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One step towards breaking down barriers between citizens and politicians is to help

people identify those politicians who share their concerns. This paper is set in the field

of expert finding and is based on the automatic construction of politicians’ profiles
from their speeches on parliamentary committees. These committee-based profiles are

treated as documents and are indexed by an information retrieval system. Given a query

representing a citizen’s concern, a profile ranking is then obtained. In the final step, the
different results for each candidate are combined in order to obtain the final politician

ranking. We explore the use of classic combination strategies for this purpose and present
a new approach that improves state-of-the-art performance and which is more stable

under different conditions. We also introduce a two-stage model where the identification

of a broader concept (such as the committee) is used to improve the final politician
ranking.

Keywords: User-profile; politician recommendation; expert finding; information retrieval.

1. Introduction

A challenge for any government is to find ways to strengthen and improve relation-

ships between politicians and society (i.e. citizens and/or stakeholders) and this

is a growing demand from both sides. A possible situation in this context might

be where a user (citizen, businessman, journalist, etc.) wishes to meet a politician

to discuss a certain problem. In such a situation, a common mistake is to arrange

a meeting with the wrong politician (with the associated costs in terms of time

and/or money). There are two reasons for this mistake: firstly, citizens believe that

any politician is an expert in every field, a premise which is not necessarily true;

and secondly, it is difficult for citizens to know what the real interests of a politician

are. In view of this, our main research question is whether we can effectively and

efficiently design an intelligent information system to search for those politicians

who are truly interested in a specific matter.
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Although the framework of our research is the field of e-Government, it also

falls within the broader area of “expert finding”1,2 where the objective is to find

an expert in a given topic (science researchers, professionals, journalists, bloggers,

physicians, etc.). In our case, since Members of Parliament (MPs) are the main

actors (i.e. the target), this can be viewed as an MP-finding or MP-recommendation

task. To the best of our knowledge, this problem has never before been studied in the

political context where this research is set and which displays certain peculiarities

that must be considered.

In order to understand such peculiarities, let us briefly explain how political

activities are organized in a parliamentary context: the key element is the initiative,

which represents a plan for discussion on a specific issue, law or decree. If the

initiative is admitted, it follows the classic legislative procedure: it is passed by the

different commissions or committees and is submitted, if necessary, to the plenary

sessions. Thus, in plenary sessions, MPs discuss general topics and in committee

sessions they deal with more specific topics, such as agriculture, education, economy,

etc. In both types of sessions, usually only one MP for each party (the representative

or spokesperson) participates in the discussion of a given initiative. It is important

to mention that records of all parliamentary proceedings (the Official Gazette) and

full transcriptions of every speech are freely available to the public.

Returning to the MP-finding task, it is necessary for the information associated

to MPs (i.e. the underlying topics they know about) to be organized in a sort

of container which is called the profile. These profiles might be created manually

(where the experts themselves, MPs or their assistants, express their preferences3,4)

or automatically (by analyzing documents created in the course of routine work4,5).

There are various reasons why we prefer to use automatic profiling in a political

context. Firstly, politicians (and people in general, as Berends et al.6 highlighted)

dislike having to complete lengthy forms about their interests. Even then, inaccurate

profiles may be obtained since politicians have a wide range of interests and they

must select their preferences from a large pool of possibilities and it is also common

that they slant the selection process towards a subset of relevant topics. Another

reason in favor of automatic profiles is that manually created ones are usually static

since people rarely update their preferences. This will represent a problem in our

context because it is quite usual that an MP changes their interests from one field

to another, maybe due to political issues.

In de Campos et al.,7 we focused on the automatic creation of MP profiles and

their effects on the performance of an MP-finding system. In order to tackle the

problem, we considered their parliamentary interventions/speeches as the informa-

tion source. The paper considered two approaches. The first is to use a single profile

that represents a monolithic view of MP preferences. In this case, the terms com-

prising it will come from different domains of interest which might cause the profile

to only reflect a few interest categories or for non-dominant categories to become

underweighted or even unnoticed. For the second approach, we might consider that

an MP normally sits on more than one committee and so a structured profile might
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be built. This type of profile consists of various subprofiles to represent the topics

of the different committees with which the MP is involved. For example, if a rep-

resentative has participated in education, culture, environment and economy, four

subprofiles could be constructed.

In the context of MP recommendation, the objective of this paper is to determine

whether it would be advantageous to use a structured profile based on the committee

sessions in which the MP has participated, rather than a single monolithic profile.

For a given query, our objective is to obtain an MP ranking but if we consider

structured profiles, an MP might have more than one subprofile in the ranking and

so it is necessary to combine the scores of these to obtain the final ranking.

Taking this framework into account, the main contributions of this work can be

summarized as follows:

• Although the expert-finding problem has been addressed from different perspec-

tives in academia and industry, we could not find any previous work on expert

recommendation in political domains. This work represents a first attempt to

tackle this problem from an overall perspective where the use of structured pro-

files has proved to be a good alternative. We also want to highlight the applied

evaluation methodology since it can be used in other political organizations.

• Regarding fusion or combination strategies, this paper explores the performance

of a new aggregation strategy, which is a hybrid of both score and ranking-

based approaches and based on the discounted cumulative gain evaluation metric.

We shall show how this performs well with more stable results than classical

approaches.

• Insights into the performance of the structured profiles under a related task

(i.e. identification of the committee where user concerns might be discussed) are

obtained. Taking this into account, we propose a new two-stage approach for

MP-finding which is able to exploit such information.

This paper is organized as follows: the following section presents related work;

Section 3 describes the construction of both monolithic profiles and subprofiles and

also the fusion strategies used in the case of structured profiles; the next section

describes the experimental methodology and results; Section 5 presents the two-

stage approach for MP recommendation; and finally, Section 6 outlines the main

conclusions and future lines of research.

2. Related Work

The expert-finding problem has received interest (under different formalisms) in

fields such as academia4,6,8–10 and industry3,11–13 and two different approaches are

possible:

• In a first approach,6 user expertise is represented as a vector of keywords (index

terms obtained from a controlled vocabulary such as a thesaurus). A query, which

also consists of a set of keywords, is then used to determine an expert for that
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topic. Nevertheless, such types of queries are useless when considering citizens as

users because the keywords are either too general to be useful or too specific and

possibly unknown by the citizens.

• A second approach is to tackle this task as an information retrieval problem,1,3,14

where the profile is considered a “virtual document” based on the documents

associated to the candidate or using an approach which first ranks documents in

the corpus given a query topic,1 and then finds the associated candidates from the

subset of retrieved documents. Two different alternatives have been proposed: the

first, which Balog denoted as Model1,3 where all the documents are joined into

a single document, and Model2, where each document is considered in isolation.

Our approach, which explores the use of profiles for an expert-finding task in

the parliamentary domain, is set between both alternatives: we first learn a profile

for each candidate from their documents (as in the first approach we obtain a

summary of their interests) and this is then transformed into a virtual document

(in the same way as the second approach). According to Gauch et al.,15 there are

three main representations for user profiles: weighted keywords, semantic networks

and weighted concepts. We have considered weighted keyword representation since

this is the most common approach. Additionally, these profiles might be used on

various IR-related tasks such as personalization (where the original query may be

reformulated in order to better adapt the retrieval results to user preferences),

content-based recommendation (which helps to filter new documents), clustering

(MP segmentation, i.e. grouping MPs with similar preferences), etc.

In the case of using weighted keyword representation, two alternatives can be

considered: the first uses a single profile for each user as discussed by Panoptic,14

Fab,16 and more recently Cantador et al.17 and Bilenko et al.18 In the case of the

user having multiple interests, however, as in the case of an MP being involved in

several committees (e.g. agriculture, education and economy), non-dominant cate-

gories might be underestimated. The second approach tries to solve this problem

by organizing the profile into a set of subprofiles where each represents the person’s

topic of interest, the terms that comprise them are closely related under the broad

umbrella of a common subject. The following examples use subprofiles: Montebello

et al.19 design a personalized web search assistant to extract keyword-based pro-

files from bookmarked web pages; automatic clustering approaches20–22 are used

to learn user interest areas and Syskill and Webert23 learn a separate profile for

each user’s topics from positive and negative examples of each topic using machine

learning algorithms.

In previous work (de Campos et al.7), we discussed various strategies to build an

MP profile defined as a bag of n words, that contains the most important terms ac-

cording to a weighting scheme. In that paper, we focused on the impact of weighting

criteria, the number of terms in the profile and how to convert a weighted vector

of terms into a document. We considered both approaches, i.e. the use of single

(monolithic) and compound (structured) profiles.
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In this paper, we shall analyze in detail the performance of such profiles for the

MP-finding problem and our objective is to obtain an MP ranking in response to

the query. Nevertheless, we wish to highlight that profile-based virtual documents

have different features from those obtained when considering Balog’s Model1 and

Model2 approaches, which will be analyzed in greater detail in the experimental

section.

In order to conclude this section, we shall briefly review work on data fusion.24

These techniques are necessary in the case of using structured profiles, where it is

possible for a given MP to have more than one subprofile in the final ranking of

the retrieval engine. Following the ideas of Refs. 1 and 25, each (sub)profile can

be seen as a vote for the MP represented in it, and it is necessary to combine the

different candidate votes to obtain the final ranking. For example, Macdonald and

Ounis25 propose up to twelve different methods which can be categorized into score-

and ranking-based, with CombMax, CombSUM and CombMNZ (see Section 3.1)

performing best.

3. Using the Profiles for the Expert-Finding Task

In the case of using monolithic profiles, the ranking obtained by the IRS can be

used directly for this task (each profile in the ranking represents a single MP)

and therefore the top-ranked MPs can be considered “experts” on the subject.

However, this does not have to be the case when compound profiles are used. In

such a situation, the retrieval engine returns a scored list of subprofiles, Lq =

{p1, p2, . . . , pk}, where each pi is a tuple p =< mp, c > where mp presents the

particular MP and c represents a committee. Given the one-to-many relationship

between an MP and their subprofiles, it is also possible for a given MP to have more

than one listed profile. In order to compute a single score for each MP, we might

therefore combine the different results. Once combined, the MPs are sorted in terms

of these values and those in the top positions will be returned to the citizen.

3.1. Fusion strategies

If we consider each subprofile as a vote for the candidate, it becomes necessary to

use some fusion strategy to compute a final score for each MP (all the information

presented in their different subprofiles in the ranking might be considered). In this

case, however, it is possible that for a given query the number of subprofiles returned

by the system could be quite large, with those in the lower positions being barely

relevant. Thus, and following the results in Weerkamp et al.,26 we should only focus

on those profiles in the top K positions in the ranking. It appears that taking into

account the information provided by these subprofiles (which is marginally relevant

to the query) worsens system performance.

We shall now discuss the fusion strategies used in this paper. Although Macdon-

ald and Ounis25 used twelve fusion strategies, we shall only present four of these

which are those that perform best in literature1 (and also in our experiments).
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These can be categorized into rank- and score-based approaches. Two strategies

representing a hybridization of both approaches will also be proposed.

We will consider some notation in this context: given a profile pi in the rank-

ing, I(pi) represents the MP identity and s(pi) denotes its score value (similarity

between the profile and the query q). For a given MP m, we will also use PK(m, q)

to denote the set profiles in Lq including her subprofile with the greatest score in

Lq, pm, but also those among the top-K which are associated to the MP, i.e.

PK(m, q) = {pm} ∪ {pj ∈ Lq|I(pj) = m & j ≤ K} , (1)

being m = arg maxi{s(pi)|I(pi) = m}.

Scored-based approach: only the scores of the retrieved profiles are used to

compute the final ranking.

• CombMax: Given an MP, the subprofile with the highest score is selected. This

first filtering method attempts to capture the best match and is intended for very

specific queries:

score(m, q) = max
pi∈PK(m,q)

{s(pi)} = s(pm) . (2)

• CombSum: Given an MP, a new score is computed by adding the different scores

of their subprofiles in PK. This second approach could be useful when the query

covers various subprofiles, so the greater the number with higher scores, the

better:

score(m, q) =
∑

pi∈PK(m,q)

s(pi) . (3)

• CombMNZ: This includes an extra factor in the CombSum method which takes

into account the number of results where the MP appears (PK). Thus, CombMNZ

favors those MPs who appear several times in the retrieved list (reinforcing the

aggregated score obtained in such situations):

score(m, q) = |PK(m, q)| ×
∑

pi∈PK(m,q)

s(pi) . (4)

Rank-based approach: This takes into account the positions of the subprofiles

in the ranking.

• CombRR : This is an adaptation of the reciprocal rank25 method where an MP’s

rank in the output ranking is determined by the sum of the reciprocal ranks of

the related profiles, in such a way that the higher the position in the ranking,

the greater its value.

score(m, q) =
∑

pi∈PK(m,q)

1

rank(pi)
. (5)
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Mixed approaches: The value of the score for each subprofile is devalued by tak-

ing into account its position in the ranking and these devalued scores are aggregated

to compute the final value for a particular MP. Two different devaluation strategies

are considered:

• CombDCS: This is a mixture of the CombSum and CombRR methods, where the

scores are discounted proportionally to the subprofile’s position in the ranking.

score(m, q) =
∑

pi∈PK(m,q)

s(pi)

rank(pi)
. (6)

• CombLgDCS: This is similar to the previous one, but in this case the scores

are reduced logarithmically proportional to the position of the result, as the

discounted cumulative gain does for information retrieval evaluation,27 but as far

as we know this approach has not been considered for aggregation purposes. By

means of this devaluation, we penalize the occurrence of a subprofile in lower

positions of the ranking, but less so than the one used by the reciprocal rank

criteria.

score(m, q) =
∑

pi∈PK(m,q)

s(pi)

log2(rank(pi) + 1)
. (7)

4. Experimentation and Results

This section will present both the experimental design and the results obtained in

addition to analyzing these and presenting the main findings.

4.1. The data collection

The experiments are based on a collection of Records of Parliamentary Proceed-

ings from the Andalusian Parliament in Spain and in particular the eighth Term

of Office, which has 22 different committees and a total of 132 spokespersons. The

collection used in this paper is organized around the initiatives discussed in com-

mittee sessions (3001 in total with 7386 interventions). A total of 1063 subprofiles

(different MP-Committee pairs) have been learned, where MPs participate on an

average of 7.5 committees (standard deviation 4.6, median 7).

Regarding the relevance judgments, we shall use the initiative title as the query

(it is worth noting that we do not use this field to build MP profiles) and this enables

us to model a typical short query submitted by a citizen. Since the objective is to

find MPs who might be familiar with the topic, we have also considered as ground

truth that for each query only those MPs who participate in its corresponding

initiative are relevant, thereby creating a rather conservative assumption since it is

quite reasonable to assume that an initiative will also be relevant to other MPs.a

aThis is equivalent to the common assumption that is made when relevance judgments are con-

sidered in the researcher search problem, i.e. an author of a paper is relevant to that paper.
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To the best of our knowledge, there is no dataset for expert finding in political

frameworks that provides truly relevant judgments for each query-expert pair, but

thanks to the methodology used here we can study the feasibility of new approaches

for MP finding in other political organizations.

4.2. Experimental setting

The set of initiatives is randomly partitioned into a training set (80%) and a test

set (20%). As usual, both sets are disjoint. The training set is used to build MP

profiles and the test set is used for evaluation purposes. This process is repeated

five times, and in this paper the reported results are the average values.

In terms of profile construction, we rely on our previous results in de Campos

et al.,7 where we study the impact of the weighting criteria, the number of terms in

the profile and also the way to convert a weighted vector of terms into a document.

In particular, we only consider the weighting criterion with the best results, i.e. the

terms in the profile are those with the greatest TfIdf (once stop words have been

removed and terms stemmed). Additionally, each selected term is also replicated Tf

times (where Tf is the number of times the term appears in the source initiatives)

to build the virtual document. Regarding the number of terms, in this paper we

will explore two alternatives: short (n = 250) and long profiles (n = 1000).

Search Engine. We have used the open source Lucene library using BM25 as the

similarity measure. BM25 has two free parameters (k and b) which are set by default

to the recommended values of k = 1.2 and b = 0.75 in the Lucene implementation

(additional details on this model and parameter settings can be found in Jones

et al.28). Nevertheless, when considering profile documents these default values do

not perform best. Our hypothesis is that profiles are not regular documents for two

reasons. Firstly, the selected terms are the most representative and highly related

to user preferences. In this situation, a highly frequent term in the document-

based profile is not due to either the MP’s verbosity or the frequency of the term

in language. Consequently, its influence in the ranking must be enhanced in the

model. When considering BM25, the parameter k is used to control the impact of

term frequency, which asymptotically approaches to a value k + 1. In this case, we

obtain better results using k = 15, which allows us to stretch out the relevance

difference between higher and lower term frequency in the profiles. Secondly, since

we restrict the number of terms in the profile, it is necessary to dismiss the influence

of the document length (it is worth noting that although the profiles have the same

number of terms, the length of the document-based profiles can be different since

each term appears a different number of times). In BM25 the parameter b, with

0 ≤ b ≤ 1, enables adjustment of the influence of the document length: the lower

b is, the less it affects the score. In our case, we use b = 0.25. These values, which

are far from the default values, confirm our hypothesis that profiles are not regular

documents.
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Table 1. NDCG@10 results obtained for (long and short) Monolithic and Committee-based
Profiles. The number of subprofiles used in the different aggregation functions, K, are dis-

played in the columns.

Monolithic Aggregation

long — 0.4647

short — 0.4371

Committee 10 20 30 50 70 100

long MAX 0.4848

SUM 0.4779 0.4643 0.4513 0.4227 0.3977 0.3789

MNZ 0.4768 0.4553 0.4280 0.3713 0.3112 0.2954

RR 0.4857 0.4881 0.4899 0.4920 0.4926 0.4932

DCS 0.4858 0.4879 0.4890 0.4901 0.4904 0.4905

LgDCS 0.4849 0.4865 0.4878 0.4892 0.4899 0.4903

short MAX 0.4584

SUM 0.4543 0.4414 0.4271 0.3994 0.3794 0.3597

MNZ 0.4526 0.4292 0.4018 0.3439 0.2936 0.2747

RR 0.4591 0.4613 0.4607 0.4614 0.4614 0.4617

DCS 0.4608 0.4617 0.4624 0.4625 0.4626 0.4629

LgDCS 0.4609 0.4613 0.4604 0.4590 0.4591 0.4578

Evaluation Measures. In order to measure the quality of the ranking we will

useb the Normalized Discounted Cumulative Gain,27 which focuses on the top ten

retrieval results, i.e. NDCG@10.

4.3. Results for the expert-finding task

In this section we shall present the results obtained using the different fusion strate-

gies for both short and long profiles. In Table 1 we present the results obtained by

the monolithic and combined profiles. It is worth noting that when using either

monolithic profiles or CombMax as the fusion strategy, the relative position of MPs

in the final ranking are the same as those obtained when the retrieval engine output

ranking is considered. However, this does not have to be the case when the other

fusion strategies are used where the number of subprofiles in the aggregation pro-

cess, i.e. the parameter K, has proved decisive. In order to explore this situation in

this paper, we consider that K will take values in {10, 20, 30, 50, 70, 100}.
These results enable us to conclude that committee-based profiles outperform

monolithic profiles and improvements of more than 5% can be achieved. When

considering the efficiency of both approaches, we can also see that committee-based

profiles obtain the results 80% quicker whereas the index size is only 4% larger.

Regarding the fusion strategies, we can observe that most display a slight trend

towards using large K values (although the results do not differ significantly),

bIn our experimentation we have used several metrics such as MAP, R-precision, Precision or

Recall but due to length restrictions these are not included in this paper. Nevertheless, we should
say that the results are highly correlated with NDCG.
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except for CombSUM and CombMNZ where the performance drops dramatically

as the number of used subprofiles increases. This was an unexpected result since

in the literature1,24–26 CombSUM and CombMNZ are considered among the best

alternatives. One explanation for these results is that when subprofile documents

are considered, the output ranking exhibits a different distribution of relevant and

non-relevant items in the top positions. For example, if a query is related to an

economy topic it would be normal for subprofiles associated with the Committee

on Economic Affairs to be found in the top positions (each belonging to a different

MP) whereas the presence in the ranking of subprofiles related to other committees

might be considered as noise (they could be marginally relevant to the query). Since

CombSUM and CombMNZ use the raw scores of these “noisy” subprofiles in the

aggregation step, the results worsen as they increase in number. Interestingly, this

effect is reduced in those aggregation strategies that take into account the position

of the element in the ranking, either in isolation, such as CombRR, or in our hy-

brid proposals such as CombLgDCS and CombDCS, where the position is used to

penalize the score. Thus, the presence of noisy subprofiles in lower positions does

not harm the final ranking.

Finally, if we consider the effect of profile size it is clear that we obtain better

results with large subprofiles. Regarding the effect of the size on the aggregation

functions, the trends are similar although large subprofiles seem to benefit slightly

from using large K values.

5. A Two-Stage Model for MP Finding

As we have hypothesized, the distribution of subprofiles in the output ranking

seems to be skewed towards those committees that are most related to the query.

In this section, we will consider how such information can be used to improve the

MP ranking. The idea is that when a committee appears in the top positions of

the ranking it has more probability of being the committee in which the matter is

discussed and this can be used to somehow support those MPs on these committees.

In order to tackle this objective, we can consider two different steps:

(1) To obtain a weight for each committee that represents the degree to which it

is related to the user query.

(2) To recompute the scores for each subprofile in Lq, promoting or dismissing

them on the basis of their occurrence in a given committee.

5.1. Computing the weights associated to the committees

In this case, and taking into account that for each subprofile p we can identify the

related MP, m, and the related committee, c, we can build a ranking of commit-

tees, RC , by aggregating the scores of the different subprofiles related to the same

committee. In this way, and as we did for the MPs, we are considering a structured

profile for a committee that will consist of a set of subprofiles, one for each MP
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belonging to this committee. It is worth noting that by using this approach the

same tuple (subprofile) will be part of two different profiles, one relating to an MP

and the other to the committee.

5.2. Combining the information

Thus, for the same query we have two different rankings: the weighted list of com-

mittees, RC , and the profile list Lq. Our objective is to reweight the elements in

Lq by considering the evidence obtained from the rank RC . In order to do so, we

propose the use of the linear combination method, an approach commonly used in

data fusion since different weights can be assigned to different systems.24 Before we

present the combination, we should highlight the following two points:

• Taking into account that the scores provided by both lists do not have to be

comparable (they have been generated differently), we need to normalize both

scores before applying any fusion strategy. One straightforward way to perform

such normalization is to divide by the maximal score in each list, i.e. the score

of the first committee w(c1) in RC and the score of the first profile s(p1) in Lq.

• We can say that proof of a correct committee is stronger if it is located in the top

positions of the ranking (as we shall see, in our experiments the right committee

is usually among the top three positions of the ranking, approximately 86% of

cases). Therefore, and in order to reward such committees, we propose the use

of a quadratic function which greatly penalizes the bottom-ranked committees.

We are now able to describe how the new score of a profile pi, denoted by s∗(pi),

can be computed as

s∗(pi) = αs(pi)/s(p1) + (1− α)(w(ci)/w(c1))2 , (8)

where 0 ≤ α ≤ 1 is the weight associated to the original profile list and (1-α)

represents the strength of the committee in the final ranking. Thus, α equals to 1

implies that no combination is performed and we use the original scores, whereas

α equals 0 implies that we only take into account the value of the committee.c

After this process, we can use s∗(pi) to obtain a new ranking of subprofiles,

which can be used as input for the different fusion strategies in order to determine

the final MP’s ranking. In the next section we will evaluate this approach.

5.3. Results of the two-stage approach

The feasibility of this approach depends on the quality of the committee’s rank-

ing and so we first analyze this task separately and then evaluate the two-stage

approach.

cIn previous experiments, we have tested a simple convex combination for scoring a profile, but
the results have not been good.
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Table 2. DCG@10 results for the different aggregation strategies using structured profiles for

the committee finding problem.

Committee Aggregation 10 20 30 50 70 100

long MAX 0.8002

SUM 0.8110 0.8167 0.8191 0.8164 0.8170 0.8184

MNZ 0.7936 0.7993 0.7942 0.7894 0.7838 0.7774

RR 0.8096 0.8132 0.8149 0.8154 0.8168 0.8177

DCS 0.8162 0.8200 0.8219 0.8234 0.8233 0.8240

LgDCS 0.8146 0.8234 0.8238 0.8277 0.8305 0.8309

short MAX 0.7801

SUM 0.8089 0.8115 0.8089 0.8099 0.8099 0.8105

MNZ 0.7951 0.7949 0.7909 0.7827 0.7797 0.7693

RR 0.7941 0.7981 0.8000 0.8016 0.8036 0.8050

DCS 0.8058 0.8097 0.8120 0.8142 0.8137 0.8144

LgDCS 0.8093 0.8175 0.8194 0.8239 0.8254 0.8248

5.3.1. Are we able to identify the committee?

Table 2 presents the performance of the different aggregation functions when fo-

cusing on identifying the committee related to the query. From these data, various

conclusions can be obtained. Firstly, if we consider the most effective value obtained

(an NDCG equal to 0.8309 and with the correct committee in the top positions

67.5% of the time), it seems that it is easier to discover a broader concept as the

committee than identify the MP.

Since we are focusing on the quality of the different aggregation strategies, we

will also analyze their performance under this particular task. We can see that the

trends differ from the MP finding problem: there is a slight deterioration in perfor-

mance by using SUM and MNZ when aggregating a large number of subprofiles,

whereas for the other aggregation criteria it again seems better to use large val-

ues of K, although with lower improvement. In this case, since the hybrid LgDCS

approach with K = 100 is the method that performs best, this will be the criteria

used for this task in the rest of the paper.

Regarding profile size, once again trends are similar to those of the MP-finding

problem, but it is interesting to note that performance differences between large

and small profiles are much smaller when focusing on committees.

5.3.2. Results for the combination stage

Once we have considered the feasibility of our approach for finding the committee,

we will analyze its use for the MP-finding task. The first thing that we need to

determine is the influence of the parameter α on the linear combination. For this

purpose, we used LgDCS for aggregating both the scores of a committee and the

scores of the MP, with K = 100. In Table 3 we show how the performance of the

system changes with the different values of α. These data have been obtained by
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Table 3. NDCG@10 values for the different values of α when combining both committee and

profiles ranking. These data have been obtained from Partition A.

α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.443 0.476 0.485 0.488 0.494 0.501 0.506 0.517 0.509 0.499 0.483

Table 4. Results for the different fusion strategies when using the two-step approach for long

and short committee-based profiles, α = 0.7.

Committee Aggregation 10 20 30 50 70 100

long MAX 0.5179

SUM 0.5179 0.5129 0.5016 0.4705 0.4422 0.4168

MNZ 0.5176 0.5082 0.4848 0.4097 0.3355 0.3071

RR 0.5185 0.5199 0.5206 0.5218 0.5219 0.5231

DCS 0.5202 0.5217 0.5219 0.5232 0.5234 0.5234

LgDCS 0.5204 0.5216 0.5236 0.5264 0.5266 0.5257

short MAX 0.4921

SUM 0.4923 0.4873 0.4749 0.4419 0.4162 0.3930

MNZ 0.4917 0.4817 0.4564 0.3793 0.3149 0.2826

RR 0.4924 0.4935 0.4937 0.4946 0.4950 0.4951

DCS 0.4931 0.4941 0.4943 0.4952 0.4950 0.4949

LgDCS 0.4936 0.4953 0.4951 0.4968 0.4960 0.4951

considering only one partition of the data set. It should be noted that if we rank

the MPs only according to the committee score (α = 0), worse results are obtained.

For the rest of this experimentation, we set α = 0.7 (this is the best alternative

in our previous experimentation). The objective now is to determine the influence

of the committee on the final ranking obtained after applying the different fusion

strategies. From the results presented in Table 4 some conclusions can be drawn.

The first is that using committee information improves the quality of the subpro-

file ranking, i.e. those relevant MPs are promoted to top positions in the ranking

and this is therefore an approach that should be considered when tackling an MP

finding problem (but also in related problems where broader topics should first be

determined). This ranking improvement allows us to obtain better results for all

the fusion strategies, regardless of profile size and parameter K. In particular, by

focusing on the best results, the use of committee information enables us to achieve

improvements in the range of 6% to 8% in each configuration. Additionally, and as

expected, the trends of the different aggregation strategies are the same as those

obtained in Section 4.3.

6. Conclusions and Further Work

In this paper, we explore the application of expert finding in political domains. We

believe that this novel application area is worth studying because it is something

that society has been demanding and also because there are peculiarities in the

domain that deserve to be considered. Our approach is based on the use of MP
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profiles which are obtained from their speeches and presents a comparison between

monolithic (built from all of an MP’s initiatives) and structured ones (constructed

separately for each type of committee). These profiles are used as documents in

the context of recommending MPs to users who formulate queries. We showed

that the use of weighted vector-based profiles perform differently when expert and

committee finding tasks are considered, mainly due to the distribution of relevant

and non-relevant candidates in the ranking. This distribution clearly affects the

performance of the different aggregation strategies.

In this sense, we might conclude that our proposal, CombLgDCS, is a strategy

that should be considered as a good alternative when considering the expert-finding

task. We have seen that the efficiency of the CombMax method relies on the system’s

ability to find one relevant candidate in the top positions, and that the effectiveness

of CombSum and CombMNZ varies greatly with the distribution of relevant and

non-relevant elements in the ranking. CombLgDCS, meanwhile, has proved to be

a robust, stable alternative under different conditions, and since it benefits from

the use of large K values, it is not necessary to tune this parameter as classical

alternatives1,26 require. Another important contribution of this paper is the two-

stage model for expert finding that, in a first step, takes advantage of the feasibility

of identifying broader topics (those represented by a committee). This knowledge is

used in a second step to re-rank the subprofiles, thereby improving the performance

of MP-finding.

These approaches could be clearly exported to any other field. The only require-

ment is that the candidates are organized into categories (or knowledge areas) from

which the subprofiles could be built. Otherwise, if these are not available, they could

be obtained using the clustering techniques. These are some of our future lines of

work and will include exploring the use of clustering algorithms to automatically

create the subprofiles and validating our proposal in other domains.
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