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Abstract: Bioengineered artificial skin substitutes (BASS) are the main treatment used in addition
to autografts when skin injuries involve a large body surface area. Antiseptic/antibiotic treatment
is necessary to prevent infections in the BASS implant area. This study aims to evaluate the effect
of antiseptics and antibiotics on cell viability, structural integrity, and epidermal barrier function
in BASS based on hyaluronic acid during a 28 day follow-up period. Keratinocytes (KTs) and
dermal fibroblasts (DFs) were isolated from skin samples and used to establish BASS. The following
antibiotic/antiseptic treatment was applied every 48 h: colistin (1%), chlorhexidine digluconate
(1%), sodium chloride (0.02%), and polyhexanide (0.1%). Cell viability (LIVE/DEAD® assay),
structural integrity (histological evaluation), and epidermal barrier function (trans-epidermal water
loss, (TEWL), Tewameter®) were also evaluated. Cell viability percentage of BASS treated with
chlorhexidine digluconate was significantly lower (p ≤ 0.001) than the other antiseptics at day 28.
Compared to other treatments, chlorhexidine digluconate and polyhexanide significantly affected the
epithelium. No significant differences were found regarding epidermal barrier. These results may be
useful for treatment protocols after implantation of BASS in patients and evaluating them in clinical
practice. BASS represent a suitable model to test in vitro the impact of different treatments of other
skin wounds.

Keywords: antiseptic/antibiotic testing; bioengineered artificial skin substitute; cell viability; epider-
mal barrier function; regenerative medicine; wound healing

1. Introduction

The skin is the largest and one of the most complex organs in the human body,
representing 15% of total adult body weight [1,2]. Healthy skin is crucial to maintaining
physiological homeostasis as it constitutes a protective barrier against external physical,
chemical, and biological agents [3].

The epidermis is the outermost layer of the skin, consisting of a renewable epithe-
lium whose main function is to prevent the entrance of foreign substances into the body
while allowing water exchange through the skin. The primary cell type in this layer is
keratinocytes, which are constantly replaced by basal layer stem cells [2]. The dermis is the
thickest layer located below the epidermis. It is a connective tissue formed mainly by extra-
cellular matrix and fibroblasts, which secrete collagen and elastin, providing mechanical
strength, flexibility, and elasticity. Beneath this layer the hypodermis is found, an adipose
tissue that supplies insulation, cushioning, and an energy storage area [1].
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Injuries affecting the skin can disrupt its functions, so it is essential to quickly heal skin
wounds [2]. However, there are many situations when the human body cannot correctly
heal itself without medical intervention. In case of deep injuries and severe burns, wound
healing is slow and incomplete, leaving the body open to infection and poor thermal and
fluid regulation, leading to chronic wounds. Currently, the gold standard treatment for
these injuries is to use autologous skin grafts to prevent pathogen entry and maintain skin
homeostasis. Nevertheless, due to the limit of available native skin, autologous skin grafts
can become challenging when these injuries cover a large body surface area [4,5]. That is
the reason why skin substitutes were designed to be used in addition to or as a replacement
for autologous skin grafts [6]. The most important functions of these substitutes are
the prevention of wound infection, reducing pain, promoting wound healing, and the
replacement of normal skin to restore its function [3,5,7].

To generate a bioengineered artificial skin substitute (BASS), it is necessary to develop a
dermal stroma substitute with human fibroblasts immersed and later, seed the keratinocytes
in the upper layer [8,9]. Regarding the BASS dermal stroma, the use of scaffolds is necessary
to mimic the extracellular matrix (ECM) in which fibroblasts are immersed. In addition to
anchoring cells, the ECM components influence cell survival, proliferation, function [10],
rapidly control homeostasis, and modulate the wound environment to maintain an optimal
hydration level [11]. Hyaluronic acid (HA) is the most abundant glycosaminoglycan (GAG)
in the skin and, along with collagen, one of the most widely used ECM components in
wound dressings. HA stimulates cellular proliferation, cellular migration, and angiogenesis,
depending on its size [10,12]. Furthermore, it stimulates early inflammation, which is
critical for initiating wound healing, but also reduces long-term inflammation. When
compared to autografts, BASS based on fibrin-HA showed similar homeostasis parameters
and restored epidermal barrier function in a wound mouse model, promoting the formation
of a histological architecture very similar to normal skin [13].

Once the skin substitute is ready and grafted into the patient, treatment with anti-
septics and antibiotics is crucial to prevent any infection, which is the main risk in these
patients [4]. In patients with more than 40% total body surface area (TBSA), 75% of deaths
are due to sepsis [14]. The most common microorganisms that cause invasive infections in
these burns are Pseudomonas aeruginosa and Acinetobacter baumanii, followed by Klebsiella
pneumoniae, Escherichia coli, and Staphylococcus aureus [15]. Although there is a wide range
of protocols [16,17], there is no gold standard antiseptic treatment in burn care.

Antiseptics and antibiotics applied during wound care may affect the viability of
skin cells. Few studies have analyzed the impact of antiseptics in cultured fibroblast or
keratinocytes [18,19], but no analysis of cytotoxicity and epidermal barrier function have
been performed in bioengineered artificial skin substitutes. The main objective of this
study was to develop a three-dimensional skin model based on hyaluronic acid scaffold to
evaluate in vitro how different treatments (antibiotics and antiseptics), used in clinic, affect
cell viability, epithelium integrity, and barrier function. This analysis will provide useful
information to select an appropriate antiseptic during the burn care process, but also to
treat other skin wounds such as ulcers.

2. Materials and Methods
2.1. Cell Isolation and Culture

Fibroblasts and keratinocytes were isolated from skin samples (9 cm2) from recon-
structive surgery donors with the patient’s informed consent in compliance with the
requirements for donation of human cells and tissues (Royal Decree-Law 9/2014, of July 4).
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Skin samples were transported in Dulbecco’s phosphate-buffered saline (DPBS) from
the operating room to the laboratory for the beginning of their processing. In a laminar
flow cabin, they were maintained in wash solution for 30 min. Subsequently, scalpel and
forceps were used to separate dermis from epidermis. Hypodermis was discarded.

The dermis and epidermis were mechanically processed. The dermis was incubated
for 18–24 h in a 2 mg/mL solution of type I collagenase (Gibco, Thermo Fisher Scientific,
California, USA) and neutralized with specific medium for dermal fibroblasts culture
(DFM). The epidermis incubated with TrypLE Select 10× (Gibco, Thermo Fisher Scientific,
California, USA) for 10 cycles of 15 min per cycle and neutralized with specific medium
for the keratinocyte culture (KTM) [13]. Cell suspensions were centrifuged at 300× g for
10 min. Türk (Sigma Aldrich, St Louis, USA) and trypan blue (Sigma Aldrich, St Louis,
USA) solutions were used for counting and cell viability determination, respectively.

Fibroblasts were seeded at a density of 100,000–140,000 cells/cm2 (37 ◦C, 5% CO2) at
initial processing and at 5000–7000 cells/cm2 after passing. The human dermal fibroblasts
used as the feeder layer for keratinocytes culture were sub-lethally irradiated (50 Gy). The
equipment used was a BIOBEAM 8000 gamma irradiation unit with a source of Cs-137 of
2000 Ci. Dermal irradiated fibroblasts were seeded at 10,000 cells/cm2. Keratinocytes were
seeded at 20,000–40,000 cells/cm2 in the flasks over an irradiated feeder. Cultures were
monitored using a Leica DM1000 microscope.

2.2. Bioengineered Artificial Skin Substitute (BASS) Manufacturing

The BASS consists of a two-layer cultured scaffold. The upper layer is an epithelium of
keratinocytes and the lower layer is a fibrin-hyaluronic acid matrix containing fibroblasts.
The lower layer was developed by mixing 330 µL of human plasma, 62.4 µL of DFM
medium containing fibroblasts, 13.4 µL of water (B Braun Medical, Barcelona, Spain),
50 µL of hyaluronic acid (Hyalone, Fidia Pharma, Abano Terme, Italy), 24 µL of calcium
chloride (B Braun Medical, Barcelona, Spain, 10 mg/mL), and 20.2 µL of tranexamic acid
(Amchafibrin, Rottapham, Spain). The volumes described above correspond to one 500 µL
scaffold. After 24 h, keratinocytes were seeded to constitute the upper layer of the BASS
and the plate was returned to the incubator for 7 days. Acellular substitutes without cells
were fabricated as negative control. Figure 1 summarizes the BASS manufacturing process.
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2.3. Antiseptic/Antibiotic Test

A total of 24-well cell culture plates (Thermo Fisher Scientific, CA, USA) of the BASS
were treated with three different antiseptics and one antibiotic for 28 days. Controls were
left without treatment. Viability assay and histology were performed at days 7, 14, 21,
and 28. The antibiotic used was colistin 1% (G.E.S., Genéricos Españoles Laboratorio S.A.,
Madrid, Spain) and the antiseptics used were chlorhexidine digluconate 1% (HiBiSCRUB®,
Molnlycke Health Care AB, Madrid, Spain), sodium chloride 0.02% (Sonoma Pharmaceuti-
cals, CA, USA), and polyhexanide 0.1% (B Braun Medical, Barcelona, Spain). Two different
protocols of antiseptic application were tested, long (24 h) and short (4 min) application
every 48 h, to replicate their clinical use. Therefore, treatment duration was 24 h for colistin
and sodium chloride and 4 min for chlorhexidine digluconate and polyhexanide according
to previous toxicity studies [19]. The antiseptic/antibiotic test was performed three times
(n = 3). Figure 2 represents the antibiotic/antiseptic test.
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2.4. Viability Assay

The primary outcome of this study was to determine cell viability after the different
treatments described above. Viability assay at days 7, 14, 21, and 28 was performed using
LIVE/DEAD® Cell Viability Assay (Thermo Fisher Scientific, CA, USA). This method
allows colorimetric discrimination between living and dead cells. After adding the staining
solution, the plate was incubated at room temperature and darkness for 30 min. Then,
staining solution was removed, scaffolds were washed with Dulbecco’s phosphate-buffered
saline (DPBS, Sigma Aldrich, St. Louis, MO, USA) and placed in slides for fluorescence
measurement at 405 nm using a Leica DM2000 microscope. The obtained images were
analyzed by the scientific image analysis program Image J.
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2.5. Histological Analysis

One of the secondary outcomes of this study was to analyze the BASS histological
structure. For that, BASS were collected at days 7, 14, 21, and 28, fixed in 4% phosphate-
buffered formalin (Merck, Damstadt, Germany), embedded in paraffin, and cut into 4 µm
sections. The sections were stained with hematoxylin and eosin (Merck, Damstadt, Ger-
many) to reveal the histological structure.

2.6. Epidermal Barrier Function Evaluation

Another secondary outcome of this research was to assess the BASS functionality
through the barrier function evaluation. In order to evaluate the barrier function of the
BASS, trans-epidermal water loss (TEWL) was measured after 14 days of treatment using
a Tewameter® TM 300 (Courage + Khazaka Electronic, Köln, Germany) in 6-well cell
culture plates (24 mm diameter, Thermo Fisher Scientific, CA, USA) of the BASS. The
Tewameter® probe indirectly measures the gradient of the water evaporation density
of the skin through two pairs of sensors (temperature and relative humidity) inside a
hollow cylinder. The physical basis for measurement is the law of diffusion discovered
by Adolf Fick in 1855: dm/dt = −D*A*dp/dx, where A is the surface (m2), m, the water
transported (g), t, the time (h), D, the diffusion constant (= 0.0877 g/m(h mmHg)), p is the
vapor pressure of the atmosphere (mm Hg), and x is the distance from the surface of the
skin to the measurement point (m).

Before taking the measurement, dehydration by controlled pressure of the BASS
using a glass disc of 85 g as shot for 2 min was necessary to improve their biomechanical
properties [13]. The dehydrated BASS was placed in the Franz cell and 0.5 g of mupirocin
20 mg/g (excipients; macrogol 400 and polyethylenglycol 3350, ISDIN, Barcelona, Spain)
was applied. The probe was used to take the measurements (Figure 3) and MPA software
(Multi Probe Adapter, Courage + Khazaka Electronic, Köln, Germany) to analyze the
resulting data. Mupirocin is a topical antibiotic used to treat superficial skin infections such
as impetigo, folliculitis, and furunculosis, as well as other skin diseases, and is widely used
during the wound healing process in patients with severe burns or skin ulcers. Figure 3
summarizes the epidermal barrier function evaluation.
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2.7. Statistical Analysis

The obtained data are presented as the mean ± standard error of the mean (SEM). For
the data analysis, the statistical program R was used (R Development Core Team (2011).
R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria). A generalized linear model was applied for development of
the statistical analysis of the data and normal distribution of the residues was verified. On
the linear model, an analysis of variance (ANOVA) factorial was performed, to evaluate
the effect of each factor present. Once ANOVA was performed, a post hoc analysis was
performed with Tukey’s test for all factors to evaluate the degree of significance when
comparing the factor classes. Values of p ≤ 0.05 were considered statistically significant.

3. Results
3.1. Chlorhexidine Digluconate Affects Cell Viability to a Greater Extent Compared to the
Other Treatments

Chlorhexidine digluconate greatly reduced cell viability compared to the other treat-
ments. This was reflected in the number of dead cells (Figure 4) as well as in the viability
percentage (Table 1, Figure 5).

No significant differences among the days of the evaluation period for each treatment
were found (Figure 6). However, the analysis revealed significant differences among the
different treatments in each day of the evaluation (Figure 7). Specifically, on day 7 of treat-
ment (Figure 7a), there was a significant reduction in the cell viability after chlorhexidine
digluconate compared to colistin (p ≤ 0.001) and sodium chloride (p ≤ 0.001) treatments,
and the control (non-treated BASS (p ≤ 0.001); and after polyhexanide compared to colistin
(p = 0.0272), sodium chloride (p = 0.0282) treatments, and the control (p = 0.0210). At day
14 (Figure 7b), there was only significant differences between chlorhexidine digluconate
treatment compared to sodium chloride treatment (p = 0.0472) and the control (p = 0.0179).
At day 21 (Figure 7c), cell viability was significantly lower after chlorhexidine digluconate
treatment compared to colistin (p = 00836), sodium chloride (p = 0.00497), and polyhexanide
(p = 0.01415) treatments, and the control (p = 0.00127). Lastly, at day 28 of the evaluation
period (Figure 7d), there was a significant difference between chlorhexidine digluconate
treatment and the control (p = 0.0246). Therefore, compared to the control, chlorhexidine
digluconate followed by polyhexanide more affected cell viability than the other treatments
after the antiseptic/antibiotic test.

Table 1. Cell viability percentage media for each treatment and control at days 7, 14, 21, and 28; n = 3.

Treatment Day 7 Day 14 Day 21 Day 28

Colistin 89.35% 75.03% 77.7% 47.34%
Chlorhexidine digluconate 33.16% 41.86% 21.81% 9.69%

Sodium chloride 89.15% 82.18% 82.08% 62.34%
Polyhexanide 56.66% 53.99% 73.37% 59.41%

Control 90.83% 89.76% 94.47% 94.96%
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ation period (Figure 7d), there was a significant difference between chlorhexidine diglu-
conate treatment and the control (p = 0.0246). Therefore, compared to the control, chlor-
hexidine digluconate followed by polyhexanide more affected cell viability than the other 
treatments after the antiseptic/antibiotic test. 
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3.2. Chlorhexidine Digluconate and Polyhexanide Affect the Epithelium Integrity to a Greater
Extent Compared to the Other Treatments

In addition to the viability test, histological analysis was performed to evaluate the
skin integrity. As shown in Figure 8, the BASS treated with chlorhexidine digluconate,
followed by those treated with polyhexanide, more deteriorated compared to the other
treatments, since very few cells were appreciated in the epidermis. Regarding the dermis,
an important reduction in fibroblasts population was seen after these antiseptics compared
to colistin and sodium chloride treatments. For colistin and sodium chloride, a stratification
of the epithelium over time was observed (similar to control group), which suggested the
integrity preservation by these treatments.
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3.3. Skin Barrier Function Was Not Significantly Affected after the Antibiotic/Antiseptic Test 

As shown in Figure 9, no significant differences were appreciated after mupirocin 
application between the four groups used and the control (p > 0.05) (Figure 9a) and there 
were no significant differences in TEWL values through the evaluation time (p > 0.05) 

Figure 8. Hematoxylin and eosin staining of BASS after each treatment and control at days 7, 14, 21, and 28. (a–d) BASS
after colistin (1%) treatment at day 7, 14, 21, and 28, respectively; (e–h) BASS after chlorhexidine digluconate (1%) treatment
at day 7, 14, 21, and 28, respectively; (i–l) BASS after sodium chloride (0.02%) treatment at day 7, 14, 21, and 28, respectively;
(m–p) BASS after Polyhexanide (0.01%) treatment at days 7, 14, 21, and 28, respectively; (q–t) Control at days 7, 14, 21 and
28 respectively. n = 3. Magnification 10×.

3.3. Skin Barrier Function Was Not Significantly Affected after the Antibiotic/Antiseptic Test

As shown in Figure 9, no significant differences were appreciated after mupirocin
application between the four groups used and the control (p > 0.05) (Figure 9a) and there
were no significant differences in TEWL values through the evaluation time (p > 0.05)
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(Figure 9b). However, TEWL values were significantly higher (p ≤ 0.001) in the acellular
control (absence of barrier) regarding the different treatments and the control.
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4. Discussion

In this study, chlorhexidine digluconate seriously affected cell viability and epithelium
integrity, while no significant differences were observed in the barrier function evaluation.

Bioengineered artificial skin substitutes (BASS) are used in regenerative medicine as
an advance therapy for injuries covering large body surface areas, especially burns. These
skin substitutes, composed of both a dermis and an epidermis, should be easy to handle,
must permanently ensure the skin barrier function, and should not induce a host immune
response [1,3,7].

Once the BASS is transplanted to the patient, treatment with antiseptics and antibiotics
is crucial to prevent any infection. However, there is no evidence of the impact of these
treatments on the viability of the cells that constitute the BASS. If a treatment greatly affects
cell viability, this could result in an alteration of skin properties, highlighting the epithelium
integrity and its barrier function, which is essential to regulate temperature, water loss
and protect from mechanical injuries and external agents [18]. Among all the antiseptics
and antibiotics available [16,17], four of the more widely used in clinic were selected to be
evaluated in terms of cell viability and barrier function.

Chlorhexidine is a powerful antiseptic with evidence of a beneficial role in burn
care [19]. It is a positively charged bisbiguanide at physiologic pH that binds to the nega-
tively charged cell walls of bacteria, leading to a disruption of microbial cell membranes [20].
Several in vitro studies have reported cytotoxicity on cultured cells, whereas in vivo and
clinical data results seem to be controversial. In vivo, although it is widely used in clinic
due to its broad-spectrum antimicrobial activity, adverse effects have been reported in the
literature. For instance, chlorhexidine is occasionally associated with contact dermatitis,
and rarely with anaphylaxis and hypersensitivity reactions such as urticaria [21–23]. Skin
allergic reactions and burns are reported mainly on extremely low birth weight infants,
but these adverse effects can occur on adults as well [19,24]. Furthermore, if it contacts
the ocular surface, progressive corneal damage can occur, causing toxic effects on the
epithelial layers of the cornea and conjunctiva at low concentrations and leading to irre-
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versible keratitis at higher concentrations [24,25]. Middle ear ototoxicity with sensorineural
deafness has been reported [24]. In terms of wound healing, the role of chlorhexidine is
controversial as well. It has been reported that the use of antiseptics such us chlorhexidine
inhibits wound healing in vivo [26], although other reports hold that the concentration of
chlorhexidine, which is cytotoxic in vitro, is not cytotoxic in vivo and does not interfere
with the re-epithelialization and healing process of the wound [19,27].

Regarding in vitro cytotoxicity, chlorhexidine has significant adverse effects on dermal
fibroblast growth [20] and significantly reduces cell migration and survival of myoblasts
and osteoblasts [28]. In our BASS model, chlorhexidine digluconate reduced the cell via-
bility to a large extent in comparison with colistin, sodium chloride. and polyhexanide.
Compared to the control, chlorhexidine followed by polyhexanide more affected cell viabil-
ity than the other antiseptics. The reduction in the cell viability resulted in deterioration
of the epithelium integrity and this could alter the barrier function. The trans-epidermal
water loss is widely used as a marker for skin barrier function in vivo and in vitro [29–31].
When skin is damaged, its barrier function is impaired, resulting in a higher water loss [32].
Therefore, if the cell viability of the BASS is reduced and its epithelium is deteriorated,
this should be traduced into higher water loss and poor absorption of the dermatological
agent used to treat wounds. In our study, no significant differences in TEWL between
groups were observed. However, the absence of epithelial barrier in the acellular BASS
revealed significantly higher TEWL values compared to the different treatments and the
control. Although chlorhexidine significantly reduces cell viability, this was not reflected in
the TEWL measurement. More in vivo and in vitro studies with longer follow-up periods
may be necessary to assess epidermal barrier function differences between groups and to
determine when alterations on epithelial barrier are produced. The use of suitable probes
for in vitro long follow-up measurements is highly recommended [30,32,33]. Furthermore,
for future studies, the antiseptics and antibiotics treatments could be tested on BASS simu-
lating skin disease models. This could be achieved by damaging the BASS through different
methods [34,35] or by developing them using fibroblasts and keratinocytes from patients
with different skin pathologies.

To the best of our knowledge, the limitations of this research include the need to
improve the barrier function evaluation using suitable probes for in vitro TEWL measure-
ments and to introduce BASS skin disease models that could simulate different types of
damaged barriers.

5. Conclusions

The role of chlorhexidine in burn care is still controversial since its broad spectrum
of action is well-established but effects on wound healing and reepithelization are still
contradictory. In this study, chlorhexidine digluconate seriously affected the cell viability
and epithelium integrity, while no significant differences were observed in the barrier
function evaluation. These results could help determine the appropriate treatment after
BASS implantation or antiseptic use for wound healing, although further research is
necessary to propose new treatment protocols after implantation and evaluating them in
clinical practice. Furthermore, our BASS could be a suitable model to study in vitro the
impact of different antiseptics/antibiotics for the treatment of other skin wounds such us
ulcers or cutaneous detects.
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