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ABSTRACT The aim of this work is to prove that it is possible to develop a system able to detect gestures
based only on ultrasonic signals and Edge devices. A set of 7 gestures plus idle has been defined, being
possible to combine them to increase the recognized gestures. In order to recognize them, Ultrasound
transceivers will be used to detect the 2 dimensional gestures. The Edge device approach implies that
the whole data is processed in the device at the network edge rather than depending on external devices
or services such as Cloud Computing. The system presented in this paper has been proven to be able to
measure Time of Flight (ToF) signals that can be used to recognize multiple gestures by the integration of
two transceivers, with an accuracy between 84.18% and 98.4%. Due to the optimization of the preprocessing
correlation technique to extract the ToF from the echo signals and our specific firmware design to enable the
parallelization of concurrent processes, the system can be implemented as an Edge Device.

INDEX TERMS Edge computing, Gesture recognition, Human System Interaction (HSI), Ultrasound.

. INTRODUCTION

The communication among humans is based on a multi-
modal system, which includes not only verbal communica-
tion but also face and body expressions to intensify the mean-
ing of the verbal content. The Human System Interaction
(HSI) trend is evolving, leading to the research of emerg-
ing technologies that mimic this natural communication,
minimizing the use of interfaces like touchscreens, buttons
or sliders. Well known virtual personal assistants such as
Alexa or Siri, developed by Amazon and Apple respectively
which allow communication with the system using only voice
commands. There are also several systems that introduce
gesture control to the system, i.e. SoundWave [1], AudioGest
[2], Dolphin [3], or UltraGesture [4]. All of them use low
frequency ultrasound signals to recognize between 5 and 12
gestures, which are mostly based on Doppler shift effect
(frequency variation due to movement) while running the
recognition algorithms on PC or Smartphones.

The aim of this work is to prove the possibility to develop
a system able to detect gestures based only on ultrasonic
signals and to execute the signal processing in Edge devices,
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without using neither a PC nor a cloud environment. For
testing, a set of 7 gestures plus idle has been defined, being
possible to combine them to increase the recognized gestures.
In order to recognize them, 2 transceivers will be used, since
it is the minimum number of transceivers required to detect 2
dimensional gestures.

This device works as an active sonar system: it transmits
ultrasonic waveforms, which are reflected back when they
collide with any solid obstacle, to its environment. Then the
transceivers receive these indirect echo signals in order to
locate the echo produced by the obstacle. The transceivers are
located on the same device. Thanks to this, it does not need
an external synchronization signal to get the time-of-flight
(ToF) value , which is the time between the transmitted signal
emission and the echo signal reception. These measurements
enable the system to have a great resolution in the depth
dimension due to the direct relation between time-of-flight
and the distance between the reflector object and the system.
This is an advantage over 2D cameras or Electric Near
Field sensors, which are more sensitive to noise and need to
infer the distance from the strength of the received signals.
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However, it has low positioning accuracy when it comes to
the lateral range. In spite of higher processing time, it could
be solved by adding more devices to the system, getting a
combination of time-of-flights estimations between them.

This article is structured as follows: Section II introduces
the state of the art in Ultrasound technologies for gesture
recognition and the advantages of use Edge Computing for
this purpose. Section III explains in detail the system devel-
oped in this work, as well as the firmware developed for the
signal acquisition and ToF calculation. Section IV describes
the gestures defined for the experiment and the algorithms
studied for the recognition and classification. Section V sum-
marizes the results obtained. Finally, Section VI focuses on
conclusions of this work.

Il. PRIOR WORK / STATE OF THE ART

A. ULTRASOUNDS

Originally, ultrasound technology started to be used to in-
crease the perception under the sea for navigation purposes,
known as sonar devices [5]. However, ultrasounds were soon
applied to medicine [6] and quickly found in more applica-
tion fields, such as non-destructive testing methods [7].

Nowadays, ultrasounds are used for object recognition [8],
which aim to reduce the power consumption, computation,
and cost of current optical sensors. In [9], Daslvan et al.
created an ultrasonic-based hand-gesture recognition device
using a single piezoelectric transducer and an 8-element
microphone array. Despite the fact that the accuracy was
lower than in devices using optical sensors, it increased the
number of gestures supported by a factor of 200 within the
same energy budget. The developed system uses the Sound-
Source Localization (SSL) algorithm.

However, other approaches have tried different techniques
with the same goal. UltraGesture [4] uses the Channel
Impulse Response (CIR) for finger motion perception and
recognition, getting a resolution of 7 mm in the measure-
ments. Soundwave [1], AudioGest [2], and Dolphin [3] mea-
sure the frequency variation of the hand in the incoming sig-
nal due to the movement of the user, known as Doppler effect.
All three works use commercial speakers and microphones
embedded in existing systems.

The difference among the previously commented systems
are the developed algorithms for the gesture recognition.
SoundWave [1] implements a threshold-based dynamic peak
tracking technique to capture the Doppler shifts recorded by
a laptop. Similarly, AudioGest [2] adds some of the signal
contexts to the estimation of the hand in-air time, average
waving speed as well as hand moving range. Smart mobile
devices have also been used for a closer interaction with the
user, using the same Doppler shift technique as the previous
papers [3]. A further comparison of these studies will be
shown in Section V.

Apart from large-scale gestures as studied in our paper,
ultrasound signals have also been used for multiple gesture
types. An example of this is the classification of micro-
gestures based on the micro-Doppler effect. Sang Y. et al.
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[10] and Zeng Q. et al. [11] proposed two different mod-
els for this purpose. The data to classify in these papers
are seven and five finger-based gestures respectively. Both
models are based on Recurrent Neuronal Networks (RNN)
and Convolutional Neuronal Networks (CNN) to study the
temporal evolution of the micro-Doppler images, achieving
an accuracy over 90% in both cases.

One of the reasons for the integration of ultrasound sensors
when using these techniques rather than other technologies
is its robust behaviour against the ambient light or visibility
changes. At the same time, while cameras or microphones
can easily differentiate not only the gestures or voice com-
mands, but also who is doing it, they may incur privacy
concerns. Ultrasounds only get relevant information of the
movement and, consequently, capture fewer attributes from
the users, which hardens user tracking and identification but
improves the privacy of the user.

One of the goals of the proposed system in this paper
is to integrate it into different multi-purpose large systems.
Therefore, in order to reduce the complexity of the integra-
tion of the ultrasound module, an Edge approach has been
researched. This implies that the whole data is preprocessed
in the device at the network edge instead of depending on
external devices or services such as Cloud Computing. At
the same time, this approach would increase privacy since
the raw data is not transmitted but only the final processed
gesture classification is. The next subsection gives details
about the advantages of this approach as well as a deeper
description of Edge Computing.

B. EDGE COMPUTING

Edge Computing [12] is aimed at reducing Cloud workload
to process device data. To do so, some preprocessing and/or
computing tasks are executed at the network edge when pos-
sible. Thus, Edge Computing is suitable in scenarios where
low latency is required for the user, or where the end device
application has time critical constraints [13].

At the same time, this technique ensures integrity and
confidentiality of the information [14]. As a result of not
communicating the information with external devices, the
energy consumption for the data transmission is reduced [15].
By preprocessing the data in the device, the confidential
information which is not relevant for the final task can be
masked/deleted before being shared with an external device.
This process also can be used to standardize the format of the
transmitted data in order to create a shared format that all the
devices can understand even if initially the format of each
device was different [16]. This is especially relevant when
multiple devices are collaborating as it is in the Internet of
Things environment.

lll. HARDWARE DESCRIPTION AND SIGNAL
ACQUISITION

The proposed system uses two modules, as shown in Figure
1. The first one is used to control two transducers to generate
the outgoing signal and acquire the incoming echo. This
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module also calculates the time elapsed between the emission
and the reception of the signal for each transceiver. This time
is known as Time of Flight (ToF). The first module also
integrates the analog circuitry needed for the echo signals
amplification. The second module receives the ToF values
and, after filtering them, performs the recognition algorithm
to determine the gesture realized by the user. If needed,
this module can integrate an external Neuroshield board, to
perform the recognition algorithm, and control an external
device (such as a led strip) to display the detected gesture.

| Sound

|Ampl. Ultrasound
{ToF

l Smooth ToF

Gesture —f Transc. AFE X-Corr (= Filter

Model [] Gesture

Module 1 Module 2

FIGURE 1: System diagram

Both modules are composed of a XMC4700 microcon-
troller performing the acquisition/recognition task, as well as
a Bluetooth HC-05 device for the communication between
them. This communication technology has been chosen to
add a wireless channel between both modules to have flex-
ibility on how to place them, but other technologies can be
used as well.

The ultrasound transducers used in this work are based on
a dual-backplate MEMS microphone technology allowing a
combined use as an airborne ultrasonic transceiver and audio
microphone. Those transducers need a low bias voltage and
offer an audio performance of 68 dB(A) signal-to-noise ratio
(SNR) and between 80 and 90 dB SNR in the ultrasonic
frequency range. After the emission of the pulses, a free oscil-
lation of the membrane (ringing) can override the incoming
echo, producing a shadow zone that allows obstacle detection
from 10 cm on [17].

A. SIGNAL EMISSION AND RECEPTION

The signal emission and reception are performed by the mod-
ule 1, whose block diagram is shown in Figure 2. The signal
to transmit is a square signal generated by a Pulse Width
Modulation (PWM) block integrated into the processor. This
signal is later transformed into an acoustic wave by one of
the transducers. As soon as the PWM block finishes the
pulse generation, the microcontroller starts collecting sam-
ples using two Analog Digital Converter (ADC) in parallel,
one for each transceiver, to minimize time skew between
samples. The echo received by the transducer, as an analog
signal, carry some noise from the environment (as could be
the use of buttons from a computer’s keyboard or mouse,
that have been seen to be harmful to the device’s operating
frequency). A band-pass amplifier was developed for this
task, which amplifies the lower ultrasonic band (20 kHz to
100 kHz) while filters out all other frequencies. After this
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filter, the signal must be digitalized by the microcontroller
ADC module for further processing, as it is explained in the
next subsection.

XMC 4700

PWM uC  H—{ USB

Trans. —— AFE H ADC —|\

Trans. — AFE H ADC

FIGURE 2: Transducer control and ToF calculation

B. TIME OF FLIGHT

After the signal is acquired it has to be processed to identify
if there is an incoming echo, and the position of this if appli-
cable. The ToF calculus has to be done while the following
frame is being acquired, running both processes in parallel as
shown in Figure 3.

Time

Pulse emission ToF extraction

v

FIGURE 3: Firmware task parallelization to minimize execu-
tion time.

The signal can be processed in different domains to cal-
culate the ToF, finding in the literature several methods for
each domain, as collected by J. C. Jackson et al. [18]. and
summarized in table 1.

Domain Methods
Time - Threshold Detecftion
- Cross-Correlation
Fourier - Single-Frequency Signals
Phase-Based | - Chirps and the Cross-Spectrum
Hybrid Models - Biologically Inspired

TABLE 1: Example of ToF calculus techniques.

Some methods try to imitate the nature systems to calculate
the ToF. for example, D. Hayward et al. [19] developed the
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"Biologically Inspired Ranging Algorithm (BIRA)" based on
the bats hearing system for echolocation.

Other models are based in the frequency domain, as for
example K.-N. Huang et al. [20] use the phased difference of
a single frequency signal to calculate the ToF. Also, signal
with more than one frequency component has been studied
to calculate the desired parameter, as for example D. M.
Cowell et al. [21] used chirp-signals to increase the accuracy
of the estimated ToF. This approach also avoids multi-path
problems and differentiates between several emitters.

Due to the low computation power required and good
results, most works base this calculus on time domain meth-
ods, based i.e. on the amplitude of the incoming signal
or in the cross-correlation of the echo with the sent (or
expected) signal. The cross-correlation method reduces the
high influence of noise in the amplitude method, since the
cross-correlation, which acts as matched filtering, produces
a time-domain signal with a maximum at the time when the
echo was received [18] [22].

The ToF calculation proposed in this system can be divided
in four steps as described in Figure 4. First, the acquired
signal is cross-correlated with the template of the expecting
echo, giving a maximum value where the expected and real
echo overlap. Then, the envelope of the previous signal is
obtained using a low pass filter. After that, the envelope is
evaluated to extract the first cut with a dynamic threshold.
This threshold represents the attenuation of the signal due
to the distance traveled. It can be adjusted according to the
ambient noise level of each specific scenario. Finally, the
maximum of the cross-correlated signal is searched on a
window with center in the threshold-envelope crossing value,
giving the position of the ToF in number of samples. Once
the number of ToF samples is determined, it can be easily
converted to time knowing the ADC sampling frequency.

Using only one transceiver as emitter brings a non-desire
effect in the ToF calculus. The distance from the obstacle to
the transmitter is a direct relation with the ToF estimated, as
shown in (1), but the ToF estimated in the signal of the second
transceiver is a relation of the distance between the obstacle
with both transceivers, as shown in (2). The solution to this
effect will be further discussed in following sections.

2dy

ToF, = (D
Cs
dy +d
ToF, = 11792 2)
Cs

Where T'oF,, indicate the ToF for the transceiver n, d,, the
distance between the target and the transceiver n and c, the
speed of the sound.

The proposed system is robust also to temperature
changes. The speed of the sound in the air depends, among
other environmental effects, on the air temperature [23]. This
dependency is significant enough to allow the estimation of
air temperature based on the difference between ToF mea-
surement as shown by P.Annibale et al. [24]. Once more, the
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echo detection (yellow) and peak value detected (black).

use of the relation between ToF of both transceivers provides
the mitigation of this non desire effect.

IV. GESTURE RECOGNITION METHODS

Seven gestures, and idle, have been selected for this experi-
ment: front push, front pull, right push, right pull, left push,
left pull, static position, and no gesture. These gestures are
well defined arm or hand movements in two dimensions
to minimize the gesture complexity and reduce to two the
required transceivers. Therefore, all gestures must be con-
tained in this plane and so they are assumed to be in the
front part of the sensors as shown in Figure 5. Otherwise,
the system won’t be able to track the gesture, due to the
transceiver’s unidirectional sensitivity and radiation pattern.
This is an effect of the package to protect the membranes and
electronics, which is also used to increase the strength of the
emitted signal.

These gestures are measured using both transceivers si-
multaneously. By extracting the ToF from each sensor in each
moment, as explained in IV-A by (1) and (2), it is possible to
determine the movement direction and the region of the plane
where the movement has been done.

Four individuals performed these gestures in different
conditions within a distance of 15-50 cm from the device
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FIGURE 5: Gestures diagram: push(red) and pull(blue) direc-
tion in the three different regions (Top view).

to collect data from different conditions. Each individual
repeated each gesture 4 times per session during 20 sessions.
These gestures have a variable length depending on the
subject and the specific time, which helps to create a more
diverse dataset. The average time length of these gestures
was approximately 3 seconds after a review of average length
on hand gestures. The frequency used for recording the ToF
samples was 30 Hz. Nevertheless, the time length of the
whole gesture is not a critical factor, since each gesture is
classified multiple times during its performance. Therefore,
even if a gesture is short, as far as it lasts for the required
7 ToF samples (250ms), it will be correctly classified. How-
ever, the speed of the gesture may affect on a larger scale
since a lower hand speed will result in a smaller variation of
the ToF. If this happens, the system may classify this gesture
as idle due to its low variance of the position.

The final data-set created contains 3150 gesture samples
where each gesture sample consists of a number ToF samples
from each transceiver as shown in Figure 6. The specific
number of ToF samples will be commented in Section I'V-B.
Out of all the gestures samples, 80% were used during the
training process and the remaining 20% were used for testing
the final system.

TOF
samples

il

FIGURE 6: Gesture sample creation

Gesture sample

A. FILTERING THE RAW TOF DATA

After preprocessing the raw ToF data extracted from the
transceivers, the data needs to be filtered in order to remove
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outlier points as well as reconstruct the ToF signal when
possible.

TOF
samples

—tnTH tn o 2 H Tt

Filter window

FIGURE 7: Filter window

While multiple filtering techniques may be applied in this
scenario, the speed of the system when applying the filtering
technique has to be taken as a constrain in order to avoid
creating a bottleneck at this point. Therefore, a filtering tech-
nique where the ToF data is compared with the n previous
ToF samples has been designed resulting in a smooth filter
specific for this application. This filter has been designed to
take into account the most frequent and relevant problems
detected in the raw signal, such as missing information or
measurements when the sensor is saturated. As a result of
this, it is more suitable than a general purpose smooth filter.

The window approach used with the filtering technique
described is shown in figure 7. The goal of this filter is
to remove outlier points and recover lost ToF samples. The
dimension of the window of data that will be used with this
filter has been researched to determine the optimal size. The
compared parameters for these filters are the execution time
as well as the noise reduction. Table 2 shows all the compared
dimensions.

Window size | Execution time (us) | Noise reduction
8 7.42 74.86 %
10 9.87 84.70 %
11 10.92 85.30 %
15 14.1 85.92 %
20 18.3 86.27 %

TABLE 2: Comparison of multiple sizes for the window of the
filter technique.

The final size of the window is 11 ToF samples. This deci-
sion was based on the trade-off between the noise reduction
and the execution time. Larger window filters lead to latency
problems since its execution and the later classification would
exceed the time limit of 33 us. At the same time, these filters
only provide, as maximum, a 0.97% improvement respect
the chosen filter regarding noise reduction. The effect of
applying this filter in the ToF data can be observed in figure
8.

This preprocessing has proven to increase the accuracy of
the gesture classification, as shown in Section V, where this
fact will be further explained.

The filtered ToF samples of some of the studied gestures
using the previous filtering technique are shown in figure 9
for a deeper understanding of the data used in this paper.

Besides the remaining noise in the signal after the filtering
process, it is possible to obtain high classification accuracy
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FIGURE 8: ToF data before and after applying filter.
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0 20 a4
ToF samples

(b) Left pull

Since the algorithms used for the classification are based
on a supervised learning approach, the ToF data does not have
to be preprocessed to obtain the real distances with respect to
each transceiver. At the same time, the algorithms learn to
overcome the possible remaining noise in the data after the
first filter explained in Subsection IV-A.

Finally, from each gesture sample, the slope of the gesture
sample from each transceiver as well as the difference be-
tween their mean values were used as input features for the
classification algorithms.

The relevant information of the gesture data for its clas-
sification is the evolution of the value of the ToF signals.
Therefore, a study to decide the number of ToF samples
contained in each gesture sample was carried out. As the
gesture data will be preprocessed to extract the previously
explained features, the number of inputs for the algorithms
is independent from the number of ToF samples per gesture
sample. The comparison was based on the final accuracy
achieved in Multilayer Perceptron (MLP) [25] that will be
commented in this section, as shown in Table 3.

o 3 4 45 o 0 20 30 a0 50

o 5 0 15 220 25

Number of ToF samples | Final accuracy
4 84.78 %
6 92.63 %
7 92.87 %
8 92.87 %
10 90.15 %
12 90.12 %

ToF samples

(c) Right push

ToF samples

(d) Right pull

FIGURE 9: Filtered ToF samples of left and right push and
pull gestures.

thanks to the researched algorithms. During the training
process, at the same time the AI models learn to classify the
input data, they learn as well to adapt themselves to the noise
of the signals. Further explanations of these algorithms are
done in Section IV-B.

B. ALGORITHMS

Multiple classification algorithms were applied to the gath-
ered data aiming to compare the gesture recognition accuracy
based on the collected data explained in the previous sections.
The data used for the classification has been explained in
Subsection 1V, where Figure 6 shows how each gesture
sample is created as a succession of ToF samples from
both transceivers. This enables the system to learn the time
evolution of the signal without using complex algorithms
such as LSTM neural networks.

Each time a new ToF sample is received, the window slides
creating a new gesture sample including the new ToF sample
and removing the oldest one. The sliding window enables
the system to generate more gesture samples for the learning
phase than dividing the whole data-set into sub-datasets of n
ToF samples.

6

TABLE 3: Comparison of multiple number of ToF samples per
gesture sample.

As a result of this study, the number of ToF samples per
gesture sample was set to 7. The reason for this decision is
its high accuracy in the MLP model as well as its reduced
number of samples. The latest reason leads to an increase
of the number of gestures samples created. This is beneficial
during the training phase of the models. Its higher accuracy
in comparison with the cases of a higher number of ToF
samples is due to the fact this increase leads to problems
during transitions between gestures.

Three algorithms have been researched in this paper:

o Deep Learning model. Different structures of Deep
Neural Networks (DNN) were researched, such as MLP
[25], Long Short Term memory (LST) DNN [26] and
Convolutional Neural Network [27]. Since the features
used for the classification do not require a time evolution
study or a further feature extraction, we concluded the
MLP was the structure that fits in this application among
the DNN structure researched. This decision was based
on the time required to re-train the DNN in case new
gestures are added to the system as well as its speed
to compute the result. In case any of the other DNN
structure were implemented, the latency of the system
would increase leading to bottleneck problems in the
classification step of the pipeline.

VOLUME , 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3064390, IEEE Access

IEEE Access

The proposed MLP model was designed keeping in
mind the number of layers as well as artificial neurons
while achieving high accuracy results. The chosen struc-
ture is an MLP of 4 layers as Figure 10 shows. The
input layer includes 3 artificial neurons, which represent
the number of features that will be fed into this DNN.
Following the input layer, there are two hidden layers
with 6 and 9 neurons respectively. The output layer
contains 8 neurons to match the number of gestures
(including idle) studied in this paper. In the structure,
batch normalization layers have been added between
each layer to increase the stability of the DNN.

As aresult, this model could be implemented in an Edge
Device for the inference process due to its low memory
requirements as well as the speed to process the input
data.

Class 1

Class 2

Input data

FIGURE 10: MLP network structure.

o Deep Learning model based on Neuroshield device.

Another approach researched in this paper was the
implementation of the classification task in the Neu-
roshield device [28]. This device includes 576 artificial
neurons programmed with a radial basis activation func-
tion [29] rather than the previously commented DNN.
This activation function computes the distance, in the
feature representation plane, of the established center of
each neuron with the input data as shown in Figure 11.
After calculating all the distances, it calculates which
neuron is the closest to the input data and, in case the
distance is smaller than the activation distance, the input
activates the corresponding artificial neuron.
This optimized algorithm, apart from moving the in-
ference stage to the network edge due to its reduced
latency, enables the execution of the training of the Al
model at the network edge. The limitations of this model
fall on the fact the DNN designed for this device must be
trained using the same technique, radial basis activation
function.

« Decision Tree model. This model is based on a set of
rules which are defined during the training stage in order
to classify the gesture by comparing the input data with
a list of conditional clauses where the data is divided
into different decisions according to a certain parameter
[30] leading to a final decision based on the results of
these conditional clauses. This model is less computing-
power demanding due to its simplicity to classify a new
data sample. At the same time, this simplicity makes it
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FIGURE 11: Neuroshield activation function structure.

difficult to maintain its accuracy when the complexity
of the data increases.

The features fed into the classification techniques were
the same: the slope of the ToF signal measured from the
first transceiver and the average value of the last seven ToF
samples as well as the difference of the mean values of the
ToF signals measured with both transceivers. The same post-
processing technique has been applied to all the previous al-
gorithms in order to further improve their accuracy while still
being able to compare them. The postprocessing technique
applied is a sliding window to extract the most frequent clas-
sification results in the last 5 classification results. Therefore,
outlier classification results are filtered, maintaining a slow
and continuous change between gestures. The improvement
of the accuracy when applying this technique can be observed
in Section V.

V. RESULTS

The results obtained with the previously explained tech-
niques are presented in this section using the same data to
ensure a correct comparison of the algorithms.

Due to the fact that all these techniques accomplish with
the time restriction of the system, the compared parameter in
this section is the accuracy, which is measured in this exper-
iment as correct classifications over all the classifications.

The Table 4 shows the accuracy achieved using each
classification approach. At the same time, this table compares
the accuracy results obtained when using the raw signal (first
column), the filtered ToF data (second column), and using all
the previously explained preprocessing techniques as well as
the window to filter the output classification results.

Classification technique | Acc. 1 Acc.2 | Acc.3
MLP 84.18% | 91.16% | 92.87%
Neuroshield 95.69% | 97.75% | 98.4%
Decision Tree 91.8% | 92.15% | 96.94%

TABLE 4: Accuracy results without any filter or window (acc.
1), without the window (acc. 2) and using all the filtering
techniques (acc. 3).

The results obtained with the Neuroshield device achieved
the highest accuracy among the researched techniques, both
scenarios of not applying or applying the postprocessing

7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3064390, IEEE Access

technique. However, this system lacks the flexibility the other
two techniques can provide due to the fact that this device can
only execute one kind of DNN and it can not be transferred
to another device different from a Neuroshield device.

The Decision Tree algorithm achieved a final accuracy of
5.6% and 1.46% lower than the Neuroshield device, without
the postprocessing and including it respectively. Neverthe-
less, this technique is the less power requiring due to its
simplicity in comparison with the DNN structures presented
in the paper.

The MLP classificator achieved a final accuracy of 6.59%
and 5.53% lower than the Neuroshield devices, without
the postprocessing and including it respectively. In spite of
achieving the lowest accuracy among these techniques, this
one provides the highest flexibility since the structure of the
DNN and the activation function can be modified easily as
well as transferred to other devices.
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FIGURE 12: MLP confusion matrix.
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FIGURE 13: Neuroshield algorithm confusion matrix.
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FIGURE 14: Decision tree confusion matrix.

For a deeper comparison of the accuracy achieved for
each gesture, Figures 12, 13 and 14 show the confusion
matrix of the final algorithms (including all the filtering
techniques). It is possible to observe how all the researched
algorithms achieve high accuracy for all the gestures, being
the lowest one the accuracy achieved for the gesture 5 (left
push), 83.1%, when using the MLP algorithm. Therefore,
we can conclude all these models can generalize the data
properly. As previously commented, these tables also show
how the MLP model achieves the lowest accuracy results for
all the gestures among the researched algorithms. The main
difference we can observe from these confusion matrices
is the error distribution. While the errors in the MLP and
decision tree models are distributed across all the gestures,
the errors of the Neuroshield model are concentrated in the
last 4 gestures.

Another relevant factor to compare among the researched
algorithms is the memory consumption of the different mod-
els since this is one of the restrictive parameters in Edge
Devices. Table 5 shows this comparison, where it is possible
to observe how the MLP model, even when its accuracy is
approximately 5% lower than the best model of the Neu-
roshield device, leads to a memory consumption reduction
for the model of an 83.1%.

Classification technique | Model size
MLP 23KB
Neuroshield 136KB
Decision Tree 273 KB

TI-%BLE 5: Comparison of the size of the researched algo-
rithms.

The latency of these models has not been compared since
all of them satisfied the restriction of the 33ms established
by the hardware providing a classification result for any new
data before receiving the next one.

A comparison of the studies described in Section II is

VOLUME , 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3064390, IEEE Access

IEEE Access

Studies No. of Gestures Accuracy Method Hardware
SoundWave 5 86.7 — 100% Doppler shift I'microphone
1 speaker
AudioGest 6 95.1% Doppler shift | | microphone
1 speaker
1 microphone
Dolphin 24 93% Doppler shift 1 speaker
Gravity sensor
Channel Impulse | 4 microphones
UltraGesture 12 91.42 - 98.58% Response (CIR) 1 speaker
Microsoft 5 64.5-969% | CNN-LSTM | 5 microphones
1 transceiver
Proposed 8 84.18-984% |  Al'models 2 transceiver
system

TABLE 6: Comparison of state-of-the-art techniques for gesture recognition with ultrasounds.

presented in Table 6. Even though it is not possible to
compare the performance of the algorithms due to the lack
of a common public dataset as well as the difference in the
data structure each technique requires, significant parameters
of each system can be compared. The future development of
gesture recognition systems based on ultrasound technology
could benefit from a common data framework, thus allowing
the cooperative development of algorithms with much more
data and from different sources and conditions.

One of the features that we can compare is the devices
integrated into these systems. It is possible to observe how the
majority of the researchers are basing the systems on a multi-
sensor approach where a separated microphone and speaker
are integrated. On the other hand, our proposed system tries
to reduce the number of devices integrating transceivers.

VI. CONCLUSION

The system presented in this paper has been proven to be able
to measure ToF signals that can be later used to recognize
multiple gestures by the integration of two transceivers. Due
to the optimization of the preprocessing correlation technique
to extract the ToF from the echo signals and the specific
design of the firmware to enable the parallelization of con-
current processes, the system can be implemented as an Edge
Device. This system does not require any external device or
cloud server to preprocess the information.

At the same time, by using the Neuroshield device, which
enables the implementation of an Al classificator at the
network edge, or the MLP implemented in an Edge Device,
it is also possible to execute the full process from data gath-
ering to extract the classification at the network edge while
maintaining high accuracy results. It has been shown how
the researched algorithms provided high accuracy, where the
best result is extracted from the Neuroshield with a 98.4%
accuracy.

The memory sizes of the models are also a relevant feature
to compare since it is one of the main constrains in Edge
Devices. Because of this, this feature has been taken into
account during the optimization of the models. As a result

VOLUME , 2020

of this, the size of all the proposed models has been reduced,
i.e. the proposed MLP, whose size is 23 KB while it stills
achieves an accuracy of 92.87% in our dataset.
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