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Abstract. Gene Regulatory Networks (GRNs) are known as the most adequate
instrument to provide a clear insight and understanding of the cellular systems.
One of the most successful techniques to reconstruct GRNs using gene expression
data is Bayesian networks (BN) which have proven to be an ideal approach for
heterogeneous data integration in the learning process. Nevertheless, the incor-
poration of prior knowledge has been achieved by using prior beliefs or by using
networks as starting point in the search process. In this work, the utilization of
different kinds of structural restrictions within algorithms for learning BNs from
gene expression data is considered. These restrictions will codify prior knowl-
edge, in such a way that a BN should satisfy them. Therefore, one aim of this
work is to make a detailed review on the use of prior knowledge and gene expres-
sion data to inferring GRNs from BNs, but the major purpose in this paper is
to research whether the structural learning algorithms for BNs from expression
data can achieve better outcomes exploiting this prior knowledge with the use
of structural restrictions. In the experimental study, it is shown that this new
way to incorporate prior knowledge lead us to achieve better reverse-engineered
networks.

Keywords: Bayesian networks, genetic regulatory networks, microarray data, struc-
tural restrictions, prior knowledge

1 Introduction

During past decades, several computational methodologies have been introduced to
reconstruct gene regulatory networks (GRNs) using functional genomic data obtained by
high-throughput technologies such as microarray or RNAseq (Chai et al., 2014; Oates,
Amos, & Spencer, 2014; Y. R. Wang & Huang, 2014; Lee & Tzou, 2009; Esteves & Reis,
2018). This process of reconstructing GRNs using gene expression data is also known
as network inference or reverse engineering. GRNs represent the regulatory interactions
between genes and they provide useful information for drug-design or medical-related
fields.

Gene-gene interactions can be inferred from gene expression data to reconstruct
a gene regulatory network (Chai et al., 2014). For this purpose Bayesian networks
(BNs) (Pearl, 1988) represent one of the most successful formalism (Wit & Mcclure,
2004) and constitute a widely accepted methodology to deal with uncertain knowledge.
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BNs also have analytical and diagnostic capabilities that make them very suitable for
inferring GRNs. A BN or belief network can be described as a probabilistic graphical
representation of a joint probability distribution. The BN is composed of a directed
acyclic graph (DAG), a qualitative part, and the numerical parameters of the model,
usually conditional probability tables, a quantitative part. Their success is founded on
their probabilistic nature and their ability to deal with uncertainty, being capable to
handle noisy data (Chai et al., 2014) or missing data or find hidden variables (Linde,
Schulze, Henkel, & Guthke, 2015). Another important aspect is the capacity of BNs to
integrate prior biological knowledge (Linde et al., 2015) and to capture multiple types
of relationships (Yu, Smith, Wang, Hartemink, & Jarvis, 2004).

A BN can be built manually from an expert but the common practice is to obtain it
automatically from a data set. Therefore, the task of learning automatically a Bayesian
network from a data set is to obtain the network that best represents the probability
distribution in the data. Since a BN is composed of a qualitative part and a quantitative
part, we distinguish two steps: (i) structural learning; and (ii) parameter learning.

Because parameter learning consists of estimating the conditional probabilities given
by the structure of the graph using the observed frequencies on the data, we first must
learn the topology of the network. The conditional probabilities can be computed by
using a maximum likelihood estimation (Buntine, 1996), though it is normally done by
using a Bayesian estimator based on the Dirichlet distribution (Heckerman, Geiger, &
Chickering, 1995).

There is a lot of works on the automatic learning from data of the BN structures
and, as a result, many structural learning methods have been developed that can be
categorized into two broad groups: algorithms using conditional independence tests, and
algorithms using a heuristic search and a metric or scoring function.

Learning methods based on conditional independence tests (also called constraint-
based algorithms) (Spirtes, Glymour, & Scheines, 1993; Cheng, Greiner, Kelly, Bell, &
Liu, 2002; de Campos & Huete, 2000) perform a qualitative study of the dependence
and independence relationships between the variables. The aim of these methods is to
find the network that best match these relationships by using conditional independence
tests. The most telling example of this kind of structural learning is the PC algorithm
(Spirtes et al., 1993) which, starting with a complete graph, first eliminates as many
edges as possible, and then it gives direction to the edges. The elimination of edges is
guided by conditional independence statistical tests which are applied to variables of
the data.

The second type of structural learning algorithms attempt to find the graph that
best represents the data by maximizing the selected metric and minimizing the number
of arcs. The metric or scoring function is a measure of relation between the data and
the developing graph. There are several proposals based on Bayesian scoring functions,
such as BD/BDe metric (Heckerman et al., 1995), BDeu metric (Buntine, 1991) or K2
(Cooper & Herskovits, 1992) and other approaches based on information theory scoring
functions, such as entropy (Chow & Liu, 1968) or the Minimum Description Length
(Lam & Bacchus, 1994). Furthermore, a search procedure is needed to find the best
structures according to the selected metric. Local search methods are commonly used
(Cooper & Herskovits, 1992; Heckerman et al., 1995) due to the exponentially large size
of the search space.

The nature of gene expression data and its acquisition is a task that is subject to
the curse of dimensionality (Bellman, 1957): A huge number of variables (genes) and
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very few cases (it is an expensive test) (Njah & Jamoussi, 2015). Thus, many BNs
structures represent equally well this high dimensional data (Y. R. Wang & Huang,
2014). Furthermore, the structural learning of a BN is challenging due to the vast space
of possible DAGs for even a moderate number of variables. For these reasons, several
authors have paid attention on the use of additional biological knowledge for learning
BNs from gene data. It has been observed that the combined use of gene expression
data and prior knowledge enhances the accuracy and the quality of the gene regulatory
network (Lee & Tzou, 2009) and improves the reliability of predicted gene interactions
(Linde et al., 2015; Zhou & Zheng, 2014).

As will be discussed later, most of the existing works which employ prior knowledge
in structural learning of the BN use a prior probability distribution (Heckerman et al.,
1995) (i.e. prior beliefs) for each DAG as a function of the available biological knowledge,
but also the prior knowledge is utilized to build an initial network structure used to
initiate the learning search. But the use of prior knowledge in the manner that an
expert would do it in a graphical network, that is, with the specification of structural
restrictions that should verify the network, has not been thoroughly studied.

Hence, our contribution is two-fold. First, we will carry out a profound review of
the literature about the use of prior knowledge and gene expression data for reverse en-
gineering of GRNs using BNs. Second, we address the employment of additional prior
knowledge by describing some types of structural restrictions, which must codify sev-
eral kinds of biological knowledge and must be employed within structural learning
algorithms for BN. In that regard, we are going to consider three types of structural
constraints: first, existence restrictions which force the presence of arcs and/or edges;
second, absence restrictions which force the prohibition of arcs and/or edges; third, or-
dering structural restrictions which force a partial order between some variables. This
restrictions will be assumed as “hard” restrictions (in opposite to “soft” restrictions
(Heckerman et al., 1995)); therefore, the BN always must satisfies them and all the in-
termediate networks obtained in the learning process have to satisfy them. An existence
restriction may indicate that a gene expression is regulated positively or negatively by
other, or may indicate that both genes are coregulated. An absence restriction can be
viewed as an nonexistent direct interactions of any kind between two genes. An ordering
restriction may represent a group of two or more genes in the same regulatory pathway.

By using prior knowledge as structural restrictions, our experimental results reveal
an improvement in the networks obtained, moreover, the increase is proportional to the
amount of prior knowledge utilized.

The paper is structured as follows: Section 2 presents the problem of obtaining GRNs
from BNs. In Section 3 we study the use of prior knowledge and gene expression data to
learn BNs. In Section 4 we shall present some preliminary background about structural
learning of BNs and the types of structural restrictions to be considered. Section 5
discusses the experimental results. Finally, Section 6 is devoted to the conclusions.

2 Inferring gene regulatory networks from Bayesian networks

Learning BNs from gene expression data has several issues (Spirtes et al., 2000), being
the main challenge the curse of dimensionality, but the gene expression is also influenced
by missing values, noise, measurement errors and the fact that gene expression is not a
nominal value, it is a non-normalized continuous value.
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A gene regulatory network (GRN), or simply genetic network, is a graph representa-
tion of the regulatory interactions between genes. Genes can be viewed as nodes in the
network and connections represent the intricate mechanisms that regulate gene expres-
sion. A link between two genes may indicate that a gene expression is regulated posi-
tively or negatively by the other, or may indicate that both genes are coregulated. Many
different approaches have been developed to model and inferring GRNs (Styczynski &
Stephanopoulos, 2005; Markowetz & Spang, 2007; Schlitt & Brazma, 2007; Chai et al.,
2014; Aderhold, Husmeier, & Grzegorczyk, 2014; Banf & Rhee, 2017). However BNs
have been one of the most successful approach for learning GRNs from gene expression
data (Wit & Mcclure, 2004; Sachs, Perez, Pe’er, Lauffenburger, & Nolan, 2005; Bansal,
Belcastro, Ambesi-Impiombato, & di Bernardo, 2007; Friedman, 2004), although BNs
have a higher computacional cost (Werhli, Grzegorczyk, & Husmeier, 2006).

Obtaining a simplified model of a GRN from a BN is immediate: in the BN the nodes
represent the genes of the genetic network and the links represent regulatory relations
(activation or inhibition) as in GRNs. Although there are some differences: first, a BN
cannot have cycles which is a common feature in many pathways since they are acyclic
but this limitation can be overcome by using dynamic Bayesian networks. Second, a
link may exist in the BN but not in the GRN, in this case, the link indicates that both
genes are expressed at the same time, i.e. they are coregulated. Third, an edge in the
GRN may indicate different kinds of relations (Schlitt & Brazma, 2007).

We should bear in mind that BNs represent probabilistic dependencies among vari-
ables and not casualty, that is, correlation does not imply causality. Nevertheless, in
the case of inferring GRN, “we can interpret the edge as a causal link if we assume that
the Causal Markov Condition holds” (Bansal et al., 2007). The Markov condition for a
BN states that each variable is conditionally independent of its nondescendants given
its parents in the BN.

3 On the use of prior knowledge for learning BNs from

expression data

To handle the curse of the dimensionality some authors have developed adapted al-
gorithms for learning BNs (Acid, de Campos, & Fernández, 2013; Gámez, Mateo, &
Puerta, 2011). However, other authors have proposed to use expert knowledge or any
other additional biological knowledge. This kind of knowledge is called prior knowledge.

For example, (Segal, Wang, & Koller, 2003) build a Gaussian näıve Bayes for gene
expression data. After that, they build a Markov network for protein-protein interactions
data. Finally, the two networks are joined and the parameters are learned with the EM
algorithm.

(Gifford, 2001) intends to use graphical models for gene expression data as a parameter-
free tool capable of modelling genetic networks. The practical application comes by
(Hartemink, Gifford, Jaakkola, & Young, 2001, 2002a) where they build two BNs by
hand using only expert knowledge. After that they use a Bayesian score to compare
the two networks. Also they present annotated edges to represent additional biological
information about the type of dependence relationship between variables. They modify
the metric to include annotated edges. Same authors (Hartemink, Gifford, Jaakkola, &
Young, 2002b) present a method to obtain GRNs using expression data and genomic
location data. The location data is used to influence the BN prior and expression data
to influence the network likelihood.
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(Zhu et al., 2008) combine genotipic data and gene expression data to build BNs. Ad-
ditionally they include transcription factor binding site and protein-protein interaction
data. The BN is constructed using this additional data as priors.

Preliminary networks derived from the literature and/or protein-protein interaction
data are used by (Djebbari & Quackenbush, 2008) to build a network which is used as
starting point of a local search.

Using a continuous approach, (Tamada et al., 2003b, 2003a) integrate microarray
gene expression data and DNA sequence information into a BN. Their basic idea is:
if a parent gene is a transcription factor, its children may share a consensus motif in
their promoter regions of the DNA sequences. The BN is learned using the approach
presented by (Imoto, Kim, et al., 2003).

(Imoto et al., 2004; Imoto, Higuchi, et al., 2003) propose to use more sources of
biological knowledge: microarray gene expression, protein-protein interactions, protein-
DNA interactions, binding site information and existing literature. The biological knowl-
edge is added into the prior probability of the metric. (Werhli & Husmeier, 2007b,
2007a) make a variation of (Imoto, Higuchi, et al., 2003), using other learning algo-
rithm. ( Nariai, Kim, Imoto, & Miyano, 2004) use only protein-protein interactions as
additional knowledge following the methodology presented by (Imoto, Higuchi, et al.,
2003). After the network is built, they evaluate it with a genetic network from KEGG
(Kyoto Encyclopedia of Genes and Genomes) (Kanehisa et al., 2008). (Nariai, Tamada,
Imoto, & Miyano, 2005) generate a GRN, and a network of protein-protein interactions.

In contrast, (Le Phillip, Bahl, & Ungar, 2004) do not use information from other data
sets, a network is built by an expert based on the existing literature. With a score+search
approach, the authors use hard constraints of absence and existence from the expert
network, i.e. they limit the search space with links that should necessarily be in the
candidate networks and those that are prohibited. The network obtained by the expert
is used to generate the synthetic data for validating their proposal. (Chen, Cairelli,
Kilicoglu, Shin, & Rindflesch, 2014) utilized knowledge extracted from literature as a
network of interactions and then apply expression data. Using also previous literature
as prior knowledge, (Steele, Tucker, Hoen, & Schuemie, 2009) obtain gene association
scores as prior beliefs in the BN and they also investigate the effect of weighting the
effect of prior knowledge. Likewise (Li, Wu, & Zhang, 2006) also combine literature
extracted knowledge and microarray data.

(Almasri, Larsen, Chen, & Dai, 2008) use a GRN made previously by another author
(Larsen, Almasri, Chen, & Dai, 2007). They use the structure of the known network as
the starting point for the learning algorithm. Also they use the expert GRN to reduce
the search space.

(Mukherjee & Speed, 2008) incorporate prior knowledge into BN inference. (Isci,
Dogan, Ozturk, & Otu, 2014) proposed a methodology to incorporate several sources
of prior knowledge, regardless of its type, in the prior distributions of the BN learning
algorithm. Similarly, (Sauta, Demartini, Vitali, Riva, & Bellazzi, 2017) proposed a two
step procedure where the additional knowledge is integrated in the model as a prior
probability.
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4 Bayesian networks using structural restrictions

Formally, let us consider a finite set of discrete random variables V = {x1, x2, . . . , xn},
each variable taking on values from a finite set, a Bayesian network is a pair (G, θ),
where:

– G is a directed acyclic graph (DAG) G = (V, EG), being EG the set of arcs. In this
graph, a link represents direct dependence relationships between the variables. For
example, xj → xi indicates that the node xi directly depends on the node xj .

– θ is a set of conditional probability distributions. This set contains, for each node,
a conditional probability distribution of the variables on which it depends directly,
i.e, its parents. If a node has no parents, its distribution is simply the probability
distribution of the node.

The structural learning task of a BN from a data set D can be described as the
search of the DAG that, in some ways, best represents the data set.

Structural learning methods can be categorized into two broad groups: conditional
independence tests based algorithms, and score+search methods (for references, see
(Acid & de Campos, 2003)). In both cases our proposal must reduce the corresponding
search space (which is hyper-exponential) by introducing several types of restrictions
that the elements in this space must verify.

The structural restrictions approach used in the experiments was presented properly
by (de Campos & Castellano, 2007), where three kinds of structural constraints were
described for the variables. These restrictions can be represented graphically using arcs
and edges (an edge can be seen as an unoriented arc):

– Existence restrictions (Ee): if an arc x → y ∈ Ee, it must be true in any DAG of
the search domain. If an edge x—y ∈ Ee then y → x or x → y have to exists in
every graph structure of the search domain.

– Absence restrictions (Ea): if x → y ∈ Ea, it is forbidden for every graph of the
search domain. If x—y ∈ Ea, y → x or x → y can not exist.

– Partial ordering restrictions (Eo): if x → y ∈ Eo, it means that x < y, and every
DAG structure in the search domain should verify that x antecedes y in some
total order of V consistent with the DAG structure. These ordering restrictions can
be used to express, for instance, some kind of functional or temporal precedence
between variables. Take into account if (x, y) ∈ Ro then the DAG can not contains
the arc y → x, nor a directed path from the variable x to the variable y.

Therefore, for inferring GRNs, an existence constraints can be identified as some
kind of regulatory relationship between genes. If the existence constrain is directed, it
can indicate that a gene is regulated positively or negatively by the other gene in the
restriction. An absence constraint may indicate that there is not any directed regulatory
relationship between two genes. An order constrain may indicate some relation between
genes, if gen1 < gen2 indicates that gen1 is expressed before gen2, for example, the
gen1 is before gen2 in the same genetic regulatory pathway.

In the following subsections, the use of structural restrictions will be presented for
a local search algorithm, specifically hill climbing, guided by a scoring function and
the PC algorithm. Both are prime examples of the two mentioned approaches for BNs
structure learning.
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4.1 Structural restrictions in a local search algorithm based on a scoring

function

Structural learning algorithms used in the score+search paradigm are usually based on
the application of operators to move within the search space. The same basic operators
are used in many search algorithms: (1) addition of arcs, and (2) removal of arcs (another
operator used is reversal of arcs, but this operator can be seen as remove the arc and
add the arc in the opposite direction).

To use structural restrictions in a local search algorithm, we must start from a
DAG G, which must verify the restrictions. The initial point in this kind of algorithms
is an empty DAG G∅. As regards this specific case, G∅ should be substituted by the
DAG obtained from Ee. However, we should bear in mind that Ee does not necessarily
represent a DAG, and thus Ee must be transformed into a DAG. Let G′ be a DAG
obtained from G as a result of the application of one of the earlier mentioned operators.
We are going to consider what are the requirements necessary and sufficient to guarantee
that G′ also verifies the structural restrictions.

Let Ge = (V, Ee), Ga = (V, Ea) and Go = (V, Eo) be graphs describing self-
consistent existence, absence and ordering restrictions1, respectively, and letG = (V, EG)
be a DAG which verifies them.

(I) Arc addition: Let G′ = (V, E′
G), E

′
G = EG ∪ {x→ y}, with x→ y 6∈ EG. In that

case, G′ is a graph which verifies Ge, Ga and Go given
• x—y 6∈ Ea and x→y 6∈ Ea,
• there is no directed path from y to x in G ∪Go.

(II) Arc removal: Let G′ = (V, E′
G), E

′
G = EG \ {x→y}, with x→y ∈ EG. In that case,

G′ is a graph which verifies Ge, Ga and Go given
• x→y 6∈ Ee and x—y 6∈ Ee.

4.2 Structural restrictions in the PC algorithm

The PC algorithm (Spirtes et al., 1993) first eliminates as many edges as possible, and
second, it gives direction to several of the remaining unoriented arcs, i.e. edges, trying
to obtain head to head patterns. Both activities are guided by conditional independence
statistical tests applied to the available dataset.

In this situation, an algorithm to use structural restrictions, appropriate to dimin-
ish the amount of necessary statistical tests to apply, is as follows: we should check
whether the resulting graph after carrying out this operation verifies the structural re-
strictions before computing a conditional independence test; if the verification test fails,
the statistical test should not be computed. Let us specify the verification tests for the
operators being applied.

Let Ge, Ga and Go be the aforementioned graphs, and let H = (V, EH) be a partially
directed acyclic graph (PDAG) which verifies Ge, Ga and Go.

(I) Arc removal: Let H ′ = (V, E′
H), E′

H = EH \ {x→ y}, with x→ y ∈ EH . In that
case, H ′ is a PDAG which verifies Ge, Ga and Go given

1 Some interactions can occur among the structural restrictions and may give rise to incongru-
encies. Thus, it is needed to confirm that these structural restrictions can indeed be verified.
In this regard, we shall state that a collection of restrictions is self-consisten if there is some
DAG that verifies them (see (de Campos & Castellano, 2007) for more details).
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• x→y 6∈ Ee and x—y 6∈ Ee.
(II) Edge removal: Let H ′ = (V, E′

H), E′
H = EH \ {x—y}, with x—y ∈ EH . In that

case, H ′ is a PDAG which verifies Ge, Ga and Go given
• x→y 6∈ Ee, y→x 6∈ Ee and x—y 6∈ Ee.

(III) Head-to-head addition: Let x, y, z ∈ V and define a subset of links S as either
S = {x→ z, z—y}, S = {x—z, y → z} or S = {x—z, z—y}. If x and y are not
adjacent in H and S ⊆ EH , let H ′ = (V, E′

H), with E′
H = (EH \S)∪{x→z, y→z}.

In that case, H ′ is a PDAG which verifies Ge, Ga and Go given
• x→z 6∈ Ea and y→z 6∈ Ea,
• there is no directed path from z to x nor is there a directed path from z to y in
H ∪Go.

(IV) Edge orientation: Let H ′ = (V, E′
H), E′

H = (EH \ {x—y}) ∪ {x→y}, with x—y ∈
EH . In that case, H ′ is a PDAG which satisfies Ge, Ga and Go given
• x→y 6∈ Ea,
• there is no directed path from y to x in H ∪Go.

The initial point for the PC algorithm is the complete undirected graph. In our case
this starting graph should be converted giving direction to some edges in accordance
with Ge, Ga and Go and by removing the edges in accordance with Ga.

5 Experiments

In this section, the effects of prior knowledge in BNs learned from gene expression
data will be studied. In order to do this, we rely on the fact that BNs are visually
interpretable, consequently, we will try to incorporate prior knowledge graphically, and
in accordance with the interpretability of the model, using structural constraints.

5.1 Gene expression data set

We are going to study the use of structural constraints from prior knowledge with DNA
microarrays data of the budding yeast Saccharomyces cerevisiae. The data set (available
at http://genome-www.stanford.edu/cellcycle/) that we are going to use comes from
the study of the budding yeast cell cycle by (Spellman et al., 1998). The dataset also
includes data from (Cho et al., 1998).

In the work of Spellman et al., the expressed genes during the yeast cell cycle were
studied using DNA microarrays. In the experiments, 6200 gene expressions (virtually all
yeast genes) were measured in total of 77 time points under four different experimental
conditions, identifying gene expressions in different cell cycle phases. Spellman and
coworkers identified 800 genes involved in the Saccharomyces cerevisiae cell cycle.

5.2 Prior knowledge

Without access to an expert in the field, the solution adopted to obtain prior knowledge
was looking into previous research for support. Specifically, we have used the GRN of
the yeast cell cycle obtained by (Nariai et al., 2005). To build this network, Nariai and
coworkers used the gene expression data from the works of (Spellman et al., 1998) and
(Hughes et al., 2000). They also obtained knowledge from the MIPS database (Mewes
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et al., 2002)(MIPS is the database of genomes and protein sequences of the Munich
Information Centre for protein sequences. Available at http://mips.gsf.de/ ).

We are going to suppose that the GRN obtained in the research of (Nariai et al.,
2005), is the real genetic network that represents the yeast cell cycle for some genes.
We will use this network, but the starting graph should be modified by giving direction
to the arcs without orientation, i.e. the edges. This edge orientation was carried out
without creating directed cycles and avoiding to produce extra head to head patterns
as far as possible. The obtained network has 55 nodes and 100 arcs and will be called
the true network.

5.3 Preprocess

To work with the yeast cell cycle data set provided by Spellman et al., it has been
necessary a data preprocessing stage.

First, a local least squares imputation method (LLSImpute) have been applied (Kim,
Golub, & Park, 2005; Stacklies, Redestig, Scholz, Walther, & Selbig, 2007) to deal with
missing data.

A gene expression is a real number taht takes continuous values. In the literature,
the most used discretization method for BNs and microarray data is the one proposed
by (Friedman, Linial, Nachman, & Pe’er, 2000). They chose to discretize into three
categories, depending on whether the expression rate is lower than, similar to, or greater
than a control value.

Since our objective is not the study of unknown functions of genes involved in cell
cycle, but rather studying the use of structural constraints in the analysis of gene
expression data, we have decided to use only those genes that appear in the genetic
network proposed by (Nariai et al., 2005). Therefore, the variables has been reduced to
54 genes.

5.4 Experimental results

In the experiments carried out, the score+search learning method studied is the stan-
dard local search (employing the operators: arc insertion, arc deletion and arc reversal),
using the BDeu score metric (Heckerman et al., 1995), with a equivalent sample size set
to 1 and an uniform structure prior. The learning algorithm using conditional indepen-
dence tests utilized in this research is the PC algorithm (Spirtes, Glymour, & Scheines,
2001).

Once the structural learning has finished, the required marginal and conditional
probabilities must be estimated from the yeast cell cycle dataset provided by Spellman
et al. This applies both to learned networks and true network. For all BNs, we have
utilized a smoothed parameter estimator, based on the Laplace law of succession (Good,
1965). The reason is to avoid problems of unreliability and overfitting of the maximum
likelihood estimator in small datasets.

The measures used to compare the algorithms are:

– The BDeu score metric of the obtained BNs; this measure is useful because it is the
metric used to guide the score+search method.

– Three measures that allow us to reflect the structural differences between the learned
networks and the true one. These measures can estimate the ability to reconstruct
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the DAG of the true network: the amount of added arcs (A), the amount of deleted
arcs (D) and the amount of inverted arcs (I) in the learned network with respect
to the true network. To remove inaccurate differences or similarities between the
DAGs being compared due to different but equivalent BNs, before comparing two
networks, they were transformed into their completed PDAG representation2, using
the algorithm proposed by (Chickering, 1995).

– The Kullback-Leibler divergence (KL), also called relative entropy, between the
probability distributions related to the true BN and the learned BNs is also com-
puted, which represents a measure of the capacity to rebuild the joint probability
distribution.

The following levels of random restrictions were selected: 10%, 20%, 30%, and 40%
from the full set of restrictions that can be obtained from the completed PDAG rep-
resentation of the true network. Specifically, if G = (V, EG) is the completed PDAG
representation of the true network, then each arc x→y ∈ EG and each edge x—y ∈ Ee

is a feasible existence restriction; each arc x→ y 6∈ EG is a feasible absence restriction
and in case that also y→x 6∈ EG we may utilize the restriction x→y ∈ Ea or y→x ∈ Ea

or x—y ∈ Ea; at last, if there is a directed path from x to y in EG then x→y ∈ Eo is
a feasible ordering restriction.

We have studied the learning algorithms for each percentage of restrictions for each
type exclusively, and also utilizing the three kinds of restrictions simultaneously. The
results displayed show the average values of the benchmarking measures across 50 rep-
etitions. All the algorithms are implemented in the Elvira system (Elvira Consortium,
2002) (available at http://leo.ugr.es/elvira/ ).

Table 1 displays the outcomes achieved using the score+search algorithm, while
Table 3 displays the results achieved using the PC algorithm. These tables include the
outcomes achieved by the learning algorithms without utilizing structural restrictions
(0%), and the KL estimations of the true network, with parameters re-trained from
Spellman et al. dataset, which is compared with the learned networks. Table 2 displays
the corresponding BDeu average values for the learned networks using local search, as
well as the estimation of the BDeu score of the true network.

Ge, Ga, Go exclusively Ge exclusively Ga exclusively Go

% KL A D I KL A D I KL A D I KL A D I

10% 12.63 51.9 76.0 4.3 13.12 56.0 77.1 4.8 13.18 54.8 85.4 5.1 13.80 57.7 85.4 4.8

20% 11.71 45.9 67.3 3.2 12.48 52.1 68.6 4.2 12.51 51.2 84.0 5.7 13.66 58.9 85.0 4.6

30% 10.77 40.0 58.8 1.8 12.13 50.8 60.1 3.5 11.75 47.8 82.7 5.6 13.49 58.2 84.5 4.2

40% 9.80 34.9 50.0 1.3 11.74 49.1 51.2 2.9 10.88 43.2 81.4 5.2 13.52 58.7 84.4 3.8

0% 13,66 57.0 87.0 4.0 KL value of the true network: 7.76

Table 1. Average outcomes achieved using local search.

2 As was stated by (de Campos & Castellano, 2007, p. 244),“A completed PDAG (also called
essential graph) is a partially directed acyclic graph which is a canonical representation of
all the DAGs belonging to the same equivalence class of DAGs.”
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Ge, Ga, Go exclusively Ge exclusively Ga exclusively Go

10% -2509.46 -2474.52 -2440.86 -2432.29
20% -2596.95 -2530.98 -2469.69 -2442.33
30% -2689.36 -2587.79 -2504.13 -2448.65
40% -2783.47 -2647.72 -2542.60 -2452.42

0% -2418.38 BDeu value of the true network:-3420.68
Table 2. Average BDeu values obtained using local search.

Ge, Ga, Go exclusively Ge exclusively Ga exclusively Go

% KL A D I KL A D I KL A D I KL A D I

10% 8.10 5.4 85.7 0.5 8.13 6.0 86.2 0.8 8.66 5.4 96.5 0.0 8.73 5.9 96.9 0.0

20% 7.51 4.9 75.4 0.7 7.61 6.0 76.4 1.2 8.55 4.9 96.0 0.0 8.72 5.6 96.6 0.0

30% 7.04 5.4 65.1 1.0 7.14 6.0 66.5 1.4 8.41 4.8 92.2 0.0 8.72 5.3 96.3 0.0

40% 6.74 6.8 54.8 0.9 6.77 5.9 56.7 1.4 8.31 5.6 94.2 0.0 8.72 5.2 96.2 0.0

0% 8.74 6.0 97.0 0.0 KL value of the true network: 7.76

Table 3. Average outcomes achieved using PC.

5.5 Analysis of results

From the outcomes obtained with the experiments carried out, we can say that the
utilization of prior knowledge represented by structural restrictions help us to obtain
better results regardless the proportion of structural restrictions used. Obviously, the
higher the proportion of prior knowledge used, the better the obtained BN will be.

In order to examine these results in more depth, we will comment then according
to the following aspects: structural differences, KL divergence and BDeu score.

• Structural differences: In this aspect, the local search algorithm works as planned,
that is, as the proportion of existence restrictions, absence restrictions and ordering
restrictions raises, then proportion of removed, added and inverted arcs, respec-
tively, are reduced. This performance can be undoubtedly noticed in the outcomes.
Furthermore, in the experiments, we can observe another less obvious behavior: the
utilization of any type of structural restrictions also contributes to reduce other val-
ues of structural differences. For instance, absence restrictions reduce the quantity
of added arcs, but also the amount of inverted and removed arcs. There is a couple
of exceptions to this rule: we don’t observe that inverted arcs decreases clearly when
we use only absence restrictions nor observe that the added arcs decreases clearly
when we use only ordering restrictions. In the case of the PC algorithm (Table 3),
the utilization of any of the three kinds of structural restrictions also contribute to
reduce the other values of structural differences. However, as exception, the inverted
arcs increase slightly with the use of existence restrictions.

• KL divergence: According to this measure, there is no doubt about that the use of
prior knowledge contributes to more accurate BN structures, and as the proportion
of restrictions increases, the improvement increases almost systematically. In the
PC algorithm case, the utilization of structural restrictions always reflects more
faithfully the true network structure than the PC without structural restrictions.

• BDeu Score: Regarding the BDeu score, we only will take into account the algo-
rithm which employs such measure: the local search. In this particular case, we can



12

note that the obtained BDeu scores are constantly better than the true network
score; this may be due a higher level of overfitting to the given data. Furthermore,
as we raise the number of restrictions, the BDeu values head to the true network
score.

On analyzing the results offered by each type of structural constraints, we can ob-
serve that the better results are achieved consistently by existence constraints, that is,
adding arcs obtains better results than forbidding arcs or imposing a variable order, re-
gardless of the learning algorithm employed. Similar results are obtained by the absence
constraints, but nevertheless, the number of deleted arcs is appreciably higher. The sole
use of ordering constraints also obtains improved results but to a lesser degree.

In this data set, we do not observe any saturation effect when we increase the num-
ber of structural constraints being used. It is expected that with much more available
data, the quality of the estimated networks improves and the value of prior structural
knowledge decreases. In this situation of scarce data, is when prior knowledge is more
useful in terms of the quality of the final result. In any case, prior knowledge is also
important for reducing learning time, as the search space is smaller.

When no prior knowledge is employed, we should observe the poor results obtained
by the different learning algorithms. Note that the true network has 100 arcs, while
the unrestricted PC algorithm eliminates 97 arcs and the local search algorithm, also
without restrictions, eliminates 87. The unrestricted local search algorithm adds 57 arcs
which are not in the original network, and the unrestricted PC algorithm adds 6 arcs.
The explanation for this poor behaviour of the learning algorithms is the small number
of cases (only 77 samples) used for learning the structure. As example, if we focus on the
PC algorithm, we observe that it learns only 9 arcs (6 added and 3 in the true network).
The reason to learn so few arcs is because, when we are working with a small number of
cases, the independence hypothesis states independence for most of the performed tests.
The evolution of the Bayesian networks obtained by the PC algorithm as the additional
knowledge used was gradually increased, can be found in Figures 1, 2 and 3.

Fig. 1. Bayesian networks obtained by PC algorithm without additional knowledge (left) and
using 10% of additional expert knowledge (right).

However, despite this awful starting point without prior knowledge, the use of addi-
tional knowledge tends always to better results for all the collected performance mea-
sures. Working with so few cases, the use of restrictions will improve the results and
the enhancement increases with the proportion of structural restrictions being utilized.
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Fig. 2. Bayesian networks obtained by PC algorithm using 20% (left) and 30% of additional
expert knowledge (right).

Fig. 3. Bayesian network obtained by PC algorithm using 40% of additional expert knowledge.

We would like to clarify that, unlike classical data, gene expression data have a high
dimensionality, that is, a severe number of variables (gene expressions) and a slightly
low number of instances. In the context of the PC Learning algorithm, the amount
of samples in gene expression data is rarely enough to perform reliable conditional
independence tests (M. Wang, Chen, & Cloutier, 2007), which will consequently lead
to removing too many edges between variables, resulting Bayesian networks with few
arcs. Furthermore, the PC algorithm is prone to obtain sparse networks (Acid et al.,
2004). In the case of the search+metric algorithm, the high dimensionality of this data
generates correlations between variables which can be simply a chance effect (Hoefsloot,
Smit, & Smilde, 2008), causing undesirable links to appear.
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6 Conclusions

The prior knowledge is generally employed to enhance the reliability of inferring ge-
netic regulatory networks from Bayesian networks using gene expression data. How-
ever, Bayesian networks provide an easily interpretable graphical representation of the
relations among the genes which had not been fully exploited for incorporating prior
knowledge to reconstruct genetic regulatory networks.

As we have seen in the literature review, most authors employ prior knowledge as
a prior probability distribution or as an initial network utilized as starting point of
the heuristic search. Therefore we have presented the utilization of three structural
restrictions types, i.e. existence, absence and ordering restrictions, to learn the DAG of
Bayesian networks and considered their application to gene expression data. We have
examined a local search learning algorithm using a score metric and the PC algorithm
(a conditional independence paradigm).

The experimental outcomes indicate that the utilization of extra prior knowledge
codified as structural restrictions enhances the learned Bayesian network structures
even when there are few cases. Consequently the use of structural restrictions can easily
implements prior knowledge as they can represent different types of gene regulatory
relationships.
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