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Abstract: Our aim was to assess the combination of olive tree-related extracts with the most favor-
able profile of in vitro bioactive properties. We tested the antioxidant (increment of low-density
lipoprotein resistance against oxidation), vasoactive (promotion of nitric oxide release and decrease
of endothelin-1 production in human umbilical vein endothelial cells), anti-inflammatory (decrease
of the endothelial production of vascular cell adhesion molecule-1), and antithrombotic (reduction of
the endothelial release of plasminogen activator inhibitor-1) capacities of six phenolic extracts and
three triterpenic acid solutions (Ps and Ts, respectively). We tested extracts alone and in combination,
at nutritional (Ps: 0.05–0.5 µmol/L; Ts: 0.001–0.1 µmol/L) and nutraceutical doses (Ps: 1–10 µmol/L;
Ts: 0.25–10 µmol/L). The combination of Ps rich in 3,4-dihydroxyphenylglycol (76%, P2), hydrox-
ytyrosol (95%, P3), and oleuropein (70%, P4) (final nutritional concentration: 0.15 µmol/L; final
nutraceutical concentration: 3 µmol/L) was the best in order to prepare functional products and
nutraceuticals with cardioprotective properties, despite the fact that the isolated extract with the
greatest in vitro properties was P5 (75% oleocanthal), suggesting a potential synergistic effect among
different olive components.

Keywords: olive tree; phenolic compound; triterpenes; bioactivity; functional olive oil;
3,4-dihydroxyphenylglycol; hydroxytyrosol; oleuropein; oleocanthal
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1. Introduction

Olive mill waste such as olive pomace (a mixture of minerals, fatty acids, sugars,
and phenolic compounds) contains high quantities of organic acids (e.g., phenolic acids)
that have been intensively studied because of their phytotoxic potential [1–3]. However,
they are also a source of valuable nutritional resources [1,4]. Valorization of these residual
materials as functional ingredients is a required innovation step and a challenge for the
food industry. These by-products can be used as a source of healthy components and, in
parallel, for decreasing the environmental impact of residues of olive oil production [1].
The by-products must, however, be characterized, and an assessment of their bioactivities
is required [5].

Whereas approximately 2% of olive phenolic compounds are transferred to oil in the
production process, 98% of them are retained in the cake [6] which is an ideal source of
bioactive compounds for the preparation of enriched functional foods. Olive phenolic
compounds are essential biological compounds in virgin olive oil [7] and have been ex-
tensively investigated due to their biological effects on oxidative stress and low-grade
inflammation [8], endothelial dysfunction [9,10], immune cell gene expression [9], and
thrombosis responses [9]. They have also been used for the enrichment of functional olive
oils with additional health properties [11]. Other olive-derived compounds associated with
health effects include terpenoids such as oleanolic and maslinic acids and biosynthesized
intermediate products [12]. Most of the biological effects of these compounds have been
tested either collectively [8] or individually [13–15]. However, to the best of our knowledge,
no study has described to date an evidence-based strategy to develop a functional food
with optimal pre-clinical characteristics. In addition, whether the individual effects of olive
mill waste-derived products could act additively, synergistically, or antagonistically when
combined remains to be established.

Our aim was to assess which combination of olive oil minor components (pheno-
lic compounds and triterpenes) presented the most favorable profile in terms of in vitro
bioactive properties (antioxidant, anti-inflammatory, anti-coagulant, and vasoactive capaci-
ties). Combinations were examined at doses related to real-life ones (in order to design a
functional olive oil) or higher for the production of nutraceuticals.

2. Materials and Methods
2.1. Extracts of Bioactive Components of the Olive Tree
2.1.1. Phenolic Compound Extracts

We elaborated six extracts of phenolic compounds from natural olive oil matrices
(coming from olive oil solid waste or alperujo—produced in the Almazara San Francisco
de Asís S. Coop. And., Montefrío, Granada, Spain—and olive tree leaves –picual variety
from Montefrío, Granada, Spain). Phenolic extract #1 (P1) contained oleuropein (28%),
3,4-didroxyphenylglycol (20%), rutin (13%), luteolin-7-glucoside (8%), hydroxytyrosol
(6.5%), and verbascoside (4%). It was obtained by a combination of chromatographic ex-
tractions, system that is in the process of being patented. Phenolic extract #2 (P2) contained
3,4-dihydroxyphenylglycol (76%), hydroxytyrosol (10%), luteolin-7-glucoside (5%), chloro-
genic acid (3%), and vanillin (2%). It was obtained by the method described in the patent
PCT/ES2012/070491 [16]. Phenolic extract #3 (P3) contained hydroxytyrosol (95%) and
tyrosol (5%), and was obtained by the patented system PCT/ES2002/00058 [17,18] in which
ionic resins in combination with membranes were used. Finally, phenolic extract #4 (P4)
contained oleuropein (70%), vanillin (7.5%), luteolin-7-glucoside (5%), ferulic acid (4.5%),
and verbascoside (2%). It was obtained from the P2 after a chromatographic fractionation
by an AmberChrom™ CG161M resin in a system in the process of being patented. The
phenolic composition of the different extracts was analyzed by high performance liquid
chromatography coupled with a diode array UV detector and mass spectrometry (HPLC-
DAD-MS). Samples were separated by a Jasco-LC-Net II ADC liquid chromatograph system
using a MEDITERRANEA SEA C-18 reverse-phase analytical column (Teknokroma, Spain).
We used water with 1% formic acid and acetonitrile with 1% formic acid as mobile phases
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(flow rate: 1 mL/min), increasing the proportion of the acetonitrile solution from 30% to
100% for the first 20 min, maintained at 100% for 10 min, and returned to 30% in 5 min.
Spectra were recorded in the 200–600 nm range and the chromatograms were acquired at
280 nm (for simple phenolic compounds), 360 nm (for flavonoid glycosides), and 370 nm
(for flavonoid aglycones), using pure compounds as reference materials for calibration.

Two additional extracts (#5 and #6) were obtained from virgin olive oil and from olive
oil waste water produced in the Almazara San Francisco de Asís S. Coop. And. (Montefrío,
Granada, Spain). The extract containing oleocanthal as the main compound was isolated
from a phenolic concentrate prepared by liquid/liquid extraction from virgin olive [19].
The concentrate was separated by two consecutive chromatographic procedures [20]. First,
we performed a separation of the phenolic extract in a silica gel column eluted with
mixtures of dichloromethane and methanol (increasing methanol content up to 10%).
Fractions containing oleocanthal were pooled and dried under vacuum, and subsequently
purified in a Shimadzu HPLC SPD-10A system with a Kinetex C-18 column (5 µm, 100 A,
250 × 21.2 mm; Teknokroma, Spain) coupled with a DAD. Chromatographic separation
was performed by elution gradient using water and increasing concentrations of methanol.
Fractions were pooled and dried under vacuum and the residue was dissolved in dimethyl
sulfoxide in order to obtain phenolic extract #5 (P5), containing oleocanthal (75%) and one
unidentified compound (25%). Hydroxytyrosol was extracted by the procedure described
by Fernandez-Bolaños et al. [16]. The isolated fractions were dried and then dissolved
in dimethyl sulfoxide to obtain phenolic extract #6 (P6) which contained hydroxytyrosol
(73%) and two unidentified compounds (27%). We confirmed the structure of the isolated
compounds and their purity as described by García et al. [21], in a HPLC/electrospray
ionization/MS system. It consisted of a Dionex Ultimate 3000RS U-HPLC (Thermo Fisher
Scientific, Waltham, MA, USA), a MEDITERRANEA SEA C-18 column (Teknokroma,
Sant Cugat del Vallès, Spain), and a microTOF-QII High Resolution Time-of-Flight mass
spectrometer with qQ Time-of-Flight geometry (Bruker Daltonics, Bremen, Germany). We
confirmed the structure of the compounds by tandem MS/MS spectra with HyStarTM 3.2.
software (Bruker Daltonics, Bremen, Germany) [16,19,20].

2.1.2. Triterpenic Acid Solutions

We purchased commercial lyophilizates of oleanolic, maslinic, and ursolic acids (ref-
erences 42515, 68594, and 89797, respectively; Sigma-Aldrich, Barcelona, Spain), and
suspended them in dimethyl sulfoxide to obtain three solutions of triterpenic acids: one
with oleanolic acid (100%) (T1), one with maslinic acid (100%) (T2), and one with ursolic
acid (100%) (T3).

2.1.3. Tested Concentrations

Regarding phenolic compounds, we used as a physiological reference the maximal
concentration of hydroxytyrosol measured in plasma after a standard dietary intake of
a virgin olive oil with 400 mg/kg phenolic compounds (0.1 µmol/L) [22]. We tested
the in vitro bioactivity of all Ps at this concentration, and at concentrations 50% lower
(0.05 µmol/L), 250% higher (0.25 µmol/L), and 500% higher (0.5 µmol/L). Using as a
reference a similar in vitro study with hydroxytyrosol [23], we also performed the same set
of experiments with nutraceutical-like concentrations (1, 2, 5, and 10 µmol/L).

Concerning the Ts, we considered the maximal plasma concentration of oleanolic acid
(the most studied triterpenic acid from olive oil) after a standard dietary intake of a virgin
olive oil with 31.9 mg/kg of oleanolic acid. The concentration of 0.002 µmol/L was selected
as the physiological reference [24]. In a similar strategy to that performed for Ps, we tested
the in vitro bioactivity of the three Ts at the previous concentration (0.002 µmol/L) and at
concentrations 50% lower (0.001 µmol/L), 250% higher (0.005 µmol/L), and 500% higher
(0.01 µmol/L). We also tested their biological capacities at nutraceutical concentrations
(0.25, 1, 2, and 5 µmol/L).
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2.2. In Vitro Bioactivities
2.2.1. Antioxidant Properties

We tested the extract capacity to counteract the oxidation of low-density lipoproteins
(LDL) in a pro-oxidant environment (in the presence of a pro-oxidant agent, Cu2+) [25,26].
In brief, we obtained LDL from a pool of plasma from 20 healthy volunteers by sequential
density gradient ultracentrifugation [27] and dialyzed it against 1× phosphate-buffered
saline (Sigma-Aldrich, Barcelona, Spain). We mixed LDLs (final concentration: 10 mg/dL
LDL cholesterol) with CuSO4 (final concentration: 5 µmol/L) in the presence of the Ps and
Ts as the previously described. These combinations were incubated at 37 ◦C in 96-well
transparent plates in an Infinite M200 reader (Tecan Ltd., Männedorf, Switzerland) for 4 h.
We measured the absorbance at 234 nm (proportional to the levels of conjugated dienes
in the samples, an indicator of LDL oxidation) every 3 min to obtain the kinetic curve of
LDL oxidation in each condition. From the curves, we calculated: (1) the lag time (the
time when the oxidation at maximal velocity started, in minutes) and (2) the oxidation rate
(the speed of LDL maximal oxidation, the slope of the oxidation curve in the propagation
phase as ∆ absorbance/min). We performed experiments in triplicate and calculated the
mean values for each extract. We calculated the change in both properties as its percentage
difference relative to the negative control: (value for each extract—value for the negative
control)/value for the negative control × 100.

2.2.2. Vasoactive Properties

We tested the capacity of bioactive compounds to induce the release of nitric oxide
from endothelial cells [28]. We cultured a line of human umbilical vein endothelial cells in
supplemented EGM-2 medium (Lonza, Basel, Switzerland), refreshing them every 48–72 h.
We detached cells using 0.025% trypsin for five minutes and seeded in 96-well plates to
80–90% confluence 24 h prior to the experiments. We then washed the cells, incubated them
in fresh EGM-2 medium (now supplemented with 0.75% bovine serum albumin, 1% fetal
calf serum, and 1% penicillin-streptomycin) with 5 µmol/L 4,5-diaminofluorescein (Sigma-
Aldrich) and the nine extracts in the previously described concentrations (or without them,
in the negative control of the experiment) at 37 ◦C for 1 h. The detection of nitric oxide
is based on its capacity to react with 4,5-diaminofluorescein and produce a fluorescent
signal. We measured fluorescence (Excitation/Emission: 485/532 nm) every 15 min in
an Infinite M200 reader (Tecan Ltd., Männedorf, Switzerland), and computed the slope
of the time-dependent increment in the fluorescent signal. We performed experiments in
triplicate, calculated the mean value for each extract, and computed the change in the slope
relative to the negative control as described for antioxidant properties.

We also assessed the capacity of extracts to inhibit the release of endothelin-1, a vaso-
constrictor molecule. We incubated human umbilical vein endothelial cells seeded in
96-well plates with EGM-2 medium (supplemented with 0.75% bovin serum albumin, 1%
fetal calf serum, and 1% penicillin-streptomycin) with 5 µmol/L tumor necrosis factor
alpha as pro-inflammatory stimuli and the nine extracts (or without them, in the negative
control of the experiment). Twenty-four hours later, we collected the supernatants and
measured the concentration of endothelin-1 using an ELISA kit (Endothelin-1 ET-1 Human
ELISA Kit, Thermo Fisher Scientific, Barcelona, Spain). We performed cell experiments
in triplicate, combined the three supernatants, and quantified endothelin-1 in a single
experiment for each extract. We calculated the change in endothelin-1 levels relative to the
negative control as previously described for other biological activities.

2.2.3. Anti-Inflammatory and Antithrombotic Properties

We measured anti-inflammatory and antithrombotic capacities of each extract as their
capacity to decrease the in vitro endothelial release of vascular cell adhesion molecule-1
(VCAM-1) and plasminogen activator inhibitor-1 (PAI-1), respectively. To this purpose,
we measured VCAM-1 and PAI-1 levels released by the lines of human umbilical vein
endothelial cells after 24 h stimulation with 5 µmol/L tumor necrosis factor alpha as
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described in the endothelin-1 experiments. We quantified both using ELISA kits (VCAM-1
Human ELISA Kit, PAI-1 Human ELISA Kit; both from Thermo Fisher Scientific, Barcelona,
Spain), and calculated their change relative to the negative control as previously described
for other cell-based properties.

2.3. Evidence-Based Combination of Extracts

From the experiments at different doses, we first calculated the dose-dependent change
in the in vitro properties (oxidation rate data were previously log-transformed). Due to
their potentially beneficial nature, we positively scored increments in lag time values,
decreases in oxidation rate (where data were previously log-transformed) [29], increases
in nitric oxide release [30], and decrements in endothelin-1 [31], VCAM-1 [32], and PAI-1
values [33]. To calculate the scores, we sorted the nine extracts from highest to lowest
protective effect and assigned nine points to the one with the greatest benefit, eight points
to the second most beneficial, seven to the next, and so on until we reached the one with
the least benefit. Extracts not presenting a beneficial dose-dependent response obtained
zero points. Regarding the antioxidant score, given that lag time is its most representative
parameter [29], this property was weighted twice than that of the improvement in oxidation
rate. In relation to vasoactive capacities, enhancement in nitric oxide release was weighted
twice than that of changes in endothelin-1 values. The sum score calculation was as follows:
[(lag time score × 2) + oxidation rate]/3 + [(nitric oxide score × 2) + endothelin-1 score]/3
+ VCAM-1 score + PAI-1 score.

The top five extracts according to sum score values were considered for combina-
tion. Mixtures were performed in two dose ranges: (1) “nutritional range” (around those
achievable through dietary intake of a virgin olive oil, ~0.1 µmol/L); and (2) “nutraceutical
range” (around the median of non-dietary doses, ~5 µmol/L). We tested the capacity of the
combinations to improve in vitro bioactive properties, in a single experiment for each com-
bination. To obtain concentration-corrected results (some of the combinations presented
greater levels of bioactive compounds), we divided the changes in the properties by the
total concentration of active components in the mix. Finally, to decide which combination
presented the best in vitro profile, we sorted the four combinations from highest to lowest
protective effect and assigned four points to the one with the greatest benefit, three points
to the second most beneficial, and so on until we reached the one with the least benefit.
Combinations not presenting a beneficial response obtained zero points.

3. Results
3.1. Dose-Dependent Bioactivities of Individual Extracts

As shown in Table 1, we only observed in vitro bioactivity in the case of Ps. We could
sort Ps from highest to lowest antioxidant capacity as follows: P4 > P2 > P1 > P3 > P6 > P5.
Regarding vasoactive ability, the sequence was: P2 > P5 > P1 > P4 > P3. In terms of anti-
inflammatory capacity: P5 > P6 > P4 > P3 > P2 > P1. Finally, in relation to antithrombotic
ability: P5 > P4.
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Table 1. Dose-dependent associations of phenolic (0.05–10 µmol/L) and triterpenic solutions (0.001–10 µmol/L) with in vitro bioactive properties 1.

Antioxidant Properties Vasoactive Properties Anti-Inflammatory
Properties

Anticoagulant
Properties

Score SumIncrease in
LDL Lag Time

Decrease in
LDL Oxidation Rate Weighted

Score

Increase in
Nitric Oxide Release

Decrease in
Endothelin-1 Release Weighted

Score

Decrease in
VCAM-1 Release

Decrease in
PAI-1 Release

% [95% CI] Score % [95% CI] Score % [95% CI] Score % [95% CI] Score % [95% CI] Score % [95% CI] Score

P1
168

7
−67.4

8 7.33
10.3

9
−0.33

0 6
−0.97

4
−1.05

0
17.33

[133; 203] [−79.1; −55.7] [8.79; 11.8] [−2.63; 1.97] [−1.15; −0.78] [−2.94; 0.85] (4th)

P2
171

8
−59.7

7 7.67
9.77

8
−0.94

8 8
−1.62

5
−0.47

0
20.67

[145; 197] [−66.5; −52.9] [8.71; 10.8] [−1.27; −0.62] [−2.19; −1.05] [−1.37; 0.43] (3rd)

P3
70.8

6
−26.9

6 6
−0.2

0
−0.39

7 2.33
−1.93

6
0.41

0
14.33

[34.8; 107] [−43.2; −10.6] [−0.74; 0.33] [−0.65; −0.12] [−3.27; −0.60] [−0.43; 1.25] (5th)

P4
210

9
−71.1

9 9
4.75

7
0.33

0 4.67
−2.05

7
−0.51

8
28.67

[126; 294] [−92.7; −49.5] [4.11; 5.40] [−0.49; 1.16] [−2.45; −1.66] [−0.90; −0.11] (2nd)

P5
21.9

4
−12.2

5 4.33
0.86

6
−4.8

9 7
−3.74

9
−5.78

9
29.33

[19.7; 24.1] [−17.4; −6.91] [0.51; 1.21] [−6.17; −3.43] [−7.22; −0.26] [−6.29; −5.27] (1st)

P6
67.3

5
−11.1

4 4.67
−0.39

0
0.024

0 0
−2.49

8
1.51

0
12.67

[35.5; 99.0] [−12.6; −9.61] [−0.88; 0.087] [−0.32; 0.37] [−4.71; −0.28] [0.52; 2.50] (6th)

T1
−0.62

0
1.17

0 0
0.24

0
0.77

0 0
0.96

0
−0.76

0
0

[−1.07; −0.17] [0.40; 1.94] [−0.36; 0.84] [0.40; 1.14] [−2.38; 4.30] [−4.94; 3.42] (7th)

T2
−0.042

0
0.82

0 0
−0.22

0
−0.96

0 0
−1.51

0
−0.66

0
0

[−0.33; 0.25] [0.31; 1.32] [−0.52; 0.070] [−3.12; 1.20] [−4.62; 1.60] [−1.47; 0.15] (7th)

T3
−0.042

0
1.13

0 0
−0.13

0
0.79

0 0
−2.27

0
−2.59

0
0

[−0.33; 0.25] [−0.030; 2.30] [−0.97; 0.71] [0.59; 0.99] [−8.95; 4.40] [−7.22; 2.04] (7th)
1 PAI-1: plasminogen activator inhibitor-1; P: phenolic extract; T: triterpenic acid solution; VCAM-1: vascular cell adhesion molecule-1.
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3.2. Combinations of Extracts

As has been previously described, the top five extracts according to their sum scores
were considered for combinations. P5 (75% oleocanthal) was the best one in relation to anti-
inflammatory and antithrombotic abilities, P4 (70% oleuropein) in relation to antioxidant
capacity, and P2 (76% 3,4-dihydroxyphenylglycol) in relation to vasoactive potential. P1
was associated with a moderate antioxidant, vasoactive, and anti-inflammatory potential,
and was also considered. Finally, P3 contained the most studied olive oil phenolic com-
pound (95% hydroxytyrosol). It was prioritized over P6 (also containing hydroxytyrosol)
because it presented a greater sum score and could be produced in larger quantities for
use in industrial processes. Moreover, in contrast to P5, which was isolated by a laborious
procedure not applicable to industrial purpose, P1, P2, P3, and P4 were easily obtained
from olive mill waste.

Thus, combination 1 (C1) consisted of an isomolar mixture of P2, P3, and P4. Com-
bination 2 (C2) consisted of an isomolar mixture of P2, P3, P4, and P5. Combination 3
(C3) consisted of an isomolar mixture of P1, P2, P3, and P4. Finally, combination 4 (C4)
consisted of an isomolar mixture of P1, P2, P3, P4, and P5. The four combinations and their
concentrations are shown in Table 2.

Table 2. Extract combination strategy 1.

P1
(µmol/L)

P2
(µmol/L)

P3
(µmol/L)

P4
(µmol/L)

P5
(µmol/L)

P6
(µmol/L)

T1
(µmol/L)

T2
(µmol/L)

T3
(µmol/L) Sum

C1

Nutritional
doses 0.05 0.05 0.05 0.15 µmol/L

Nutraceutical
doses 1 1 1 3 µmol/L

C2

Nutritional
doses 0.05 0.05 0.05 0.05 0.2 µmol/L

Nutraceutical
doses 1 1 1 1 4 µmol/l

C3

Nutritional
doses 0.05 0.05 0.05 0.05 0.2 µmol/L

Nutraceutical
doses 1 1 1 1 4 µmol/l

C4

Nutritional
doses 0.05 0.05 0.05 0.05 0.05 0.25 µmol/L

Nutraceutical
doses 1 1 1 1 1 5 µmol/L

1 C: combination; P: phenolic extract; T: triterpenic acid solution.

3.3. Effects of Extract Combinations

The combination with the best dose-adjusted in-vitro properties was #1. It scored the
highest for antioxidant, vasoactive, and antithrombotic properties at both dose ranges, and
for anti-inflammatory capacity at nutraceutical ones (Table 3).
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Table 3. Effects of extract combinations 1.

Antioxidant properties Vasoactive
properties

Anti-Inflammatory
Properties

Anticoagulant
Properties

Score
SumIncrease in

LDL Lag Time
Decrease in LDL
Oxidation Rate Weighted

Score

Increase in
Nitric Oxide Release

Decrease in
endothelin-1

Release
Weighted

Score

Decrease in
VCAM-1 Release

Decrease in
PAI-1 Release

% Score % Score % Score % Score % Score % Score

Nutritional doses

C1 606.1 4 −14.3 4 4 3.7 4 −6.0 2 3.33 2.5 0 −5.3 4 11.33
(1st)

C2 287.6 2 −12.4 2 2 1.8 1 −8.9 4 2.00 −14.4 4 −5.0 3 11.00
(2nd)

C3 390.4 3 −12.5 3 3 2.2 3 −2.7 1 2.33 0.9 0 5.8 0 5.33 (4th)

C4 158.6 1 −12.0 1 1 2.1 2 −8.4 3 2.33 −8.9 3 −3.6 2 8.33
(3rd)

Nutraceutical doses

C1 180.6 1 −48.2 4 2.00 40.3 4 −35 3 3.67 −53.8 4 −77.3 4 13.67
(1st)

C2 181.9 2 −38.7 2.5 2.17 24.4 3 −7.6 2 2.67 −32.9 3 −24.8 3 10.83
(2nd)

C3 237.8 4 8.7 0 2.67 15.6 2 18.9 0 1.33 155.9 0 728.8 0 4.00 (4th)

C4 193.8 3 −38.7 2.5 2.83 7.2 1 −53 4 2.00 37.8 0 −6.6 2 6.83
(3rd)

1 C: combination; PAI-1: plasminogen activator inhibitor-1; PE: phenolic extract; VCAM-1: vascular cell adhesion molecule-1. C1: P2 + P3 + P4; C2: P2 + P3 + P4 + P5; C3: P1 + P2 + P3 + P4;
C4: P1 + P2 + P3 + P4 + P5.
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Scheme 1 represents a summary of the strategy of our work and its main conclusion.
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4. Discussion

The antioxidant, anti-inflammatory, anti-coagulant, and vasoactive bioactivities of
several phenolic extracts from olive-tree related products were examined ex vivo. Selected
combinations of extracts were re-tested for the aforementioned bioactivities in order to
account for antagonisms and synergisms among them. Two sum scores, at dietary and
nutraceutical doses, were applied with quite similar results. The final results point at
combination 1, rich in 3,4-dihydroxyphenylglycol, hydroxytyrosol, and oleuropein, as the
optimum in order to prepare functional products and nutraceuticals with cardioprotec-
tive properties. This is despite the fact that the isolated extract with greatest properties
was P5 (rich in oleocanthal), suggesting a potential synergistic effect among different
olive components.

There is great interest in the food industry in the development of functional foods,
particularly highlighted in products such as olive oils with additional health proper-
ties [34–37]. The development of such foods, enriched in various bioactive components,
can be optimized if based on scientific evidence to the extent possible, since the combi-
nation of different doses of these nutrients could lead to improved health effects. Re-
garding extract combinations with higher bioactivities in our data, the combination of
extracts rich in 3,4-dihydroxyphenylglycol (P2), hydroxytyrosol (P3), and oleuropein
(P4) resulted in the greatest improvement of the cardioprotective bioactivities in most
of the experiments (antioxidant, vasoprotective, and anti-inflammatory properties). 3,4-
dihydroxyphenylglycol [38,39], hydroxytyrosol [40,41], and oleuropein [42] have previ-
ously shown diverse protective effects in molecular mechanisms related to cardiovascular
and other non-communicable disease, and the potential synergistic effect among them
may play a role in the most complete protective action. These results agree with those
shown by De Roos et al., in which a synergistic effect between hydroxytyrosol and 3,4-
dihydroxyphenylglycol was observed in the inhibition of platelet aggregation [43]. Combi-
nation #2 (combination #1 plus P5) a priori should have been the most complete bioactive
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combination since it provides the compounds with greater antioxidant and vasoprotective
effects (P2, P3, P4), and the oleocanthal-rich extract, the one with greater anti-inflammatory
and anticoagulant effects in our data. Oleocanthal has been attributed several protective
capacities on health outcomes in previous bibliography [44]. However, this mixture does
not present additive effects in many of the properties, only scores higher than combination
#1 on the mixture’s ability to decrease the in vitro endothelial secretion of endothelin-1
and VCAM-1, and presents the additional limitation that its production at industrial scale
is not currently feasible. Finally, regarding combinations #3 and #4 (combination #1 plus
P1, and combination #1 plus P1 and P5, respectively), they were designed to capture the
contribution of the possible synergic effects of P1. It was composed of modest amounts of
different compounds, many of its components were present in higher amounts in other
tested extracts (3,4-dihydroxyphenylglycol in P2, hydroxytyrosol in P3, and oleuropein in
P4), and it was initially considered under the hypothesis that the biological effects observed
could be produced by synergy among compounds rather than by a specific molecule.
However, when compared to the other combinations, their effects per mole of phenolic
compounds were lower. As observed in previous studies on phenolic compounds [45,46],
these results highlight the relevance of testing the combination of active principles when
preparing a functional food or nutraceutical.

Triterpenic acid effects were also tested in vitro due to their presence in virgin olive
oil although in modest amounts and their association with an improvement of endothelial
function in vitro and in humans [47]. However, triterpenic acids showed no remarkable
in vitro biological properties compared to the other extracts. The lack of direct antioxidant
effects on LDLs could be partially explained because these compounds are not able to
donate electrons directly as phenolic compounds do [48]. In relation to the rest of in vitro
properties, the in vivo transformation of triterpenes into secondary metabolites able to
protect endothelial cells cannot be discarded. In addition, bioactive molecules, when
outside their natural food matrix, might not be properly incorporated to the media and
therefore may have not accessed the cells [49].

The consumption of a natural virgin olive oil of around 400 mg/kg promotes a maxi-
mum plasma concentration of 0.1 µmol/L of hydroxytyrosol [22]. Thus, we hypothesize
that the consumption of a functional olive oil enriched with olive bioactive substances (ac-
ceptable palatability: 1000 mg/kg [50]) would produce a plasma concentration of phenolic
compounds around 0.25 µmol/L. Nevertheless, biological effects in the in vitro experi-
ments were sometimes observed at concentrations considerably higher than real-life natural
virgin olive oil consumption. The lowest concentration with bioactivity in some of the
tests was 5 µmol/L. Therefore, we designed extract combinations at two concentration
ranges, functional and nutraceutical, in order to overcome this limitation and to be able to
capitalize on the potential biological effects that could be derived from the combinations
of compounds that we tested. In agreement with our working hypothesis, our findings
resulted in a phenolic extract combination that could be employed for the elaboration
of a functional olive oil, which was successfully tested in animal experiments. In this
regard, a chronic sustained treatment with an extra-virgin olive oil enriched with bioactive
compounds from the olive fruit and leaves (750 mg/kg of phenolic compounds, mainly
hydroxytyrosol, 3,4-dihydroxyphenylglycol, and oleuropein) was an effective strategy for
reducing blood pressure and circulating cholesterol in spontaneously hypertensive rats [51].
These results validate our strategy for selecting the best combination of extracts to prepare
functional olive oils. In addition, they encourage the development of functional virgin
olive oils to improve specific health effects.

This work has strengths and limitations. The study presents an evidence-based de-
sign of a palatable and functional olive oil from olive fruit and leaf-related extracts with
enhanced in vitro bioactivities. Sum scores permitted the selection of a complementary
combination of olive oil minor components, which may have industrial-scale applications.
Finally, these extracts can be obtained from olive tree waste products, which would con-
tribute to minimizing industrial waste, save energy, and be environmentally sustainable.
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However, our study also has limitations. First, although equivalent concentrations were
established, the pre-analytic experimental conditions could have played a role in the differ-
ences observed among extracts. Second, enzyme immune-assays were only performed in
single experiments so that different extract concentrations could be measured in the same
analytical run and increase comparability. However, the in vitro and cellular experiments
were performed in triplicate. Third, two extracts (P5 and P6) presented some undetermined
compound in their chemical profile (as indicated by their spectra), thus other biochemical
mechanisms for the observed effects cannot be discarded. Finally, the use of cellular models
may not determine the contra-regulatory mechanisms present in vivo.

5. Conclusions

The extract combination with the best overall improvement of the bioactivities exam-
ined (antioxidant, vasoactive, anti-inflammatory, and anticoagulant), at functional doses,
was the combination of 3 different extracts, rich in 3,4-dihydroxyphenylglycol, hydroxyty-
rosol, and oleuropein. Based on the in vitro effects, the combination of functional extracts
at 0.15 µmol/L (600 mg/kg equivalents of hydroxytyrosol if we consider 0.05 µmol/L,
200 mg/kg, of each extract) would be appropriate to elaborate a palatable and functional
olive oil. The extract containing oleocanthal (P5) requires further study, as it was individ-
ually associated with the greatest improvements in the in vitro properties (nevertheless,
research into an oleocanthal extraction applicable at an industrial level is required for its
consideration in future functional oils). Our work suggests a potential strategy for the
evidence-based design of a functional food.

6. Patents

Phenolic extract #2 (P2) was obtained from olive leaves using the method described
in the patent PCT/ES2012/070491 [16]. Phenolic extract #3 (P3) was obtained from the
liquid phase of alperujo after solid/liquid separation by the patented system PCT/ES2002/
00058 [17,18]. Procedures for the elaboration of phenolic extracts #1 (P1) and #4 (P4) are
currently in the process of being patented. Phenolic extract #6 (P6) was obtained from olive
oil waste water using the method described in the patent PCT/ES2012/070491 [16].
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