses) [84]. Por
eso, es muy importante reducir el tiempo de detección y respuesta. Además, el
personal de seguridad IT con frecuencia recibe más alarmas de las que puede
manejar en su jornada laboral [9, 62, 135]. En este sentido, es deseable que
los mecanismos de detección también permitan la adecuada priorización de
las alarmas. La priorización de eventos se basa en uno o más criterios, como
pueden ser la magnitud o el impacto del evento.

La seguridad de la red es una parte esencial de la ciberseguridad y la
seguridad de la información. Su objetivo es hacer que las infraestructuras de
comunicaciones cumplan con todos los requisitos de seguridad mencionados
anteriormente. Hay distintos puntos de vista para tratar la seguridad en la
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red. Según el objetivo principal que se afronta, estos enfoques se pueden
clasificar en: prevención, detección y respuesta. Dichos enfoques no son
excluyentes, al contrario, se suelen aplicar de forma conjunta para lograr una
mayor seguridad en la red [16, 19, 82]. La Fig. 1.2 (Capítulo 1) muestra la
clasificación de estos enfoques, así como algunos ejemplos de soluciones que
se pueden clasificar en esos grupos. Así, cuando hablamos sobre prevención,
algunas de las herramientas más conocidas son los cortafuegos, los antivirus
y el cifrado de datos. Por su parte, algunas de las herramientas de detec-
ción (y frecuentemente también de respuesta) más conocidas son los IDS
(del inglés, Intrusion Detection System), que permiten detectar actividades
sospechosas mediante la monitorización y análisis de los eventos de la red
o dispositivos [62, 103, 218]; y los SIEM (del inglés, Security Information
and Event Management), que permiten agregar y analizar la información
recopilada de varios sensores para detectar, seleccionar, clasificar y validar los
incidentes de una red, así como realizar informes para superar auditorías de
seguridad [112].

NSM (del inglés, Network Security Monitoring) es un enfoque que pre-
tende detectar los ataques en una red mediante la monitorización del tráfico
de dicha red [134, 218]. Esto se lleva a cabo mediante la captura, correlación
y análisis de dicho tráfico, para la detección de intrusiones [20]. En ocasiones,
NSM también implica proporcionar respuestas o tomar acciones cuando se
detecta el ataque. El objetivo de NSM es dar visibilidad a los eventos de la red.
Se puede considerar que los sistemas SIEM siguen este enfoque [19, 20, 32].

En general, el método de detección se puede agrupar en basado en firmas y
basado en detección de anomalías [68, 81, 103]. El primero identifica ataques
a partir de patrones previamente definidos. El segundo detecta desviaciones
del comportamiento normal en una red o sistema en relación a un modelo
previamente entrenado. Los sistemas basados en firmas no pueden detectar
nuevos ataques (también llamados ataques zero-day) mientras que los basados
en detección de anomalías sí podrían detectarlos. Un ataque zero-day es un
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ataque que no había sido visto antes y, por tanto, sus características y firma
son desconocidas. Los enfoques basados en detección de anomalías tienden
a generar un elevado número de (falsas) alarmas, lo que puede llegar a ser
un problema. Así, uno de los principales retos para la detección es lograr un
equilibrio entre ambas propiedades [62, 218].

Esta tesis doctoral se centra en los sistemas basados en la detección de
anomalías en el contexto de NSM. Más concretamente, el propósito de este
trabajo es impulsar los recientes desarrollos en análisis multivariante de datos
en NSM [42] y proponer alternativas para mejorar estas técnicas.

Monitorización estadística multivariante

MSPC (del inglés, Multivariate Statistical Process Control) se desarrolló
originalmente para reducir la variabilidad en los productos y/o procesos indus-
triales. El propósito de esta metodología es distinguir entre causas asignables
y causas comunes de variación en un proceso. Esencialmente, esto significa
discriminar entre eventos cuya causa es identificable y resoluble y aquellos
que se deben a un suceso normal en el proceso. Utilizar MSPC permite la
monitorización simultánea de varias variables mediante la consideración de
sus correlaciones para obtener un mejor modelo y, así, una mejor detección de
anomalías. Debido a la alta dimensionalidad de las variables en estos procesos,
es frecuente aplicar técnicas basadas en variables latentes para reducir las
dimensiones, como PCA (del inglés, Principal Component Analysis ).

PCA-MSPC permite la monitorización de un par de estadísticos comple-
mentarios que posibilitan la monitorización indirecta de un alto número de
variables. Los estadísticos se calculan a partir de la descomposición PCA de
los datos de calibración previamente pre-procesados (típicamente mediante
centrado en la media o auto-escalado) para consturir un modelo de operación
normal (fase I) [117, 150, 213]. Esta metodología se aplica para detectar si
el comportamiento de los nuevos datos encaja con el modelo previamente
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ajustado (fase II). Si no es así, indica que los datos son anómalos y que es nece-
sario llevar a cabo un paso adicional, el diagnóstico, que permite identificar
las variables que están relacionadas con la anomalía y ayuda a los analistas a
encontrar la causa real de dicha anomalía. Se pueden encontrar más detalles
sobre MSPC y PCA en el Capítulo 3 y en [42, 76, 150].

Lakhina et al. propusieron por primera vez el uso de PCA para la detección
de anomalías en tráfico de red [118]. Desde entonces, se han propuesto
varias modificaciones para resolver algunos de los problemas identificados
en dicho enfoque [26, 27, 66, 168]. En los últimos años, otros trabajos
de investigación en análisis multivariante relacionados con seguridad de la
información también han combinado PCA con otras técnicas [3, 54, 74, 109,
216]. Sin embargo, la mayoría de estos enfoques todavía mantienen parte de
los problemas descubiertos en relación al trabajo original de Lakhina et al. y
que son debidos, principalmente, a sus diferencias con respecto a la teoría de
MSPC [42]. Esto motivó el desarrollo de la metodología MSNM (del inglés,
Multivariate Statistical Network Monitoring), que es una extensión de MSPC
para la monitorización del tráfico de red, y que se introdujo en 2015 [42].

MSNM permite combinar datos de tráfico con otras fuentes de datos de
seguridad [30], y ha demostrado tener una capacidad de detección comparable
a las metodologías de aprendizaje automático del estado del arte [38], con la
ventaja de que, además, permite llevar a cabo un diagnóstico una vez detectada
la anomalía [36, 38].

Al igual que otras metodologías de aprendizaje automático, y a diferen-
cia de MSPC, MSNM necesita realizar pasos de parsing y fusión. Esto se
debe a que los datos de red proceden de registros de distintos sensores y en
distintos formatos, por lo que es necesario procesar y transformar los datos
para que tengan un formato uniforme e interpretable. Así, MSNM consta de
cuatro pasos: 1) Parsing, 2) Fusión, 3) Detección, 4) Diagnóstico. Durante
los últimos años desde su primera propuesta, metodología MSNM ha sido
extendida, proponiendo mejoras en los pasos existentes, así como añadiendo
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otros nuevos [33, 36, 40, 50, 129, 192, 195]. Todas ellas se encuentran or-
ganizadas en el esquema que se muestra en la Fig. 4.6 (Capítulo 4). Esta
tesis ha contribuido a la mayoría de estas extensiones, liderando aquellas
relacionadas con el pre-procesamiento (enfoque PARAMO - del inglés, PA-
RAmeters from More Observations) [192] y el diagnóstico (metodología de
comparación de métodos de diagnóstico y método U-Squared - del inglés,
Univariate Squared) [195], que se detallan como contribuciones principales
de esta tesis en los Capítulos 6 and 7, respectivamente. A continuación, se
describen dichas contribuciones de forma resumida.

Contribuciones

Los resultados de esta investigación han sido compartidos con la comunidad
científica mediante la participación en distintas conferencias tanto de ám-
bito internacional [94, 189, 193, 194] como nacional [131, 132, 187, 191].
Extos resultados también han sid opublicados en revistas de alto impacto
científico [36, 40, 192, 195].

Pre-procesamiento: PARAMO

El pre-procesamiento es esencial para construir un buen modelo de calibración
en MSNM. Es importante centrar los datos para detectar desviaciones re-
specto a la media. Además, escalar los datos de red también es necesario
porque, en general, estos datos son heterogéneos, ya que proceden de distitas
fuentes y presentan distintos formatos, así como las variables suelen presentar
dispersiones muy distintas entre sí.

Los procesos por lotes son un tipo especial de procesos industriales muy
importantes para distintas áreas [148–150]. Un lote se refiere a un proceso
compuesto de distintas fases y pasos que se repiten de manera cíclica, de forma
similar a como lo hace una receta de cocina [52]. El tráfico de red también se
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caracteriza por la presencia de ciclos en su actividad. Esta particularidad se
denomina ciclo-estacionariedad [52, 115, 148–150]. Por ejemplo, se pueden
observar patrones similares durante el día o la noche, pero también entre días
laborables o fines de semana. Estos patrones se repiten de forma periódica
para una misma red. Para considerar la ciclo-estacionariedad de los datos en
el modelado matemático, estos se organizan en tres dimensiones: I× J×K.
Los principales métodos de pre-procesamiento en BMSPC (del inglés Batch
MSPC) son TCS (del inglés, Trajectory Centering and Scaling) [149] y VCS
(del inglés, Variable Centering and Scaling) [214]. Un problema que presenta
TCS es la incertidumbre en la estimación de las medias y, especialmente,
la de las desviaciones estándar. Esto se debe a que el número de muestras
utilizado para estimar los parámetros (medias y desviaciones) es reducido [92].
La principal ventaja de este tipo de pre-procesamiento es la posibilidad de
considerar la naturaleza cíclica de los datos de red, permitiendo construir
mejores modelos.

Dado que TCS es un enfoque más sensible para detectar variaciones de la
normalidad en el tiempo (considera la ciclo-estacionariedad) y, por tanto, más
confiable como método de detección, en el Capítulo 6, se proponen distintas
alternativas de pre-procesamiento basadas en TCS: PARAMO (del inglés,
PARAmeters from More Observations) y RADAF (del inglés, RAw DAta
Filtering). El objetivo es reducir la incertidumbre introducida durante la esti-
mación de parámetros incrementando el número de observaciones utilizadas
para dicha estimación, a la par que se mantiene la capacidad de modelar
la ciclo-estacionariedad de los datos. PARAMO calcula los parámetros de
pre-procesamiento en un instante de tiempo k considerando una serie de obser-
vaciones en torno al instante de tiempo dado, mientras que RADAF filtra los
datos originales para "suavizarlos" antes de aplicar TCS. Ambos enfoques se
basan en un esquema de ventana deslizante en el que los datos son ponderados
de una entre dos formas distintas: exponencial o uniforme. Teniendo en
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cuenta los problemas expuestos en las Secciones 6.5.1 y 6.5.2, se recomienda
la aplicación de PARAMO utilizando ventanas simétricas [192].

Para validar la propuesta, se realizó un estudio exhaustivo, comparando
primero PARAMO con RADAF y, posteriormente, PARAMO con el método
de pre-procesamiento tradicional, TCS. Para ello se llevaron a cabo varios
ANOVA (del inglés, ANalysis Of VAriance). El proceso de cultivo del Saccar-
omyces Cerevisiae se utilizó generar varios conjuntos de datos, con el objetivo
de validar la mejora de la estabilidad paramétrica así como la capacidad de
detección de fallos. El estudio comparativo reveló que PARAMO mejora
respecto a la metodología establecida para el pre-procesamiento de datos por
lotes. El trabajo completo está publicado en [192].

Diagnosis: Comparación de métodos de diagnóstico y U-Squared

Una de las acciones más importantes en los sistemas de monitorización MSPC
y MSNM es, una vez detectada una anomalía, identificar las variables rela-
cionadas con dicha anomalía. A esto se le denomina diagnóstico [117] (ver
Capítulo 7 para una revisión de la literatura relacionada). Algunos méto-
dos multivariantes de diagnóstico son CP (del inglés, Contribution Plots),
RBC (del inglés, Reconstruction Based Contributions), y oMEDA (del in-
glés, observation-based Missing-data method for Exploratory Data Analysis).
Desde una perspectiva general, los trabajos revisados introducen métodos
nuevos y proporcionan comparaciones limitadas con varios métodos de ref-
erencia. Por otra parte, los métodos de diagnóstico multivariante suelen
presentar un problema, el denominado efecto de smearing: la dispersión de la
contribución de las variables contaminadas por una anomalía a variables no
afectadas. Este problema suele llevar a un diagnóstico erróneo [114, 212], lo
que complica más aún el proceso de evaluación de la anomalía.

Una vez se produce una anomalía, la estructura de correlación en el
modelo podría dejar de ser válida para esa anomalía y, por tanto, la división
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en modelo/residuo encontrada para los datos de calibración ya no sería óptima
para el diagnóstico. Si esto ocurre, podemos pensar que no tiene sentido
calcular la contribución de las variables a cada estadístico de forma separada,
pudiendo ser más interesante considerar todo el espacio de variables para
llevar a cabo el diagnóstico. Dado que oMEDA [29] se calcula de igual
forma tanto en el subespacio del modelo como en el del residuo, se puede
extender para considerar el espacio completo de variables. Así, utilizando las
Ecuaciones (7.8) y (7.9), se obtiene la expresión (7.10), que denominamos
U-Squared (del inglés, Univariate Squared). Nótese que esta expresión se
corresponde con un enfoque univariante, ya que solamente considera el valor
original de cada variable, y no sus contribuciones. En la literatura se pueden
encontrar otros enfoques univariantes [113, 114], pero no se ha probado su
eficacia en una comparativa exhaustiva.

Para comprobar la validez del método propuesto, se llevó a cabo una
comparativa entre los distintos métodos de diagnóstico. Para que esta com-
parativa fuera equitativa, se propuso un procedimiento que consta de tres
pasos: 1) Generación de anomalías con diagnóstico conocido, 2) Defini-
ción de una métrica para evaluar el rendimiento del diagnóstico, 3) Diseño
experimental. Esta metodología es otra de las contribuciones de esta tesis.
Dicha metodología se aplicó simulando varios conjuntos de datos aleatorios
utilizando simuleMV [31]. Estos conjuntos abarcan un amplio rango de situa-
ciones, en las que varían el número de variables, el número de observaciones o
la correlación, entre otros factores. El estudio se realizó siguiendo el enfoque
de Monte Carlo, permitiendo cubrir la generación de anomalías tanto univari-
antes como multivariantes. Además, los resultados se validaron utilizando
dos conjuntos de datos tomados de entornos realistas: uno obtenido a partir
del tráfico de una red de comunicaciones [129], y otro obtenido mediante la
simulación del proceso de cultivo de Saccharomyces Cerevisiae [120].

El ANOVA llevado a cabo sobre los resultados de la comparación entre los
métodos siguiendo la metodología anterior indicó que hay varios parámetros
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relevantes para el diagnóstico: las dimensiones (filas x columnas) de la matriz
de calibración el MSPC/MSNM, el método de diagnóstico, el estadístico (D
or Q), el número de PC seleccionados para el modelo PCA, y el número de
variables afectadas por la anomalía. Los resultados de ANOVA mostraron
que U-Squared presenta diferencias estadísticamente significativas respecto
al resto de métodos, mejorando el rendimiento de dichos métodos en el D-
estadístico. Por esta razón, se propone adoptar un enfoque de diagnóstico
univariante, aunque la detección se lleve a cabo de forma multivariante. Este
trabajo se publicó en [195].

Evaluación de extensiones MSNM con datos reales

La última contribución de esta tesis es la aplicación de algunas extensiones
de MSNM sobre datos de tráfico obtenidos de una red real. El conjunto
de datos UGR’16 [130] se ha seleccionado con tal propósito. Este conjunto
contiene una amplia captura de datos de un ISP que fueron recopilados durante
cuatro meses en 2016 (ver Secciones 5.2.1 y 8.2.2). UGR’16 también incluye
ataques introducidos de forma intencionada [130], permitiendo la evaluación
de la capacidad de detección y diagnóstico de los enfoques MSNM. Más
concretamente, durante el cuarto mes, se implementaron ataques de DoS,
escaneo de puertos y neris botnet, etiquetados como DoS, scan11, scan44
y botnet. La captura original contiene anomalías reales (tanto etiquetadas
como descubiertas a posteriori. Dichas anomalías no han sido consideradas
en nuestros experimentos. Además, para las pruebas se han considerado los
diez primeros días de ataques, ya que hay dos ataques de botnet etiquetados
que realmente no se insertaron en la captura de los datos. Lo habitual es que
los datos procedan de distintos sensores, sin embargo en el conjunto UGR’16
los datos proceden de un único sensor, por lo que es necesario tener routers
"virtuales" con sensores, VR* (ver Secciones 4.2.2 y 8.2.2) para parte de
nuestra experimentación. La Tabla 8.1 muestra el orden seguido para llevar
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a cabo dicha asignación. Por otra parte, los ataques se distribuyen como se
muestra en la Tabla 8.2.

Una vez los sensores han recopilado los datos y las características han sido
extraídas, los datos se pueden fusionar de distintas formas (ver Sección 4.1.2).
Por este motivo, la evaluación se divide en dos partes: por una parte, los
experimentos se llevan a cabo para la fusión estándar de los datos; y, por
otra parte, la aplicación de MSNM para la fusión jerárquica de los datos (H).
Aunque la fusión jerárquica no es una contribución de esta tesis per se, se
aplica por primera vez a datos reales de red en este trabajo. La fusión de datos
estándar en una sola matriz se puede hacer de varias formas. En este trabajo
se sugieren dos alternativas: i) Concatenar el valor de las características (C) y
ii) Agregar el valor de las características (A). Este último solamente es posible
si todas las fuentes son de la misma naturaleza (por ejemplo, dos routers
del mismo fabricante). Ambas están representadas en la Fig. 8.1. Además,
durante el paso de detección, se aplica como mejora el pre-procesamiento ciclo-
estacionario (PARAMO y TCS). Los resultados obtenidos se comparan con
los que proporciona el auto-escalado. Por último, para el diagnóstico se aplican
oMEDA y U-Squared. Estas extensiones se aplican siguiendo el enfoque en 5
pasos recientemente propuesto también como extensión MSNM [36].

El enfoque de fusión jerárquico fue propuesto como extensión MSNM por
primera vez en [129]. Para evaluarlo, se han seleccionado las alternativas que
podrían llevar a resultados significativamente distintos, considerando aquellos
previamente obtenidos para la fusión estándar (ver Sección 8.2.3). Así, la
fusión jerárquica se evalúa aplicando fusión de tipo C, auto-escalado para el
pre-procesamiento, y U-Squared para el diagnóstico.

La relación entre el número de falsos y verdaderos positivos es muy
importante en la monitorización de redes, ya que el número de alarmas puede
ser excesivo en este contexto. Una forma de medir esta relación es el AUC
(del inglés, Area Under the Curve), que representa el área bajo la curva ROC
(del inglés, Receiver Operating Characteristics) [97, 138]. Esta es una medida
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típica de los clasificadores de una clase, donde se encuentran los IDS basados
en detección de anomalías, y también para los clasificadores de dos clases. Un
clasificador ideal tiene AUC = 1, mientras uno con capacidad de detección
nula tiene AUC ≈ 0.5 [8]. Nosotros utilizamos tanto AUC como curvas ROC
para evaluar el rendimiento de las técnicas bajo estudio en el contexto del
conjunto de datos UGR’16.

En los resultados obtenidos, las extensiones MSNM para el pre-procesamiento
tienen un rendimiento comparable con AS. También se ha comprobado que
U-Squared mejora el diagnóstico, contribuyendo a resolver el problema de
smearing y reduciendo la complejidad de la diagnosis. Esto lleva también a
los operadores de seguridad a centrarse en las características más relevantes,
para priorizar la búsqueda de las causas de la anomalía.

Para la fusión jerárquica de los datos, se han estudiado cuatro escenarios
distintos. El primer caso de estudio (H1) tiene dos niveles o capas, mientras
que el resto (H2, H3 y H4) tiene tres capas. En los resultados obtenidos,
todos los escenarios excepto H4 presentan una capacidad de detección de
anomalías comparable a la obtenida para la fusión estándar en el conjunto de
datos UGR’16. H4 presenta buenos resultados, pero su rendimiento es menor
comparado con el resto de opciones. Dado que H2, H3 y H4 tienen varias
capas, y que al probar otras alternativas de fusión como balanceo de ramas
o concatenación de estadísticos en todas las capas los resultados no han sido
determinantes, no podemos recomendar una configuración entre estas tres
alternativas. En cambio, H1 (dos capas, concatenando estadísticos) asegura
un rendimiento que es comparable con las fusiones estándar de los datos.

El diagnóstico en la fusión jerárquica comienza en la capa superior, ayu-
dando a los operadores a priorizar la búsqueda de la causa de la anomalía,
permitiendo localizar la fuente de la misma. En la capa inferior (y a veces
en la intermedia), el diagnóstico ayuda a descubrir las causas de la anomalía
identificando las características más relevantes implicadas en dicha anomalía.
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La principal ventaja que aporta la fusión jerárquica es que reduce el volu-
men de datos que se monitoriza. Por otra parte, ayuda a mantener la privacidad,
ya que los modelos en los capas superiores de la jerarquía se pueden construir
sin necesidad de utilizar las variables originales, sino utilizando los estadísti-
cos. Además, utilizar la fusión C en cada capa, permite localizar la fuente de
la anomalía.

Conclusiones

El núcleo de esta tesis es MSNM, que se basa en dos pilares: por una parte,
NSM, procedente del área de la Seguridad IT; por otra, MSPC, del campo
de estudio de los procesos industriales. Desde que MSNM se propuso hace
casi cinco años, ha habido numerosas extensiones, bien mejorando alguno
de sus pasos [40, 129, 192, 195], bien incluyendo pasos adicionales que
añaden nuevas funcionalidades a la propuesta original [33, 36]. Este trabajo
de doctorado ha contribuido activamente en algunas de estas extensiones, tales
como [36, 40]. En concreto, las dos contribuciones principales presentadas
como parte de esta tesis son también extensiones MSNM:

• Un enfoque de pre-procesamiento para BMSPC o MSNM
ciclo-estacionario que considera más observaciones para obtener los
parámetros de pre-procesamiento: PARAMO. Este enfoque mejora la
capacidad de detección de anomalías del sistema de monitorización [192].

• Un método de diagnóstico univariante para mejorar la diagnosis:
U-Squared. Este método reduce la complejidad del diagnóstico, ayu-
dando a priorizar las anomalías, que es uno de los mayores problemas de
los equipos de Seguridad IT. También contribuye a resolver el problema
de smearing, bien conocido en la diagnosis MSPC.

• Finalmente, se ha realizado la evaluación de extensiones MSNM por
primera vez con datos procedentes de una red real: PARAMO [192],
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U-Squared [195], así como fusión jerárquica [129] la metodología 5-
steps [36].

Adicionalmente, se ha propuesto una metodología para la comparación de
métodos de diagnóstico. Esta metodología i) genera anomalías con diagnóstico
conocido, ii) define una métrica para la evaluación del rendimiento de los
métodos de diagnóstico, y iii) considera los factores que afectan la diagnosis
para el diseño de experimentos. Estos requerimientos se aplican siguiendo
un procedimiento de Monte Carlo, lo que proporciona resultados de baja
incertidumbre que, cobinados con ANOVA, permiten comparar los métodos
de diagnóstico de forma no sesgada.

Este trabajo de investigación muestra la simbiosis existente entre los
procesos industriales y la seguridad en redes, introduciendo mejoras que
son de interés para ambas áreas y que abren nuevas líneas de investigación,
explorando la sinergia entre MSPC y MSNM.
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