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Abstract: In this study we present an NIR carbon dioxide gas sensor based on an inner filter process
that includes an ionic liquid (IL), 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4), to
improve its stability, dynamic behavior and lifetime, which are usually the main drawbacks with
these sensors. The presence of CO2 causes a displacement of a simple boron-dipyrromethene-type
fluorophore, azaBODIPY, as the pH indicator towards its acid form. This increases the emission inten-
sity of Cr(III)-doped gadolinium aluminium borate (GAB) as the luminophore. The characterization
of the prepared sensor was carried out and a discussion of the results is presented. The response and
recovery times improved considerably, 23 and 49 s, respectively, with respect to the sensor without
IL, at 60 and 120 s, respectively,. Additionally, the measurement range is extended when using IL,
able in this case to measure in the complete range up to 100% CO2; without IL the measurement
range is limited to 60% CO2. The detection limit ranges from 0.57% CO2 without IL to 0.26% CO2

when IL is added. The useful lifetime of the sensing membrane was 20 days for membranes with IL
and only 6 days for membranes without IL, with the sensor always kept in the dark and without the
need to maintain a special atmosphere.

Keywords: NIR; ionic liquids; carbon dioxide determination; fluorescent sensor; azaBODIPY

1. Introduction

So-called green solvent ionic liquids are salts that remain as a liquid at tempera-
tures below 100 ◦C, specifically composed of a combination of organic cations and or-
ganic/inorganic anions. They present a wide liquid range together with good characteristic
properties: high thermal and chemical stability, low volatility, significant electrical con-
ductivity, high polarity, and great to dissolve an extensive range of compounds [1]. This
makes them suitable for a wide variety of applications in different areas: catalytic organic
transformations [2], such as lubricants; heat transfer fluids in biocatalysis [3]; biomedi-
cal and pharmaceutical applications [3]; separation and extraction processes [4]; as well
as biotechnology [5] and nanoscience [6], as ideal electrolytes for use in a great number
of electrochemical devices [7] such as batteries, capacitors, fuel cells, and solar cells [8];
biomolecule sensing [9,10]; explosives [11]; the determination of gas compounds [11,12];
and the development of sensors [13–15].

One of the most highly studied gases is carbon dioxide, because of the increasing
levels found in the atmosphere owing to the increase in industrial activity. Carbon dioxide
occurs in the combustion of fossil fuels and is considered one of the gases that contributes
to the global warming of the planet. This makes the accurate, continuous monitoring of
CO2 levels a matter of necessity [16]. It is also important in medicine [17], clinical and
biological research [18], industrial and biotechnological processes [19,20], and in intelligent
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packaging [21]. In this respect, the growth of sensors with raised sensitivity and selectivity
capable of detecting and quantifying CO2 gas reversibly and economically is highly useful.

Ionic liquids have more CO2 holding capacity than polymeric materials, and CO2
can be reversibly dissolved in imidazolium-based ionic liquids [22]. Ionic liquid-based
CO2 optical sensors [23] and electrochemical sensors [24] have been developed. CO2 is
reversibly soluble in imidazolium-based ionic liquids [25], and this gas is more soluble
than ethane, methane, oxygen, nitrogen, argon, hydrogen and carbon monoxide in 1-ethyl-
3-methylimidazolium tetrafluoroborate (EMIMBF4) [26].

EMIMBF4 has been used in CO2 gas sensors in different ways, for example, with filled
photonic crystal fibres to detect the presence of CO2 by optical transmission [27] with an
ion pair formed of 1-hydroxy-3,6,8-pyrenetrisulfonate (HPTS) in an ethyl cellulose matrix
to provide longer storage time, enhanced repeatability and dynamic range. However,
the sensor has relatively lower sensitivity, between 0 and 5% CO2, so it is unsuitable for
monitoring CO2 in physiologically relevant [28], and the high response and recovery time,
in the order of minutes [29]. Recently our research group found an improvement that
involves including ionic liquids in sensing membranes for the determination of gaseous
carbon dioxide in fluorescent optical sensors [30].

Two types of sensors are commercially available for the determination and continuous
monitoring of CO2. The first is based on metal oxide semiconductors, which are relatively
inexpensive compared with other sensing technologies, offering fast and robust responses,
although most of these sensors have a working range from 2000 to 10,000 ppm. Responses
to low CO2 concentrations are required in many applications, such as environmental
operations, disease control and diagnosis and smart packaging [31]. The second employs
non-dispersive infrared sensors (NDIR) [32]. The main limitation with this type of sensor
is that the miniaturization possibilities are limited when a measurement using very small
volumes is needed.

Optical CO2 sensors are a promising alternative for portable devices, as they have
a comparably small sensing component. Additionally, the optoelectronic reader can be
separate, increasing the possible applications. One of the problems with optical sensors
for CO2 is the response and recovery time, which are usually high. In this article, this
problem is addressed through the introduction of an ionic liquid in the optical membrane
that works in the near infrared region [33], reducing these times. The measurement in the
NIR region has a number of advantages, including low light scattering, a drastic reduction
in autofluorescence, the availability of excitation sources and low-cost photodetectors [34].
Moreover, including an ionic liquid improves the useful life of the sensor and the response
and recovery time. In this way, sensors are obtained that increased the sensitivity of CO2
monitoring, using lower amounts of reagents. Subsequently, they can be included in
devices adapted for applications in the environment, clinics, and in smart packaging.

2. Experimental Section
2.1. Reagents and Materials

Hydroxypropyl methylcellulose (HPMC, Methocel E-5, LV USP/EP premium grade)
(Dow Chemical Iberia S.L., Tarragona, Spain), 9004-65-3, was used as the membrane
polymer. 1-Ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4), 143314-16-3, was
used as IL; tetramethylammonium hydroxide pentahydrate (TMAOH), 10424-65-4, as the
phase transfer agent; and Tween 20, 9005-64-5, as the surfactant, all sourced from Sigma.
Microcrystalline Cr(III)-doped gadolinium aluminium borate (GAB) powder was synthe-
sized according to [35] using the solution combustion technique, and azaBODIPY was
synthesized according to [36,37] and characterized according to [33]. Sheets of Mylar-type
polyester from Goodfellow (Cambridge, UK) were used as the support for the membranes.

The standard mixtures to characterize the sensing membranes were prepared using
N2 as the diluting gas, controlling the flow rates of the high purity CO2 and N2 gases that
enter the mixing chamber with computer-controlled mass flow controllers (Air Liquide
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España S.A., Madrid, Spain). The system worked at a total pressure of 760 Torr and a flow
rate of 500 cm3·min−1.

2.2. Sensing Membrane Preparation

The sensing membrane for CO2 contains 0.5 mg azaBODIPY dissolved in 0.5 mL
of ethanol, 1 mL of HPMC 1% in water, 5 µl of Tween 20, 5 µL of a TMAOH solution
containing 14 mg TMAOH in 1 mL 1:1 ethanol:water, 6 µL IL, and 1.5 mg GAB.

The CO2 sensor consists of only one membrane prepared by casting 25 µL of the
solution indicated above on a Mylar support using a spin-coating technique and then,
adding 1.5 mg of GAB, leaving the microcrystals of the salt retained on the surface of the
sensing zone. The membrane was then left to dry in the darkness in a box for 6 h at room
temperature (20 ◦C) and humidity (55% relative humidity (RH)). The prepared membranes
have a calculated thickness approximately of 2 µm.

2.3. Instrumentation

Cary Eclipse Varian Inc. (Palo Alto, CA, USA) luminescence spectrometer steady-state
luminescence measurements were used as the analytical parameter to study the CO2 sens-
ing membranes. A homemade cell holder composed of two metallic triangular prisms was
used to make the measurement [38] that supports the membrane, measuring the membrane
by reflection at a 60◦ angle in the cell. This is because sensing membranes that include
solid GAB show low transparency. The fluorescence of the membranes was measured
with excitation and emission slit widths of 2.5 and 5 nm, λex = 620 nm and λem = 731 nm,
respectively. All measurements were made in triplicate to check for experimental errors.

In order to prepare the gas standard mixtures of CO2 gas to characterize the mem-
branes were used with computer-controlled mass flow controllers (Air Liquide España S.A.),
operating at a total pressure of 760 Torr and a gas flow rate between 100 and 500 cm3·min−1,
controlling the flow rates of the high purity CO2 and N2 (as the diluting gas) gases that
enter the mixing chamber. A standard of 5% CO2 in nitrogen was used to prepare the gas
mixtures with a CO2 concentration lower than 0.4%, with the lowest CO2 concentration
tested being 0.02%.

Temperature and humidity have an appreciable effect on the sensitivity of CO2 sensors
based on its acid-base character [39].

In order to establish different humidity conditions (from 10% to 100% RH), a con-
trolled evaporation and mixing system (CEM) was used, consisting of a CEM three-way
mixing valve and evaporator for control of the liquid source, a mass flow meter for liquid
(MiniCoriflow) with a range from 0.4 to 20 g·h−1 of liquid (water in this case), and a mass
flow for measurement and control of the carrier gas flow (N2 gas). The liquid is mixed with
the carrier gas flow, and both are heated with a temperature controlled heat-exchanger,
resulting in the total complete evaporation of the liquid (100 ◦C was selected for water).

3. Results and Discussion
3.1. CO2 Sensing Scheme

All the reagents are dissolved in an aqueous solution of HPMC as the polymeric matrix.
The luminophore, GAB, is excited in the red (λexc. 620 nm in the HPMC membrane),
showing a broad emission in the NIR (λems. 731 nm in the HPMC membrane). Its
luminescence decay time is about 85 µs and it shows high chemical and photochemical
inertness. The pH indicator is an azaBODIPY with a pKa value suitable for gaseous CO2
determination. Also included is a hydrophobic quaternary ammonium hydroxide, in this
case TMAOH, which acts as an internal buffering system to turn the pH indicator into the
deprotonated form, stabilized as a hydrated ion pair:

TMA+BP− × xH2O + CO2
K→ TMA+HCO−3 (x− 1)H2O×HBP (1)
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where TMA+BP− × xH2O is the ion pair formed between the tetramethylammonium
cation TMA+ and the deprotonated form of azaBODIPY, BP− and K is the equilibrium
constant. In the presence of CO2 gas, the protonated form of the azaBODIPY is formed,
reducing the attenuation of the GAB luminescence, with an increase in the luminescent
signal. The overlapping between the GAB spectrum (donor) and the azaBODIPY spectrum
(acceptor) emission was reduced by the increase in the CO2 concentration, increasing the
fluorescent signal.

The working mechanism is based on an inner filter effect [33] similar to the sensor
without IL because there was no change in the decay time within the full range of CO2
concentrations. Consequently, the presence of IL in the sensing membrane fundamentally
contributes to improving the sensitivity of the sensor and improving its characteristics [30].

3.2. Membrane Composition

The CO2 sensing ability of these membranes is based on the luminescence quenching
of a luminophore by one of the forms of an azaBODIPY-type non-fluorescent pH indicator
present in a membrane that also contains TMAOH acting as an internal buffer. The change
in the position of the acid-base equilibrium by the CO2 and the concomitant change in
colour result in a change in luminescence emission due to the overlap of the absorption
spectrum of the basic form of the pH indicator and the emission of the luminescent
GAB. CO2 diffuses through the HPMC, dissolves and reacts with TMAOH, and gradually
displaces the equilibrium of the indicator towards its acid form with a concomitant increase
in the phosphorescent emission of GAB by an inner filter process [33].

Of the known ionic liquids, EMIMBF4 was selected for its good solubility in aqueous
media and good characteristics for CO2 sensing [30]. Thanks to the presence of both species
in the solution, the amount of TMAOH needed to deprotonate azaBODIPY and change it
to its basic form is considerably small. It has also been reported that in the presence of the
ionic liquid anion ([BF4]−), the anion that would decompose into HF and F−, which would
catalyse the formation of hydrogen carbonate, stimulating the hydration of CO2 and its
posterior protolysis [28].

The amount of pH indicator was set at 0.5 mg. The initial sensing membrane without
the inclusion of EMIMBF4 was prepared with a 2% HPMC polymer, the minimum con-
centration to produce a membrane with the required mechanical properties and a good
response. However, it was observed that, after adding the ionic liquid, the optical and
mechanical characteristics of the membrane worsened. Therefore, the percentage of HPMC
had to be reduced considerably. Different membranes were prepared with percentages of
HPMC in the range of 1.0 to 2.0% w/w. In each case, the maximum response was reached
when the percentage of HPMC was 1.0% w/w and this value was selected as optimal for
successive experiments (Figure 1a).

The amount of the TMAOH transfer agent phase was optimized preparing different
membranes with TMAOH contents from 0 to 1.8% w/w. With small amounts of TMAOH,
the difference between I100-I0 is very small because there is not enough TMAOH for all
the azaBODIPY to be in its basic form, preventing the membrane from responding to CO2.
Similarly, when the TMAOH concentration is too high (1.8% w/w), the pH is too basic and
the sensitivity is low. The maximum signal was obtained with 0.75% TMAOH (Figure 1b).

To optimize the amount of EMIMBF4 in the sensing membrane, eight different sensors
were prepared with amounts ranging from 0.5% to 4.3% w/w. Figure 1c shows that the best
result was obtained for 1.5% w/w. The inclusion of surfactants in the membrane increases
the response of the sensor and the preparation of the membranes is improved by spin
coating. The surfactant selected was Tween 20, because of its effectiveness with this sensing
membrane over the other surfactants tested [30,40]. To study the influence of Tween 20,
different membranes were prepared containing between 0 and 1.15% w/w. In all cases, the
maximum signal was obtained for 0.38% w/w; this amount was thus selected.
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Figure 1. Optimization of reagent concentration for sensing membrane containing IL: (a) HPMC; (b) TMAOH; (c) EMIMBF4;
(d) GAB.

The optimization of the amount of GAB was made taking into account the I100-I0
parameter and the response and recovery times, as the goal was to obtain the maximum
signal in the shortest possible time. Table 1 shows the results of the optimization of GAB.

Table 1. Optimization of the amount of GAB versus three variables: I100-I0 parameter, response time
and recovery time.

GAB (% w/w) 0.12 0.25 0.35 0.5

I100-I0 20.0 32.4 80.2 76.2

t90 (s) 16 30 23 52

t10 (s) 32 32 29 63

For 0.12 and 0.25% w/w of GAB, the values of I100-I0 are very similar, but the response
and recovery times improve for 0.12% of GAB. For 0.5% w/w of GAB, the response time is
very fast, but the parameter I100-I0 is too small to be considered adequate to work with. The
amount of 0.35% w/w of GAB was selected as the optimum value in the end (Figure 1d).

It is well known that temperature and humidity have a considerable effect on the
sensitivity of luminescent sensors [41], particularly at high values of both parameters.
The dependence of the relative humidity of the sensing membrane at room temperature
(22 ± 1 ◦C) was studied, obtaining the calibration function at relative humidities between
10% and 100% and observing a reduction in sensitivity with as the % RH increases (Figure 2).
The experiments assays were carried out at a constant room temperature, 22 ± 1 ◦C, in all
cases, although there is a known decrease in sensitivity as the temperature increases [42].
This fact occurs owing to the opposite dependence of CO2 solubility in the pH indicator
membrane on the temperature [43].
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In order to study the effect of different concentrations gases, such as O2 and H2, and
the minor constituents, such as SO2, HCl, and CH4, were exposed to the sensing membrane
It was concluded that only gases with acid-base properties, like HCl and SO2, produce
a strong interference, as expected owing to the sensing mechanism, while other gaseous
species such as CH4 and O2 did not produce any change in the signal when present.

3.3. Analytical Characterization of the Sensing Membranes

The hyperbolic response of both colorimetric and luminescent CO2 sensors between
the measured signal and CO2 concentration is well known [44–46]. Different approaches
have been used to linearize the experimental data, such as the Stern-Volmer equation [47]
and the equation proposed by Nakamura and Amao [48]. In this case, the calibration
function (Figure 3) was obtained using Equation (1), because of the good fit for linearizing
the experimental data. Each measurement was obtained as a mean value of three replicates
covering the whole range of concentrations working at room temperature (22 ± 1 ◦C):

y = a + bxc (2)

where the values of the coefficients are as follows: a = 0.72 ± 0.05; b = 0.12 ± 0.05;
c = 0.17 ± 0.05 and r2 = 0.9961. The signal increases exponentially until it reaches 100%
CO2. For that reason, the detection limit, LOD, was calculated from the raw exponential
experimental data by using the first three points (Figure 3 insert), which can be adjusted to
a straight line, I/I100 = 0.0051[% CO2] + 0.856; R2 = 0.989 [49], using (LOD = t0N − 3s0),
where t0N is the blank or average value in the absence of CO2 and s0 is the critical level or
standard deviation of the blank, which was calculated from six replicate measurements.
The limit of quantification (LOQ) of the instrumental procedure was obtained from the
linear Stern-Volmer calibration function by using LOQ = t0N + 10s0. The LOD found with
this approach was 0.26% CO2 and the LOQ was 1.64% CO2.
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The precision was evaluated at two CO2 concentrations (0.6% and 16.7%), performing
15 measurements each and obtaining relative standard deviations. Comparing the results
to those obtained using other sensors described by us [30] that include ionic liquids in their
composition, we found that the relative standard deviations in both cases are lower than
5%. For the proposal of determining the reversibility of the sensor, alternative atmospheres
of pure CO2 and pure nitrogen with a response time between 10% and 90% of the maximum
signal and a recovery time from 90% to 10% were exposed on the sensing membrane. In
Figure 4, one can observe no hysteresis during the measurements as well as the fact that
the signal change was fully reversible.

The stability of the membrane was studied by measuring the I100-I0 value for 10 months
from a set of membranes using a Shewhart control chart. We defined the lifetime of the
sensor (T1) as that in which the sensor output signal remains within the control line on
the Shewhart chart for one constant concentration of CO2 gas concentration. The lifetime
of the sensing membrane (T2) is the time during which the membrane responds to CO2,
even though it is necessary to recalibrate it. Figure 5 shows the control chart for the sensing
membrane containing IL. The sensor signal remains within the established control limits
up to 20 days, after which the sensor responds up to 300 days, as it is possible to recalibrate
the signal within this period. After this period, the sensor must be replaced because no
response is obtained.
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Figure 5. Shewhart control chart for sensing membrane lifetime.

Table 2 shows the comparison of the analytical characteristics of the sensing membrane
proposed here versus the sensing membrane without IL [33]. We observed an improvement
in the LOD for the membranes containing IL (from 0.57% to 0.26%). The precision measured
at two CO2 levels (0.6% and 16.7% CO2) was better when using IL. The biggest difference in
performance characteristics was related to response time. The membrane with IL reduced
the response time t90 to 38% (from 60 s to 23 s) and recovery time t10 to 34% (from 120 s to
49 s).
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Table 2. Comparison of the analytical characteristics of sensing membranes for CO2 determination
with and without IL.

Analytical Parameter azaBODIPY without IL azaBODIPY with IL

I100-I0 140.7 87.6

Slope 15.9 ± 0.8 0.0051 ± 0.01

Intercept 0.6 ± 0.163 0.9 ± 0.10

R2 0.999 0.982

LOD (%CO2) 0.57 0.26

LDQ (%CO2) 1.7 1.64

Upper limit (%CO2) 60 100

Detection interval (%CO2) 0.57–1.7 0.26–1.64

Quantification Interval
(%CO2) 1.7–60 1.64–100

Precision (RSD; n = 15)
at 0.6% CO2

1.23 0.70

Precision (RSD; n = 15)
at 16.7% CO2

0.62 3.0

Response time (t90) (s) 60 ± 2 23 ± 2

Recovery time (t10) (s) 120.0 ± 0,6 49 ± 1

T1 (days) 6 20

T2 (days) 570 120

Storage In dark container In dark container

The lifetime (T1) of the sensor with IL is higher than the reference T1 value (15 days),
noting once again that including IL increases the lifetime. Table 3 summarizes the principal
analytical characteristics of the CO2 gas sensor with IL in its composition found in the
literature. The fluorescent pH indicator 1-hydroxypyrene3,6,8-trisulfonate (HPTS) (τ0~5 ns)
has been widely used with this type of sensor to analyse carbon dioxide gas. Additionally,
it was the first to include an ionic liquid in diverse polymeric matrices such as ethyl
cellulose, poly(methyl methacrylate), prepared on an inert Mylar support or using an
electrospinning technique. Other indicators such as α-naphtholphthalein and azaBODIPY
have also been used in different matrices, as in this case, and the response time and recovery
time are considerably improved compared with the rest of the sensors developed to date.
Additionally, the precision, as RSD (%), is significantly lower for the proposed sensor than
for those developed previously, although it does not have the lowest LOD of all the sensors.

The inclusion of ionic liquids, together with an azaBODIPY forming sensing mem-
brane, in this study, considerably improves the detection limit and response time of the
sensor, with its response in the near-infrared (NIR) region. It has several advantages,
including low light scattering, dramatically reduced autofluorescence and the availability
of low-cost photodetectors and excitation sources.
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Table 3. Performance comparison of CO2 sensing membranes based on IL.

Sensing Chemistry Technique LOD
(% CO2) t90–t10 (s) Precision RSD

(%)
Lifetime

(Days)/Storage Ref

HPTS/EC/IL I - 54–180 - 95 [28]

HPTS/EC/TOABr/TOAOH/IL
HPTS/PMMA/TOABr/TOAOH//IL I - 15–120

20–300 - 210/ambient [50]

PtOEP/N/IL/HPMC/PVCD I 0.008 10–48.5 0.21 280/ambient [30]

PAVB/IL I 0.0286 127–177 - - [23]

HEC/MCP/IL A 0.36 530–540 - 14/ambient [15]

HPMC/N/IL PD 0.005 1.3–2.5 1.5 30/ambient [30]

azaBODIPY/GAB/IL/HPMC I 0.26 23–49 0.7 20/ambient Current study

HPTS: 1-Hydroxy-3,6-8 pyrenetrisulfonate; EC: Ethyl cellulose; IL: Ionic liquid; PMMA: Poly (methyl methacrylate); TOAOH: Tetraoc-
thylammonium hydroxide; PAVB: Poly(1-allyl-3-vinylimidazolium bromide; HEC: 2-Hydroxyethyl cellulose; MCP: Meta cresol purple
sodium salt; PtOEP: Platinum octaethylporphyrin complex; N: α-Naphtholphthalein; PVCD: Poly(vinylidene chloride-co-vinyl chloride);
aB: azaBODIPY; GAB: Cr(III)-doped gadolinium aluminium borate; HPMC: Hydroxypropyl methylcellulose; I: Fluoresence intensity, A:
Absorbance; PD: Platform Dedicated.

4. Conclusions

In this study, we report the development of a CO2 sensing membrane that operates
with an inner filter process and in which a very stable inorganic phosphor and an ionic
liquid were included for extremely fast CO2 capture. This considerably improves both the
sensitivity of the sensor and its response and recovery time to determine and monitor CO2
in the infrared region.

A significant improvement on an NIR optical sensor based on azaBODIPY is obtained
for the determination of gaseous CO2 using the measurement of the fluorescence intensity
of the GAB nanoparticles included in the HPMC membrane with TMAOH as a phase
transfer agent and EMIMBF4 as IL by shifting the acid-base equilibrium of the included aza-
BODIPY. The advantages of working in the NIR region combined with those of including
an ionic liquid, that is, improvements in sensitivity (LOD 0.26%), precision (RSD less than
0.5%) and response and recovery times (t90 23 s and t10 49 s) and useful life (20 days), make
this sensor especially attractive for application in biological systems.

The sensor can be included in specific instrumentation for application in the environ-
ment, diagnostics and disease tracking and smart packaging, all goals for future research.
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