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ABSTRACT Machine learning techniques heavily rely on available training data in a data set. Certain
features in the data can interfere with the learning process, so it is required to remove irrelevant and
redundant features to build a robust training model. As such, several feature selection techniques are usually
applied in a pre-processing phase to obtain the most appropriate set of features and improve the overall
learning process. In this paper, a new feature selection approach is proposed based on a modified Teaching-
Learning-based Optimization (TLBO) combined with four new binarization methods: the Elitist, the Elitist
Roulette, the Elitist Tournament, and the Rank-based method. The influence of these binarization methods
is studied and compared to other state-of-the-art techniques. The experimental results such as Shapiro-Wilk
normality and Wilcoxon ranksum test show that both transfer functions and binarization approaches have a
significant influence on the effectiveness of the binary TLBO. The experiments show that choosing a fitting
transfer function along with a suitable binarization method has a substantial impact on the exploratory and
exploitative potentials of the feature selection technique.

INDEX TERMS Teaching-Learning, Feature Selection, Metaheuristic, Transfer function, Binarization.

I. INTRODUCTION

The performance of Machine Learning (ML) techniques
mainly depends on the nature of datasets, which often contain
irrelevant or redundant features. such features could mislead
or bias the learning process. Moreover, collecting data from
different sources makes it possible to have redundant ele-
ments in the same dataset. To build a robust training model,
therefore, the irrelevant and unnecessary features should be
removed [1]. Feature Selection (FS), as a pre-processing step,
has been widely used to search for the most informative
features and increase the learning performance of a learning
algorithm (e.g., classification). The importance of FS as a
pre-processing step comes from the fact that there is a large
number of features in a dataset; i.e., a large feature space,
which requires a higher computational cost for the learning

process.

FS methods can be broadly categorized into two classes:
searching for the best feature combinations and evaluating
those combinations. In the search stage, sequential forward,
sequential backward, exhaustive, random, and heuristic se-
lection are all examples of search strategies that can be
used to search the feature space for finding the optimal
or near optimal feature subsets [2]. Metaheuristic methods
such as swarm intelligence algorithms (e.g., Particle Swarm
Optimization (PSO) [3], Ant Colony Optimization (ACO)
[4], Whale Optimization Algorithm [5], Harris hawks opti-
mizer (HHO) [6], and Grey Wolf Optimizer (GWO) [7]), and
Evolutionary Algorithms (e.g., Genetic Algorithm (GA) [8],
Differential Evolution (DE) [9]) have been utilized by Chen
et al. [10], Aljarah et al. [11], Xu et al. [12], Heidari et al. [13]
as efficient search strategies in many optimization problems
and especially for FS tasks.

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3064799, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

From the evaluation perspective, FS methods are divided
into three main categories; filters, wrappers, and embedded
methods. Filter approaches (e.g., Chi-Square, Information
Gain, Gain Ratio, and ReliefF) depend on finding the corre-
lations between the features in evaluating the feature subset
while no external evaluator participates in the evaluation
process [14]. On the other hand, wrapper methods mainly
depend on an external learning algorithm (e.g., classification
algorithm, also known as induction algorithm) to evaluate the
feature subsets [15]. However, the feature selection method
is embedded in the learning process when considering the
integrated approaches [16].

Wrapper approaches attracted the attention of many re-
searchers in the literature, which is due to the involvement
of the learning algorithm in the selection process, hence the
selection of a feature is based on the resulting performance
of the learning algorithm (e.g., classification accuracy for
a specific classifier) [17]. Different classification algorithms
(e.g., K-nearest Neighbor (KNN), Decision Tree (DT), and
Artificial Neural Networks (ANN)) have been used in con-
junction with different FS methods. Due to its simplicity, ease
of implementation, and low time complexity, KNN is one
of the most popular classification algorithms for the wrapper
approaches.

TLBO is a popular social-inspired metaheuristic algorithm
that was first introduced by Rao et al. [18]. Two phases
of the optimizer are “Learner Phase” and “Teacher Phase”,
which bring superior performance for TLBO compared to
other well-regarded algorithms when applied to different ap-
plications [19]. TLBO has been initially proposed to handle
continuous optimization problems. To tackle FS, which is
a binary optimization problem, TLBO requires adjustments
and even new operators. The two-step binarization technique
is popular in the literature utilized to transform continuous
algorithms into binary form. In this technique, the fuzzy
transfer functions are used firstly to map the continuous solu-
tions into intermediate probability values within [0,1] while a
binarization rule is applied as a second step to transform the
intermediate solution into binary [20].

This work proposes an efficient wrapper-based feature
selection approach that incorporates a modified binary TLBO
as the search algorithm. This modification is accomplished
in the algorithm at the level of the utilized binarization
method in conjunction with two types of TFs. Four new
binarization methods are introduced in our approach: the
Elitist, the Elitist Roulette, the Elitist Tournament, and the
Rank-based method. The influence of such methods is tested
and compared to two other common binarization methods
(i.e., the standard and the complement method).

The main contributions of this paper are summarized as
follows:
• A new feature selection approach is proposed based on

a modified binary TLBO.
• Four new binarization methods are introduced with

TLBO: the Elitist, the Elitist Roulette, the Elitist Tour-
nament, and the Rank-based method.

The rest of the paper is organized as follows: after in-
troducing the main background in Section I, the recent FS
approaches in the literature are analyzed, followed by a
description of the used algorithms in this paper in Section
II. A general overview of the TLBO algorithm is given in
Section III. Section IV describes the details of the proposed
approach. The results are discussed in Section V. Finally, the
conclusion and the future directions are drawn in Section VI.

II. RELATED WORKS
There are a growing number of problems that need to be
solved by analytical methods [21, 22, 23, 24, 25, 26, 27, 28].
Recently, various Swarm Intelligence (SI) algorithms have
been utilized in various fields as alternative approaches
[29, 30, 31, 32]. One of the areas is as search strategies in
different wrapper FS methods [33, 34, 35]. As a primary SI
algorithm, PSO has been widely used with FS methods. A
combination of PSO and a micro GA approach was proposed
by Mistry et al. [36] to perform FS. Another FS approach
that is based on PSO-GA algorithms with the adaptive neuro-
fuzzy inference systems (ANFIS) was proposed by Semero
et al. [37]. Tran et al. [38] proposed first variable-length
PSO to handle the feature selection problem. In addition, Wu
et al. [39] solved the FS problem using a hybrid improved
quantum-behavior PSO. Furthermore, a multi-objective PSO
was used by Zhang et al. [40] to solve the feature selection
problems. Mafarja et al. [41] and Mafarja and Sabar [42]
proposed two recent approaches that employed two variants
of PSO algorithm as searching strategies in wrapper FS
methods. Also, a hybrid approach between PSO and Shuffled
Frog Leaping Algorithm (SFLA) was proposed in [43] to
improve the accuracy of fake reviews identification. Chen
et al. [44] proposed an enhanced PSO approach with two
crossover operators to tackle FS problems. De Souza et al.
[45] proposed a new wrapper approach based in a v-shaped
transfer function using one of recent meta algorithm called
Crow Search Algorithm (CSA), the accuracy results of their
approach were very good results. Ant Colony Optimization
(ACO) algorithm was also applied in many FS methods.
For instance, Shunmugapriya and Kanmani [46] proposed
a hybrid FS approach that combines the characteristics of
ACO with Artificial Bees Colony (ABC) (called AC-ABC) to
enhance the search process. In AC-ABC, the ACO algorithm
employs bees in the exploitation process, while ABC uses
the ants as food sources in the search process. A combination
of a modified binary coded ACO algorithm with GA was
proposed by Wan et al. [47] as an FS method called MBACO.
In MBACO, GA was used to generate either the visibility
information or the initial pheromone information. Manbari
et al. [48] proposed a filter FS approach that is based on
a modified version of the binary ACO algorithm with a
combination with a clustering technique.

The Salp Swarm Algorithm (SSA) is a recent metaheuris-
tic algorithm that mimics the behavior of salps in nature.
Although the SSA is still new, it has been used as a search
strategy in many FS approaches. Aljarah et al. [49] and
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Faris et al. [50] proposed two SSA-based FS methods. The
experimental results in both works proved the ability of the
SSA to outperform other optimizers. Moreover, another SSA-
based approach was proposed in [51]. In this approach, a
set of chaotic maps is used to control the balance between
exploration and exploitation in the SSA algorithm. Sayed et
al. [52] proposed a chaotic based SSA for global optimization
and FS.

In addition to the above-mentioned works, in which SI
algorithms have been used as search strategies in FS methods,
another algorithm widely used in this area is called Sine
Cosine Algorithm (SCA) [53], which works based on sine
and cosine functions in moving the positions of the solutions
in the search space. Sindhu et al. [54] proposed a novel FS
method that is based on an Improved SCA variant called
(ICSA). In ICSA, an elitism strategy was used to select
the global solution, and a new updating mechanism for the
new solution was proposed. As other global optimization
algorithms, SCA suffers from the stagnation in local optima.
To overcome this drawback, Elaziz et al. [55] proposed a
hybrid model between the SCA and the DE’s operators that
served as a local search method. This hybrid model helps the
SCA algorithm to skip local optima.

Recently, a wide range of metaheuristics have been studied
and integrated into different FS approaches [56]. One of
the most interesting point about these approaches that they
tend to significantly outperform the traditional approaches
[57, 58]. For instance, Arora and Anand [59] proposed two
FS approaches based on the binary Butterfly Optimization
Algorithm (BOA), in wihch two transfer functions were used
to convert the continuous version of the BOA to binary. In
[60], another FS approach that is based on the binary Brain
Storm Optimization (BSO) was proposed. In their work, the
authors proposed eight variants of the BBSO by employing
eight different transfer functions. The same algorithm (i.e.,
BSO) has been recently used in another FS approach by
Pourpanah et al. [61]. A combination of BSO and the Fuzzy
ARTMAP (FAM) model was proposed where the BSO was
used as a selection strategy to search for the optimal feature
subset from the prototype nodes that were incrementally
produced by the FAM model. Ten datasets were used to
evaluate the proposed BSO-FAM model, and the results were
promising. A filter FS approach that is based on a binary
version of the Differential Evolution (DE) as a searching
strategy, and on the entropy as an evaluator, was proposed
in [62].

In the past decades, metaheuristic algorithms were shown
to be very successful for solving various optimization prob-
lems [63, 64, 65, 66, 67]. TLBO is a recent, nature-inspired
metaheuristic, that has been widely used in tackling different
optimization problems in many fields and different real-life
applications [68]. Despite some drawbacks highlighted by
Črepinšek et al. [69], Waghmare [70], Pickard et al. [71],
Chinta et al. [72], many variants of TLBO have been pro-
posed to tackle the FS problem in recent years. For instance,

a multi-objective TLBO version, with different update mech-
anisms was proposed in [73] to find Pareto-optimal set of
solutions for a multi-objective formulation of the FS prob-
lem. Another binary TLBO version was used with varying
algorithms of classification in a wrapper FS approach in [74].
Moreover, Sevinç and Dökeroğlu [75] proposed a TLBO
FS approach with the Extreme Learning Machines (ELM),
called TLBO-ELM. For more details about the TLBO based
methods, readers can refer to the surveys conducted by Rao
[76] and Zou et al. [68] and the book written by Rao [77].

In the previous FS approaches, either the algorithm is
binary by itself (e.g., GA), or a conversion method such as
Transfer Function (TF) was used to convert the continuous
feature vectors into binary in the internal process of the
algorithms. In literature, there are two basic types of TFs:
in the first one, the sigmoid function that was used by [78]
to convert the PSO into a successful binary version. The
second TF was called V-shaped TF, which was used with
Gravitation Search Algorithm (GSA) by Rashedi et al. [79].
The main idea behind using the TFs is to utilize them as
a conversion method based on a defined probability for
updating each element in the continuous representation of the
solution into 1 or 0 according to this probability. Following
this step, a binarization rule is applied to map the value of TF
into a binary one. The most commonly used techniques for
this step are the standard and complement methods. In this
work, we extend this research direction by proposing four
new binarization methods and explore their effectiveness in
combination with both V-shape and S-shape TFs.

III. TEACHING LEARNING-BASED OPTIMIZATION
(TLBO)
TLBO is a successful human-inspired optimizer classified
under the umbrella of metaheuristic methods [80]. Initially,
Rao et al. [19] tried to mimic the communications and
interactions between teachers and students in a classroom or
any other location for developing a metaheuristic approach.
In population-based TLBO, the population of students, which
is also called learners, plays the role of search agents, while
the teacher leads the search agents. The fitness value of
each agent shows the level of that learner’ results during the
learning (optimization) process. The subjects that the teacher
(a learner with the highest score) teaches are treated as the
decision variables of the optimization problem. In TLBO, the
exploratory and exploitative phases are done during two core
processes: Teacher phase and Learner phase. In the teacher
phase, the learning of the agents occurs based on the knowl-
edge of teacher (leader) himself, while, the second phase is
devoted to the interaction between the learners (following
agents).

A. TEACHER PHASE
In this phase, the purpose is to increase the average grades
of the learners in the classroom concerning the personal
knowledge of the teacher. Hence, the best learner is selected
as the teacher, which is the position of a learner agent with
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the lowest fitness value in a minimization scenario. Also, the
average position of all agents is obtained. Then, the positions
of all agents are updated using Eq. (1):

DM j,i = r × (Xj,kbest,i − Tf ×Mj,i) (1)

Xnew
j,k,i = Xold

j,k,i +DM j,i (2)

where i is iteration, j is the subject (dimension) (j =
1, . . . ,m), k is the learner (search agent) (k = 1, . . . , n), r
is a random number inside (0,1), Xj,kbest,i is the score of
the teacher in subject j, Mj,i denotes the average score of all
learners in subject j, DM j,i denotes the difference between
the teacher score and the updated average score of the learner
agents in each subject, Xj,k,i denotes the score of learner k
in subject j, Xnew

j,k,i is the updated position of the old position
vector Xold

j,k,i, and Tf denotes the teaching factor, which is
obtained as rule in Eq. (3):

Tf = round[1 + r′] (3)

where r′ is a random number inside (0, 1). Note that the value
of Tf is 1 or 2 based on the obtained random value. Where
Tf is set to 1 when r′ < 0.5 and 2 when r′ ≥ 0.5. The Tf
parameter controls the neighborhood size in the search space,
which affects the exploitation and exploration abilities of the
TLBO algorithm.

B. LEARNER PHASE
In the second phase, the way the learners interact with each
other’s is considered. The fact is that a learner can also
acquire the information from other superior learners in the
class. If we have two distinct learners, p and q, which is
denoted byXp andXq , we can choose one of them randomly.
Hence, the updated status of the learner Xp can be obtained
using Eq. (4):

Xnew
j,p,i =

{
Xold

j,p,i + r′′
(
Xold

j,p,i −Xold
j,q,i

)
f(Xp) < f(Xq)

Xold
j,p,i − r′′

(
Xold

j,q,i −Xold
j,p,i

)
f(Xq) < f(Xp)

(4)
where r′′ is a random number inside (0,1), and f(Xp) and
f(Xq) are the fitness values of Xp and Xq agents, respec-
tively. Based on this rule, only the better quality agents are
saved to be improved in the next iterations.

The pseudo-code of continuous TLBO is shown in Algo-
rithm 1.

IV. THE PROPOSED APPROACH
The majority of metaheuristic algorithms have been proposed
to optimize continuous optimization problems. To tackle
binary optimization problems (e.g., FS), these algorithms
require adjustments and even new operators. In the literature,
three main groups of binarization techniques are used to
convert continuous algorithms into the binary form. The
first group is called the two-steps binarization techniques,
in which the operators of the algorithms remain unchanged,
and two steps take place to convert the continuous solution
into the binary one after the original continuous iteration.

Algorithm 1 Pseudo-code of TLBO

Initialize number of agents N , dimensions D, and number
of iterations (L)
Generate the candidate solutions (learners) Xi(i =
1, 2, . . . , N)
Obtain the fitness value of all N agents
Set XT as the best agent
Set l = 1
while (l ≤ L) do . Teacher phase

Set the best learner as XTeacher

Obtain the mean value across the D design variables
for (each learner (Xnew

j,k,i)) do
Obtain Tf using Eq. (3)
Update the positions using Eqs. (1) and (2)

end for
Evaluate the new learners
Save the new agents if they are superior to the old one
for (each learner (Xnew

j,k,i)) do . Learner phase
Randomly choose another learner
Update the current agents using Eq. (4)

end for
Assess the new learners
Save the new agents if they are superior to the old one
Update XT if there is a superior agent
l = l + 1

end while
Return XT

In the second group called the continuous-binary operator
transformation, however, the operators of the algorithm are
reformulated, and the algebra of the search space is redefined
[20]. Moreover, in the third category, a novel binarization
method, that is based on a clustering technique (called K-
means Transition Algorithm (KMTA)), was recently pro-
posed by García et al. [81] as a general binarization method.

Transfer Functions (TF) and binarization are two-steps
techniques that have been widely used to convert the continu-
ous search space to binary pair in many algorithms (e.g., PSO
[82], GSA [79]). In this technique, the TF is considered as the
first step, which aims to produce an intermediate solution,
with values in the interval [0, 1], that defines the probability
of converting the corresponding dimension in the original
solution into zero or one. The second step in these techniques
is the binarization, where a binarization rule is applied to map
the intermediate solution into a binary solution.

Kennedy and Eberhart [82] introduced the use of the sig-
moid function (as in Eq. 5) to transform the continuous PSO
into a binary version. In 2010, Rashedi et al. [79] introduced
the use of the tanh function (as in Eq. (6)) to binarize the
GSA. These two TFs belong to two different families that
have distinguished based on their shape. These families were
called the S-shaped (as in Fig. 1a) and the V-shaped (as in
Fig. 1b).
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T (xij(t)) =
1

1 + e−x
i
j(t)

(5)

T (xij(t)) = | tanh(xij(t))| (6)

In these works, two binarization methods were used; the
standard and complement methods. In the standard tech-
niques (see Eq. (7)), which was first used with the S-shaped
TF as in Kennedy and Eberhart [82], a random number is
generated, if its value is less than the probability value of the
ith element of the intermediate solution at the kth iteration,
then, ith element of the binary solution is set to 1, otherwise,
it is set to zero. In the complement method (see Eq. (8)),
which was used with the V-shaped TF as in Rashedi et al.
[79], the values (0 or 1) of the binary solution are set based
on the benefits of the current solution, that is to say, based
on the probability value (T (vki (t))), the ith element is either
kept the same or flipped.

Xk
i (t+ 1) =

{
1 r < T (xki (t))
0 Otherwise

(7)

Xk
i (t+ 1) =

{
v Xk

i (t) r < T (xki (t))
Xk

i (t) Otherwise
(8)

where r is a random number in [0, 1] interval.
In both TFs groups (i.e., S-shaped and V-shaped), the

probability of updating the solution’s element to 0 or 1
mainly depends on the step vector, which is considered as the
only input to the TF. A higher probability value indicates that
this solution is far from the best solution so far and requires
an abrupt change (exploration). In contrast, a lower value
indicates that the individual is very close to the best solution
and requires smaller steps (exploitation) [83]. Therefore, the
TF plays a significant role in balancing between exploration
and exploitation for binary algorithms since different TFs
have different behaviors when calculating the probability of
updating the solution’s element.

Mirjalili and Lewis [84] considered the same assumption
of Kennedy and Eberhart [82] and Rashedi et al. [79], and
used the standard Binarization Methods (BM) with four S-
shaped functions, and the complement BM with four V-
shaped functions. The standard method sets the solution’s
elements to 0 or 1 based on the calculated probability from
the TF regardless of the current value in the solution. Which
means that the solution may remain in its current position
while we need to move it to achieve the exploration, and its
position may be changed while we need to keep it to achieve
the exploitation. However, the complement method considers
the current value of the position to set the new value. For the
large probability values, the solution is flipped to move it into
a different region, while the small probability values keep the
position value as is.

The main difference between the standard and the comple-
ment methods is the binarization mechanism, and revealed
different results when used with different TFs. After a careful
literature review, we found that most of the previous studies

considered different TFs, while a few binarization methods
were used. However, both TFs and binarization methods have
a significant impact on the effectiveness of the optimization
algorithm. Our experiments show that both using a suitable
binarization mechanism with a TF has a substantial impact
on the exploitative and exploratory potentials of the utilized
binary algorithm. This motivated our attempts to propose
different binarization methods.

As mentioned above, in both standard and complement
methods, the updating mechanisms do not consider the best
solution so far. Because the intermediate solution is a mu-
tation probability of changing the solution and is based on
the behavior of the evolutionary algorithms, the best solution
so far (called elitist) may be used to re-position the current
solution.

In this paper, four different binarization methods that con-
sider other solution than the current one in the re-positioning
process are proposed. In the proposed approaches, the guide
solution is selected based on different selection criteria; best
selection, where the solution with the best fitness value
(called elitist) is selected, Roulette Wheel Selection (RWS)
[85], Tournament Selection (TS) [86] and finally based on the
solution’s rank compared to other solutions in the population.
Eq. (9) represents the general formula for using a selected
solution to update the position of the current one. The mu-
tation probability is calculated using the TF based on the
selected solution. If a random number is less than that value,
the dimension of the new solution will be the complement of
the corresponding one of the selected solution. Otherwise, it
will be set to the actual value of the selected solution.

Xk
new(t+ 1) =

{
v XK

selected(t) r < T (xki (t+ 1))
XK

selected(t) Otherwise
(9)

where v represents the complement, xKselected is the corre-
sponding value of the selected solution.

The following remarks represent the brief description of
the four BMs proposed in this paper:

1) BTLBO_E: Elitist method, where the best solution
so far, according to the fitness value, is selected. In
this mechanism, the position of the solution being
processed is changed towards or away from the best
solution. As the FS is a minimization problem, the
solution with the minimum fitness value is selected.
According to Eq. (9), if r is lower than T (vki (t + 1),
then, the solution is moved far from the best solution.
Otherwise, the move will be towards that solution.

2) BTLBO_ERW: The name of this method is given based
on the concept of Elitist Roulette. In this method, the
selection process is based on the RWS mechanism.
A chance to the other solutions in the population is
given by employing the RWS to avoid moving all
agents towards the best solution, especially in the last
stages of the search process. Based on this fact, it
gives a probability (p) for each solution to be selected
according to its fitness value, where p is calculated
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FIGURE 1: S-shaped and (b) V-shaped TFs

according to Eq. (10). Then, the selected solution is
considered as a guiding solution in Eq. (9).

pi =
fi∑n
j=1 fj

(10)

where fi is the fitness of the ith solution, and n
represents the population size.

3) BTLBO_ET: The name of this method is given based
on the concept of Elitist Tournament. In this method,
the TS mechanism is utilized to select a guiding solu-
tion instead of selecting the best one. In this mecha-
nism, a set (with size τ ) of solutions, which is called
tournament, is randomly selected, then, the best so-
lution in the tournament is picked up as the guiding
solution. Then, the selected solution is considered as
a guiding solution in Eq. (9). Figure 2 illustrates the
process of selecting a solution following the TS mech-
anism.
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FIGURE 2: Tournament Selection mechanism

4) BTLBO_ER Rank-based method: Each solution in the
population has a probability to be selected based on its
rank in terms of the fitness value. In this method, each
solution is given a rank from 1 to n based on the fitness
value, where the best solution is given the rank n (recall
that n is the population size), while the worst solution

is given a rank of 1. Then, the probability of selecting
each solution is calculated based on Eq. (11).

pi =
ranki

n× (n− 1)
(11)

where ranki represents the rank of the ith solution.
The advantages of this method are that each solution
is given a chance to be selected since the ranks of
the individuals are scaled. If the fitness of the fittest
solution is much higher than that of others, it would
be chosen probably in most of the iterations. This
mechanism can help the proposed variant to avoid the
premature convergence event.

To make fair comparisons, the two basic binarization
methods (standard and complement) will be investigated as
follows:

1) BTLBO_S: Standard method as defined in Eq. (7).
2) BTLBO_C: Complement Method as defined in Eq. (8).

A. BTLBO FOR FS
One of the significant issues that should be considered when
designing an optimization algorithm is the solution repre-
sentation. As the FS is a binary optimization problem, a
binary vector (with a length that is equal to the number
of features in the original dataset) is used to represent a
solution to a FS problem where a zero indicates that the
corresponding feature is not selected and a one means that
the relevant element is selected. In this work, two TFs are
used to transform the TLBO algorithm into binary based on
six different binarization methods.

Eq. (12) represents the fitness function adopted in the
proposed feature selection approaches. As it can be seen
the equation, the fitness function incorporates two important
objectives which are the miss-classification rate of the under-
lying classifier (i.e., KNN classifier [87], and the reduction
rate in the number of selected features by the optimizer.

↓ Fitness = αγR(D) + β
|R|
|C|

(12)

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3064799, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

where γR(D) is the classification error rate resulted by the
underlying induction algorithm, |R| is the number of selected
features by the optimizer, and |C| is the total number of
features in the original dataset, and α and β are weighting
constants. The latter two are used to quantify the importance
of the main objectives, which are the accuracy and the reduc-
tion rate. The value of α is set in [0,1], while β = (1 − α)
[88].

V. EXPERIMENTAL RESULTS AND SIMULATIONS
A. EXPERIMENTAL SETUP
Eighteen well-regarded datasets obtained from UCI repos-
itory [89] are employed here to study the effectiveness of
the proposed binary TLBO variants. These problems were
chosen carefully with various details and properties (e.g.,
number of features, instances, and classes) to cover varied
types of real-life tasks. Table 1 describes a brief explanation
for each employed dataset.

TABLE 1: List of datasets

Dataset No.of Features No.of instances

Breastcancer 9 699
BreastEW 30 569
Exactly 13 1000
Exactly2 13 1000
HeartEW 13 270
Lymphography 18 148
M-of-n 13 1000
PenglungEW 325 73
SonarEW 60 208
SpectEW 22 267
CongressEW 16 435
IonosphereEW 34 351
KrvskpEW 36 3196
Tic-tac-toe 9 958
Vote 16 300
WaveformEW 40 5000
WineEW 13 178
Zoo 16 101

The same hardware and operating system configuration
have been used to have a fair study. Details have been
reported in Table 2.

TABLE 2: The system properties

Name Setting
Hardware
CPU Intel Core(TM) i5-3210M
Frequency 2.5GHz
RAM 4GB
Hard drive 500 GB
Software
Operating system Windows 7
Language MATLAB R2018a

All the optimizers are assessed using the same common
configurations and settings (α = 0.99, β = 0.01, Number of
runs = 30, and number of agents = 40, number of fitness
function calls), as reported in Table 3. Please note that these
settings were obtained from well-known FS approaches in
the literature [90, 91] Since the TLBO algorithm calls the
fitness function two times in each iteration, we executed it
for the half number of iterations of the other algorithms. For
the specific configurations mentioned in Table 3, we used the

recommended values by other researchers in different papers,
for instance, Rashedi et al. [79] recommended the value 10
for the parameter G0 in BGSA, while the a parameter was
recommend by Mirjalili et al. [7] to be from 2 to 0. The
parameter values for the BBA algorithm were obtained from
Mirjalili et al. [92]. The same case is with the parameters
of the WOA algorithm which ordained form [5]. Because
the experiments in this paper are devoted to meta-heuristic
methods which incorporate randomness, we present the av-
erage results using 30 independent runs on each dataset. For
for the value of K in KNN, previous works recommended
that K = 5 so it was set to this value int this work for fair
comparison as well [79, 88, 91, 93].

Please note that bold values in all reported tables show
the best-obtained results. To identify if there is a signifi-
cant difference between the solutions of different variants
and competitors, we performed a Wilcoxon non-parametric
statistical test [94] with significance level of 0.05. In order
to judge the normality assumption of Wilcoxon test, we
conducted Shapiro-Wilk (SW) test as a powerful and rec-
ommended procedure in the literature [95]. If the SW test
is not applicable (i.e the sample standard deviation is zero),
we performed Kolmogorov-Smirnov (KS) test.

TABLE 3: Experimental setup
Config. Name Value
Fitness function
α 0.99
β 0.01
Common Config.
Number of runs 30
Number of agents 40
Number of iterations (for TLBO) 50
Number of iterations (for other optimizers) 100
Specific Config.
G0 (for BGSA) 10
a (for bGWO) from 2 to 0
Qmin Frequency minimum (for BA) 0
Qmax Frequency maximum (for BA) 2
A Loudness (for BA) 0.5
r Pulse rate (for BA) 0.5
a (for WOA) from 2 to 0
a2 (for WOA) from -1 to -2
K for KNN 5
t for Tournament selection 10

B. RESULTS AND DISCUSSIONS
In this section, various extensive experiments are performed,
and the results are presented in details to find the best
variant of proposed BTLBO for solving FS datasets. First,
we investigate the impact of each binarization method on
the performance of the binary TLBO with S-shaped TFs
according to different metrics. By these experiments, we can
find the best binarization technique when using S-shaped
TFs.

1) Different binarization methods with S-shaped TFs
Table 4 shows the accuracy results obtained using different
binarization methods with S-shaped TFs. As per F-test results
in Table 4, it is observed that the BTLBO_ET has attained
the best results. It also provides 100% accuracy on 33.33% of
datasets. It can be seen that there is a competition between the
BTLBO_E, BTLBO_ERW, BTLBO_ET, and BTLBO_ER
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variants in terms of accuracy rates, while BTLBO_S and
BTLBO_C variants show similar overall efficacy.

TABLE 4: Comparison between different binarization meth-
ods with S-shaped TFs in terms of average accuracy.

Benchmark Measure BTLBO_S BTLBO_C BTLBO_E BTLBO_ERW BTLBO_ET BTLBO_ER

Breastcancer
AVG 1.0000 0.9857 1.0000 0.9929 0.9786 0.9786

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BreastEW
AVG 0.9851 0.9784 0.9936 0.9789 0.9877 1.0000
STD 0.0041 0.0055 0.0039 0.0044 0.0055 0.0000

CongressEW
AVG 0.9885 0.9881 1.0000 0.9801 1.0000 0.9885

STD 0.0000 0.0021 0.0000 0.0052 0.0000 0.0000

Exactly
AVG 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Exactly2
AVG 0.7437 0.7873 0.7483 0.7820 0.7995 0.7463

STD 0.0081 0.0134 0.0040 0.0173 0.0115 0.0043

HeartEW
AVG 0.9019 0.8741 0.8488 0.9210 0.8957 0.9086

STD 0.0099 0.0141 0.0070 0.0083 0.0091 0.0161

IonosphereEW
AVG 0.9676 0.9803 0.9657 0.9244 0.9761 0.9775

STD 0.0099 0.0079 0.0080 0.0069 0.0066 0.0070

KrvskpEW
AVG 0.9716 0.9781 0.9715 0.9763 0.9768 0.9791
STD 0.0042 0.0044 0.0037 0.0053 0.0037 0.0045

Lymphography
AVG 0.9311 0.9398 0.9589 0.9539 0.9344 0.8877

STD 0.0085 0.0134 0.0143 0.0163 0.0138 0.0163

M-of-n
AVG 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000

penglungEW
AVG 1.0000 1.0000 0.8565 0.8730 1.0000 0.9867

STD 0.0000 0.0000 0.0228 0.0194 0.0000 0.0271

SonarEW
AVG 0.9802 0.9706 0.9857 0.9992 0.9976 0.9825

STD 0.0110 0.0135 0.0119 0.0043 0.0073 0.0107

SpectEW
AVG 0.8914 0.9222 0.9333 0.8031 0.8599 0.9321

STD 0.0106 0.0075 0.0104 0.0091 0.0093 0.0101

Tic-tac-toe
AVG 0.8385 0.8385 0.8542 0.8333 0.8281 0.8125

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Vote
AVG 0.9522 0.9833 0.9844 1.0000 0.9878 0.9728

STD 0.0058 0.0000 0.0042 0.0000 0.0075 0.0082

WaveformEW
AVG 0.7501 0.7513 0.7475 0.7513 0.7609 0.7532

STD 0.0066 0.0081 0.0065 0.0049 0.0065 0.0060

WineEW
AVG 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Zoo
AVG 1.0000 0.9524 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Ranking Best 5 5 9 7 8 6

Overall Ranking F-Test 3.9167 3.6389 3.3333 3.5556 3.0833 3.4722

Table 5 compares the average number of features attained
by different binarization methods with S-shaped TFs. Ac-
cording to the number of features, the BTLBO_E has shown
the best efficacy, while BTLBO_ET has attained the next
place.

Table 6 shows the average fitness values attained by differ-
ent binarization methods with S-shaped TFs. Regarding the
fitness results, the best variant is BTLBO_E technique. It has
attained the minimum results on 44.44% of problems. We
observe that the BTLBO_ET version is placed at the second
stage.

Table 7 shows the average running time obtained by differ-
ent binarization methods with S-shaped TFs. Based on run-
ning time, the fastest variant is BTLBO_S, while BTLBO_E
and BTLBO_ERW are in the next stages.

The p-values of the normality test for accuracy results of
variants with S-shaped TF are presented in Table 8. It is
evident that most of the cases the p-value is less than 5%
and the null hypothesis is rejected. This fact shows that there
is evidence that the results of the different variants are not
normally distributed.

Table 9 shows the p-values of the Wilcoxon test for the
accuracy results of BTLBO-ET versus other techniques with
S-shaped TF. The p-values evidently show that the recorded

TABLE 5: Comparison between different binarization meth-
ods with S-shaped TFs in terms of average number of features

Benchmark Measure BTLBO_S BTLBO_C BTLBO_E BTLBO_ERW BTLBO_ET BTLBO_ER

Breastcancer
AVG 4.0000 6.0000 7.0000 4.0000 4.0000 4.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BreastEW
AVG 12.4000 14.9000 12.5333 13.5000 11.9667 11.6667
STD 3.1360 1.9888 2.3742 2.2399 2.2512 1.9357

CongressEW
AVG 5.4667 6.8667 5.5000 5.5000 6.3667 5.4000
STD 1.2794 1.4794 0.9002 1.1963 0.7184 0.9322

Exactly
AVG 6.4667 6.3667 6.2333 6.4667 6.3333 6.4667

STD 0.5074 0.4901 0.4302 0.5074 0.4795 0.5074

Exactly2
AVG 8.6333 8.3667 4.7667 8.5667 9.5000 7.9000

STD 1.9561 2.5255 3.9713 2.1922 0.5724 1.4704

HeartEW
AVG 5.8667 5.8667 5.6333 6.7667 6.0333 4.3667
STD 0.9371 1.0080 1.5862 1.0063 1.2726 1.2994

IonosphereEW
AVG 10.9000 13.5667 12.2333 12.8000 12.6667 12.4333

STD 1.7685 2.1284 2.2997 2.7468 2.5641 2.2997

KrvskpEW
AVG 21.1000 20.8333 20.1667 21.4667 18.8000 22.2000

STD 2.4544 2.7926 2.2450 2.5962 2.5784 3.0783

Lymphography
AVG 8.8667 7.7333 9.0000 8.6667 8.4667 7.3000
STD 1.4559 1.3629 1.8383 1.2685 1.2521 1.6006

M-of-n
AVG 6.7667 6.7000 6.2667 6.4333 6.3000 6.4667

STD 0.6261 0.5350 0.4498 0.5040 0.4661 0.5074

penglungEW
AVG 125.1667 132.3667 136.0667 135.2000 126.1667 142.0667

STD 4.0606 6.4833 12.4123 8.7628 4.5719 17.0009

SonarEW
AVG 25.5667 27.3000 25.1333 25.0000 28.3000 27.1667

STD 3.2129 3.2499 4.0830 2.4069 4.1285 2.4647

SpectEW
AVG 8.5333 10.8667 8.9667 6.7000 8.2333 11.0000

STD 1.8333 2.0126 1.4735 2.0869 1.9241 2.2743

Tic-tac-toe
AVG 6.0000 6.0000 6.0000 6.0000 5.0000 6.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Vote
AVG 5.2000 4.3000 4.9667 6.3333 5.1667 5.0333

STD 1.6274 0.9523 0.8899 0.8442 1.3153 1.2726

WaveformEW
AVG 19.8333 20.4000 19.8667 22.9667 20.9333 21.5000

STD 2.5063 2.1107 3.3190 2.8343 2.9353 2.7885

WineEW
AVG 5.0000 4.5667 2.1333 5.7333 4.3333 3.7000

STD 0.0000 0.5683 0.3457 0.6915 0.5467 0.5960

Zoo
AVG 6.0000 4.5000 3.2000 3.8667 3.5000 4.9667

STD 0.5872 0.5085 0.4068 0.5074 0.5085 0.6149

Ranking Best 4 1 5 3 3 5

Overall Ranking F-Test 3.3889 3.0278 4.2500 2.8889 3.8611 3.5833

differences between the accuracy rates of the BTLBO-ET and
other variants with S-shaped TFs are significantly meaningful
in most of the cases.

Figures 3 and 4 demonstrate the convergence curves for
BTLBO with different binarization approaches for S-shaped
TFs in dealing with all datasets. According to convergence
plots, firstly, it can be seen several patterns in convergence of
different methods, while for some datasets like Exactly and
M-of-n, the patterns are similar and there is a competition be-
tween different variants. Secondly, some variants show more
stagnation drawbacks. If we consider all curves, it can be seen
that the BTLBO_E technique has shown the fastest trends
for majority of datasets. After BTLBO_E, the BTLBO_ERW
variant also shows the second best convergence rate.

As per the average number of features and fitness values,
it can be seen that the elitist method is the fittest binarization
technique in the case of S-shaped TFs. The elitist approach
also led to the best accuracy rates on nine datasets. This
observation shows that when using S-shaped TFs, BTLBO
with elitist method shows the best efficacy compared to other
variants with other binarization techniques.

2) Different binarization methods with V-shaped TFs
In this subsection, we study the impact of each binarization
method on the performance of the binary TLBO with V-
shaped TFs using different performance measures. By these
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FIGURE 3: Convergence curves for BTLBO with different binarization methods for S-shaped TFs on Breastcancer, BreastEW,
CongressEW, Exactly, Exactly2, HeartEW, IonosphereEW, KrvskpEW, and Lymphography datasets.

experiments, it can be recognized as the most appropriate
binarization approach when using V-shaped TFs.

Table 10 compares the accuracy results obtained by dif-
ferent binarization methods with V-shaped TFs. Based on
accuracy rates in Table 10, the BTLBO_ER has scored first
(see F-test results), whereas BTLBO_ERW also obtained
the best results on 38.88 % of datasets. It is evident that
BTLBO_ET has attained the best results on 50% of cases.
Also, it can be seen that the BTLBO_C and BTLBO_E
variants show no superiority on each other and has obtained
the same overall place. If we consider the BTLBO_S variant,
we observe that it is the last preference based on the accuracy
results.

Table 11 exposes the average number of features found

by different binarization methods with V-shaped TFs. As
per number of features in Table 11, it can be seen that
the method with lowest accuracy, BTLBO_S, is the best
performing variant (superior results on 38.88%) in terms of
average number of features.

Table 12 presents the average fitness results found by
different binarization methods with V-shaped TFs. As per
results in Table 12, we observe that BTLBO_ET has at-
tained the minimum results on 38.88 % of cases, while
BTLBO_ERW and BTLBO_ER are in the next places by
finding the best results on 27.77% of problems. Based
on F-test results, the BTLBO_ER is the ranked one ap-
proach, whereas BTLBO_ET, BTLBO_ERW, BTLBO_C,
BTLBO_E, and BTLBO_S are in the next preferences, re-
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FIGURE 4: Convergence curves for BTLBO with different binarization methods for S-shaped TFs on M-of-n, penglungEW,
SonarEW, SpectEW, Tic-tac-toe, Vote, WaveformEW, WineEW, and Zoo datasets.

spectively.

Table 13 shows the average running time spent by different
binarization methods with V-shaped TFs. Based on CPU time
analysis, the fastest version with V-shaped TFs on 83.33%
of problems is still BTLBO_S, similarly to the observations
in the variants with S-shaped TFs. For most of the cases,
except the KrvskpEW, Tic-tac-toe, and WaveformEW, it is
detected that the time gaps between various variants are not
considerable.

The p-values of the normality test for accuracy results
of variants with V-shaped TF are exposed in Table 14. We
observe from Table 14 that the p-value is less than 5 % for
most of the cases. Hence, the null hypothesis is not approved.
This fact reveals that the obtained results follow a non-normal

distribution.

Table 15 reveals the p-values of the Wilcoxon test for
the accuracy results of BTLBO-ER compared to other peers
when using V-shaped TF. The p-values clearly verify that
the detected variations of the accuracy rates obtained by
the BTLBO-ER and other variants with V-shaped TFs are
statistically significant in most of the cases.

Figures 5 and 6 reveal the convergence behaviors for
BTLBO with different binarization approaches for V-shaped
TFs on all datasets. According to curves, it can be
seen that BTLBO_ET shows the fastest rates in dealing
with BreastEW, HeartEW, IonosphereEW, SpectEW, and
penglungEW. As the next variants, the BTLBO_ERW and
BTLBO_ER also show competitive rates on 27.77% of prob-
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TABLE 6: Comparison between different binarization meth-
ods with S-shaped TFs in terms of average fitness

Benchmark Measure BTLBO_S BTLBO_C BTLBO_E BTLBO_ERW BTLBO_ET BTLBO_ER

Breastcancer
AVG 0.0050 0.0216 0.0088 0.0121 0.0262 0.0262

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BreastEW
AVG 0.0190 0.0266 0.0107 0.0255 0.0163 0.0040
STD 0.0037 0.0052 0.0035 0.0040 0.0050 0.0007

CongressEW
AVG 0.0150 0.0163 0.0037 0.0234 0.0042 0.0150

STD 0.0009 0.0021 0.0006 0.0049 0.0005 0.0006

Exactly
AVG 0.0054 0.0053 0.0052 0.0054 0.0053 0.0054

STD 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

Exactly2
AVG 0.2610 0.2175 0.2531 0.2230 0.2064 0.2577

STD 0.0070 0.0120 0.0057 0.0159 0.0117 0.0041

HeartEW
AVG 0.1021 0.1296 0.1544 0.0839 0.1083 0.0941

STD 0.0100 0.0135 0.0069 0.0084 0.0084 0.0166

IonosphereEW
AVG 0.0354 0.0236 0.0376 0.0787 0.0275 0.0261

STD 0.0097 0.0077 0.0078 0.0067 0.0065 0.0067

KrvskpEW
AVG 0.0341 0.0276 0.0340 0.0296 0.0283 0.0271
STD 0.0040 0.0045 0.0034 0.0050 0.0034 0.0041

Lymphography
AVG 0.0734 0.0641 0.0460 0.0507 0.0700 0.1155

STD 0.0079 0.0135 0.0135 0.0158 0.0135 0.0157

M-of-n
AVG 0.0058 0.0056 0.0052 0.0054 0.0052 0.0054

STD 0.0012 0.0004 0.0004 0.0004 0.0004 0.0004

penglungEW
AVG 0.0039 0.0041 0.1463 0.1299 0.0039 0.0176

STD 0.0001 0.0002 0.0223 0.0191 0.0001 0.0265

SonarEW
AVG 0.0240 0.0337 0.0184 0.0050 0.0072 0.0219

STD 0.0107 0.0130 0.0114 0.0042 0.0069 0.0105

SpectEW
AVG 0.1116 0.0822 0.0703 0.1981 0.1426 0.0725

STD 0.0102 0.0071 0.0100 0.0082 0.0087 0.0094

Tic-tac-toe
AVG 0.1673 0.1673 0.1519 0.1725 0.1764 0.1931

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Vote
AVG 0.0508 0.0194 0.0187 0.0042 0.0155 0.0303

STD 0.0047 0.0006 0.0038 0.0006 0.0070 0.0074

WaveformEW
AVG 0.2525 0.2514 0.2551 0.2521 0.2421 0.2498

STD 0.0065 0.0079 0.0065 0.0047 0.0065 0.0059

WineEW
AVG 0.0042 0.0038 0.0018 0.0048 0.0036 0.0031

STD 0.0000 0.0005 0.0003 0.0006 0.0005 0.0005

Zoo
AVG 0.0040 0.0501 0.0021 0.0026 0.0023 0.0033

STD 0.0004 0.0003 0.0003 0.0003 0.0003 0.0004

Ranking Best 2 1 8 3 2 2

Overall Ranking F-Test 2.6944 3.2778 4.1944 3.1944 4.1667 3.4722

lems. Among other variants, it can be seen that BTLBO_S
shows the repetitive stagnation problems on the majority of
cases.

Referring to the average accuracy rates and fitness values,
we recognize that the rank-based elitist strategy is the best
performing binarization technique in the case of V-shaped
TFs. This observation reveals that when using V-shaped
TFs, BTLBO with rank-based elitist method demonstrates
the best performance compared to other peers with different
binarization techniques.

After all, the results and discussed showed that both the
TF and binarization approach has a significant influence
on the effectiveness of the binary TLBO. Hence, choosing
a proper TF along with a fitting binarization scheme has
a considerable impact on the exploratory and exploitative
potentials of the final wrapper FS technique. One reason for
improvements when using V-shaped TFs is that they follow
an aggressive exploration tactic. V-shaped TFs allocate high
mutation chances for both near and far optimal features,
which this characteristic assist in outperforming on datasets
with a lower number of features. In contrast, S-shaped TFs
have a conservative exploration manner, and they provide
high mutation chances only for far optimal features. This trait
assists S-shaped TFs in delivering better results for datasets
with a higher number of features.

TABLE 7: Comparison between different binarization meth-
ods with S-shaped TFs in terms of average running time

Benchmark Measure BTLBO_S BTLBO_C BTLBO_E BTLBO_ERW BTLBO_ET BTLBO_ER

Breastcancer
AVG 22.0375 22.2831 22.1016 22.2050 22.1826 25.4944

STD 1.1964 1.1896 1.2504 1.2535 1.2375 5.6211

BreastEW
AVG 22.8783 23.0654 22.9440 22.9375 22.9969 26.1550

STD 1.4343 1.3515 1.3704 1.3931 1.3898 4.5314

CongressEW
AVG 20.1415 20.2905 20.1971 20.3172 20.2081 22.5537

STD 1.0633 1.1196 1.0476 1.0735 1.0665 3.3493

Exactly
AVG 27.7219 28.8969 28.0023 28.2458 28.0947 33.5767

STD 1.5629 1.6901 1.6065 1.6412 1.6483 6.6495

Exactly2
AVG 30.1042 30.0318 29.6147 29.9449 29.6948 33.2720

STD 1.7850 1.8091 1.7766 1.7816 1.7346 5.0766

HeartEW
AVG 17.9813 18.0761 17.9919 18.1071 18.0433 19.9286

STD 0.8933 0.9318 0.8894 0.8604 0.8877 3.1225

IonosphereEW
AVG 18.8171 18.8568 18.9330 18.9223 18.8120 21.3733

STD 1.0789 1.0519 1.0361 1.1205 1.0534 3.5469

KrvskpEW
AVG 258.7456 263.1133 257.1450 264.9291 259.0755 289.6172

STD 39.1504 37.4012 31.8124 34.3285 37.3154 55.7511

Lymphography
AVG 17.1649 16.8811 17.1625 16.9105 16.9191 18.3764

STD 0.7577 0.7462 0.7570 0.6859 0.5496 2.9433

M-of-n
AVG 27.9288 28.2807 28.0240 29.2921 29.0487 30.8442

STD 1.4263 1.5863 1.6475 1.2430 1.1060 4.7666

penglungEW
AVG 19.4497 20.1905 20.1159 20.4472 21.6040 21.7908

STD 0.9555 0.9715 1.1169 1.2970 1.6853 3.4438

SonarEW
AVG 17.6170 17.7034 17.6044 17.6382 19.7992 19.4067

STD 0.8472 0.8607 0.8715 0.8749 3.6636 3.8151

SpectEW
AVG 17.9348 17.8566 17.9820 17.8232 19.7082 19.6119

STD 0.8715 0.9238 0.9422 0.9396 2.9852 2.7552

Tic-tac-toe
AVG 25.0070 25.2593 25.2052 25.4149 28.4860 28.4177

STD 1.3707 1.3828 1.4299 1.5358 6.2622 4.6939

Vote
AVG 18.4761 18.5653 18.4832 18.3884 20.2961 20.2867

STD 0.8839 0.9171 0.8781 0.9364 3.0751 3.6949

WaveformEW
AVG 637.0569 669.8580 636.1258 661.9894 707.0919 694.0066

STD 127.9187 131.5720 123.5059 104.9563 136.6539 174.2097

WineEW
AVG 17.1579 17.1697 17.1652 17.0967 19.1163 19.0430

STD 0.8055 0.7264 0.8237 0.7362 3.5912 2.9233

Zoo
AVG 17.2283 17.6129 16.9378 16.9288 18.8791 19.3586

STD 0.7030 0.7397 0.6707 0.7446 3.3728 3.7876

Ranking Best 8 1 4 4 1 0

Overall Ranking F-Test 5.0000 3.3333 4.6667 3.8333 2.8333 1.3333

TABLE 8: P-values of the Shapiro-Wilk and Kolmogorov-
Smirnov normality tests for the classification accuracy results
of methods with S-shaped TF (p ≤ 0.05 are shown in bold
face)

dataset BTLBO_S BTLBO_C BTLBO_E BTLBO_ERW BTLBO_ET BTLBO_ER

Breastcancer 7.32E-20 1.06E-19 7.32E-20 8.80E-20 1.28E-19 1.28E-19

BreastEW 3.91E-08 4.73E-06 2.09E-08 1.43E-07 8.92E-06 7.32E-20

CongressEW 9.85E-20 7.77E-12 7.32E-20 2.09E-08 7.32E-20 9.85E-20

Exactly 7.32E-20 7.32E-20 7.32E-20 7.32E-20 7.32E-20 7.32E-20

Exactly2 1.05E-05 1.55E-05 2.80E-09 4.63E-05 9.09E-05 2.74E-06

HeartEW 6.09E-08 5.45E-05 1.73E-09 2.09E-08 1.02E-07 2.26E-05

IonosphereEW 2.64E-04 3.11E-06 3.09E-06 1.02E-07 3.91E-08 1.43E-07

KrvskpEW 8.31E-01 2.92E-01 4.50E-01 6.68E-02 8.05E-01 4.14E-01

Lymphography 4.40E-11 7.18E-09 1.01E-08 2.65E-07 4.43E-08 1.33E-07

M-of-n 7.77E-12 7.32E-20 7.32E-20 7.32E-20 7.32E-20 7.32E-20

penglungEW 7.32E-20 7.32E-20 3.19E-09 1.96E-10 7.32E-20 4.43E-09

SonarEW 1.25E-07 5.31E-06 1.43E-07 7.77E-12 1.78E-10 2.09E-08

SpectEW 6.38E-06 4.43E-09 3.11E-06 1.02E-07 1.82E-07 2.22E-06

Tic-tac-toe 5.83E-18 5.83E-18 3.75E-18 6.76E-18 7.84E-18 1.23E-17

Vote 5.98E-10 1.13E-19 4.40E-11 7.32E-20 2.09E-08 1.02E-07

WaveformEW 1.59E-02 1.98E-01 5.11E-02 4.91E-03 6.07E-01 4.92E-01

WineEW 7.32E-20 7.32E-20 7.32E-20 7.32E-20 7.32E-20 7.32E-20

Zoo 7.32E-20 2.55E-19 7.32E-20 7.32E-20 7.32E-20 7.32E-20
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FIGURE 5: Convergence curves for BTLBO with different binarization methods for V-shaped TFs on Breastcancer, BreastEW,
CongressEW, Exactly, Exactly2, HeartEW, IonosphereEW, KrvskpEW, and Lymphography datasets.

C. COMPARISON OF TOP VARIANTS OF BTLBO

The accuracy, number of features, fitness values, and running
time of top variants, BTLBO-S-ET and BTLBO-V-ER are
compared in Table 16.

Based on the results of top variants, it can be seen that
the BTLBO-V-ER variant shows a better overall performance
than BTLBO-S-ET in all metrics. In terms of accuracy rates,
BTLBO-V-ER shows a superior efficacy on 55.55% of cases,
and it obtains similar results on four problems: WineEW, M-
of-n, penglungEW, and Exactly. Considering the number of
features, the BTLBO-V-ER outperforms the BTLBO-S-ET
on 83.33% of problems and only in three cases, BTLBO-S-
ET finds better results. According to fitness and time results,
BTLBO-V-ER outperforms the other peer on 77.77% of

problems.

The main reason that the BTLBO_ER can carry out a
smoother shift from the exploration to exploitation procliv-
ity because of the V-shaped TF that assists the variant in
aggressive exploring the feature space and allocating higher
mutation chances for both near and far optimal features.
It also utilizes a rank-based strategy to choose a solution
and adopt the solutions in the next iteration. The advantage
of rank-based selection scheme is that it helps the BTLBO
variant to prevent rapid and premature convergence. Hence,
the results are more enriched during more exploratory trends,
and this led to more high-quality features.
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FIGURE 6: Convergence curves for BTLBO with different binarization methods for V-shaped TFs on M-of-n, penglungEW,
SonarEW, SpectEW, Tic-tac-toe, Vote, WaveformEW, WineEW, and Zoo datasets.

D. COMPARISON OF BTLBO-V-ER WITH OTHER
OPTIMIZERS

In this subsection, the performance of the BTLBO-V-ER
variant is compared to other well-regarded optimizers from
previous works. Numerical comparisons play a crucial role in
detecting the overall ranks of developed methods [96, 97, 98,
99]. The performance of the proposed BTLBO-V-ER is com-
pared to the well-established bGWO [91], BGSA [79], BBA
[88], and WOA [90] optimizers in terms of average accuracy,
the number of features, fitness values are presented in Tables
17-19, respectively. Its worth mentioning that these methods
were implemented and executed in the same environment to
make a fair comparisons with the proposed approaches.

As per accuracy results, it can be seen that the proposed

BTLBO-V-ER has outperformed other peers on 60% of
cases. F-test shows that the BTLBO-V-ER is ranked one,
followed by bGWO, WOA, BGSA, and BBA techniques. It
is seen that when the bGWO is ranked one (Breastcancer,
CongressEW, M-of-n, SonarEW, WaveformEW, and Zoo),
the results are very competitive and similar. We also observe
that BBA cannot show a superior accuracy rate in dealing
with any case.

Based on the average number of features in Table 18, the
WOA has attained the best rates on 77.77% of cases. Based
on F-test results, the BTLBO-V-ER is ranked three, followed
by BBA and BGSA.

The p-values of the normality test for accuracy results of
BTLBO-V-ER and other methods are reported in Table 20.
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TABLE 9: P-values of the Wilcoxon test for the classification
accuracy results of BTLBO-ET versus other versions for S-
shaped TF (p ≤ 0.05 are shown in bold face, NaN: Not
Applicable)

dataset BTLBO_S BTLBO_C BTLBO_E BTLBO_ERW BTLBO_ER

Breastcancer 1.69E-14 1.69E-14 1.69E-14 1.69E-14 NaN

BreastEW 5.19E-02 3.47E-07 3.94E-05 1.47E-07 8.14E-12

CongressEW 1.69E-14 2.71E-14 NaN 2.43E-13 1.69E-14

Exactly NaN NaN NaN NaN NaN

Exactly2 1.37E-11 1.16E-03 4.93E-12 3.45E-04 1.40E-11

HeartEW 8.25E-03 7.08E-08 1.83E-12 1.97E-10 1.28E-03

IonosphereEW 4.78E-04 3.38E-02 6.82E-06 3.83E-12 4.26E-01

KrvskpEW 1.52E-05 2.64E-01 4.02E-06 3.48E-01 4.79E-02

Lymphography 4.91E-01 1.92E-01 2.14E-07 4.25E-04 1.47E-11

M-of-n 3.34E-01 NaN NaN NaN NaN

penglungEW NaN NaN 2.57E-13 6.13E-14 1.09E-02

SonarEW 7.21E-08 3.41E-10 5.89E-05 3.13E-01 8.43E-07

SpectEW 3.40E-11 2.63E-12 6.84E-12 5.45E-12 6.17E-12

Tic-tac-toe 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14

Vote 9.50E-13 2.70E-03 4.04E-02 5.36E-09 5.61E-08

WaveformEW 2.19E-07 1.06E-05 1.15E-08 9.79E-07 4.99E-05

WineEW NaN NaN NaN NaN NaN

Zoo NaN 1.69E-14 NaN NaN NaN

TABLE 10: Comparison between different binarization
methods with V-shaped TFs in terms of average accuracy

Benchmark Measure BTLBO_S BTLBO_C BTLBO_E BTLBO_ERW BTLBO_ET BTLBO_ER

Breastcancer
AVG 0.9802 0.9957 0.9781 0.9843 0.9729 0.9831

STD 0.0031 0.0067 0.0018 0.0029 0.0066 0.0040

BreastEW
AVG 0.9675 0.9901 0.9828 0.9825 0.9988 0.9971

STD 0.0066 0.0068 0.0054 0.0056 0.0038 0.0048

CongressEW
AVG 0.9950 0.9805 0.9751 0.9973 0.9751 0.9705

STD 0.0058 0.0062 0.0074 0.0049 0.0044 0.0058

Exactly
AVG 0.8652 0.9645 1.0000 1.0000 1.0000 1.0000
STD 0.1284 0.0911 0.0000 0.0000 0.0000 0.0000

Exactly2
AVG 0.7542 0.7977 0.7670 0.7637 0.7907 0.7627

STD 0.0019 0.0064 0.0252 0.0133 0.0083 0.0177

HeartEW
AVG 0.8315 0.8519 0.8716 0.8815 0.9000 0.8759

STD 0.0089 0.0129 0.0118 0.0104 0.0134 0.0099

IonosphereEW
AVG 0.9831 0.9742 0.9751 0.9831 0.9967 0.9869

STD 0.0068 0.0105 0.0103 0.0068 0.0061 0.0082

KrvskpEW
AVG 0.9473 0.9818 0.9873 0.9867 0.9819 0.9855

STD 0.0091 0.0044 0.0063 0.0045 0.0043 0.0027

Lymphography
AVG 0.9121 0.9464 0.9366 0.9398 0.8817 0.9764
STD 0.0221 0.0166 0.0268 0.0184 0.0178 0.0251

M-of-n
AVG 0.9378 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0573 0.0000 0.0000 0.0000 0.0000 0.0000

penglungEW
AVG 0.9911 1.0000 0.9733 0.9978 1.0000 1.0000
STD 0.0231 0.0000 0.0414 0.0122 0.0000 0.0000

SonarEW
AVG 0.9714 0.9992 0.9921 1.0000 0.9968 1.0000
STD 0.0115 0.0043 0.0144 0.0000 0.0103 0.0000

SpectEW
AVG 0.8784 0.8623 0.9173 0.8062 0.9475 0.8673

STD 0.0105 0.0105 0.0152 0.0094 0.0195 0.0147

Tic-tac-toe
AVG 0.8108 0.8264 0.8370 0.8269 0.8227 0.8312

STD 0.0188 0.0025 0.0140 0.0026 0.0108 0.0054

Vote
AVG 0.9500 0.9750 0.9850 0.9517 0.9939 0.9994
STD 0.0076 0.0085 0.0051 0.0067 0.0082 0.0030

WaveformEW
AVG 0.7285 0.7735 0.7806 0.7844 0.7792 0.7820

STD 0.0062 0.0081 0.0083 0.0050 0.0083 0.0062

WineEW
AVG 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Zoo
AVG 1.0000 1.0000 1.0000 1.0000 1.0000 0.9238

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0237

Ranking Best 2 6 6 7 9 7

Overall Ranking F-Test 4.9444 3.5000 3.5000 3.0278 3.1111 2.9167

TABLE 11: Comparison between different binarization
methods with V-shaped TFs in terms of average number of
features

Benchmark Measure BTLBO_S BTLBO_C BTLBO_E BTLBO_ERW BTLBO_ET BTLBO_ER

Breastcancer
AVG 4.4333 3.9000 3.1333 5.8667 3.2667 5.5667

STD 0.7279 0.6074 0.4342 1.0080 0.6915 0.8172

BreastEW
AVG 6.5667 8.2000 7.9000 10.4000 9.6333 9.3667

STD 2.3589 2.5107 2.3540 2.0943 1.7905 2.8945

CongressEW
AVG 3.4333 4.3333 5.8333 4.8333 3.8667 5.0333

STD 1.4308 1.0283 1.5992 1.8020 1.5253 1.8096

Exactly
AVG 7.3667 6.0000 6.0000 6.0000 6.0000 6.0000
STD 2.2203 0.7878 0.0000 0.0000 0.0000 0.0000

Exactly2
AVG 4.1667 2.3333 8.1667 4.6000 8.1667 3.9667

STD 0.9129 3.0324 1.3153 1.7927 1.2058 3.7277

HeartEW
AVG 4.8667 6.4000 4.9000 6.6000 4.7667 5.1000

STD 0.8604 1.0372 1.4468 0.7701 1.9597 0.9229

IonosphereEW
AVG 6.0333 8.1333 8.2000 8.6333 8.8333 7.9333

STD 1.3515 2.4738 2.2190 1.9025 2.1023 2.2273

KrvskpEW
AVG 16.5000 17.5667 19.0000 15.8000 19.0667 15.5667
STD 5.5940 3.7202 1.9298 3.1666 2.1162 4.0911

Lymphography
AVG 6.3333 7.3667 6.9333 6.6333 6.4333 4.9333
STD 1.8815 2.0759 1.1725 1.2172 1.1351 1.5071

M-of-n
AVG 7.7333 6.0000 6.0000 6.0000 6.0000 6.0000
STD 1.5071 0.0000 0.0000 0.0000 0.0000 0.0000

penglungEW
AVG 9.7000 26.4667 10.5000 69.8667 4.3333 23.4333

STD 2.8786 8.0590 3.5984 18.0683 0.9942 10.5950

SonarEW
AVG 10.8000 14.2667 20.4333 17.9000 16.8000 13.7667

STD 3.0558 3.1724 3.9539 2.7082 3.8183 2.4731

SpectEW
AVG 3.5333 7.1000 9.1333 5.4667 6.8333 7.1333

STD 0.7761 1.3734 2.4031 1.2521 1.0532 1.7760

Tic-tac-toe
AVG 6.0000 7.0000 6.5667 6.8667 6.0000 7.0000

STD 0.7878 0.0000 0.5040 0.3457 0.0000 0.0000

Vote
AVG 4.1667 2.8000 3.3333 3.2000 5.6333 3.0667

STD 1.5105 1.9191 0.7581 1.1861 1.7711 0.2537

WaveformEW
AVG 13.4667 19.1333 23.0333 18.8333 20.3333 20.7667

STD 5.7819 2.7510 4.9374 2.5200 2.3973 3.1259

WineEW
AVG 3.0333 5.1000 5.5000 3.1333 4.6667 3.2000

STD 0.1826 0.3051 0.8200 0.3457 0.9589 0.5509

Zoo
AVG 3.0000 2.3000 4.1000 4.3000 2.4000 3.9667

STD 0.0000 0.4661 0.3051 0.4661 0.8137 1.0662

Ranking Best 7 4 3 2 5 4

Overall Ranking F-Test 4.5278 3.5833 2.7500 2.9444 3.5556 3.6389

We observe from Table 20 that the p-value is less than 5
% for most of the cases. Therefore, the null hypothesis is
not accepted. This fact proves that the utilized results of 30
runs (sample) for the considered dataset are not normally
distributed.

Table 21 indicates the p-values of the Wilcoxon test for
the accuracy results of BTLBO-V-ER versus other peers. The
p-values evidently confirm the meaningful variations of the
accuracy results obtained by the BTLBO-V-ER and other
competitors in most of the cases.

E. PERFORMANCE OF BTLBO-V-ER WITH DIFFERENT
CLASSIFIERS
In this subsection, the performance of the BTLBO-V-ER
variant with the KNN classifier is compared to Linear Dis-
criminant Analysis (LDA), Decision Tree (DT), and Adaptive
Boosting (AdaBoost) classifiers in terms of average accuracy,
and time. Table 22 shows the performance results of BTLBO-
V-ER with four different classifiers. Based on the results, it
can be seen that the BTLBO-V-ER with KNN shows a good
performance compared to BTLBO-V-ER with LDA, DT, and
AdaBoost in terms of average accuracy, and time. In terms
of accuracy rates, BTLBO-V-ER with KNN shows better
performance on five datasets, and it obtains similar results on
four datasets. According to time results, BTLBO-V-ER with
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TABLE 12: Comparison between different binarization
methods with V-shaped TFs in terms of average fitness

Benchmark Measure BTLBO_S BTLBO_C BTLBO_E BTLBO_ERW BTLBO_ET BTLBO_ER

Breastcancer
AVG 0.0251 0.0091 0.0256 0.0229 0.0310 0.0237

STD 0.0028 0.0064 0.0018 0.0026 0.0067 0.0030

BreastEW
AVG 0.0344 0.0127 0.0198 0.0210 0.0045 0.0061

STD 0.0061 0.0068 0.0052 0.0050 0.0039 0.0043

CongressEW
AVG 0.0072 0.0222 0.0285 0.0059 0.0272 0.0326

STD 0.0049 0.0058 0.0067 0.0039 0.0035 0.0049

Exactly
AVG 0.1396 0.0401 0.0050 0.0050 0.0050 0.0050
STD 0.1268 0.0897 0.0000 0.0000 0.0000 0.0000

Exactly2
AVG 0.2468 0.2023 0.2375 0.2378 0.2140 0.2383

STD 0.0020 0.0040 0.0244 0.0121 0.0079 0.0199

HeartEW
AVG 0.1709 0.1520 0.1312 0.1228 0.1030 0.1271

STD 0.0083 0.0126 0.0114 0.0099 0.0136 0.0098

IonosphereEW
AVG 0.0186 0.0280 0.0271 0.0193 0.0059 0.0154

STD 0.0065 0.0100 0.0100 0.0067 0.0057 0.0081

KrvskpEW
AVG 0.0568 0.0231 0.0180 0.0177 0.0233 0.0188

STD 0.0091 0.0037 0.0062 0.0040 0.0040 0.0019

Lymphography
AVG 0.0908 0.0574 0.0669 0.0635 0.1209 0.0263
STD 0.0218 0.0160 0.0264 0.0180 0.0175 0.0252

M-of-n
AVG 0.0680 0.0050 0.0050 0.0050 0.0050 0.0050
STD 0.0566 0.0000 0.0000 0.0000 0.0000 0.0000

penglungEW
AVG 0.0091 0.0008 0.0267 0.0044 0.0001 0.0007

STD 0.0228 0.0002 0.0409 0.0122 0.0000 0.0003

SonarEW
AVG 0.0301 0.0032 0.0113 0.0030 0.0060 0.0023
STD 0.0112 0.0043 0.0141 0.0005 0.0100 0.0004

SpectEW
AVG 0.1221 0.1397 0.0862 0.1945 0.0552 0.1348

STD 0.0101 0.0102 0.0145 0.0089 0.0192 0.0138

Tic-tac-toe
AVG 0.1948 0.1806 0.1696 0.1799 0.1830 0.1758

STD 0.0189 0.0025 0.0133 0.0023 0.0107 0.0053

Vote
AVG 0.0523 0.0266 0.0171 0.0500 0.0098 0.0026
STD 0.0066 0.0072 0.0047 0.0062 0.0072 0.0031

WaveformEW
AVG 0.2722 0.2292 0.2231 0.2182 0.2238 0.2211

STD 0.0068 0.0082 0.0089 0.0049 0.0084 0.0061

WineEW
AVG 0.0025 0.0043 0.0046 0.0026 0.0039 0.0027

STD 0.0002 0.0003 0.0007 0.0003 0.0008 0.0005

Zoo
AVG 0.0020 0.0015 0.0027 0.0029 0.0016 0.0781

STD 0.0000 0.0003 0.0002 0.0003 0.0005 0.0228

Ranking Best 1 4 3 5 7 5

Overall Ranking F-Test 2.2222 3.5000 3.2500 3.9167 3.9722 4.1389

KNN outperforms the other classifiers on 16 datasets.

F. COMPARISON WITH RESULTS OF LITERATURE
This subsection compares the results in term of classifica-
tion rates with those obtained by previous well-established
methods on a number of datasets. For this purpose, we
compared the results of BTLBO-V-ER with BSSA_S3_CP
proposed by Faris et al. [100], WOA-CM proposed by
Mafarja and Mirjalili [90], BGOA_EPD_Tour proposed by
afarja et al. [88], GA-based method proposed by Kashef
and Nezamabadi-pour [101], PSO-based technique proposed
by Kashef and Nezamabadi-pour [101], another GA-based
method by Emary et al. [91], another method based on
PSO Emary et al. [91], bGWO1 proposed by [91], bGWO2
developed by Emary et al. [91], HGSA designed by Taradeh
et al. [102], BGOA-M method introduced by Mafarja et al.
[103], BDA-TVv4 developed by Mafarja et al. [104], BG-
WOPSO technique developed by Al-Tashi et al. [105], and
S-bBOA proposed by Arora and Anand [59]. Here, we focus
on the final reported accuracy value of compared methods
regardless of the same computing conditions and settings. We
suppose that the reported rates in referred works represent the
overall average accuracy of that method on the used datasets
independent of settings and parameters.

From results of the BTLBO-V-ER in Table 23, it is
observed that the developed method realizes the best re-

TABLE 13: Comparison between different binarization
methods with V-shaped TFs in terms of average running time

Benchmark Measure BTLBO_S BTLBO_C BTLBO_E BTLBO_ERW BTLBO_ET BTLBO_ER

Breastcancer
AVG 18.7310 21.4529 20.6834 22.5252 20.8662 22.3319

STD 2.6713 1.4272 1.3367 1.4168 1.2401 1.3481

BreastEW
AVG 22.3971 22.8115 22.4723 22.9240 23.1882 22.6132

STD 3.1074 1.3732 1.5649 1.2749 1.5278 1.3679

CongressEW
AVG 16.7382 19.2396 19.5834 19.1872 18.4093 19.3533

STD 2.4953 1.2630 1.3018 1.3505 1.4037 1.1233

Exactly
AVG 23.4063 26.2859 28.9297 26.9073 25.0171 29.8378

STD 3.0762 1.7073 1.7585 1.5663 1.4067 1.7433

Exactly2
AVG 22.1700 22.8623 32.5834 26.0682 32.1811 28.9860

STD 2.2559 2.8482 3.5536 2.7440 3.4014 5.1626

HeartEW
AVG 16.3392 17.8349 17.5552 18.0817 17.5022 17.6278

STD 2.2122 0.8680 0.8570 0.8753 0.8552 0.7982

IonosphereEW
AVG 19.5924 19.1334 19.1999 19.0209 18.9389 19.1461

STD 2.4869 1.1428 1.1031 1.0887 1.0485 1.0878

KrvskpEW
AVG 160.4035 248.3669 255.9400 239.2102 258.8687 233.9836

STD 18.5969 38.1628 35.2922 33.1901 33.0553 27.3797

Lymphography
AVG 16.1822 16.5149 16.8944 16.5189 16.8772 16.4447

STD 0.6741 0.7074 0.6957 0.7247 0.6655 0.7025

M-of-n
AVG 22.4075 27.1069 26.7875 26.8252 26.7828 27.1041

STD 1.3899 1.4851 1.4718 1.4697 1.5501 1.5492

penglungEW
AVG 19.2187 20.0338 19.7522 20.3304 19.0131 19.5895

STD 0.9490 0.9390 0.9550 1.0137 0.8975 0.8473

SonarEW
AVG 17.4315 17.2765 17.2845 17.4570 17.2356 17.4013

STD 0.8252 0.8722 0.8025 0.9006 0.8422 0.8916

SpectEW
AVG 13.0434 17.9478 17.9829 17.9013 17.9296 18.1025

STD 1.1524 0.9662 1.0834 0.9236 0.8947 0.8369

Tic-tac-toe
AVG 19.2887 28.6100 28.5727 28.6613 26.6711 29.4711

STD 1.2303 1.9234 2.4464 1.8090 1.5450 1.8893

Vote
AVG 13.3469 17.0176 17.4495 17.4420 17.9854 17.5580

STD 2.3758 1.2335 0.9272 0.8680 0.9895 0.8837

WaveformEW
AVG 278.5031 608.0048 675.6856 617.8048 619.8525 620.2033

STD 38.9078 84.9576 159.5340 97.0335 108.0055 133.2125

WineEW
AVG 14.2497 16.9678 16.9209 16.6653 16.7992 16.5925

STD 0.8466 0.6990 0.8001 0.7744 0.6856 0.7325

Zoo
AVG 16.3994 16.8177 17.0423 17.1344 16.6707 17.3569

STD 0.7056 0.6195 0.7051 0.7856 0.7761 0.8070

Ranking Best 15 0 0 0 3 0

Overall Ranking F-Test 5.4444 3.3333 2.7222 2.9444 3.8333 2.7222

TABLE 14: P-values of the Shapiro-Wilk and Kolmogorov-
Smirnov normality test for the classification accuracy results
of V-shaped TF approaches (p≤ 0.05 are shown in bold face)

dataset BTLBO_S BTLBO_C BTLBO_E BTLBO_ERW BTLBO_ET BTLBO_ER

Breastcancer 1.01E-08 3.91E-08 4.40E-11 4.43E-09 1.71E-06 3.00E-07

BreastEW 2.46E-04 1.16E-04 1.23E-06 3.91E-05 1.93E-10 1.42E-07

CongressEW 1.82E-07 1.58E-06 3.60E-05 1.01E-08 1.73E-09 1.82E-07

Exactly 1.55E-04 7.46E-10 7.32E-20 7.32E-20 7.32E-20 7.32E-20

Exactly2 1.73E-09 2.15E-09 1.30E-04 3.83E-02 2.35E-03 3.96E-06

HeartEW 3.32E-07 8.52E-05 3.00E-06 5.74E-07 9.25E-08 1.58E-06

IonosphereEW 2.82E-07 6.42E-05 4.05E-04 2.82E-07 1.01E-08 9.25E-06

KrvskpEW 9.43E-01 5.81E-02 7.88E-05 2.35E-04 2.75E-05 4.68E-06

Lymphography 6.83E-05 3.05E-07 6.33E-05 5.21E-06 2.45E-05 2.72E-05

M-of-n 1.92E-04 7.32E-20 7.32E-20 7.32E-20 7.32E-20 7.32E-20

penglungEW 5.98E-10 7.32E-20 3.84E-07 7.77E-12 7.32E-20 7.32E-20

SonarEW 2.82E-07 7.77E-12 6.39E-08 7.32E-20 1.93E-10 7.32E-20

SpectEW 3.09E-06 9.94E-07 8.16E-04 2.11E-07 3.29E-05 9.16E-04

Tic-tac-toe 4.91E-04 6.64E-08 8.46E-07 8.37E-09 6.42E-09 5.98E-10

Vote 1.45E-07 2.21E-07 1.78E-10 1.66E-08 1.02E-07 7.77E-12

WaveformEW 3.29E-01 4.55E-01 7.78E-01 6.76E-01 8.54E-01 5.04E-01

WineEW 7.32E-20 7.32E-20 7.32E-20 7.32E-20 7.32E-20 7.32E-20

Zoo 7.32E-20 7.32E-20 7.32E-20 7.32E-20 7.32E-20 1.43E-07
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TABLE 15: P-values of the Wilcoxon test for the classifica-
tion accuracy results of BTLBO-ER versus other versions for
V-shaped Transfer Function (p≤ 0.05 are shown in bold face,
NaN: Not Applicable)

dataset BTLBO_S BTLBO_C BTLBO_E BTLBO_ERW BTLBO_ET

Breastcancer 1.88E-03 6.81E-09 3.38E-07 2.29E-01 1.63E-08

BreastEW 6.11E-12 2.73E-05 9.35E-11 2.08E-10 6.59E-02

CongressEW 6.21E-12 6.33E-07 1.57E-02 3.20E-12 1.48E-03

Exactly 1.70E-08 1.10E-02 NaN NaN NaN

Exactly2 3.53E-03 2.50E-12 2.24E-01 5.34E-01 1.81E-10

HeartEW 3.33E-12 8.05E-09 1.63E-01 2.90E-02 1.17E-08

IonosphereEW 6.52E-02 7.32E-06 2.18E-05 6.52E-02 8.60E-06

KrvskpEW 1.74E-11 8.95E-04 4.60E-03 1.51E-02 1.53E-04

Lymphography 9.51E-11 7.63E-05 3.46E-06 6.65E-06 1.56E-11

M-of-n 1.30E-07 NaN NaN NaN NaN

penglungEW 4.18E-02 NaN 6.39E-04 3.34E-01 NaN

SonarEW 9.94E-13 3.34E-01 2.75E-03 NaN 8.15E-02

SpectEW 2.51E-03 1.75E-01 2.43E-11 9.57E-12 1.31E-11

Tic-tac-toe 2.46E-09 1.97E-07 1.05E-01 1.13E-07 8.87E-08

Vote 2.39E-13 1.48E-12 2.68E-11 1.80E-13 1.42E-03

WaveformEW 2.92E-11 5.65E-05 5.44E-01 1.40E-01 1.78E-01

WineEW NaN NaN NaN NaN NaN

Zoo 4.17E-13 4.17E-13 4.17E-13 4.17E-13 4.17E-13

sults on nine datasets including Breastcancer, BreastEW,
IonosphereEW, KrvskpEW, Lymphography, penglungEW,
SonarEW, Tic-tac-toe, and Vote cases. There is a tie for
three datasets. For WineEW case, which has 13 features and
178 instances, the proposed BTLBO-V-ER has the extreme
accuracy rate of 100% similar to the obtained rate of BG-
WOPSO. For penglungEW that is a moderately larger scale
dataset with 325 features, BTLBO-V-ER archives the ideal
average accuracy of 100%. This observation indicates the
boosted exploratory and exploitative capabilities of the pro-
posed TLBO-based method and its more steady performance
in harmonizing the exploration and exploitation drifts. It is
seen that the accuracy of GA, PSO, bGWO1, and bGWO2
in [91] are not remarkable for this case, and the rates are
located between the interval of [58, 60]. We observe that
methods such as GA [101], PSO [101], GA [91], PSO [91],
bGWO1 [91], bGWO2 [91], S-bBOA [59] have not achieved
the relatively best rates in dealing with any of datasets. As per
overall ranking rates (F-test), we observe that the BTLBO-V-
ER attains the best place, followed by BGWOPSO, HGSA,
BDA-TVv4, BGOA-M, BGOA_EPD_Tour, BSSA_S3_CP,
S-bBOA, WOA-CM, bGWO2, PSO [101], bGWO1, PSO
[91], GA [101], and GA [91].

These results also show that the designed modifications,
V-shaped TF, and used rank-based selection structure have
assisted this method in achieving high-quality solutions com-
pared to the reported results in recent literature.
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TABLE 16: Comparison between the BTLBO-S-ET and BTLBO-V-ER based on accuracy, number of features, fitness, and
running time

Benchmark Mesure
Accuracy Number of Features Fitness Time

BTLBO-S-ET BTLBO-V-ER BTLBO-S-ET BTLBO-V-ER BTLBO-S-ET BTLBO-V-ER BTLBO-S-ET BTLBO-V-ER

Breastcancer
AVG 0.9786 0.9831 4.0000 5.5667 0.0262 0.0237 22.1826 22.3319

STD 0.0000 0.0040 0.0000 0.8172 0.0000 0.0030 1.2375 1.3481

BreastEW
AVG 0.9877 0.9971 11.9667 9.3667 0.0163 0.0061 22.9969 22.6132
STD 0.0055 0.0048 2.2512 2.8945 0.0050 0.0043 1.3898 1.3679

CongressEW
AVG 1.0000 0.9705 6.3667 5.0333 0.0042 0.0326 20.2081 19.3533
STD 0.0000 0.0058 0.7184 1.8096 0.0005 0.0049 1.0665 1.1233

Exactly
AVG 1.0000 1.0000 6.3333 6.0000 0.0053 0.0050 28.0947 29.8378

STD 0.0000 0.0000 0.4795 0.0000 0.0004 0.0000 1.6483 1.7433

Exactly2
AVG 0.7995 0.7627 9.5000 3.9667 0.2064 0.2383 29.6948 28.9860
STD 0.0115 0.0177 0.5724 3.7277 0.0117 0.0199 1.7346 5.1626

HeartEW
AVG 0.8957 0.8759 6.0333 5.1000 0.1083 0.1271 18.0433 17.6278
STD 0.0091 0.0099 1.2726 0.9229 0.0084 0.0098 0.8877 0.7982

IonosphereEW
AVG 0.9761 0.9869 12.6667 7.9333 0.0275 0.0154 18.8120 19.1461

STD 0.0066 0.0082 2.5641 2.2273 0.0065 0.0081 1.0534 1.0878

KrvskpEW
AVG 0.9768 0.9855 18.8000 15.5667 0.0283 0.0188 259.0755 233.9836
STD 0.0037 0.0027 2.5784 4.0911 0.0034 0.0019 37.3154 27.3797

Lymphography
AVG 0.9344 0.9764 8.4667 4.9333 0.0700 0.0263 16.9191 16.4447
STD 0.0138 0.0251 1.2521 1.5071 0.0135 0.0252 0.5496 0.7025

M-of-n
AVG 1.0000 1.0000 6.3000 6.0000 0.0052 0.0050 29.0487 27.1041
STD 0.0000 0.0000 0.4661 0.0000 0.0004 0.0000 1.1060 1.5492

penglungEW
AVG 1.0000 1.0000 126.1667 23.4333 0.0039 0.0007 21.6040 19.5895
STD 0.0000 0.0000 4.5719 10.5950 0.0001 0.0003 1.6853 0.8473

SonarEW
AVG 0.9976 1.0000 28.3000 13.7667 0.0072 0.0023 19.7992 17.4013
STD 0.0073 0.0000 4.1285 2.4731 0.0069 0.0004 3.6636 0.8916

SpectEW
AVG 0.8599 0.8673 8.2333 7.1333 0.1426 0.1348 19.7082 18.1025
STD 0.0093 0.0147 1.9241 1.7760 0.0087 0.0138 2.9852 0.8369

Tic-tac-toe
AVG 0.8281 0.8312 5.0000 7.0000 0.1764 0.1758 28.4860 29.4711

STD 0.0000 0.0054 0.0000 0.0000 0.0000 0.0053 6.2622 1.8893

Vote
AVG 0.9878 0.9994 5.1667 3.0667 0.0155 0.0026 20.2961 17.5580
STD 0.0075 0.0030 1.3153 0.2537 0.0070 0.0031 3.0751 0.8837

WaveformEW
AVG 0.7609 0.7820 20.9333 20.7667 0.2421 0.2211 707.0919 620.2033
STD 0.0065 0.0062 2.9353 3.1259 0.0065 0.0061 136.6539 133.2125

WineEW
AVG 1.0000 1.0000 4.3333 3.2000 0.0036 0.0027 19.1163 16.5925
STD 0.0000 0.0000 0.5467 0.5509 0.0005 0.0005 3.5912 0.7325

Zoo
AVG 1.0000 0.9238 3.5000 3.9667 0.0023 0.0781 18.8791 17.3569
STD 0.0000 0.0237 0.5085 1.0662 0.0003 0.0228 3.3728 0.8070

Ranking W|T|L 4|4|10 10|4|8 3|0|15 15|0|3 4|0|14 14|0|4 4|0|14 14|0|4
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TABLE 17: Comparison between BTLBO-V-ER and other
methods in terms of average accuracy

Benchmark Measure BTLBO-V-ER bGWO BGSA BBA WOA

Breastcancer
AVG 0.9831 0.9848 0.9729 0.9650 0.9691

STD 0.0040 0.0072 0.0078 0.0236 0.0034

BreastEW
AVG 0.9971 0.9781 0.9564 0.9108 0.9722

STD 0.0048 0.0055 0.0085 0.0226 0.0089

CongressEW
AVG 0.9705 0.9939 0.9598 0.8487 0.9709

STD 0.0058 0.0058 0.0058 0.1051 0.0058

Exactly
AVG 1.0000 0.9908 0.7930 0.6783 0.9298

STD 0.0000 0.0502 0.1071 0.0989 0.1299

Exactly2
AVG 0.7627 0.7222 0.7157 0.6168 0.7672
STD 0.0177 0.0130 0.0155 0.0649 0.0104

HeartEW
AVG 0.8759 0.8586 0.7932 0.7154 0.8679

STD 0.0099 0.0150 0.0262 0.0704 0.0227

IonosphereEW
AVG 0.9869 0.9822 0.9174 0.8812 0.9737

STD 0.0082 0.0082 0.0109 0.0350 0.0121

KrvskpEW
AVG 0.9855 0.9798 0.9402 0.8264 0.9546

STD 0.0027 0.0068 0.0171 0.1153 0.0114

Lymphography
AVG 0.9764 0.9676 0.8838 0.8072 0.9388

STD 0.0251 0.0140 0.0283 0.0915 0.0249

M-of-n
AVG 1.0000 1.0000 0.8947 0.7888 0.9650

STD 0.0000 0.0000 0.0604 0.0953 0.0596

penglungEW
AVG 1.0000 0.9822 0.9311 0.8889 0.9689

STD 0.0000 0.0300 0.0130 0.0404 0.0381

SonarEW
AVG 1.0000 1.0000 0.9436 0.8476 0.9222

STD 0.0000 0.0000 0.0171 0.0479 0.0216

SpectEW
AVG 0.8673 0.8735 0.7932 0.7549 0.8827
STD 0.0147 0.0169 0.0182 0.0603 0.0122

Tic-tac-toe
AVG 0.8312 0.8259 0.7816 0.7128 0.7944

STD 0.0054 0.0093 0.0210 0.0870 0.0243

Vote
AVG 0.9994 0.9867 0.9589 0.9350 0.9983

STD 0.0030 0.0134 0.0114 0.0411 0.0051

WaveformEW
AVG 0.7820 0.7832 0.7241 0.6801 0.7343

STD 0.0062 0.0098 0.0116 0.0370 0.0114

WineEW
AVG 1.0000 0.9880 0.9843 0.8861 1.0000
STD 0.0000 0.0140 0.0140 0.0807 0.0000

Zoo
AVG 0.9238 1.0000 1.0000 0.9037 1.0000
STD 0.0237 0.0000 0.0000 0.1173 0.0000

Ranking Best 12 6 1 0 4

Overall Ranking F-Test 1.6389 2.0000 3.7778 5.0000 2.5833

TABLE 18: Comparison between BTLBO-V-ER and other
meta-heuristics in terms of average number of features

Benchmark Measure BTLBO-V-ER bGWO BGSA BBA WOA

Breastcancer
AVG 5.5667 4.2667 5.6000 4.3000 4.2000
STD 0.8172 0.7397 1.0372 1.2905 0.5509

BreastEW
AVG 9.3667 8.3333 14.1000 12.9000 7.4000
STD 2.8945 2.2489 2.4403 2.3096 1.3287

CongressEW
AVG 5.0333 3.7000 6.3667 5.7000 2.2333
STD 1.8096 0.7022 1.4259 1.5570 1.5241

Exactly
AVG 6.0000 5.9000 8.1000 6.9333 5.5000
STD 0.0000 0.5477 1.7879 1.8742 1.4081

Exactly2
AVG 3.9667 8.2667 4.4667 5.8667 3.4667
STD 3.7277 1.2015 2.7510 2.0800 0.5713

HeartEW
AVG 5.1000 5.5333 6.0000 5.7000 4.7667
STD 0.9229 1.9070 1.7420 1.6640 0.8172

IonosphereEW
AVG 7.9333 7.2000 13.7333 12.4667 4.2333
STD 2.2273 1.2429 2.7156 2.6618 0.8976

KrvskpEW
AVG 15.5667 14.2667 20.5667 15.9000 10.0000
STD 4.0911 1.4606 2.9674 3.1552 3.4039

Lymphography
AVG 4.9333 5.7667 9.1333 8.9000 4.7000
STD 1.5071 1.6121 2.1129 1.6887 1.3684

M-of-n
AVG 6.0000 6.0000 8.2000 6.7333 6.0667

STD 0.0000 0.0000 1.3995 1.8925 0.5833

penglungEW
AVG 23.4333 10.1667 150.3333 127.0667 7.2667
STD 10.5950 2.1669 9.0567 17.2705 1.4606

SonarEW
AVG 13.7667 10.6333 28.8667 25.1667 10.5000
STD 2.4731 1.6291 4.5541 4.0691 3.3296

SpectEW
AVG 7.1333 7.0333 9.9667 8.9333 4.3667
STD 1.7760 1.4499 2.3116 2.6773 1.5643

Tic-tac-toe
AVG 7.0000 6.4667 5.8333 4.0667 5.4000

STD 0.0000 0.7303 0.5921 1.3374 0.4983

Vote
AVG 3.0667 4.8667 5.9667 6.8667 2.9000
STD 0.2537 1.1059 1.7711 1.6344 0.7120

WaveformEW
AVG 20.7667 15.9333 22.0667 18.0333 8.8000
STD 3.1259 2.1961 3.0050 3.1126 1.6692

WineEW
AVG 3.2000 5.6000 6.2333 5.1667 3.4333

STD 0.5509 1.5888 1.3817 1.5332 0.5683

Zoo
AVG 3.9667 2.7000 7.1667 5.9333 5.4000

STD 1.0662 0.5350 1.6626 1.7604 0.5632

Ranking Best 2 2 0 1 14

Overall Ranking F-Test 3.2500 3.5278 1.2778 2.2778 4.6667
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TABLE 19: Comparison between BTLBO-V-ER and other
meta-heuristics in terms of average fitness

Benchmark Measure BTLBO-V-ER bGWO BGSA BBA WOA

Breastcancer
AVG 0.0237 0.0204 0.0339 0.0166 0.0359

STD 0.0030 0.0063 0.0073 0.0042 0.0033

BreastEW
AVG 0.0061 0.0246 0.0480 0.0528 0.0301

STD 0.0043 0.0054 0.0083 0.0104 0.0088

CongressEW
AVG 0.0326 0.0085 0.0441 0.0525 0.0303

STD 0.0049 0.0055 0.0056 0.0084 0.0049

Exactly
AVG 0.0050 0.0140 0.2117 0.2225 0.0740

STD 0.0000 0.0492 0.1056 0.1247 0.1278

Exactly2
AVG 0.2383 0.2819 0.2852 0.2993 0.2334
STD 0.0199 0.0123 0.0167 0.0116 0.0103

HeartEW
AVG 0.1271 0.1446 0.2097 0.1963 0.1348

STD 0.0098 0.0144 0.0255 0.0158 0.0221

IonosphereEW
AVG 0.0154 0.0198 0.0860 0.0774 0.0273

STD 0.0081 0.0080 0.0109 0.0125 0.0120

KrvskpEW
AVG 0.0188 0.0241 0.0651 0.0636 0.0478

STD 0.0019 0.0067 0.0165 0.0136 0.0107

Lymphography
AVG 0.0263 0.0355 0.1204 0.0906 0.0633

STD 0.0252 0.0135 0.0276 0.0218 0.0246

M-of-n
AVG 0.0050 0.0050 0.1111 0.1038 0.0397

STD 0.0000 0.0000 0.0593 0.0549 0.0590

penglungEW
AVG 0.0007 0.0179 0.0728 0.0696 0.0310

STD 0.0003 0.0297 0.0129 0.0006 0.0377

SonarEW
AVG 0.0023 0.0018 0.0607 0.0779 0.0788

STD 0.0004 0.0003 0.0167 0.0197 0.0210

SpectEW
AVG 0.1348 0.1286 0.2095 0.1893 0.1182
STD 0.0138 0.0163 0.0180 0.0206 0.0117

Tic-tac-toe
AVG 0.1758 0.1805 0.2235 0.1846 0.2102

STD 0.0053 0.0084 0.0206 0.0191 0.0236

Vote
AVG 0.0026 0.0164 0.0447 0.0309 0.0036

STD 0.0031 0.0126 0.0111 0.0085 0.0046

WaveformEW
AVG 0.2211 0.2187 0.2788 0.2865 0.2653

STD 0.0061 0.0095 0.0114 0.0146 0.0112

WineEW
AVG 0.0027 0.0166 0.0208 0.0307 0.0029

STD 0.0005 0.0129 0.0133 0.0097 0.0005

Zoo
AVG 0.0781 0.0018 0.0048 0.0035 0.0036

STD 0.0228 0.0004 0.0011 0.0010 0.0004

Ranking Best 11 5 0 1 2

Overall Ranking F-Test 4.2500 4.0278 1.5556 2.0000 3.1667

TABLE 20: P-values of the Shapiro-Wilk and Kolmogorov-
Smirnov normality tests for the classification accuracy results
obtained by BTLBO-V-ER and other meta-heuristics (p ≤
0.05 are bolded)

dataset bGWO BGSA BBA WOA BTLBO-V-ER

Breastcancer 1.82E-07 5.98E-04 7.56E-03 6.64E-08 3.00E-07

BreastEW 5.04E-05 4.24E-03 5.27E-01 1.91E-02 1.42E-07

CongressEW 2.11E-07 2.21E-07 3.04E-04 2.11E-07 1.82E-07

Exactly 7.77E-12 2.36E-04 1.81E-06 1.83E-08 7.32E-20

Exactly2 7.25E-04 8.58E-04 7.72E-03 2.13E-02 3.96E-06

HeartEW 3.04E-06 9.77E-03 1.93E-01 9.96E-03 1.58E-06

IonosphereEW 1.80E-06 7.33E-04 1.29E-01 4.20E-03 9.25E-06

KrvskpEW 1.47E-03 9.46E-01 2.20E-03 2.15E-01 4.68E-06

Lymphography 5.78E-08 6.02E-03 1.20E-01 5.91E-05 2.72E-05

M-of-n 7.32E-20 2.09E-03 5.77E-01 6.09E-08 7.32E-20

penglungEW 2.09E-08 1.06E-11 1.05E-05 1.55E-06 7.32E-20

SonarEW 7.32E-20 3.51E-04 2.35E-02 2.14E-03 7.32E-20

SpectEW 8.17E-05 8.53E-03 1.89E-01 9.04E-05 9.16E-04

Tic-tac-toe 5.26E-06 1.66E-02 1.46E-01 1.37E-06 5.98E-10

Vote 1.11E-04 1.50E-04 8.87E-03 1.78E-10 7.77E-12

WaveformEW 9.70E-01 4.51E-01 4.38E-03 4.09E-02 5.04E-01

WineEW 1.82E-07 1.82E-07 3.52E-03 7.32E-20 7.32E-20

Zoo 7.32E-20 7.32E-20 1.55E-05 7.32E-20 1.43E-07

TABLE 21: P-values of the Wilcoxon test for the classifica-
tion accuracy results obtained by BTLBO-V-ER versus other
meta-heuristics (p ≤ 0.05 are bolded), NaN: Not applicaple

dataset bGWO BGSA BBA WOA

Breastcancer 6.01E-01 1.14E-06 2.84E-04 1.03E-11

BreastEW 1.78E-11 7.85E-12 9.54E-12 1.89E-11

CongressEW 6.41E-12 1.53E-07 1.35E-11 8.04E-01

Exactly 3.34E-01 4.52E-12 1.64E-11 5.58E-03

Exactly2 1.17E-09 4.79E-10 1.59E-11 5.20E-01

HeartEW 7.16E-06 1.14E-11 1.26E-11 2.48E-01

IonosphereEW 3.91E-02 7.71E-12 1.16E-11 1.83E-05

KrvskpEW 1.25E-04 1.76E-11 1.76E-11 1.74E-11

Lymphography 4.35E-01 2.79E-11 3.38E-11 8.68E-06

M-of-n NaN 1.20E-12 1.20E-12 2.79E-03

penglungEW 2.70E-03 1.77E-13 5.37E-13 5.80E-05

SonarEW NaN 6.50E-13 1.07E-12 8.09E-13

SpectEW 8.26E-02 1.63E-11 3.87E-11 1.15E-04

Tic-tac-toe 1.03E-02 3.88E-12 1.76E-10 2.48E-07

Vote 3.34E-06 9.87E-13 6.96E-12 3.13E-01

WaveformEW 5.59E-01 2.95E-11 2.97E-11 2.96E-11

WineEW 5.59E-05 1.43E-06 1.10E-12 NaN

Zoo 4.17E-13 4.17E-13 7.55E-01 4.17E-13
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TABLE 22: Performance results of BTLBO-V-ER with KNN and with other classifiers (Linear Discriminant Analysis (LDA),
Decision Tree (DT), and Adaptive Boosting (AdaBoost) in terms of average accuracy, and time

Benchmark Measure
Accuracy Time

KNN LDA DT AdaBoost KNN LDA DT AdaBoost

Breastcancer
AVG 0.9831 0.9643 0.9750 0.9790 22.33 111.92 158.78 4255.13

STD 0.0040 0.0000 0.0041 0.0042 1.35 18.71 83.04 237.24

BreastEW
AVG 0.9971 0.9567 0.9795 0.9664 22.61 96.50 114.55 4234.34

STD 0.0048 0.0056 0.0042 0.0095 1.37 2.76 39.37 214.83

CongressEW
AVG 0.9705 0.9766 0.9805 0.9866 19.35 94.40 122.15 4015.53

STD 0.0058 0.0021 0.0054 0.0053 1.12 2.79 55.67 208.26

Exactly
AVG 1.0000 0.6450 1.0000 1.0000 29.84 86.74 126.66 5264.17

STD 0.0000 0.0000 0.0000 0.0000 1.74 6.26 44.63 694.31

Exactly2
AVG 0.7627 0.7750 0.8080 0.7678 28.99 86.59 122.47 4730.38

STD 0.0177 0.0000 0.0057 0.0171 5.16 4.25 57.18 465.37

HeartEW
AVG 0.8759 0.8364 0.8759 0.8815 17.63 92.86 73.39 3995.69

STD 0.0099 0.0173 0.0099 0.0248 0.80 3.16 2.17 165.39

IonosphereEW
AVG 0.9869 0.9498 0.9793 0.9916 19.15 95.90 79.05 4166.88

STD 0.0082 0.0071 0.0080 0.0102 1.09 4.11 3.44 169.68

KrvskpEW
AVG 0.9855 0.9502 0.9944 0.9896 233.98 115.85 131.17 7785.30

STD 0.0027 0.0009 0.0024 0.0028 27.38 4.27 8.08 359.71

Lymphography
AVG 0.9764 0.9333 0.8931 0.9344 16.44 128.79 72.64 4037.06

STD 0.0251 0.0196 0.0138 0.0355 0.70 7.13 2.11 152.37

M-of-n
AVG 1.0000 1.0000 1.0000 1.0000 27.10 99.20 78.17 4444.00

STD 0.0000 0.0000 0.0000 0.0000 1.55 3.66 2.35 194.71

penglungEW
AVG 1.0000 1.0000 1.0000 0.8311 19.59 257.37 83.90 4122.97

STD 0.0000 0.0000 0.0000 0.0694 0.85 10.01 2.71 181.70

SonarEW
AVG 1.0000 0.9540 0.9524 0.9373 17.40 95.66 80.47 4195.91

STD 0.0000 0.0165 0.0234 0.0328 0.89 2.87 2.95 175.30

SpectEW
AVG 0.8673 0.8914 0.8907 0.8815 18.10 91.05 74.51 3963.96

STD 0.0147 0.0106 0.0075 0.0210 0.84 2.54 1.82 166.66

Tic-tac-toe
AVG 0.8312 0.7134 0.8427 0.9658 29.47 95.69 91.04 5091.28

STD 0.0054 0.0010 0.0029 0.0110 1.89 2.64 3.15 201.29

Vote
AVG 0.9994 0.9422 0.9978 0.9667 17.56 85.72 71.05 3529.50

STD 0.0030 0.0085 0.0058 0.0000 0.88 5.51 3.99 125.57

WaveformEW
AVG 0.7820 0.8305 0.7791 0.8454 620.20 202.69 442.88 17052.41

STD 0.0062 0.0022 0.0066 0.0053 133.21 11.12 44.62 535.72

WineEW
AVG 1.0000 1.0000 0.9722 1.0000 16.59 103.45 72.13 4784.70

STD 0.0000 0.0000 0.0000 0.0000 0.73 3.66 2.33 163.29

Zoo
AVG 0.9238 0.9506 0.9508 0.9673 17.36 203.93 74.31 4938.91

STD 0.0237 0.0010 0.0087 0.0346 0.81 8.54 2.04 143.30

Ranking W|T|L 5|4|9 1|3|14 2|3|13 5|3|10 16|0|2 2|0|16 0|0|18 0|0|18
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VI. CONCLUSION AND FUTURE DIRECTIONS
In this work, an efficient wrapper-based feature selection
approach based on a modified binary TLBO as a search
algorithm was proposed for variant datasets. Four binariza-
tion methods were proposed: Elitist, the Elitist Roulette,
the Elitist Tournament, and the Rank based approach. Their
impact on the efficacy of different variants were compared
to other common binarization methods. The experimental
demonstrated that both TFs and binarization approaches have
a significant influence on the effectiveness of the proposed
binary TLBO, taking into account its exploratory and ex-
ploitative potentials, in comparison with well-regarded and
recent feature selection methods. It was also noticed that
the proposed binarization methods have a more significant
impact on the performance of the TLBO algorithm than other
methods used in the comparisons. Further investigation on
the best combination between binarization methods and TFs
revealed that Elitist Tournament is the best for S-shaped TF,
while Elitist Rank-based is the best when combined with V-
shaped TF. All in all, the BTLBO algorithm combined with
Elitist Rank-based and V-shaped is recommended in terms of
accuracy and feature reduction rates.

For future work, there are some research avenues. First,
investigating other novel binarization methods that consider
different strategies in repositioning the current solutions. Sec-
ond, different TFs can be tested with the proposed binariza-
tion methods. This way, researchers can study the behavior of
each TF with the different binarization methods. Moreover,
other variants of TLBO and other SI algorithms can be tested
with the new binarization methods.
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